A comparative approach to alleviating the prevalence of diabetes mellitus using machine learning

Diabetes mellitus, a metabolic disease with elevated blood sugar levels, is a significant global public health concern. Identification of diabetes at its very early stage can reduce the prevalence of cases. This work focuses on developing a machine learning-based system that will have a significant...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine update Vol. 4; p. 100113
Main Authors Islam, Md. Rifatul, Banik, Semonti, Rahman, Kazi Naimur, Rahman, Mohammad Mizanur
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2023
Elsevier
Subjects
Online AccessGet full text
ISSN2666-9900
2666-9900
DOI10.1016/j.cmpbup.2023.100113

Cover

Abstract Diabetes mellitus, a metabolic disease with elevated blood sugar levels, is a significant global public health concern. Identification of diabetes at its very early stage can reduce the prevalence of cases. This work focuses on developing a machine learning-based system that will have a significant impact on diabetic patient identification. To develop such a system we utilized a dataset made up by acquiring direct questionnaires from Sylhet Diabetic Hospital patients. The dataset contains information about the signs and symptoms of patients who are new or likely to have diabetes. We applied 14 different machine-learning techniques where the Gradient Boosting Machine (GBM) outperformed other algorithms with the highest F1 and ROC scores of 99.37%, and 99.92% respectively. We also employed various ensemble-based approaches that show competitive performance to the individual model’s performance. •Determination of risk factors through exploratory data analysis.•Building and validation of ML model to detect diabetes in early stage.•Comparison of 14 machine learning techniques and set a baseline for future research.•GBM model outperformed other models according to different performance metrics.
AbstractList Diabetes mellitus, a metabolic disease with elevated blood sugar levels, is a significant global public health concern. Identification of diabetes at its very early stage can reduce the prevalence of cases. This work focuses on developing a machine learning-based system that will have a significant impact on diabetic patient identification. To develop such a system we utilized a dataset made up by acquiring direct questionnaires from Sylhet Diabetic Hospital patients. The dataset contains information about the signs and symptoms of patients who are new or likely to have diabetes. We applied 14 different machine-learning techniques where the Gradient Boosting Machine (GBM) outperformed other algorithms with the highest F1 and ROC scores of 99.37%, and 99.92% respectively. We also employed various ensemble-based approaches that show competitive performance to the individual model’s performance.
Diabetes mellitus, a metabolic disease with elevated blood sugar levels, is a significant global public health concern. Identification of diabetes at its very early stage can reduce the prevalence of cases. This work focuses on developing a machine learning-based system that will have a significant impact on diabetic patient identification. To develop such a system we utilized a dataset made up by acquiring direct questionnaires from Sylhet Diabetic Hospital patients. The dataset contains information about the signs and symptoms of patients who are new or likely to have diabetes. We applied 14 different machine-learning techniques where the Gradient Boosting Machine (GBM) outperformed other algorithms with the highest F1 and ROC scores of 99.37%, and 99.92% respectively. We also employed various ensemble-based approaches that show competitive performance to the individual model’s performance. •Determination of risk factors through exploratory data analysis.•Building and validation of ML model to detect diabetes in early stage.•Comparison of 14 machine learning techniques and set a baseline for future research.•GBM model outperformed other models according to different performance metrics.
