Lipoprotein ratios are better than conventional lipid parameters in predicting coronary heart disease in Chinese Han people

Dyslipidaemia is the main risk factor for coronary heart disease (CHD). Plasma lipid levels are conven-tionally used to predict coronary risk globally, but further studies are required to investigate whether the lipoprotein ratios are superior to conventional lipid parameters as predictors for CHD....

Full description

Saved in:
Bibliographic Details
Published inKardiologia polska Vol. 73; no. 10; pp. 931 - 938
Main Authors Zhu, Li, Lu, Zhan, Zhu, Liren, Ouyang, Xiaoxiao, Yang, Yang, He, Wenfeng, Feng, Yanping, Yi, Fang, Song, Yongyan
Format Journal Article
LanguageEnglish
Published Poland 01.01.2015
Subjects
Online AccessGet full text
ISSN0022-9032
1897-4279
DOI10.5603/KP.a2015.0086

Cover

Abstract Dyslipidaemia is the main risk factor for coronary heart disease (CHD). Plasma lipid levels are conven-tionally used to predict coronary risk globally, but further studies are required to investigate whether the lipoprotein ratios are superior to conventional lipid parameters as predictors for CHD. A hospital-based case-control study consisting of 738 CHD patients and 157 control subjects was conducted in a Chinese Han population. Demographic characteristics and plasma lipid or apolipoprotein data were collected. Univariate and multivariate logistic regression analyses were carried out to examine the relationship between the lipoprotein ratios and CHD risk. The CHD group had significantly higher age, non-high-density lipoprotein cholesterol (non-HDL-C), lipoprotein (a) [Lp(a)], triglyceride (TG)/HDL-C, total cholesterol (TC)/HDL-C, low-density lipoprotein cholesterol (LDL-C)/HDL-C, non-HDL-C/HDL-C, very low-density lipoprotein cholesterol (VLDL-C)/HDL-C, and apolipoprotein B100/apolipoprotein AI (apoB100/apoAI) than the control group (p < 0.05 for all). Moreover, the prevalence of male sex, smoking, and hypertension in the CHD group was significantly higher than in the control group. The results from univariate logistic regression analysis showed that the ratios of TC/HDL-C (OR 1.135, 95% CI 1.019-1.265), LDL-C/HDL-C (OR 1.216, 95% CI 1.033-1.431), non-HDL-C/HDL-C (OR 1.135, 95% CI 1.019-1.265), and apoB100/apoAI (OR 1.966, 95% CI 1.013-3.817) significantly increased the risk for CHD. By multivariate logistic regression analysis, the results were not materially altered and each of the four ratios was independently associated with CHD after adjustment for non-lipid coronary risk factors. ApoB100/apoAI showed the strongest association with CHD in both the univariate and multivariate logistic regression analyses. Our data indicate that the lipoprotein ratios are superior to conventional lipid parameters as predictors for CHD. Of the ratios, apoB100/apoAI is the best to predict CHD risk.
AbstractList Dyslipidaemia is the main risk factor for coronary heart disease (CHD). Plasma lipid levels are conven-tionally used to predict coronary risk globally, but further studies are required to investigate whether the lipoprotein ratios are superior to conventional lipid parameters as predictors for CHD. A hospital-based case-control study consisting of 738 CHD patients and 157 control subjects was conducted in a Chinese Han population. Demographic characteristics and plasma lipid or apolipoprotein data were collected. Univariate and multivariate logistic regression analyses were carried out to examine the relationship between the lipoprotein ratios and CHD risk. The CHD group had significantly higher age, non-high-density lipoprotein cholesterol (non-HDL-C), lipoprotein (a) [Lp(a)], triglyceride (TG)/HDL-C, total cholesterol (TC)/HDL-C, low-density lipoprotein cholesterol (LDL-C)/HDL-C, non-HDL-C/HDL-C, very low-density lipoprotein cholesterol (VLDL-C)/HDL-C, and apolipoprotein B100/apolipoprotein AI (apoB100/apoAI) than the control group (p < 0.05 for all). Moreover, the prevalence of male sex, smoking, and hypertension in the CHD group was significantly higher than in the control group. The results from univariate logistic regression analysis showed that the ratios of TC/HDL-C (OR 1.135, 95% CI 1.019-1.265), LDL-C/HDL-C (OR 1.216, 95% CI 1.033-1.431), non-HDL-C/HDL-C (OR 1.135, 95% CI 1.019-1.265), and apoB100/apoAI (OR 1.966, 95% CI 1.013-3.817) significantly increased the risk for CHD. By multivariate logistic regression analysis, the results were not materially altered and each of the four ratios was independently associated with CHD after adjustment for non-lipid coronary risk factors. ApoB100/apoAI showed the strongest association with CHD in both the univariate and multivariate logistic regression analyses. Our data indicate that the lipoprotein ratios are superior to conventional lipid parameters as predictors for CHD. Of the ratios, apoB100/apoAI is the best to predict CHD risk.
