Lipoprotein ratios are better than conventional lipid parameters in predicting coronary heart disease in Chinese Han people
Dyslipidaemia is the main risk factor for coronary heart disease (CHD). Plasma lipid levels are conven-tionally used to predict coronary risk globally, but further studies are required to investigate whether the lipoprotein ratios are superior to conventional lipid parameters as predictors for CHD....
Saved in:
Published in | Kardiologia polska Vol. 73; no. 10; pp. 931 - 938 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Poland
01.01.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-9032 1897-4279 |
DOI | 10.5603/KP.a2015.0086 |
Cover
Abstract | Dyslipidaemia is the main risk factor for coronary heart disease (CHD). Plasma lipid levels are conven-tionally used to predict coronary risk globally, but further studies are required to investigate whether the lipoprotein ratios are superior to conventional lipid parameters as predictors for CHD.
A hospital-based case-control study consisting of 738 CHD patients and 157 control subjects was conducted in a Chinese Han population. Demographic characteristics and plasma lipid or apolipoprotein data were collected. Univariate and multivariate logistic regression analyses were carried out to examine the relationship between the lipoprotein ratios and CHD risk.
The CHD group had significantly higher age, non-high-density lipoprotein cholesterol (non-HDL-C), lipoprotein (a) [Lp(a)], triglyceride (TG)/HDL-C, total cholesterol (TC)/HDL-C, low-density lipoprotein cholesterol (LDL-C)/HDL-C, non-HDL-C/HDL-C, very low-density lipoprotein cholesterol (VLDL-C)/HDL-C, and apolipoprotein B100/apolipoprotein AI (apoB100/apoAI) than the control group (p < 0.05 for all). Moreover, the prevalence of male sex, smoking, and hypertension in the CHD group was significantly higher than in the control group. The results from univariate logistic regression analysis showed that the ratios of TC/HDL-C (OR 1.135, 95% CI 1.019-1.265), LDL-C/HDL-C (OR 1.216, 95% CI 1.033-1.431), non-HDL-C/HDL-C (OR 1.135, 95% CI 1.019-1.265), and apoB100/apoAI (OR 1.966, 95% CI 1.013-3.817) significantly increased the risk for CHD. By multivariate logistic regression analysis, the results were not materially altered and each of the four ratios was independently associated with CHD after adjustment for non-lipid coronary risk factors. ApoB100/apoAI showed the strongest association with CHD in both the univariate and multivariate logistic regression analyses.
Our data indicate that the lipoprotein ratios are superior to conventional lipid parameters as predictors for CHD. Of the ratios, apoB100/apoAI is the best to predict CHD risk. |
---|---|
AbstractList | Dyslipidaemia is the main risk factor for coronary heart disease (CHD). Plasma lipid levels are conven-tionally used to predict coronary risk globally, but further studies are required to investigate whether the lipoprotein ratios are superior to conventional lipid parameters as predictors for CHD.
A hospital-based case-control study consisting of 738 CHD patients and 157 control subjects was conducted in a Chinese Han population. Demographic characteristics and plasma lipid or apolipoprotein data were collected. Univariate and multivariate logistic regression analyses were carried out to examine the relationship between the lipoprotein ratios and CHD risk.
The CHD group had significantly higher age, non-high-density lipoprotein cholesterol (non-HDL-C), lipoprotein (a) [Lp(a)], triglyceride (TG)/HDL-C, total cholesterol (TC)/HDL-C, low-density lipoprotein cholesterol (LDL-C)/HDL-C, non-HDL-C/HDL-C, very low-density lipoprotein cholesterol (VLDL-C)/HDL-C, and apolipoprotein B100/apolipoprotein AI (apoB100/apoAI) than the control group (p < 0.05 for all). Moreover, the prevalence of male sex, smoking, and hypertension in the CHD group was significantly higher than in the control group. The results from univariate logistic regression analysis showed that the ratios of TC/HDL-C (OR 1.135, 95% CI 1.019-1.265), LDL-C/HDL-C (OR 1.216, 95% CI 1.033-1.431), non-HDL-C/HDL-C (OR 1.135, 95% CI 1.019-1.265), and apoB100/apoAI (OR 1.966, 95% CI 1.013-3.817) significantly increased the risk for CHD. By multivariate logistic regression analysis, the results were not materially altered and each of the four ratios was independently associated with CHD after adjustment for non-lipid coronary risk factors. ApoB100/apoAI showed the strongest association with CHD in both the univariate and multivariate logistic regression analyses.
