A comparative approach to alleviating the prevalence of diabetes mellitus using machine learning
Diabetes mellitus, a metabolic disease with elevated blood sugar levels, is a significant global public health concern. Identification of diabetes at its very early stage can reduce the prevalence of cases. This work focuses on developing a machine learning-based system that will have a significant...
Saved in:
Published in | Computer methods and programs in biomedicine update Vol. 4; p. 100113 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2023
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2666-9900 2666-9900 |
DOI | 10.1016/j.cmpbup.2023.100113 |
Cover
Abstract | Diabetes mellitus, a metabolic disease with elevated blood sugar levels, is a significant global public health concern. Identification of diabetes at its very early stage can reduce the prevalence of cases. This work focuses on developing a machine learning-based system that will have a significant impact on diabetic patient identification. To develop such a system we utilized a dataset made up by acquiring direct questionnaires from Sylhet Diabetic Hospital patients. The dataset contains information about the signs and symptoms of patients who are new or likely to have diabetes. We applied 14 different machine-learning techniques where the Gradient Boosting Machine (GBM) outperformed other algorithms with the highest F1 and ROC scores of 99.37%, and 99.92% respectively. We also employed various ensemble-based approaches that show competitive performance to the individual model’s performance.
•Determination of risk factors through exploratory data analysis.•Building and validation of ML model to detect diabetes in early stage.•Comparison of 14 machine learning techniques and set a baseline for future research.•GBM model outperformed other models according to different performance metrics. |
---|---|
AbstractList | Diabetes mellitus, a metabolic disease with elevated blood sugar levels, is a significant global public health concern. Identification of diabetes at its very early stage can reduce the prevalence of cases. This work focuses on developing a machine learning-based system that will have a significant impact on diabetic patient identification. To develop such a system we utilized a dataset made up by acquiring direct questionnaires from Sylhet Diabetic Hospital patients. The dataset contains information about the signs and symptoms of patients who are new or likely to have diabetes. We applied 14 different machine-learning techniques where the Gradient Boosting Machine (GBM) outperformed other algorithms with the highest F1 and ROC scores of 99.37%, and 99.92% respectively. We also employed various ensemble-based approaches that show competitive performance to the individual model’s performance. Diabetes mellitus, a metabolic disease with elevated blood sugar levels, is a significant global public health concern. Identification of diabetes at its very early stage can reduce the prevalence of cases. This work focuses on developing a machine learning-based system that will have a significant impact on diabetic patient identification. To develop such a system we utilized a dataset made up by acquiring direct questionnaires from Sylhet Diabetic Hospital patients. The dataset contains information about the signs and symptoms of patients who are new or likely to have diabetes. We applied 14 different machine-learning techniques where the Gradient Boosting Machine (GBM) outperformed other algorithms with the highest F1 and ROC scores of 99.37%, and 99.92% respectively. We also employed various ensemble-based approaches that show competitive performance to the individual model’s performance. •Determination of risk factors through exploratory data analysis.•Building and validation of ML model to detect diabetes in early stage.•Comparison of 14 machine learning techniques and set a baseline for future research.•GBM model outperformed other models according to different performance metrics. |