Author Song, Yongyan
Ouyang, Xiaoxiao
Zhu, Liren
Zhu, Li
Yi, Fang
Feng, Yanping
Lu, Zhan
Yang, Yang
He, Wenfeng
Author_xml – sequence: 1
  givenname: Li
  surname: Zhu
  fullname: Zhu, Li
– sequence: 2
  givenname: Zhan
  surname: Lu
  fullname: Lu, Zhan
– sequence: 3
  givenname: Liren
  surname: Zhu
  fullname: Zhu, Liren
– sequence: 4
  givenname: Xiaoxiao
  surname: Ouyang
  fullname: Ouyang, Xiaoxiao
– sequence: 5
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
– sequence: 6
  givenname: Wenfeng
  surname: He
  fullname: He, Wenfeng
– sequence: 7
  givenname: Yanping
  surname: Feng
  fullname: Feng, Yanping
– sequence: 8
  givenname: Fang
  surname: Yi
  fullname: Yi, Fang
– sequence: 9
  givenname: Yongyan
  surname: Song
  fullname: Song, Yongyan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25985729$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1PwzAMQCMEYh9w5IryBzrSpGmTI5qAoU1iBzhXaeuwoC6NkoCE-POkDDggcbItP1v2m6FjO1hA6CInC14SdrXeLhQlOV8QIsojNM2FrLKCVvIYTQmhNJOE0QmahfCSSlHm-SmaUC4Fr6icoo-NcYPzQwRjsVfRDAErD7iBGMHjuFMWt4N9A5taVvW4N8502Cmv9pCIgNOc89CZNhr7nFifMP-Od6B8xJ0JoAKM0HJnLKR0lTY6GFwPZ-hEqz7A-Xeco6fbm8flKts83N0vrzdZyxiNGRCuVM6asulaAgUVBSm4hEIyIWRJKdFVV0nFKVBelFqnJ4tKEKV1yRstJJujy8Ne99rsoaudN_t0Yv1jIQHZAWj9EIIH_YvkpB4t1-tt_WW5Hi0nnv3hWxNHdzZ6Zfp_pj4BLFCBsA
CitedBy_id crossref_primary_10_1016_j_jad_2023_10_064
crossref_primary_10_3233_MNM_230048
crossref_primary_10_3390_ijerph15112530
crossref_primary_10_53986_ibjm_2022_0039
crossref_primary_10_28982_josam_812679
crossref_primary_10_3389_fendo_2023_1303336
crossref_primary_10_3389_fneur_2022_875134
crossref_primary_10_1080_03014460_2024_2323037
crossref_primary_10_1016_j_schres_2023_10_023
crossref_primary_10_3389_fnut_2024_1486370
crossref_primary_10_1186_s13098_025_01637_4
crossref_primary_10_1002_jcla_24499
crossref_primary_10_3389_fnut_2023_1201010
crossref_primary_10_3390_nu13093231
crossref_primary_10_3389_fcvm_2024_1524465
crossref_primary_10_36660_abc_20190683
crossref_primary_10_1136_postgradmedj_2019_136917
crossref_primary_10_1007_s10554_021_02387_w
crossref_primary_10_1136_bmjopen_2023_072418
crossref_primary_10_1186_s12944_018_0848_8
crossref_primary_10_1038_s41598_024_63153_1
crossref_primary_10_4103_jmh_jmh_179_23
crossref_primary_10_1186_s12967_022_03470_z
crossref_primary_10_3389_fcvm_2023_1163052
crossref_primary_10_1042_BSR20192657
crossref_primary_10_1186_s12889_024_19265_4
crossref_primary_10_1016_j_ihj_2024_01_014
crossref_primary_10_3390_diagnostics14141495
crossref_primary_10_3389_fendo_2025_1478124
crossref_primary_10_3389_fnut_2024_1480689
crossref_primary_10_1186_s12944_020_01322_7
crossref_primary_10_1186_s12944_024_02164_3
crossref_primary_10_1002_vms3_798
crossref_primary_10_1007_s11695_024_07441_9
crossref_primary_10_1097_MD_0000000000041585
crossref_primary_10_1038_s41598_021_89307_z
crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_107991
crossref_primary_10_1038_s41531_024_00713_2
crossref_primary_10_1186_s12872_021_02129_9
crossref_primary_10_1186_s13098_023_01237_0
crossref_primary_10_1186_s12944_025_02536_3
crossref_primary_10_1097_MD_0000000000008058
crossref_primary_10_3390_metabo14020123
crossref_primary_10_1186_s12933_022_01522_8
crossref_primary_10_1097_MD_0000000000038748
crossref_primary_10_1186_s12944_021_01584_9
crossref_primary_10_1186_s12944_024_02278_8
crossref_primary_10_1186_s40001_025_02374_0
crossref_primary_10_1186_s12944_022_01732_9
crossref_primary_10_1097_MD_0000000000039965
crossref_primary_10_1038_s41598_024_84686_5
crossref_primary_10_1002_jgm_2941