Our data indicate that the lipoprotein ratios are superior to conventional lipid parameters as predictors for CHD. Of the ratios, apoB100/apoAI is the best to predict CHD risk. |
Author | Song, Yongyan Ouyang, Xiaoxiao Zhu, Liren Zhu, Li Yi, Fang Feng, Yanping Lu, Zhan Yang, Yang He, Wenfeng |
Author_xml | – sequence: 1 givenname: Li surname: Zhu fullname: Zhu, Li – sequence: 2 givenname: Zhan surname: Lu fullname: Lu, Zhan – sequence: 3 givenname: Liren surname: Zhu fullname: Zhu, Liren – sequence: 4 givenname: Xiaoxiao surname: Ouyang fullname: Ouyang, Xiaoxiao – sequence: 5 givenname: Yang surname: Yang fullname: Yang, Yang – sequence: 6 givenname: Wenfeng surname: He fullname: He, Wenfeng – sequence: 7 givenname: Yanping surname: Feng fullname: Feng, Yanping – sequence: 8 givenname: Fang surname: Yi fullname: Yi, Fang – sequence: 9 givenname: Yongyan surname: Song fullname: Song, Yongyan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25985729$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kE1PwzAMQCMEYh9w5IryBzrSpGmTI5qAoU1iBzhXaeuwoC6NkoCE-POkDDggcbItP1v2m6FjO1hA6CInC14SdrXeLhQlOV8QIsojNM2FrLKCVvIYTQmhNJOE0QmahfCSSlHm-SmaUC4Fr6icoo-NcYPzQwRjsVfRDAErD7iBGMHjuFMWt4N9A5taVvW4N8502Cmv9pCIgNOc89CZNhr7nFifMP-Od6B8xJ0JoAKM0HJnLKR0lTY6GFwPZ-hEqz7A-Xeco6fbm8flKts83N0vrzdZyxiNGRCuVM6asulaAgUVBSm4hEIyIWRJKdFVV0nFKVBelFqnJ4tKEKV1yRstJJujy8Ne99rsoaudN_t0Yv1jIQHZAWj9EIIH_YvkpB4t1-tt_WW5Hi0nnv3hWxNHdzZ6Zfp_pj4BLFCBsA |
CitedBy_id | crossref_primary_10_1016_j_jad_2023_10_064 crossref_primary_10_3233_MNM_230048 crossref_primary_10_3390_ijerph15112530 crossref_primary_10_53986_ibjm_2022_0039 crossref_primary_10_28982_josam_812679 crossref_primary_10_3389_fendo_2023_1303336 crossref_primary_10_3389_fneur_2022_875134 crossref_primary_10_1080_03014460_2024_2323037 crossref_primary_10_1016_j_schres_2023_10_023 crossref_primary_10_3389_fnut_2024_1486370 crossref_primary_10_1186_s13098_025_01637_4 crossref_primary_10_1002_jcla_24499 crossref_primary_10_3389_fnut_2023_1201010 crossref_primary_10_3390_nu13093231 crossref_primary_10_3389_fcvm_2024_1524465 crossref_primary_10_36660_abc_20190683 crossref_primary_10_1136_postgradmedj_2019_136917 crossref_primary_10_1007_s10554_021_02387_w crossref_primary_10_1136_bmjopen_2023_072418 crossref_primary_10_1186_s12944_018_0848_8 crossref_primary_10_1038_s41598_024_63153_1 crossref_primary_10_4103_jmh_jmh_179_23 crossref_primary_10_1186_s12967_022_03470_z crossref_primary_10_3389_fcvm_2023_1163052 crossref_primary_10_1042_BSR20192657 crossref_primary_10_1186_s12889_024_19265_4 crossref_primary_10_1016_j_ihj_2024_01_014 crossref_primary_10_3390_diagnostics14141495 crossref_primary_10_3389_fendo_2025_1478124 crossref_primary_10_3389_fnut_2024_1480689 crossref_primary_10_1186_s12944_020_01322_7 crossref_primary_10_1186_s12944_024_02164_3 crossref_primary_10_1002_vms3_798 crossref_primary_10_1007_s11695_024_07441_9 crossref_primary_10_1097_MD_0000000000041585 crossref_primary_10_1038_s41598_021_89307_z crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_107991 crossref_primary_10_1038_s41531_024_00713_2 crossref_primary_10_1186_s12872_021_02129_9 