Start-up flow in a three-dimensional lid-driven cavity by means of a massively parallel direction splitting algorithm

SUMMARY The purpose of this paper is to validate a new highly parallelizable direction splitting algorithm. The parallelization capabilities of this algorithm are illustrated by providing a highly accurate solution for the start‐up flow in a three‐dimensional impulsively started lid‐driven cavity of...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in fluids Vol. 68; no. 7; pp. 856 - 871
Main Authors Guermond, J. L., Minev, P. D.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 10.03.2012
Wiley
Subjects
Online AccessGet full text
ISSN0271-2091
1097-0363
DOI10.1002/fld.2583

Cover

Abstract SUMMARY The purpose of this paper is to validate a new highly parallelizable direction splitting algorithm. The parallelization capabilities of this algorithm are illustrated by providing a highly accurate solution for the start‐up flow in a three‐dimensional impulsively started lid‐driven cavity of aspect ratio 1 × 1 × 2 at Reynolds numbers 1000 and 5000. The computations are done in parallel (up to 1024 processors) on adapted grids of up to 2 billion nodes in three space dimensions. Velocity profiles are given at dimensionless times t = 4, 8, and 12; at least four digits are expected to be correct at Re = 1000. Copyright © 2011 John Wiley & Sons, Ltd.
AbstractList The purpose of this paper is to validate a new highly parallelizable direction splitting algorithm. The parallelization capabilities of this algorithm are illustrated by providing a highly accurate solution for the start‐up flow in a three‐dimensional impulsively started lid‐driven cavity of aspect ratio 1 × 1 × 2 at Reynolds numbers 1000 and 5000. The computations are done in parallel (up to 1024 processors) on adapted grids of up to 2 billion nodes in three space dimensions. Velocity profiles are given at dimensionless times t  = 4, 8, and 12; at least four digits are expected to be correct at Re  = 1000. Copyright © 2011 John Wiley & Sons, Ltd.
SUMMARY The purpose of this paper is to validate a new highly parallelizable direction splitting algorithm. The parallelization capabilities of this algorithm are illustrated by providing a highly accurate solution for the start‐up flow in a three‐dimensional impulsively started lid‐driven cavity of aspect ratio 1 × 1 × 2 at Reynolds numbers 1000 and 5000. The computations are done in parallel (up to 1024 processors) on adapted grids of up to 2 billion nodes in three space dimensions. Velocity profiles are given at dimensionless times t = 4, 8, and 12; at least four digits are expected to be correct at Re = 1000. Copyright © 2011 John Wiley & Sons, Ltd.
Author Guermond, J. L.
Minev, P. D.
Author_xml – sequence: 1
  givenname: J. L.
  surname: Guermond
  fullname: Guermond, J. L.
  email: guermond@math.tamu.edu, Jean L. Guermond, Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA., guermond@math.tamu.edu
  organization: Department of Mathematics, Texas A&M University, TX, 77843-3368, College Station, USA
– sequence: 2
  givenname: P. D.
  surname: Minev
  fullname: Minev, P. D.