crossref_primary_10_1186_s12944_022_01683_1
crossref_primary_10_3390_children10040641
crossref_primary_10_1177_00033197221098280
crossref_primary_10_1186_s12944_024_02089_x
crossref_primary_10_1186_s12933_022_01531_7
crossref_primary_10_1186_s12944_024_02269_9
crossref_primary_10_3389_fmed_2024_1477820
crossref_primary_10_1038_s41598_022_19445_5
crossref_primary_10_1111_dom_16018
crossref_primary_10_1186_s12944_024_02012_4
crossref_primary_10_1016_j_ejogrb_2024_12_041
crossref_primary_10_4103_1319_2442_385959
crossref_primary_10_1038_s41598_025_90773_y
crossref_primary_10_1016_j_numecd_2019_07_006
crossref_primary_10_1186_s12944_023_01853_9
crossref_primary_10_1186_s12944_019_0970_2
crossref_primary_10_1007_s11845_024_03711_8
crossref_primary_10_1186_s12944_024_02171_4
crossref_primary_10_1007_s00394_024_03455_2
crossref_primary_10_1016_j_etap_2017_06_006
crossref_primary_10_2147_CCID_S492053
crossref_primary_10_1093_cvr_cvac128
crossref_primary_10_1186_s12872_020_01562_6
crossref_primary_10_1186_s12944_024_02309_4
crossref_primary_10_3390_obesities5010005
crossref_primary_10_1186_s12944_022_01761_4
crossref_primary_10_1186_s12872_022_03016_7
crossref_primary_10_1089_dna_2019_4647
crossref_primary_10_1016_j_ijbiomac_2024_134330
crossref_primary_10_1038_s41598_025_90609_9
crossref_primary_10_1097_MD_0000000000040976
crossref_primary_10_1111_jch_13038
crossref_primary_10_1186_s12944_024_02338_z
crossref_primary_10_36660_abc_20230418
crossref_primary_10_3389_fcvm_2024_1500025
crossref_primary_10_3390_diagnostics13203249
crossref_primary_10_3390_jcdd11050140
crossref_primary_10_1186_s12944_020_01377_6
crossref_primary_10_2147_DMSO_S421203
crossref_primary_10_3389_fnut_2025_1548851
crossref_primary_10_1080_13697137_2019_1631787
crossref_primary_10_2147_DMSO_S355980
crossref_primary_10_12688_f1000research_55215_1
crossref_primary_10_1111_ijcp_14131
crossref_primary_10_12688_f1000research_55215_2
crossref_primary_10_1186_s12944_024_02292_w
crossref_primary_10_1111_1753_0407_13592
crossref_primary_10_1186_s43054_021_00085_9
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.5603/KP.a2015.0086
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1897-4279
EndPage 938
ExternalDocumentID 25985729
10_5603_KP_a2015_0086
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 29L
2WC
3EA
5GY
AAYXX
ABMXE
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CITATION
DIK
E3Z
EBS
EJD
EMOBN
F5P
GX1
OK1
OVT
RNS
SV3
XSB
Y2W
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-c332t-e05aa13b6bdc0e42840459e4938896220f7d79a52e2546ff2864780aff65bf893
ISSN 0022-9032
IngestDate Thu Jan 02 22:17:26 EST 2025
Thu Apr 24 23:10:40 EDT 2025
Tue Jul 01 01:31:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords apoB100/apoAI
coronary heart disease
predictor
dyslipidaemia
lipoprotein ratio
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c332t-e05aa13b6bdc0e42840459e4938896220f7d79a52e2546ff2864780aff65bf893
OpenAccessLink https://doi.org/10.5603/kp.a2015.0086
PMID 25985729
PageCount 8
ParticipantIDs pubmed_primary_25985729
crossref_primary_10_5603_KP_a2015_0086
crossref_citationtrail_10_5603_KP_a2015_0086
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Poland
PublicationPlace_xml – name: Poland
PublicationTitle Kardiologia polska
PublicationTitleAlternate Kardiol Pol
PublicationYear 2015
SSID ssj0028611
Score 2.3862383
Snippet Dyslipidaemia is the main risk factor for coronary heart disease (CHD). Plasma lipid levels are conven-tionally used to predict coronary risk globally, but...