crossref_primary_10_1186_s13098_023_01237_0 crossref_primary_10_1186_s12944_025_02536_3 crossref_primary_10_1097_MD_0000000000008058 crossref_primary_10_3390_metabo14020123 crossref_primary_10_1186_s12933_022_01522_8 crossref_primary_10_1097_MD_0000000000038748 crossref_primary_10_1186_s12944_021_01584_9 crossref_primary_10_1186_s12944_024_02278_8 crossref_primary_10_1186_s40001_025_02374_0 crossref_primary_10_1186_s12944_022_01732_9 crossref_primary_10_1097_MD_0000000000039965 crossref_primary_10_1038_s41598_024_84686_5 crossref_primary_10_1002_jgm_2941 crossref_primary_10_1186_s12944_022_01683_1 crossref_primary_10_3390_children10040641 crossref_primary_10_1177_00033197221098280 crossref_primary_10_1186_s12944_024_02089_x crossref_primary_10_1186_s12933_022_01531_7 crossref_primary_10_1186_s12944_024_02269_9 crossref_primary_10_3389_fmed_2024_1477820 crossref_primary_10_1038_s41598_022_19445_5 crossref_primary_10_1111_dom_16018 crossref_primary_10_1186_s12944_024_02012_4 crossref_primary_10_1016_j_ejogrb_2024_12_041 crossref_primary_10_4103_1319_2442_385959 crossref_primary_10_1038_s41598_025_90773_y crossref_primary_10_1016_j_numecd_2019_07_006 crossref_primary_10_1186_s12944_023_01853_9 crossref_primary_10_1186_s12944_019_0970_2 crossref_primary_10_1007_s11845_024_03711_8 crossref_primary_10_1186_s12944_024_02171_4 crossref_primary_10_1007_s00394_024_03455_2 crossref_primary_10_1016_j_etap_2017_06_006 crossref_primary_10_2147_CCID_S492053 crossref_primary_10_1093_cvr_cvac128 crossref_primary_10_1186_s12872_020_01562_6 crossref_primary_10_1186_s12944_024_02309_4 crossref_primary_10_3390_obesities5010005 crossref_primary_10_1186_s12944_022_01761_4 crossref_primary_10_1186_s12872_022_03016_7 crossref_primary_10_1089_dna_2019_4647 crossref_primary_10_1016_j_ijbiomac_2024_134330 crossref_primary_10_1038_s41598_025_90609_9 crossref_primary_10_1097_MD_0000000000040976 crossref_primary_10_1111_jch_13038 crossref_primary_10_1186_s12944_024_02338_z crossref_primary_10_36660_abc_20230418 crossref_primary_10_3389_fcvm_2024_1500025 crossref_primary_10_3390_diagnostics13203249 crossref_primary_10_3390_jcdd11050140 crossref_primary_10_1186_s12944_020_01377_6 crossref_primary_10_2147_DMSO_S421203 crossref_primary_10_3389_fnut_2025_1548851 crossref_primary_10_1080_13697137_2019_1631787 crossref_primary_10_2147_DMSO_S355980 crossref_primary_10_12688_f1000research_55215_1 crossref_primary_10_1111_ijcp_14131 crossref_primary_10_12688_f1000research_55215_2 crossref_primary_10_1186_s12944_024_02292_w crossref_primary_10_1111_1753_0407_13592 crossref_primary_10_1186_s43054_021_00085_9 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM |
DOI | 10.5603/KP.a2015.0086 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1897-4279 |
EndPage | 938 |
ExternalDocumentID | 25985729 10_5603_KP_a2015_0086 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 29L 2WC 3EA 5GY AAYXX ABMXE ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL CITATION DIK E3Z EBS EJD EMOBN F5P GX1 OK1 OVT RNS SV3 XSB Y2W CGR CUY CVF ECM EIF NPM |
ID | FETCH-LOGICAL-c332t-e05aa13b6bdc0e42840459e4938896220f7d79a52e2546ff2864780aff65bf893 |