ArticleNumber 100113
Author Banik, Semonti
Rahman, Mohammad Mizanur
Rahman, Kazi Naimur
Islam, Md. Rifatul
Author_xml – sequence: 1
  givenname: Md. Rifatul
  orcidid: 0000-0001-6971-2987
  surname: Islam
  fullname: Islam, Md. Rifatul
  email: i.mdrifatul16@gmail.com
  organization: Department of Mechatronics and Industrial Engineering, Chittagong University of Engineering and Technology, Chittagong, 4349, Bangladesh
– sequence: 2
  givenname: Semonti
  surname: Banik
  fullname: Banik, Semonti
  email: semontibanik.cuet2016@gmail.com
  organization: Department of Mechatronics and Industrial Engineering, Chittagong University of Engineering and Technology, Chittagong, 4349, Bangladesh
– sequence: 3
  givenname: Kazi Naimur
  surname: Rahman
  fullname: Rahman, Kazi Naimur
  email: naimur@cuet.ac.bd
  organization: Department of Mechatronics and Industrial Engineering, Chittagong University of Engineering and Technology, Chittagong, 4349, Bangladesh
– sequence: 4
  givenname: Mohammad Mizanur
  surname: Rahman
  fullname: Rahman, Mohammad Mizanur
  email: mmrahman_me@cuet.ac.bd
  organization: Department of Mechanical Engineering, Chittagong University of Engineering and Technology, Chittagong, 4349, Bangladesh
BookMark eNqFkF1LHDEUhkNRqFX_QS_yB3bN12RmvBBEaisI3uh1epI9o1kykyHJLvjvm3UqFC9sbk54Oc9L8nwjR1OckJDvnK054_piu3bjbHfzWjAha8Q4l1_IidBar_qesaN_7l_Jec5bxphouBRMn5Df19TFcYYExe-RwjynCO6FlkghBNz7mk_PtLwgnRPuIeDkkMaBbjxYLJjpiCH4sst0lw-bY6X9hDQgpKkGZ-R4gJDx_O88JU-3Px5vfq3uH37e3Vzfr5ysZ4Vt43RvG8R2aHXTQ9cppZ1gHdvoAVE7qwRrGugHrZ3SXEm03CkJ2GnQXJ6Su6V3E2Fr5uRHSK8mgjdvQUzPBlLxLqDppFRaKiE7YVXDrW15K-zgVO8UV4C163LpcinmnHAwzpcqIk4lgQ-GM3NQb7ZmUW8O6s2ivsLqA_z-mP9gVwuGVdLeYzLZ-YPsjU_oSv2F_7zgD1bVobc
CitedBy_id crossref_primary_10_1016_j_cmpbup_2025_100184
crossref_primary_10_1007_s41870_025_02459_3
crossref_primary_10_1016_j_aej_2024_03_044
crossref_primary_10_1016_j_inffus_2025_102928
crossref_primary_10_1016_j_fraope_2024_100153
Cites_doi 10.1145/3326172.3326213
10.1016/j.placenta.2015.08.004
10.4103/jod.jod_37_21
10.1007/s11606-020-06070-z
10.1038/s41598-020-68771-z
10.1016/j.dsx.2020.03.004
10.3390/s22145247
10.1109/ACCESS.2020.3047942
10.1016/j.mpmed.2018.10.002
10.4103/2468-8827.184853
10.1007/s10586-017-1532-x
10.1155/2022/2789760
10.2337/dc15-1536
10.1038/s41598-020-66084-9
10.1056/NEJM198605223142106
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.cmpbup.2023.100113
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2666-9900
ExternalDocumentID oai_doaj_org_article_83346342382b451bb7172bfc49c414ae
10_1016_j_cmpbup_2023_100113
S2666990023000228
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
ADVLN
AFJKZ
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M~E
OK1
ROL
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c3333-e75c69b5ee7f7659a88446c2080d6fee6cb42055a9f66c46143eb1c43ae86a613
IEDL.DBID DOA
ISSN 2666-9900
IngestDate Wed Aug 27 01:07:43 EDT 2025
Thu Apr 24 23:05:00 EDT 2025
Tue Jul 01 02:50:04 EDT 2025
Sat Mar 01 15:45:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Early stage prediction
Data mining
Diabetes mellitus
Machine learning
Gradient Boosting Machine
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3333-e75c69b5ee7f7659a88446c2080d6fee6cb42055a9f66c46143eb1c43ae86a613
ORCID 0000-0001-6971-2987
OpenAccessLink https://doaj.org/article/83346342382b451bb7172bfc49c414ae
ParticipantIDs doaj_primary_oai_doaj_org_article_83346342382b451bb7172bfc49c414ae
crossref_citationtrail_10_1016_j_cmpbup_2023_100113
crossref_primary_10_1016_j_cmpbup_2023_100113
elsevier_sciencedirect_doi_10_1016_j_cmpbup_2023_100113
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023
2023-00-00
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023
PublicationDecade 2020
PublicationTitle Computer methods and programs in biomedicine update
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Talukder, Hossain (b13) 2020; 10
Nanditha, Ma, Ramachandran, Snehalatha, Chan, Chia, Shaw, Zimmet (b14) 2016; 39
Negi, Jaiswal (b19) 2016
Kumar, Kumari, Mohapatra, Naik, Nayak, Mishra (b32) 2021
Bhat, Selvam, Ansari, Ansari, Rahman (b15) 2022; 2022
Alpan, İlgi (b29) 2020
Le, Vo, Pham, Dao (b6) 2020; 9
Roglic (b7) 2016; 1
Kaur, Kumari (b11) 2019
VijiyaKumar, Lavanya, Nirmala, Caroline (b30) 2019
Yuvaraj, SriPreethaa (b21) 2019; 22
Laila, Mahboob, Khan, Khan, Taekeun (b10) 2022; 22
Bhat, Selvam, Ansari, Ansari (b16) 2022
Huynh, Yamada, Beauharnais, Wenger, Thadhani, Wexler, Roberts, Bentley-Lewis (b8) 2015; 36
Bastaki (b2) 2005; 13
F. Zafar, S. Raza, M.U. Khalid, M.A. Tahir, Predictive analytics in healthcare for diabetes prediction, in: Proceedings of the 2019 9th International Conference on Biomedical Engineering and Technology, 2019, pp. 253–259
Bhat, Selvam, Ansari, Dilshad Ansari (b17) 2022
Kaul, Tarr, Ahmad, Kohner, Chibber (b1) 2013
Bhowmik, Siddiquee, Ahmed, Afsana, Samad, Pathan, do Vale Moreira, Alim, Milon, Rahman (b9) 2021; 12
.