SourceID pubmed
crossref
SourceType Index Database
Enrichment Source
StartPage 931
SubjectTerms Aged
Apolipoprotein A-I - blood
Apolipoprotein B-100 - blood
Asian Continental Ancestry Group
Case-Control Studies
Cholesterol - blood
Coronary Artery Disease - blood
Female
Humans
Lipoproteins - blood
Male
Middle Aged
Risk Factors
Title Lipoprotein ratios are better than conventional lipid parameters in predicting coronary heart disease in Chinese Han people
URI https://www.ncbi.nlm.nih.gov/pubmed/25985729
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBAvE99sfMgPiJeSkbi2kzwiBFSUjT5sUsVLZCeOVrG1VZdKg_0t-1-5s53UhSINHmo1ke20vp_su8vv7gh5lRipNZwzUclYHnFT1ZHSjEdcJyVPuYkTZdkWR3J4wj9PxKTXuw5YS6tGH5Q_t8aV_I9U4R7IFaNk_0Gy3aRwA76DfKEFCUN7Ixl_mS7mNtECBqXgEl_0kcilbYhOH53im6zys-liWvUx2_c5smAchXyJr2oaF3u7nNvoXKxy3bTvbmxc4KmtVNkfqpZzHiq1I8tpxU1UYdGHi-_Kpn_KRehn-Ha6cj6AjgJkr9Fh_UeXID7t6-qH92hPpmp-CZ_QT5GIwE-xjhvIY-_NNG67zfI04syVk2n3Y1fapMVdHOyuuT8wjL_Ktp0BoMJhLorR-EDhz8D8tVtybf92BnbMRLCJcIJiNC7s8AKH3yK3WSolFsj4NOkYRCyTSdImo8c_5lK44vC3G0_fUHk2jBerxBzfI7ve-qDvHJTuk56ZPSB3Dj2_4iG5ChBFHaIoIIo6RFFEFA0RRS2i6BpRFMatEUVbRFGLKOoRhZ08oiggijpEPSInHz8cvx9GvjxHVA4GrIlMLJRKBlrqqowNmLEczIPccJBLlkvG4jqt0lwJZrDmQl3DevE0i1VdS6Fr0JMfk53ZfGaeEprpSvIKTAtmwIIulU402AWCxYqnZZpVe-RNu4JF6XPXYwmVs2KrvPbI6677wiVt-VvHJ04cXTcm8kyAwbl_0ymekbtrtD8nO81yZV6AntrolxYt0B6ND38BRqGToA
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lipoprotein+ratios+are+better+than+conventional+lipid+parameters+in+predicting+coronary+heart+disease+in+Chinese+Han+people&rft.jtitle=Kardiologia+polska+%281957%29&rft.au=Zhu%2C+Li&rft.au=Lu%2C+Zhan&rft.au=Zhu%2C+Liren&rft.au=Ouyang%2C+Xiaoxiao&rft.date=2015-01-01&rft.issn=0022-9032&rft.eissn=1897-4279&rft.volume=73&rft.issue=10&rft.spage=931&rft.epage=938&rft_id=info:doi/10.5603%2FKP.a2015.0086&rft.externalDBID=n%2Fa&rft.externalDocID=10_5603_KP_a2015_0086
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-9032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-9032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-9032&client=summon