  organization: Department of Mathematical and Statistical Sciences, University of Alberta, Alberta, T6G 2G1, Edmonton, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25578801$$DView record in Pascal Francis
BookMark eNp1kEtv1DAUhS1UJKYFiZ_gDRIbD34kcbKEgRakEUg8u7Nu_GgNjhPZbkv-PR4NqgSCu7mL-52je84pOolztAg9ZXTLKOUvXDBb3vbiAdowOkhCRSdO0IZyyQinA3uETnP-TikdeC826OZTgVTIzYJdmO-wjxhwuU7WEuMnG7OfIwQcvCEm-VsbsYZbX1Y8rniyEDOeXVVMkHO9hhUvkCAEG7DxyepS5TgvwZfi4xWGcDUnX66nx-ihg5Dtk9_7DH05f_N595bsP1y8273cEy3qkPp6z3VvuhrMNNrQQVspKTCwrBm1A8kE531rXGecG0YjddeNTcc7QZtRcHGGnh19F8gagksQtc9qSX6CtCretrLvKavc8yOn05xzsu4eYVQdalW1VnWotaLbv1DtCxyClgQ-_EtAjoI7H-z6X2N1vn_9J-9zsT_veUg_VCeFbNW39xdq9_XV5ceGS3UpfgF-bJs2
CODEN IJNFDW
CitedBy_id crossref_primary_10_1002_fld_5043
crossref_primary_10_1016_j_cma_2016_03_018
crossref_primary_10_1016_j_jpdc_2019_11_004
crossref_primary_10_1016_j_jcp_2013_08_039
crossref_primary_10_1016_j_cma_2013_08_004
crossref_primary_10_1137_18M1209301
crossref_primary_10_3390_fluids8030086
crossref_primary_10_1016_j_jcp_2014_10_058
crossref_primary_10_1016_j_apnum_2014_05_010
crossref_primary_10_1016_j_compfluid_2024_106178
crossref_primary_10_1016_j_crme_2012_10_001
crossref_primary_10_4208_cicp_OA_2016_0039
crossref_primary_10_1016_j_jcp_2015_07_011
crossref_primary_10_1016_j_jcp_2020_110023
crossref_primary_10_1007_s10915_015_0154_9
Cites_doi 10.1006/jcph.2002.7145
10.1002/fld.953
10.1016/j.cma.2011.02.007
10.1016/S0045-7930(97)00004-2
10.1016/S0045-7930(98)00002-4
10.1137/S0036142901395400
10.1090/S0025-5718-03-01621-1
10.1002/fld.1650210505
10.1016/j.jcp.2004.12.024
10.1007/BF01386295
10.1063/1.868158
10.1016/j.compfluid.2004.12.004
10.1007/978-3-540-89894-8_32
10.1017/S0022112001006383
10.1016/0021-9991(82)90058-4
10.1016/j.crma.2010.03.009
10.1146/annurev.fluid.32.1.93
ContentType Journal Article
Copyright Copyright © 2011 John Wiley & Sons, Ltd.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2011 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
DOI 10.1002/fld.2583
DatabaseName Istex
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1097-0363
EndPage 871
ExternalDocumentID 25578801
10_1002_fld_2583
FLD2583
ark_67375_WNG_CVBXR427_X
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: DMS‐0713829
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
31~
6TJ
ABEML
ACSCC
AGHNM
AI.
AMVHM
IQODW
M6O
PALCI
RIWAO
RJQFR
SAMSI
VH1
VOH
ZY4
~A~
ID FETCH-LOGICAL-c3333-36382c8d6002d4cd09ce770a1ae14bcfa7132285df6dff9bd7c66b4626304b323
IEDL.DBID DR2
ISSN 0271-2091
IngestDate Mon Jul 21 09:15:02 EDT 2025
Wed Oct 01 02:49:36 EDT 2025
Thu Apr 24 22:50:38 EDT 2025
Sun Sep 21 06:15:39 EDT 2025
Sun Sep 21 06:18:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords three dimensional
Computational fluid dynamics
incompressible flow
Digital simulation
parallel algorithm
direction splitting
Velocity distribution
lid-driven cavity
unsteady flow
Parallel algorithms
Cavity flow
Moving wall
Three dimensional flow
MAC stencil
Modelling
Incompressible fluid
Mesh generation
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3333-36382c8d6002d4cd09ce770a1ae14bcfa7132285df6dff9bd7c66b4626304b323
Notes National Science Foundation - No. DMS-0713829
ArticleID:FLD2583
istex:F7976A906FB93FC772E25D46E1733F6A1EC12AC4
ark:/67375/WNG-CVBXR427-X
PageCount 16
ParticipantIDs pascalfrancis_primary_25578801
crossref_primary_10_1002_fld_2583
crossref_citationtrail_10_1002_fld_2583
wiley_primary_10_1002_fld_2583_FLD2583
istex_primary_ark_67375_WNG_CVBXR427_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 March 2012
PublicationDateYYYYMMDD 2012-03-10
PublicationDate_xml – month: 03
  year: 2012
  text: 10 March 2012
  day: 10
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical methods in fluids
PublicationTitleAlternate Int. J. Numer. Meth. Fluids
PublicationYear 2012
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Albensoeder S, Kuhlmann HC. Accurate three-dimensional lid-driven cavity flow. Journal of Computational Physics 2005; 206:536-558.