Rana, Khan, Lloyd-Jones, Sidney (b3) 2021; 36
Islam, Rahman, Chandra Roy, Maniruzzaman (b12) 2020; 14
Indoria, Rathore (b22) 2018; 7
Kareem, Shi, Wei, Tao (b26) 2020; 13
Kaur, Chhabra (b18) 2014; 98
Pradhan, Rani, Dhaka, Poonia (b25) 2020
Kopitar, Kocbek, Cilar, Sheikh, Stiglic (b28) 2020; 10
Egan, Dinneen (b5) 2019; 47
Bahad, Saxena (b31) 2020
Eisenbarth (b4) 1986; 314
Larabi-Marie-Sainte, Aburahmah, Almohaini, Saba (b24) 2019; 9
(b27) 2020
Chang, Bailey, Xu, Sun (b20) 2022
Kaur (10.1016/j.cmpbup.2023.100113_b18) 2014; 98
Kaur (10.1016/j.cmpbup.2023.100113_b11) 2019
Bastaki (10.1016/j.cmpbup.2023.100113_b2) 2005; 13
Islam (10.1016/j.cmpbup.2023.100113_b12) 2020; 14
Kopitar (10.1016/j.cmpbup.2023.100113_b28) 2020; 10
Bhat (10.1016/j.cmpbup.2023.100113_b16) 2022
Alpan (10.1016/j.cmpbup.2023.100113_b29) 2020
Talukder (10.1016/j.cmpbup.2023.100113_b13) 2020; 10
Le (10.1016/j.cmpbup.2023.100113_b6) 2020; 9
Yuvaraj (10.1016/j.cmpbup.2023.100113_b21) 2019; 22
Rana (10.1016/j.cmpbup.2023.100113_b3) 2021; 36
Egan (10.1016/j.cmpbup.2023.100113_b5) 2019; 47
Kareem (10.1016/j.cmpbup.2023.100113_b26) 2020; 13
10.1016/j.cmpbup.2023.100113_b23
VijiyaKumar (10.1016/j.cmpbup.2023.100113_b30) 2019
Bahad (10.1016/j.cmpbup.2023.100113_b31) 2020
Kaul (10.1016/j.cmpbup.2023.100113_b1) 2013
(10.1016/j.cmpbup.2023.100113_b27) 2020
Laila (10.1016/j.cmpbup.2023.100113_b10) 2022; 22
Kumar (10.1016/j.cmpbup.2023.100113_b32) 2021
Negi (10.1016/j.cmpbup.2023.100113_b19) 2016
Eisenbarth (10.1016/j.cmpbup.2023.100113_b4) 1986; 314
Nanditha (10.1016/j.cmpbup.2023.100113_b14) 2016; 39
Chang (10.1016/j.cmpbup.2023.100113_b20) 2022
Pradhan (10.1016/j.cmpbup.2023.100113_b25) 2020
Bhat (10.1016/j.cmpbup.2023.100113_b17) 2022
Roglic (10.1016/j.cmpbup.2023.100113_b7) 2016; 1
Huynh (10.1016/j.cmpbup.2023.100113_b8) 2015; 36
Indoria (10.1016/j.cmpbup.2023.100113_b22) 2018; 7
Bhowmik (10.1016/j.cmpbup.2023.100113_b9) 2021; 12
Bhat (10.1016/j.cmpbup.2023.100113_b15) 2022; 2022
Larabi-Marie-Sainte (10.1016/j.cmpbup.2023.100113_b24) 2019; 9
References_xml – start-page: 1
  year: 2019
  end-page: 5
  ident: b30
  article-title: Random forest algorithm for the prediction of diabetes
  publication-title: 2019 IEEE International Conference on System, Computation, Automation and Networking
– start-page: 237
  year: 2016
  end-page: 241
  ident: b19
  article-title: A first attempt to develop a diabetes prediction method based on different global datasets
  publication-title: 2016 4th International Conference on Parallel, Distributed and Grid Computing
– year: 2019
  ident: b11
  article-title: Predictive modelling and analytics for diabetes using a machine learning approach
  publication-title: Appl. Comput. Inf.