ISSN | 0022-9032 |
IngestDate | Thu Jan 02 22:17:26 EST 2025 Thu Apr 24 23:10:40 EDT 2025 Tue Jul 01 01:31:12 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | apoB100/apoAI coronary heart disease predictor dyslipidaemia lipoprotein ratio |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c332t-e05aa13b6bdc0e42840459e4938896220f7d79a52e2546ff2864780aff65bf893 |
OpenAccessLink | https://doi.org/10.5603/kp.a2015.0086 |
PMID | 25985729 |
PageCount | 8 |
ParticipantIDs | pubmed_primary_25985729 crossref_primary_10_5603_KP_a2015_0086 crossref_citationtrail_10_5603_KP_a2015_0086 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Poland |
PublicationPlace_xml | – name: Poland |
PublicationTitle | Kardiologia polska |
PublicationTitleAlternate | Kardiol Pol |
PublicationYear | 2015 |
SSID | ssj0028611 |
Score | 2.3862383 |
Snippet | Dyslipidaemia is the main risk factor for coronary heart disease (CHD). Plasma lipid levels are conven-tionally used to predict coronary risk globally, but... |
SourceID | pubmed crossref |
SourceType | Index Database Enrichment Source |
StartPage | 931 |
SubjectTerms | Aged Apolipoprotein A-I - blood Apolipoprotein B-100 - blood Asian Continental Ancestry Group Case-Control Studies Cholesterol - blood Coronary Artery Disease - blood Female Humans Lipoproteins - blood Male Middle Aged Risk Factors |
Title | Lipoprotein ratios are better than conventional lipid parameters in predicting coronary heart disease in Chinese Han people |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25985729 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBAvE99sfMgPiJeSkbi2kzwiBFSUjT5sUsVLZCeOVrG1VZdKg_0t-1-5s53UhSINHmo1ke20vp_su8vv7gh5lRipNZwzUclYHnFT1ZHSjEdcJyVPuYkTZdkWR3J4wj9PxKTXuw5YS6tGH5Q_t8aV_I9U4R7IFaNk_0Gy3aRwA76DfKEFCUN7Ixl_mS7mNtECBqXgEl_0kcilbYhOH53im6zys-liWvUx2_c5smAchXyJr2oaF3u7nNvoXKxy3bTvbmxc4KmtVNkfqpZzHiq1I8tpxU1UYdGHi-_Kpn_KRehn-Ha6cj6AjgJkr9Fh_UeXID7t6-qH92hPpmp-CZ_QT5GIwE-xjhvIY-_NNG67zfI04syVk2n3Y1fapMVdHOyuuT8wjL_Ktp0BoMJhLorR-EDhz8D8tVtybf92BnbMRLCJcIJiNC7s8AKH3yK3WSolFsj4NOkYRCyTSdImo8c_5lK44vC3G0_fUHk2jBerxBzfI7ve-qDvHJTuk56ZPSB3Dj2_4iG5ChBFHaIoIIo6RFFEFA0RRS2i6BpRFMatEUVbRFGLKOoRhZ08oiggijpEPSInHz8cvx9GvjxHVA4GrIlMLJRKBlrqqowNmLEczIPccJBLlkvG4jqt0lwJZrDmQl3DevE0i1VdS6Fr0JMfk53ZfGaeEprpSvIKTAtmwIIulU402AWCxYqnZZpVe-RNu4JF6XPXYwmVs2KrvPbI6677wiVt-VvHJ04cXTcm8kyAwbl_0ymekbtrtD8nO81yZV6AntrolxYt0B6ND38BRqGToA |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lipoprotein+ratios+are+better+than+conventional+lipid+parameters+in+predicting+coronary+heart+disease+in+Chinese+Han+people&rft.jtitle=Kardiologia+polska+%281957%29&rft.au=Zhu%2C+Li&rft.au=Lu%2C+Zhan&rft.au=Zhu%2C+Liren&rft.au=Ouyang%2C+Xiaoxiao&rft.date=2015-01-01&rft.issn=0022-9032&rft.eissn=1897-4279&rft.volume=73&rft.issue=10&rft.spage=931&rft.epage=938&rft_id=info:doi/10.5603%2FKP.a2015.0086&rft.externalDBID=n%2Fa&rft.externalDocID=10_5603_KP_a2015_0086 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-9032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-9032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-9032&client=summon |