Tang L, Cheng T, Tsang T. Transient solution for three-dimensional lid-driven cavity flows by a least-squares finite element method. International Journal Numerical Methods in Fluids 1995; 21:413-432.
Douglas J Jr. Alternating direction methods for three space variables. Numerische Mathematik 1962; 4:41-63.
Baragy E, Carey GF. Stream function-vorticity driven cavity solutions using p finite elements. Computers & Fluids 1997; 26:453-468.
Shankar PN, Deshpande MD. Fluid mechanics in the driven cavity. Annual Review of Fluid Mechanics 2000; 32:93-136.
Botella O, Peyret R. Benchmark spectral results on the lid-driven cavity flow. Computers & Fluids 1998; 27(4):421-433.
Guermond JL, Shen J. On the error estimates for the rotational pressure-correction projection methods. Mathethamatics of Computation 2004; 73(248):1719-1737 (electronic).
Ramanan N, Homsy GM. Linear stability of lid-driven cavity flow. Physics of Fluids 1994; 6:2690-2701.
Auteri F, Parolini N, Quartapelle L. Numerical investigation on the stability of singular driven cavity flow. Journal of Computational Physics 2002; 183:1-25.
Bruneau C-H, Saad M. The 2D lid-driven cavity problem revisited. Computers & Fluids 2006; 35:326-348.
Guermond JL, Shen J. Velocity-correction projection methods for incompressible flows. SIAM Journal on Numerical Analysis 2003; 41(1):112-134.
Guermond J-L, Minev PD. A new class of fractional step techniques for the incompressible Navier-Stokes equations using direction splitting. Comptes Rendus Mathematique 2010; 348:581-585.
Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics 1982; 48(3):387-411.
Erturk E, Corke TC, Gokcol C. Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. International Journal for Numerical Methods in Fluids 2005; 48:747-774.
Guermond J-L, Minev PD. A new class of splitting methods for the incompressible Navier-Stokes equations using direction splitting. Computer Methods in Applied Mechanics and Engineering 2011; 200:2083-2093.
Guermond J-L, Migeon C, Pineau G, Quartapelle L. Start-up flows in a three-dimensional rectangular driven cavity of aspect ratio 1:1:2 at Re = 1000. Journal of Fluid Mechanics 2002; 450:169-199.
1998; 27
1982; 48
2004; 73
2002; 183
2002; 450
2006; 35
2008; 5374
2010; 348
2000; 32
1997; 26
1962; 4
1995; 21
2005; 206
2008
2005; 48
2003; 41
2011; 200
1994; 6
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
References_xml – reference: Bruneau C-H, Saad M. The 2D lid-driven cavity problem revisited. Computers & Fluids 2006; 35:326-348.
– reference: Guermond J-L, Minev PD. A new class of splitting methods for the incompressible Navier-Stokes equations using direction splitting. Computer Methods in Applied Mechanics and Engineering 2011; 200:2083-2093.
– reference: Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics 1982; 48(3):387-411.
– reference: Erturk E, Corke TC, Gokcol C. Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. International Journal for Numerical Methods in Fluids 2005; 48:747-774.
– reference: Tang L, Cheng T, Tsang T. Transient solution for three-dimensional lid-driven cavity flows by a least-squares finite element method. International Journal Numerical Methods in Fluids 1995; 21:413-432.
– reference: Shankar PN, Deshpande MD. Fluid mechanics in the driven cavity. Annual Review of Fluid Mechanics 2000; 32:93-136.
– reference: Baragy E, Carey GF. Stream function-vorticity driven cavity solutions using p finite elements. Computers & Fluids 1997; 26:453-468.
– reference: Auteri F, Parolini N, Quartapelle L. Numerical investigation on the stability of singular driven cavity flow. Journal of Computational Physics 2002; 183:1-25.
– reference: Botella O, Peyret R. Benchmark spectral results on the lid-driven cavity flow. Computers & Fluids 1998; 27(4):421-433.