ArticleNumber | 100113 |
Author | Banik, Semonti Rahman, Mohammad Mizanur Rahman, Kazi Naimur Islam, Md. Rifatul |
Author_xml | – sequence: 1 givenname: Md. Rifatul orcidid: 0000-0001-6971-2987 surname: Islam fullname: Islam, Md. Rifatul email: i.mdrifatul16@gmail.com organization: Department of Mechatronics and Industrial Engineering, Chittagong University of Engineering and Technology, Chittagong, 4349, Bangladesh – sequence: 2 givenname: Semonti surname: Banik fullname: Banik, Semonti email: semontibanik.cuet2016@gmail.com organization: Department of Mechatronics and Industrial Engineering, Chittagong University of Engineering and Technology, Chittagong, 4349, Bangladesh – sequence: 3 givenname: Kazi Naimur surname: Rahman fullname: Rahman, Kazi Naimur email: naimur@cuet.ac.bd organization: Department of Mechatronics and Industrial Engineering, Chittagong University of Engineering and Technology, Chittagong, 4349, Bangladesh – sequence: 4 givenname: Mohammad Mizanur surname: Rahman fullname: Rahman, Mohammad Mizanur email: mmrahman_me@cuet.ac.bd organization: Department of Mechanical Engineering, Chittagong University of Engineering and Technology, Chittagong, 4349, Bangladesh |
BookMark | eNqFkF1LHDEUhkNRqFX_QS_yB3bN12RmvBBEaisI3uh1epI9o1kykyHJLvjvm3UqFC9sbk54Oc9L8nwjR1OckJDvnK054_piu3bjbHfzWjAha8Q4l1_IidBar_qesaN_7l_Jec5bxphouBRMn5Df19TFcYYExe-RwjynCO6FlkghBNz7mk_PtLwgnRPuIeDkkMaBbjxYLJjpiCH4sst0lw-bY6X9hDQgpKkGZ-R4gJDx_O88JU-3Px5vfq3uH37e3Vzfr5ysZ4Vt43RvG8R2aHXTQ9cppZ1gHdvoAVE7qwRrGugHrZ3SXEm03CkJ2GnQXJ6Su6V3E2Fr5uRHSK8mgjdvQUzPBlLxLqDppFRaKiE7YVXDrW15K-zgVO8UV4C163LpcinmnHAwzpcqIk4lgQ-GM3NQb7ZmUW8O6s2ivsLqA_z-mP9gVwuGVdLeYzLZ-YPsjU_oSv2F_7zgD1bVobc |
CitedBy_id | crossref_primary_10_1016_j_cmpbup_2025_100184 crossref_primary_10_1007_s41870_025_02459_3 crossref_primary_10_1016_j_aej_2024_03_044 crossref_primary_10_1016_j_inffus_2025_102928 crossref_primary_10_1016_j_fraope_2024_100153 |
Cites_doi | 10.1145/3326172.3326213 10.1016/j.placenta.2015.08.004 10.4103/jod.jod_37_21 10.1007/s11606-020-06070-z 10.1038/s41598-020-68771-z 10.1016/j.dsx.2020.03.004 10.3390/s22145247 10.1109/ACCESS.2020.3047942 10.1016/j.mpmed.2018.10.002 10.4103/2468-8827.184853 10.1007/s10586-017-1532-x 10.1155/2022/2789760 10.2337/dc15-1536 10.1038/s41598-020-66084-9 10.1056/NEJM198605223142106 |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.cmpbup.2023.100113 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2666-9900 |
ExternalDocumentID | oai_doaj_org_article_83346342382b451bb7172bfc49c414ae 10_1016_j_cmpbup_2023_100113 S2666990023000228 |
GroupedDBID | 0R~ 6I. AAEDW AAFTH AALRI AAXUO ADVLN AFJKZ AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M~E OK1 ROL AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c3333-e75c69b5ee7f7659a88446c2080d6fee6cb42055a9f66c46143eb1c43ae86a613 |
IEDL.DBID | DOA |
ISSN | 2666-9900 |
IngestDate | Wed Aug 27 01:07:43 EDT 2025 Thu Apr 24 23:05:00 EDT 2025 Tue Jul 01 02:50:04 EDT 2025 Sat Mar 01 15:45:54 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Early stage prediction Data mining Diabetes mellitus Machine learning Gradient Boosting Machine |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3333-e75c69b5ee7f7659a88446c2080d6fee6cb42055a9f66c46143eb1c43ae86a613 |
ORCID | 0000-0001-6971-2987 |
OpenAccessLink | https://doaj.org/article/83346342382b451bb7172bfc49c414ae |