– volume: 7
  start-page: 287
  year: 2018
  end-page: 291
  ident: b22
  article-title: A Survey : Detection and prediction of diabetes using machine learning techniques
  publication-title: Int. J. Eng. Res. Technol. (IJERT)
– volume: 36
  start-page: 1161
  year: 2015
  end-page: 1166
  ident: b8
  article-title: Type 1, type 2 and gestational diabetes mellitus differentially impact placental pathologic characteristics of uteroplacental malperfusion
  publication-title: Placenta
– volume: 10
  start-page: 1
  year: 2020
  end-page: 12
  ident: b28
  article-title: Early detection of type 2 diabetes mellitus using machine learning-based prediction models
  publication-title: Sci. Rep.
– volume: 13
  start-page: 111
  year: 2005
  end-page: 134
  ident: b2
  article-title: Diabetes mellitus and its treatment
  publication-title: Dubai Diabetes Endocrinol. J.
– volume: 314
  start-page: 1360
  year: 1986
  end-page: 1368
  ident: b4
  article-title: Type I diabetes mellitus
  publication-title: New Engl. J. Med.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 7
  ident: b13
  article-title: Prevalence of diabetes mellitus and its associated factors in Bangladesh: Application of two-level logistic regression model
  publication-title: Sci. Rep.
– start-page: 327
  year: 2020
  end-page: 339
  ident: b25
  article-title: Diabetes prediction using artificial neural network
  publication-title: Deep Learning Techniques for Biomedical and Health Informatics
– start-page: 1
  year: 2020
  end-page: 7
  ident: b29
  article-title: Classification of diabetes dataset with data mining techniques by using WEKA approach
  publication-title: 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies
– volume: 2022
  year: 2022
  ident: b15
  article-title: Prevalence and early prediction of diabetes using machine learning in North Kashmir: A case study of district Bandipora
  publication-title: Comput. Intell. Neurosci.
– volume: 9
  start-page: 7869
  year: 2020
  end-page: 7884
  ident: b6
  article-title: A novel wrapper–based feature selection for early diabetes prediction enhanced with a metaheuristic
  publication-title: IEEE Access
– start-page: 235
  year: 2020
  end-page: 244
  ident: b31
  article-title: Study of adaboost and gradient boosting algorithms for predictive analytics
  publication-title: International Conference on Intelligent Computing and Smart Communication 2019: Proceedings of ICSC 2019
– volume: 36
  start-page: 2517
  year: 2021
  end-page: 2518
  ident: b3
  article-title: Changes in mortality in top 10 causes of death from 2011 to 2018
  publication-title: J. General Internal Med.
– volume: 12
  start-page: 383
  year: 2021
  end-page: 390
  ident: b9
  article-title: Diabetes care during 50 years of Bangladesh
  publication-title: J. Diabetology
– volume: 22
  year: 2019
  ident: b21
  article-title: Diabetes prediction in healthcare systems using machine learning algorithms on Hadoop cluster
  publication-title: Cluster Comput.
– year: 2020
  ident: b27
  article-title: Early stage diabetes risk prediction dataset
– volume: 9
  year: 2019
  ident: b24
  article-title: Current techniques for diabetes prediction: Review and case study
  publication-title: Appl. Sci. (Switzerland)
– start-page: 1
  year: 2022
  end-page: 17
  ident: b20
  article-title: Pima Indians diabetes mellitus classification based on machine learning (ML) algorithms
  publication-title: Neural Comput. Appl.
– volume: 13
  start-page: 4151
  year: 2020
  end-page: 4163
  ident: b26
  article-title: A Comparative Analysis and Risk Prediction of Diabetes at Early Stage using Machine Learning Approach A Comparative Analysis and Risk Prediction of Diabetes at Early Stage using Machine Learning Approach
  publication-title: Int. J. Future Gener. Commun. Netw.
– start-page: 150
  year: 2022
  end-page: 155
  ident: b17
  article-title: Hybrid prediction model for type-2 diabetes mellitus using machine learning approach
  publication-title: 2022 Seventh International Conference on Parallel, Distributed and Grid Computing
– volume: 47
  start-page: 1
  year: 2019
  end-page: 4
  ident: b5
  article-title: What is diabetes?
  publication-title: Medicine
– volume: 14
  start-page: 217
  year: 2020
  end-page: 219
  ident: b12
  article-title: Automated detection and classification of diabetes disease based on Bangladesh demographic and health survey data, 2011 using machine learning approach
  publication-title: Diabetes Metabol. Syndrome: Clin. Res. Rev.
– reference: .
– volume: 1
  start-page: 3
  year: 2016
  ident: b7
  article-title: WHO global report on diabetes: A summary
  publication-title: Int. J. Noncommunicable Dis.
– start-page: 1
  year: 2013
  end-page: 11
  ident: b1
  article-title: Introduction to diabetes mellitus
  publication-title: Diabetes: An Old Disease, A New Insight
– start-page: 1
  year: 2022
  end-page: 5
  ident: b16
  article-title: Analysis of diabetes mellitus using machine learning techniques
  publication-title: 2022 5th International Conference on Multimedia, Signal Processing and Communication Technologies
– start-page: 1
  year: 2021
  end-page: 6
  ident: b32
  article-title: CatBoost ensemble approach for diabetes risk prediction at early stages
  publication-title: 2021 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology
– volume: 39
  start-page: 472
  year: 2016
  end-page: 485
  ident: b14
  article-title: Diabetes in Asia and the pacific: Implications for the global epidemic
  publication-title: Diabetes Care
– reference: F. Zafar, S. Raza, M.U. Khalid, M.A. Tahir, Predictive analytics in healthcare for diabetes prediction, in: Proceedings of the 2019 9th International Conference on Biomedical Engineering and Technology, 2019, pp. 253–259,
– volume: 22
  start-page: 1
  year: 2022
  end-page: 15
  ident: b10
  article-title: An ensemble approach to predict early-stage diabetes risk using machine learning: An empirical study
  publication-title: Sensors
– volume: 98
  start-page: 13
  year: 2014
  end-page: 17
  ident: b18
  article-title: Improved J48 classification algorithm for the prediction of diabetes
  publication-title: Int. J. Comput. Appl.
– ident: 10.1016/j.cmpbup.2023.100113_b23
  doi: 10.1145/3326172.3326213
– volume: 36
  start-page: 1161
  issue: 10
  year: 2015
  ident: 10.1016/j.cmpbup.2023.100113_b8
  article-title: Type 1, type 2 and gestational diabetes mellitus differentially impact placental pathologic characteristics of uteroplacental malperfusion
  publication-title: Placenta
  doi: 10.1016/j.placenta.2015.08.004
– volume: 12
  start-page: 383
  issue: 4
  year: 2021
  ident: 10.1016/j.cmpbup.2023.100113_b9
  article-title: Diabetes care during 50 years of Bangladesh
  publication-title: J. Diabetology
  doi: 10.4103/jod.jod_37_21
– start-page: 1
  year: 2013
  ident: 10.1016/j.cmpbup.2023.100113_b1
  article-title: Introduction to diabetes mellitus
– volume: 9
  issue: 21
  year: 2019
  ident: 10.1016/j.cmpbup.2023.100113_b24
  article-title: Current techniques for diabetes prediction: Review and case study
  publication-title: Appl. Sci. (Switzerland)
– start-page: 235
  year: 2020
  ident: 10.1016/j.cmpbup.2023.100113_b31
  article-title: Study of adaboost and gradient boosting algorithms for predictive analytics
– volume: 36
  start-page: 2517
  year: 2021
  ident: 10.1016/j.cmpbup.2023.100113_b3
  article-title: Changes in mortality in top 10 causes of death from 2011 to 2018
  publication-title: J. General Internal Med.