– reference: Albensoeder S, Kuhlmann HC. Accurate three-dimensional lid-driven cavity flow. Journal of Computational Physics 2005; 206:536-558.
– reference: Douglas J Jr. Alternating direction methods for three space variables. Numerische Mathematik 1962; 4:41-63.
– reference: Guermond J-L, Minev PD. A new class of fractional step techniques for the incompressible Navier-Stokes equations using direction splitting. Comptes Rendus Mathematique 2010; 348:581-585.
– reference: Guermond J-L, Migeon C, Pineau G, Quartapelle L. Start-up flows in a three-dimensional rectangular driven cavity of aspect ratio 1:1:2 at Re = 1000. Journal of Fluid Mechanics 2002; 450:169-199.
– reference: Guermond JL, Shen J. On the error estimates for the rotational pressure-correction projection methods. Mathethamatics of Computation 2004; 73(248):1719-1737 (electronic).
– reference: Guermond JL, Shen J. Velocity-correction projection methods for incompressible flows. SIAM Journal on Numerical Analysis 2003; 41(1):112-134.
– reference: Ramanan N, Homsy GM. Linear stability of lid-driven cavity flow. Physics of Fluids 1994; 6:2690-2701.
– volume: 450
  start-page: 169
  year: 2002
  end-page: 199
  article-title: Start‐up flows in a three‐dimensional rectangular driven cavity of aspect ratio 1:1:2 at  = 1000
  publication-title: Journal of Fluid Mechanics
– volume: 26
  start-page: 453
  year: 1997
  end-page: 468
  article-title: Stream function-vorticity driven cavity solutions using finite elements
  publication-title: Computers & Fluids
– volume: 41
  start-page: 112
  issue: 1
  year: 2003
  end-page: 134
  article-title: Velocity‐correction projection methods for incompressible flows
  publication-title: SIAM Journal on Numerical Analysis
– volume: 206
  start-page: 536
  year: 2005
  end-page: 558
  article-title: Accurate three‐dimensional lid‐driven cavity flow
  publication-title: Journal of Computational Physics
– volume: 27
  start-page: 421
  issue: 4
  year: 1998
  end-page: 433
  article-title: Benchmark spectral results on the lid‐driven cavity flow
  publication-title: Computers & Fluids
– year: 2008
– volume: 5374
  start-page: 350
  year: 2008
  end-page: 364
– volume: 32
  start-page: 93
  year: 2000
  end-page: 136
  article-title: Fluid mechanics in the driven cavity
  publication-title: Annual Review of Fluid Mechanics
– volume: 348
  start-page: 581
  year: 2010
  end-page: 585
  article-title: A new class of fractional step techniques for the incompressible Navier–Stokes equations using direction splitting
  publication-title: Comptes Rendus Mathematique
– volume: 35
  start-page: 326
  year: 2006
  end-page: 348
  article-title: The 2D lid‐driven cavity problem revisited
  publication-title: Computers & Fluids
– volume: 183
  start-page: 1
  year: 2002
  end-page: 25
  article-title: Numerical investigation on the stability of singular driven cavity flow
  publication-title: Journal of Computational Physics
– volume: 200
  start-page: 2083
  year: 2011
  end-page: 2093
  article-title: A new class of splitting methods for the incompressible Navier–Stokes equations using direction splitting