ParticipantIDs | doaj_primary_oai_doaj_org_article_83346342382b451bb7172bfc49c414ae crossref_citationtrail_10_1016_j_cmpbup_2023_100113 crossref_primary_10_1016_j_cmpbup_2023_100113 elsevier_sciencedirect_doi_10_1016_j_cmpbup_2023_100113 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023 2023-00-00 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023 |
PublicationDecade | 2020 |
PublicationTitle | Computer methods and programs in biomedicine update |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Talukder, Hossain (b13) 2020; 10 Nanditha, Ma, Ramachandran, Snehalatha, Chan, Chia, Shaw, Zimmet (b14) 2016; 39 Negi, Jaiswal (b19) 2016 Kumar, Kumari, Mohapatra, Naik, Nayak, Mishra (b32) 2021 Bhat, Selvam, Ansari, Ansari, Rahman (b15) 2022; 2022 Alpan, İlgi (b29) 2020 Le, Vo, Pham, Dao (b6) 2020; 9 Roglic (b7) 2016; 1 Kaur, Kumari (b11) 2019 VijiyaKumar, Lavanya, Nirmala, Caroline (b30) 2019 Yuvaraj, SriPreethaa (b21) 2019; 22 Laila, Mahboob, Khan, Khan, Taekeun (b10) 2022; 22 Bhat, Selvam, Ansari, Ansari (b16) 2022 Huynh, Yamada, Beauharnais, Wenger, Thadhani, Wexler, Roberts, Bentley-Lewis (b8) 2015; 36 Bastaki (b2) 2005; 13 F. Zafar, S. Raza, M.U. Khalid, M.A. Tahir, Predictive analytics in healthcare for diabetes prediction, in: Proceedings of the 2019 9th International Conference on Biomedical Engineering and Technology, 2019, pp. 253–259 Bhat, Selvam, Ansari, Dilshad Ansari (b17) 2022 Kaul, Tarr, Ahmad, Kohner, Chibber (b1) 2013 Bhowmik, Siddiquee, Ahmed, Afsana, Samad, Pathan, do Vale Moreira, Alim, Milon, Rahman (b9) 2021; 12 . Rana, Khan, Lloyd-Jones, Sidney (b3) 2021; 36 Islam, Rahman, Chandra Roy, Maniruzzaman (b12) 2020; 14 Indoria, Rathore (b22) 2018; 7 Kareem, Shi, Wei, Tao (b26) 2020; 13 Kaur, Chhabra (b18) 2014; 98 Pradhan, Rani, Dhaka, Poonia (b25) 2020 Kopitar, Kocbek, Cilar, Sheikh, Stiglic (b28) 2020; 10 Egan, Dinneen (b5) 2019; 47 Bahad, Saxena (b31) 2020 Eisenbarth (b4) 1986; 314 Larabi-Marie-Sainte, Aburahmah, Almohaini, Saba (b24) 2019; 9 (b27) 2020 Chang, Bailey, Xu, Sun (b20) 2022 Kaur (10.1016/j.cmpbup.2023.100113_b18) 2014; 98 Kaur (10.1016/j.cmpbup.2023.100113_b11) 2019 Bastaki (10.1016/j.cmpbup.2023.100113_b2) 2005; 13 Islam (10.1016/j.cmpbup.2023.100113_b12) 2020; 14 Kopitar (10.1016/j.cmpbup.2023.100113_b28) 2020; 10 Bhat (10.1016/j.cmpbup.2023.100113_b16) 2022 Alpan (10.1016/j.cmpbup.2023.100113_b29) 2020 Talukder (10.1016/j.cmpbup.2023.100113_b13) 2020; 10 Le (10.1016/j.cmpbup.2023.100113_b6) 2020; 9 Yuvaraj (10.1016/j.cmpbup.2023.100113_b21) 2019; 22 Rana (10.1016/j.cmpbup.2023.100113_b3) 2021; 36 Egan (10.1016/j.cmpbup.2023.100113_b5) 2019; 47 Kareem (10.1016/j.cmpbup.2023.100113_b26) 2020; 13 10.1016/j.cmpbup.2023.100113_b23 VijiyaKumar (10.1016/j.cmpbup.2023.100113_b30) 2019 Bahad (10.1016/j.cmpbup.2023.100113_b31) 2020 Kaul (10.1016/j.cmpbup.2023.100113_b1) 2013 (10.1016/j.cmpbup.2023.100113_b27) 2020 Laila (10.1016/j.cmpbup.2023.100113_b10) 2022; 22 Kumar (10.1016/j.cmpbup.2023.100113_b32) 2021 Negi (10.1016/j.cmpbup.2023.100113_b19) 2016 Eisenbarth (10.1016/j.cmpbup.2023.100113_b4) 1986; 314 Nanditha (10.1016/j.cmpbup.2023.100113_b14) 2016; 39 Chang (10.1016/j.cmpbup.2023.100113_b20) 2022 Pradhan (10.1016/j.cmpbup.2023.100113_b25) 2020 Bhat (10.1016/j.cmpbup.2023.100113_b17) 2022 Roglic (10.1016/j.cmpbup.2023.100113_b7) 2016; 1 Huynh (10.1016/j.cmpbup.2023.100113_b8) 2015; 36 Indoria (10.1016/j.cmpbup.2023.100113_b22) 2018; 7 Bhowmik (10.1016/j.cmpbup.2023.100113_b9) 2021; 12 Bhat (10.1016/j.cmpbup.2023.100113_b15) 2022; 2022 Larabi-Marie-Sainte (10.1016/j.cmpbup.2023.100113_b24) 2019; 9 |
References_xml | – start-page: 1 year: 2019 end-page: 5 ident: b30 article-title: Random forest algorithm for the prediction of diabetes publication-title: 2019 IEEE International Conference on System, Computation, Automation and Networking – start-page: 237 year: 2016 end-page: 241 ident: b19 article-title: A first attempt to develop a diabetes prediction method based on different global datasets publication-title: 2016 4th International Conference on Parallel, Distributed and Grid Computing – year: 2019 ident: b11 article-title: Predictive modelling and analytics for diabetes using a machine learning approach publication-title: Appl. Comput. Inf. – volume: 7 start-page: 287 year: 2018 end-page: 291 ident: b22 article-title: A Survey : Detection and prediction of diabetes using machine learning techniques publication-title: Int. J. Eng. Res. Technol. (IJERT) – volume: 36 start-page: 1161 year: 2015 end-page: 1166 ident: b8 article-title: Type 1, type 2 and gestational diabetes mellitus differentially impact placental pathologic characteristics of uteroplacental malperfusion publication-title: Placenta – volume: 10 start-page: 1 year: 2020 end-page: 12 ident: b28 article-title: Early detection of type 2 diabetes mellitus using machine learning-based prediction models publication-title: Sci. Rep. – volume: 13 start-page: 111 year: 2005 end-page: 134 ident: b2 article-title: Diabetes mellitus and its treatment publication-title: Dubai Diabetes Endocrinol. J. – volume: 314 start-page: 1360 year: 1986 end-page: 1368 ident: b4 article-title: Type I diabetes mellitus publication-title: New Engl. J. Med. – volume: 10 start-page: 1 year: 2020 end-page: 7 ident: b13 article-title: Prevalence of diabetes mellitus and its associated factors in Bangladesh: Application of two-level logistic regression model publication-title: Sci. Rep. – start-page: 327 year: 2020 end-page: 339 ident: b25 article-title: Diabetes prediction using artificial neural network publication-title: Deep Learning Techniques for Biomedical and Health Informatics – start-page: 1 year: 2020 end-page: 7 ident: b29 article-title: Classification of diabetes dataset with data mining techniques by using WEKA approach publication-title: 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies – volume: 2022 year: 2022 ident: b15 article-title: Prevalence and early prediction of diabetes using machine learning in North Kashmir: A case study of district Bandipora publication-title: Comput. Intell. Neurosci. – volume: 9 start-page: 7869 year: 2020 end-page: 7884 ident: b6 article-title: A novel wrapper–based feature selection for early diabetes prediction enhanced with a metaheuristic publication-title: IEEE Access – start-page: 235 year: 2020 end-page: 244 ident: b31 article-title: Study of adaboost and gradient boosting algorithms for predictive analytics publication-title: International Conference on Intelligent Computing and Smart Communication 2019: Proceedings of ICSC 2019 – volume: 36 start-page: 2517 year: 2021 end-page: 2518 ident: b3 article-title: Changes in mortality in top 10 causes of death from 2011 to 2018 publication-title: J. General Internal Med. – volume: 12 start-page: 383 year: 2021 end-page: 390 ident: b9 article-title: Diabetes care during 50 years of Bangladesh publication-title: J. Diabetology – volume: 22 year: 2019 ident: b21 article-title: Diabetes prediction in healthcare systems using machine learning algorithms on Hadoop cluster publication-title: Cluster Comput. – year: 2020 ident: b27 article-title: Early stage diabetes risk prediction dataset – volume: 9 year: 2019 ident: b24 article-title: Current techniques for diabetes prediction: Review and case study publication-title: Appl. Sci. (Switzerland) – start-page: 1 year: 2022 end-page: 17 ident: b20 article-title: Pima Indians diabetes mellitus classification based on machine learning (ML) algorithms publication-title: Neural Comput. Appl. – volume: 13 start-page: 4151 year: 2020 end-page: 4163 ident: b26 article-title: A Comparative Analysis and Risk Prediction of Diabetes at Early Stage using Machine Learning Approach A Comparative Analysis and Risk Prediction of Diabetes at Early Stage using Machine Learning Approach publication-title: Int. J. Future Gener. Commun. Netw. – start-page: 150 year: 2022 end-page: 155 ident: b17 article-title: Hybrid prediction model for type-2 diabetes mellitus using machine learning approach publication-title: 2022 Seventh International Conference on Parallel, Distributed and Grid Computing – volume: 47 start-page: 1 year: 2019 end-page: 4 ident: b5 article-title: What is diabetes? publication-title: Medicine – volume: 14 start-page: 217 year: 2020 end-page: 219 ident: b12 article-title: Automated detection and classification of diabetes disease based on Bangladesh demographic and health survey data, 2011 using machine learning approach publication-title: Diabetes Metabol. Syndrome: Clin. Res. Rev. – reference: . – volume: 1 start-page: 3 year: 2016 ident: b7 article-title: WHO global report on diabetes: A summary publication-title: Int. J. Noncommunicable Dis. – start-page: 1 year: 2013 end-page: 11 ident: b1 article-title: Introduction to diabetes mellitus publication-title: Diabetes: An Old Disease, A New Insight – start-page: 1 year: 2022 end-page: 5 ident: b16 article-title: Analysis of diabetes mellitus using machine learning techniques publication-title: 2022 5th International Conference on Multimedia, Signal Processing and Communication Technologies – start-page: 1 year: 2021 end-page: 6 ident: b32 article-title: CatBoost ensemble approach for diabetes risk prediction at early stages publication-title: 2021 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology – volume: 39 start-page: 472 year: 2016 end-page: 485 ident: b14 article-title: Diabetes in Asia and the pacific: Implications for the global epidemic publication-title: Diabetes Care – reference: F. Zafar, S. Raza, M.U. Khalid, M.A. Tahir, Predictive analytics in healthcare for diabetes prediction, in: Proceedings of the 2019 9th International Conference on Biomedical Engineering and Technology, 2019, pp. 253–259, – volume: 22 start-page: 1 year: 2022 end-page: 15 ident: b10 article-title: An ensemble approach to predict early-stage diabetes risk using machine learning: An empirical study publication-title: Sensors – volume: 98 start-page: 13 year: 2014 end-page: 17 ident: b18 article-title: Improved J48 classification algorithm for the prediction of diabetes publication-title: Int. J. Comput. Appl. – ident: 10.1016/j.cmpbup.2023.100113_b23 doi: 10.1145/3326172.3326213 – volume: 36 start-page: 1161 issue: 10 year: 2015 ident: 10.1016/j.cmpbup.2023.100113_b8 article-title: Type 1, type 2 and gestational diabetes mellitus differentially impact placental pathologic characteristics of uteroplacental malperfusion publication-title: Placenta doi: 10.1016/j.placenta.2015.08.004 – volume: 12 start-page: 383 issue: 4 year: 2021 ident: 10.1016/j.cmpbup.2023.100113_b9 article-title: Diabetes care during 50 years of Bangladesh publication-title: J. Diabetology doi: 10.4103/jod.jod_37_21 – start-page: 1 year: 2013 ident: 10.1016/j.cmpbup.2023.100113_b1 article-title: Introduction to diabetes mellitus – volume: 9 issue: 21 year: 2019 ident: 10.1016/j.cmpbup.2023.100113_b24 article-title: Current techniques for diabetes prediction: Review and case study publication-title: Appl. Sci. (Switzerland) – start-page: 235 year: 2020 ident: 10.1016/j.cmpbup.2023.100113_b31 article-title: Study of adaboost and gradient boosting algorithms for predictive analytics – volume: 36 start-page: 2517 year: 2021 ident: 10.1016/j.cmpbup.2023.100113_b3 article-title: Changes in mortality in top 10 causes of death from 2011 to 2018 publication-title: J. General Internal Med. doi: 10.1007/s11606-020-06070-z – start-page: 1 year: 2022 ident: 10.1016/j.cmpbup.2023.100113_b16 article-title: Analysis of diabetes mellitus using machine learning techniques – start-page: 1 year: 2022 ident: 10.1016/j.cmpbup.2023.100113_b20 article-title: Pima Indians diabetes mellitus classification based on machine learning (ML) algorithms publication-title: Neural Comput. Appl. – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.cmpbup.2023.100113_b28 article-title: Early detection of type 2 diabetes mellitus using machine learning-based prediction models publication-title: Sci. Rep. doi: 10.1038/s41598-020-68771-z – volume: 14 start-page: 217 issue: 3 year: 2020 ident: 10.1016/j.cmpbup.2023.100113_b12 article-title: Automated detection and classification of diabetes disease based on Bangladesh demographic and health survey data, 2011 using machine learning approach publication-title: Diabetes Metabol. Syndrome: Clin. Res. Rev. doi: 10.1016/j.dsx.2020.03.004 – volume: 22 start-page: 1 issue: 14 year: 2022 ident: 10.1016/j.cmpbup.2023.100113_b10 article-title: An ensemble approach to predict early-stage diabetes risk using machine learning: An empirical study publication-title: Sensors doi: 10.3390/s22145247 – start-page: 150 year: 2022 ident: 10.1016/j.cmpbup.2023.100113_b17 article-title: Hybrid prediction model for type-2 diabetes mellitus using machine learning approach – start-page: 1 year: 2020 ident: 10.1016/j.cmpbup.2023.100113_b29 article-title: Classification of diabetes dataset with data mining techniques by using WEKA approach – volume: 9 start-page: 7869 year: 2020 ident: 10.1016/j.cmpbup.2023.100113_b6 article-title: A novel wrapper–based feature selection for early diabetes prediction enhanced with a metaheuristic publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3047942 – volume: 7 start-page: 287 issue: 03 year: 2018 ident: 10.1016/j.cmpbup.2023.100113_b22 article-title: A Survey : Detection and prediction of diabetes using machine learning techniques publication-title: Int. J. Eng. Res. Technol. (IJERT) – start-page: 1 year: 2019 ident: 10.1016/j.cmpbup.2023.100113_b30 article-title: Random forest algorithm for the prediction of diabetes – volume: 47 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.cmpbup.2023.100113_b5 article-title: What is diabetes? publication-title: Medicine doi: 10.1016/j.mpmed.2018.10.002 – volume: 13 start-page: 4151 issue: 3 year: 2020 ident: 10.1016/j.cmpbup.2023.100113_b26 article-title: A Comparative Analysis and Risk Prediction of Diabetes at Early Stage using Machine Learning Approach A Comparative Analysis and Risk Prediction of Diabetes at Early Stage using Machine Learning Approach publication-title: Int. J. Future Gener. Commun. Netw. – volume: 1 start-page: 3 issue: 1 year: 2016 ident: 10.1016/j.cmpbup.2023.100113_b7 article-title: WHO global report on diabetes: A summary publication-title: Int. J. Noncommunicable Dis. doi: 10.4103/2468-8827.184853 – year: 2020 ident: 10.1016/j.cmpbup.2023.100113_b27 – volume: 98 start-page: 13 issue: 22 year: 2014 ident: 10.1016/j.cmpbup.2023.100113_b18 article-title: Improved J48 classification algorithm for the prediction of diabetes publication-title: Int. J. Comput. Appl. – start-page: 327 year: 2020 ident: 10.1016/j.cmpbup.2023.100113_b25 article-title: Diabetes prediction using artificial neural network – volume: 22 year: 2019 ident: 10.1016/j.cmpbup.2023.100113_b21 article-title: Diabetes prediction in healthcare systems using machine learning algorithms on Hadoop cluster publication-title: Cluster Comput. doi: 10.1007/s10586-017-1532-x – year: 2019 ident: 10.1016/j.cmpbup.2023.100113_b11 article-title: Predictive modelling and analytics for diabetes using a machine learning approach publication-title: Appl. Comput. Inf. – volume: 2022 year: 2022 ident: 10.1016/j.cmpbup.2023.100113_b15 article-title: Prevalence and early prediction of diabetes using machine learning in North Kashmir: A case study of district Bandipora publication-title: Comput. Intell. Neurosci. doi: 10.1155/2022/2789760 – start-page: 237 year: 2016 ident: 10.1016/j.cmpbup.2023.100113_b19 article-title: A first attempt to develop a diabetes prediction method based on different global datasets – volume: 39 start-page: 472 issue: 3 year: 2016 ident: 10.1016/j.cmpbup.2023.100113_b14 article-title: Diabetes in Asia and the pacific: Implications for the global epidemic publication-title: Diabetes Care doi: 10.2337/dc15-1536 – start-page: 1 year: 2021 ident: 10.1016/j.cmpbup.2023.100113_b32 article-title: CatBoost ensemble approach for diabetes risk prediction at early stages – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.cmpbup.2023.100113_b13 article-title: Prevalence of diabetes mellitus and its associated factors in Bangladesh: Application of two-level logistic regression model publication-title: Sci. Rep. doi: 10.1038/s41598-020-66084-9 – volume: 13 start-page: 111 year: 2005 ident: 10.1016/j.cmpbup.2023.100113_b2 article-title: Diabetes mellitus and its treatment publication-title: Dubai Diabetes Endocrinol. J. – volume: 314 start-page: 1360 issue: 21 year: 1986 ident: 10.1016/j.cmpbup.2023.100113_b4 article-title: Type I diabetes mellitus publication-title: New Engl. J. Med. doi: 10.1056/NEJM198605223142106 |
SSID | ssj0002513206 |
Score | 2.304151 |
Snippet | Diabetes mellitus, a metabolic disease with elevated blood sugar levels, is a significant global public health concern. Identification of diabetes at its very... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100113 |
SubjectTerms | Data mining Diabetes mellitus Early stage prediction Gradient Boosting Machine Machine learning |
Title | A comparative approach to alleviating the prevalence of diabetes mellitus using machine learning |
URI | https://dx.doi.org/10.1016/j.cmpbup.2023.100113 https://doaj.org/article/83346342382b451bb7172bfc49c414ae |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEIAt1AGxIJ6ivOSBNSL1K_FYUKsKqUxU6hZi165ANK1Kyshv5y5OSlhgIUOGyLGj89l3ti_fEXKTC6E9qEqktZeR4C6PUm2TaJYwr_Fgy1TcgvGjGk3Ew1ROW6m-MCYs4IGD4G5TzoVCTF3KjJA9Y2D9wYy3QlvRE7nD2TfWcWsxhXMwWG3OYtX8K1cFdNnFymwQUcl4RR7q8R-2qEL2t0xSy8wMD8h-7R_SfviuQ7LjiiOyO65PwI_Jc5_ab2A3bZDgtFxSzIrygZIu5hTcOrpaI8obRy5detpsstIFIjjLzTvFkPc5XVTRlI7W6SPmJ2QyHDzdj6I6S0JkOVyRS6RV2kjnEp8oqfM0hSWeZeAKzpR3TlkjWCxlrr1SVoA55jA_W8Fzl6ocrPkp6RTLwp0RaiyM9xyqk54Ly0RqNXgoUrmYO-R4dQlv5JXZGiGOmSzesiZW7DULUs5QylmQcpdE27dWAaHxR_k77IptWQRgVw9ALbJaLbK_1KJLkqYjs9qXCD4CVPXya_Pn_9H8BdnDKsNezSXplOuNuwLvpTTXlaLCffw5-ALZ4uvD |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+approach+to+alleviating+the+prevalence+of+diabetes+mellitus+using+machine+learning&rft.jtitle=Computer+methods+and+programs+in+biomedicine+update&rft.au=Islam%2C+Md.+Rifatul&rft.au=Banik%2C+Semonti&rft.au=Rahman%2C+Kazi+Naimur&rft.au=Rahman%2C+Mohammad+Mizanur&rft.date=2023&rft.pub=Elsevier+B.V&rft.issn=2666-9900&rft.eissn=2666-9900&rft.volume=4&rft_id=info:doi/10.1016%2Fj.cmpbup.2023.100113&rft.externalDocID=S2666990023000228 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-9900&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-9900&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-9900&client=summon |