  doi: 10.1007/s11606-020-06070-z
– start-page: 1
  year: 2022
  ident: 10.1016/j.cmpbup.2023.100113_b16
  article-title: Analysis of diabetes mellitus using machine learning techniques
– start-page: 1
  year: 2022
  ident: 10.1016/j.cmpbup.2023.100113_b20
  article-title: Pima Indians diabetes mellitus classification based on machine learning (ML) algorithms
  publication-title: Neural Comput. Appl.
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.cmpbup.2023.100113_b28
  article-title: Early detection of type 2 diabetes mellitus using machine learning-based prediction models
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-68771-z
– volume: 14
  start-page: 217
  issue: 3
  year: 2020
  ident: 10.1016/j.cmpbup.2023.100113_b12
  article-title: Automated detection and classification of diabetes disease based on Bangladesh demographic and health survey data, 2011 using machine learning approach
  publication-title: Diabetes Metabol. Syndrome: Clin. Res. Rev.
  doi: 10.1016/j.dsx.2020.03.004
– volume: 22
  start-page: 1
  issue: 14
  year: 2022
  ident: 10.1016/j.cmpbup.2023.100113_b10
  article-title: An ensemble approach to predict early-stage diabetes risk using machine learning: An empirical study
  publication-title: Sensors
  doi: 10.3390/s22145247
– start-page: 150
  year: 2022
  ident: 10.1016/j.cmpbup.2023.100113_b17
  article-title: Hybrid prediction model for type-2 diabetes mellitus using machine learning approach
– start-page: 1
  year: 2020
  ident: 10.1016/j.cmpbup.2023.100113_b29
  article-title: Classification of diabetes dataset with data mining techniques by using WEKA approach
– volume: 9
  start-page: 7869
  year: 2020
  ident: 10.1016/j.cmpbup.2023.100113_b6
  article-title: A novel wrapper–based feature selection for early diabetes prediction enhanced with a metaheuristic
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3047942
– volume: 7
  start-page: 287
  issue: 03
  year: 2018
  ident: 10.1016/j.cmpbup.2023.100113_b22
  article-title: A Survey : Detection and prediction of diabetes using machine learning techniques
  publication-title: Int. J. Eng. Res. Technol. (IJERT)
– start-page: 1
  year: 2019
  ident: 10.1016/j.cmpbup.2023.100113_b30
  article-title: Random forest algorithm for the prediction of diabetes
– volume: 47
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.cmpbup.2023.100113_b5
  article-title: What is diabetes?
  publication-title: Medicine
  doi: 10.1016/j.mpmed.2018.10.002
– volume: 13
  start-page: 4151
  issue: 3
  year: 2020
  ident: 10.1016/j.cmpbup.2023.100113_b26
  article-title: A Comparative Analysis and Risk Prediction of Diabetes at Early Stage using Machine Learning Approach A Comparative Analysis and Risk Prediction of Diabetes at Early Stage using Machine Learning Approach
  publication-title: Int. J. Future Gener. Commun. Netw.
– volume: 1
  start-page: 3
  issue: 1
  year: 2016
  ident: 10.1016/j.cmpbup.2023.100113_b7
  article-title: WHO global report on diabetes: A summary
  publication-title: Int. J. Noncommunicable Dis.
  doi: 10.4103/2468-8827.184853
– year: 2020
  ident: 10.1016/j.cmpbup.2023.100113_b27
– volume: 98
  start-page: 13
  issue: 22
  year: 2014
  ident: 10.1016/j.cmpbup.2023.100113_b18
  article-title: Improved J48 classification algorithm for the prediction of diabetes
  publication-title: Int. J. Comput. Appl.
– start-page: 327
  year: 2020
  ident: 10.1016/j.cmpbup.2023.100113_b25
  article-title: Diabetes prediction using artificial neural network
– volume: 22
  year: 2019
  ident: 10.1016/j.cmpbup.2023.100113_b21
  article-title: Diabetes prediction in healthcare systems using machine learning algorithms on Hadoop cluster
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-017-1532-x
– year: 2019
  ident: 10.1016/j.cmpbup.2023.100113_b11
  article-title: Predictive modelling and analytics for diabetes using a machine learning approach
  publication-title: Appl. Comput. Inf.