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 4
  start-page: 41
  year: 1962
  end-page: 63
  article-title: Alternating direction methods for three space variables
  publication-title: Numerische Mathematik
– volume: 73
  start-page: 1719
  issue: 248
  year: 2004
  end-page: 1737 (electronic)
  article-title: On the error estimates for the rotational pressure‐correction projection methods
  publication-title: Mathethamatics of Computation
– volume: 48
  start-page: 387
  issue: 3
  year: 1982
  end-page: 411
  article-title: High‐Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method
  publication-title: Journal of Computational Physics
– volume: 48
  start-page: 747
  year: 2005
  end-page: 774
  article-title: Numerical solutions of 2‐D steady incompressible driven cavity flow at high Reynolds numbers
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 6
  start-page: 2690
  year: 1994
  end-page: 2701
  article-title: Linear stability of lid‐driven cavity flow
  publication-title: Physics of Fluids
– volume: 21
  start-page: 413
  year: 1995
  end-page: 432
  article-title: Transient solution for three‐dimensional lid‐driven cavity flows by a least‐squares finite element method
  publication-title: International Journal Numerical Methods in Fluids
– ident: e_1_2_7_19_1
  doi: 10.1006/jcph.2002.7145
– ident: e_1_2_7_17_1
  doi: 10.1002/fld.953
– ident: e_1_2_7_9_1
  doi: 10.1016/j.cma.2011.02.007
– ident: e_1_2_7_16_1
  doi: 10.1016/S0045-7930(97)00004-2
– ident: e_1_2_7_3_1
  doi: 10.1016/S0045-7930(98)00002-4
– ident: e_1_2_7_6_1
  doi: 10.1137/S0036142901395400
– ident: e_1_2_7_7_1
  doi: 10.1090/S0025-5718-03-01621-1
– ident: e_1_2_7_14_1
  doi: 10.1002/fld.1650210505
– ident: e_1_2_7_11_1
– ident: e_1_2_7_5_1
  doi: 10.1016/j.jcp.2004.12.024
– ident: e_1_2_7_8_1
  doi: 10.1007/BF01386295
– ident: e_1_2_7_18_1
  doi: 10.1063/1.868158
– ident: e_1_2_7_4_1
  doi: 10.1016/j.compfluid.2004.12.004
– ident: e_1_2_7_10_1
  doi: 10.1007/978-3-540-89894-8_32
– ident: e_1_2_7_13_1
  doi: 10.1017/S0022112001006383
– ident: e_1_2_7_12_1
  doi: 10.1016/0021-9991(82)90058-4
– ident: e_1_2_7_2_1
  doi: 10.1016/j.crma.2010.03.009
– ident: e_1_2_7_15_1
  doi: 10.1146/annurev.fluid.32.1.93
SSID ssj0009283
Score 2.0812147
Snippet SUMMARY The purpose of this paper is to validate a new highly parallelizable direction splitting algorithm. The parallelization capabilities of this algorithm...
The purpose of this paper is to validate a new highly parallelizable direction splitting algorithm. The parallelization capabilities of this algorithm are...
SourceID pascalfrancis
crossref
wiley
istex
SourceType Index Database
Enrichment Source
Publisher
StartPage 856
SubjectTerms Computational methods in fluid dynamics
direction splitting
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
incompressible flow
Laminar flows
Laminar flows in cavities
lid-driven cavity
MAC stencil
parallel algorithm
Physics
three dimensional
unsteady flow
Title Start-up flow in a three-dimensional lid-driven cavity by means of a massively parallel direction splitting algorithm