– volume: 2022
  year: 2022
  ident: 10.1016/j.cmpbup.2023.100113_b15
  article-title: Prevalence and early prediction of diabetes using machine learning in North Kashmir: A case study of district Bandipora
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2022/2789760
– start-page: 237
  year: 2016
  ident: 10.1016/j.cmpbup.2023.100113_b19
  article-title: A first attempt to develop a diabetes prediction method based on different global datasets
– volume: 39
  start-page: 472
  issue: 3
  year: 2016
  ident: 10.1016/j.cmpbup.2023.100113_b14
  article-title: Diabetes in Asia and the pacific: Implications for the global epidemic
  publication-title: Diabetes Care
  doi: 10.2337/dc15-1536
– start-page: 1
  year: 2021
  ident: 10.1016/j.cmpbup.2023.100113_b32
  article-title: CatBoost ensemble approach for diabetes risk prediction at early stages
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.cmpbup.2023.100113_b13
  article-title: Prevalence of diabetes mellitus and its associated factors in Bangladesh: Application of two-level logistic regression model
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-66084-9
– volume: 13
  start-page: 111
  year: 2005
  ident: 10.1016/j.cmpbup.2023.100113_b2
  article-title: Diabetes mellitus and its treatment
  publication-title: Dubai Diabetes Endocrinol. J.
– volume: 314
  start-page: 1360
  issue: 21
  year: 1986
  ident: 10.1016/j.cmpbup.2023.100113_b4
  article-title: Type I diabetes mellitus
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJM198605223142106
SSID ssj0002513206
Score 2.304151
Snippet Diabetes mellitus, a metabolic disease with elevated blood sugar levels, is a significant global public health concern. Identification of diabetes at its very...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100113
SubjectTerms Data mining
Diabetes mellitus
Early stage prediction
Gradient Boosting Machine
Machine learning
Title A comparative approach to alleviating the prevalence of diabetes mellitus using machine learning
URI https://dx.doi.org/10.1016/j.cmpbup.2023.100113
https://doaj.org/article/83346342382b451bb7172bfc49c414ae
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEIAt1AGxIJ6ivOSBNSL1K_FYUKsKqUxU6hZi165ANK1Kyshv5y5OSlhgIUOGyLGj89l3ti_fEXKTC6E9qEqktZeR4C6PUm2TaJYwr_Fgy1TcgvGjGk3Ew1ROW6m-MCYs4IGD4G5TzoVCTF3KjJA9Y2D9wYy3QlvRE7nD2TfWcWsxhXMwWG3OYtX8K1cFdNnFymwQUcl4RR7q8R-2qEL2t0xSy8wMD8h-7R_SfviuQ7LjiiOyO65PwI_Jc5_ab2A3bZDgtFxSzIrygZIu5hTcOrpaI8obRy5detpsstIFIjjLzTvFkPc5XVTRlI7W6SPmJ2QyHDzdj6I6S0JkOVyRS6RV2kjnEp8oqfM0hSWeZeAKzpR3TlkjWCxlrr1SVoA55jA_W8Fzl6ocrPkp6RTLwp0RaiyM9xyqk54Ly0RqNXgoUrmYO-R4dQlv5JXZGiGOmSzesiZW7DULUs5QylmQcpdE27dWAaHxR_k77IptWQRgVw9ALbJaLbK_1KJLkqYjs9qXCD4CVPXya_Pn_9H8BdnDKsNezSXplOuNuwLvpTTXlaLCffw5-ALZ4uvD
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+approach+to+alleviating+the+prevalence+of+diabetes+mellitus+using+machine+learning&rft.jtitle=Computer+methods+and+programs+in+biomedicine+update&rft.au=Islam%2C+Md.+Rifatul&rft.au=Banik%2C+Semonti&rft.au=Rahman%2C+Kazi+Naimur&rft.au=Rahman%2C+Mohammad+Mizanur&rft.date=2023&rft.pub=Elsevier+B.V&rft.issn=2666-9900&rft.eissn=2666-9900&rft.volume=4&rft_id=info:doi/10.1016%2Fj.cmpbup.2023.100113&rft.externalDocID=S2666990023000228
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-9900&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-9900&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-9900&client=summon