URI https://api.istex.fr/ark:/67375/WNG-CVBXR427-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.2583
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0271-2091
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0363
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009283
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZQucCBQgGx_FRGQnDKNvYmcXwsLUuFoIeKwkocIv-WVb27VTYraLnwCDwjT9IZJ7tlEUiIXCIlY8cZz3hm4sk3hDwrDPNGMp44Ll2SacMTmRqX-Mz71LLSsbh7_u6wODjO3ozyUZdVif_CtPgQqw9uqBlxvUYFV3q-cwUa6oPt87xEoE82KGI0dXSFHCV5i8DJBQNBkGyJO5vynWXDNUt0HZn6FTMj1RyY49uqFuseazQ5w03yaTnYNtPktL9odN9c_Ibj-H9vc5vc6jxRutuKzh1yzU23yGbnldJO5-db5OYvkIV3yTfwTuvm5_cfizPqw-wLHU-pog1IhIOLFmsFtDgfNIwtXqlxOaVGYY0Kqs_pxIFxpDMPrSbguMPdcE4RgDwEF2hrYaEDOodxxJxsqsLJrB43nyf3yPHw1fu9g6Qr4JCYARwJTEvJTWlx789mxqbSOCFSxZRjIBZeCYyFy9z6wnovtRWmKHSGADlppgd8cJ9sTGdT94DQwucWVieuyhQ8JimkcBBPa60huFepET3yYjmZlenQzbHIRqhaXGZeAYcr5HCPPF1RnrWIHn-geR7lYUWg6lPMgBN59fHwdbX34eXoKOOiGvXI9prArBpApCZgaWTQU5z2vz6qGr7dx_PDfyV8RG6A08aTmFP4mGw09cI9Aceo0dtRBS4B70gOig
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9gA9UCigLpRiJASnbGPn4UScoLAssN1D1cIekCI_YdXsbpXNClou_AR-I7-EcR5bFoGEyCWSYzuOPWN_Y0--AXgUK2pVSplnWGq8UCrmpb4yng2t9TVNDK1Ozw-Hcf8kfDOKRmvwtP0XpuaHWG64Oc2o5mun4G5Dev-SNdTmusuiJLgCG2GMZopDREeX3FEpqzk4GacoCiltmWd9tt-WXFmLNly3fnG-kWKO3WPruBarmLVadHpb8KFtbu1rctpdlLKrLn5jcvzP77kB1xswSp7V0nMT1sx0G7YaYEoatZ9vw-YvrIW34CsC1KL88e374ozYfPaZjKdEkBKFwmCiduECaqoPko-1SyncjEqUcGEqiDwnE4PrI5lZLDVB7I5P83PiOMjz3OSkXmSxAjLHdlRu2UTkH2fFuPw0uQ0nvZfHB32vieHgqQAvL0D9ZirR7vhPh0r7qTKc-4IKQ1EyrODOHE4ibWNtbSo1V3EsQ8eR44cyYMEdWJ_OpmYHSGwjjRMUE4mPoCnlKTdoUksp0b4XvuIdeNKOZqYagnMXZyPPampmlmEPZ66HO_BwmfOsJvX4Q57HlUAsM4ji1DnB8Sh7P3yVHbx7PjoKGc9GHdhbkZhlATTWOM6OFGuqxv2vr8p6gxfufvdfMz6Aq_3jw0E2eD18ew-uIYZjXuViuAvrZbEw9xEnlXKv0oefx0YSqw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVkL0QKGAukCLkRCcsk2ch2Nxgi5LgbJCFYU9IEV-wqrZh7JZQeHCT-hv5JcwzmPLIpAQuURKxo4znvHMxJNvAB4kKrCKB9QzlBsvkop63FfGs5G1vg5SE1S7568HyeFJ9HIYD9fgcfsvTI0Psfzg5jSjWq-dgpuZtvsXqKE2110ap-El2Ihinrp8vt7xBXYUpzUGJ2UBigIPWuRZn-63LVds0YZj6xeXGynmyB5b17VY9Vkro9Pfgg_tcOtck9PuopRd9fU3JMf_fJ9rcLVxRsmTWnquw5qZbMNW45iSRu3n27D5C2rhDfiGDmpR_vh-vpgRm08_k9GECFKiUBi8qF25gBrqg-Qj7a4UbkUlSrgyFUSekbFB-0imFluN0XfHu_kZcRjkeW5yUhtZ7IDMcRxVWjYR-cdpMSo_jW_CSf_Z24NDr6nh4KkQDy9E_aYq1W77T0dK-1wZxnwRCBOgZFjBXDicxtom2louNVNJIiOHkeNHMqThLVifTCdmB0hiY40LFBWpj04TZ5wZDKmllBjfC1-xDjxqZzNTDcC5q7ORZzU0M82Qw5njcAfuLylnNajHH2geVgKxJBDFqUuCY3H2fvA8O3j3dHgcUZYNO7C3IjHLBhisMVwdA-ypmve_PirrH_Xc-fa_Et6Dy296_ezoxeDVHbiCLhz1qgzDu7BeFguzi25SKfcqdfgJWDISLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Start%E2%80%90up+flow+in+a+three%E2%80%90dimensional+lid%E2%80%90driven+cavity+by+means+of+a+massively+parallel+direction+splitting+algorithm&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Guermond%2C+J.+L.&rft.au=Minev%2C+P.+D.&rft.date=2012-03-10&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=68&rft.issue=7&rft.spage=856&rft.epage=871&rft_id=info:doi/10.1002%2Ffld.2583&rft.externalDBID=10.1002%252Ffld.2583&rft.externalDocID=FLD2583
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon