Solving the multi-objective Hamiltonian cycle problem using a Branch-and-Fix based algorithm

The Hamiltonian cycle problem consists of finding a cycle in a given graph that passes through every single vertex exactly once, or determining that this cannot be achieved. In this investigation, a graph is considered with an associated set of matrices. The entries of each of the matrix correspond...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational science Vol. 60; p. 101578
Main Authors Murua, M., Galar, D., Santana, R.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2022
Subjects
Online AccessGet full text
ISSN1877-7503
1877-7511
1877-7511
DOI10.1016/j.jocs.2022.101578

Cover

Abstract The Hamiltonian cycle problem consists of finding a cycle in a given graph that passes through every single vertex exactly once, or determining that this cannot be achieved. In this investigation, a graph is considered with an associated set of matrices. The entries of each of the matrix correspond to a different weight of an arc. A multi-objective Hamiltonian cycle problem is addressed here by computing a Pareto set of solutions that minimize the sum of the weights of the arcs for each objective. Our heuristic approach extends the Branch-and-Fix algorithm, an exact method that embeds the problem in a stochastic process. To measure the efficiency of the proposed algorithm, we compare it with a multi-objective genetic algorithm in graphs of a different number of vertices and density. The results show that the density of the graphs is critical when solving the problem. The multi-objective genetic algorithm performs better (quality of the Pareto sets) than the proposed approach in random graphs with high density; however, in these graphs it is easier to find Hamiltonian cycles, and they are closer to the multi-objective traveling salesman problem. The results reveal that, in a challenging benchmark of Hamiltonian graphs with low density, the proposed approach significantly outperforms the multi-objective genetic algorithm. •An algorithm for solving the multi-objective Hamiltonian cycle problem.•It is an heuristic approach that can apply for both directed and undirected graphs.•Compared to multi-objective genetic algorithm in different benchmarks.•Outstanding results for large-sized graphs up to 3000 nodes.
AbstractList The Hamiltonian cycle problem consists of finding a cycle in a given graph that passes through every single vertex exactly once, or determining that this cannot be achieved. In this investigation, a graph is considered with an associated set of matrices. The entries of each of the matrix correspond to a different weight of an arc. A multi-objective Hamiltonian cycle problem is addressed here by computing a Pareto set of solutions that minimize the sum of the weights of the arcs for each objective. Our heuristic approach extends the Branch-and-Fix algorithm, an exact method that embeds the problem in a stochastic process. To measure the efficiency of the proposed algorithm, we compare it with a multi-objective genetic algorithm in graphs of a different number of vertices and density. The results show that the density of the graphs is critical when solving the problem. The multi-objective genetic algorithm performs better (quality of the Pareto sets) than the proposed approach in random graphs with high density; however, in these graphs it is easier to find Hamiltonian cycles, and they are closer to the multi-objective traveling salesman problem. The results reveal that, in a challenging benchmark of Hamiltonian graphs with low density, the proposed approach significantly outperforms the multi-objective genetic algorithm. •An algorithm for solving the multi-objective Hamiltonian cycle problem.•It is an heuristic approach that can apply for both directed and undirected graphs.•Compared to multi-objective genetic algorithm in different benchmarks.•Outstanding results for large-sized graphs up to 3000 nodes.
The Hamiltonian cycle problem consists of finding a cycle in a given graph that passes through every single vertex exactly once, or determining that this cannot be achieved. In this investigation, a graph is considered with an associated set of matrices. The entries of each of the matrix correspond to a different weight of an arc. A multi-objective Hamiltonian cycle problem is addressed here by computing a Pareto set of solutions that minimize the sum of the weights of the arcs for each objective. Our heuristic approach extends the Branch-and-Fix algorithm, an exact method that embeds the problem in a stochastic process. To measure the efficiency of the proposed algorithm, we compare it with a multi-objective genetic algorithm in graphs of a different number of vertices and density. The results show that the density of the graphs is critical when solving the problem. The multi-objective genetic algorithm performs better (quality of the Pareto sets) than the proposed approach in random graphs with high density; however, in these graphs it is easier to find Hamiltonian cycles, and they are closer to the multi-objective traveling salesman problem. The results reveal that, in a challenging benchmark of Hamiltonian graphs with low density, the proposed approach significantly outperforms the multi-objective genetic algorithm.
ArticleNumber 101578
Author Murua, M.
Santana, R.
Galar, D.
Author_xml – sequence: 1
  givenname: M.
  orcidid: 0000-0001-7922-6771
  surname: Murua
  fullname: Murua, M.
  email: maialen.murua@tecnalia.com
  organization: TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua, 7, 20009 Donostia-San Sebastián, Spain
– sequence: 2
  givenname: D.
  surname: Galar
  fullname: Galar, D.
  organization: TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua, 7, 20009 Donostia-San Sebastián, Spain
– sequence: 3
  givenname: R.
  surname: Santana
  fullname: Santana, R.
  organization: Computer Science and Artificial Intelligence Department, University of the Basque Country (UPV/EHU), Lardizabal Pasealekua 1, 20018 Donostia-San Sebastián, Spain
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-89825$$DView record from Swedish Publication Index
BookMark eNqNkEtr3DAQgEVIoHn9gZz0A-qNHruWArmkeTSBQA9JewqIsTzelZGlRbI32X9fG5ccQ-cywzDfDPOdkMMQAxJywdmCM15etos22rwQTIipsVL6gBxzrVShVpwfftZMfiPnObdsDKn1FZfH5O0l-p0La9pvkHaD710RqxZt73ZIH6Fzvo_BQaB2bz3SbYqVx44OeWKA_kgQ7KaAUBcP7oNWkLGm4NcxuX7TnZGjBnzG83_5lPx-uH-9fSyef_18ur15LqyUoi8qwVCWlnPV8KVSKHmDtQRmK1UxoWosl7UUdQPVSmrGEUrQSxDjQAmlXq7kKZHz3iFsYf8O3pttch2kveHMTI5MayZHZnJkZkcj9X2m8jtuh-oTieDMnftzY2JaG98PRl9pMR0R87hNMeeEzf_duJ4hHN_fOUwmW4fBYu3SKNnU0X2F_wWg_5Ln
Cites_doi 10.1016/S0377-2217(01)00104-7
10.1007/s10479-009-0565-9
10.1287/moor.1090.0398
10.1016/j.cor.2019.104766
10.1016/j.cor.2013.01.003
10.1007/s10696-011-9099-y
10.1109/ACCESS.2019.2917838
10.1057/jors.1975.151
10.1023/B:JOGO.0000044772.11089.1a
10.1007/s12597-012-0088-z
10.15439/2019F192
10.1287/moor.25.1.130.15210
10.1287/moor.1110.0492
10.1613/jair.3109
10.1109/4235.996017
10.1007/s12532-013-0059-2
10.1007/s10898-007-9265-7
10.1287/moor.2019.1009
10.1016/0196-6774(89)90012-6
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
ADTPV
AOWAS
ADTOC
UNPAY
DOI 10.1016/j.jocs.2022.101578
DatabaseName CrossRef
SwePub
SwePub Articles
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Business
EISSN 1877-7511
ExternalDocumentID oai:dsp.tecnalia.com:11556/1271
oai_DiVA_org_ltu_89825
10_1016_j_jocs_2022_101578
S1877750322000151
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
P2P
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ADTPV
AOWAS
ADTOC
UNPAY
ID FETCH-LOGICAL-c332t-b20e36c117f1477e31fed3a0cb7b027de64d32dfab53801ea6a84a2a0c6a68453
IEDL.DBID .~1
ISSN 1877-7503
1877-7511
IngestDate Sun Oct 26 03:48:21 EDT 2025
Sat Oct 25 06:26:38 EDT 2025
Wed Oct 01 04:25:09 EDT 2025
Fri Feb 23 02:40:49 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Branching algorithm
Graph theory
Multi-objective optimization
Hamiltonian cycle problem
Discrete optimization problems
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c332t-b20e36c117f1477e31fed3a0cb7b027de64d32dfab53801ea6a84a2a0c6a68453
ORCID 0000-0001-7922-6771
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/11556/1271
ParticipantIDs unpaywall_primary_10_1016_j_jocs_2022_101578
swepub_primary_oai_DiVA_org_ltu_89825
crossref_primary_10_1016_j_jocs_2022_101578
elsevier_sciencedirect_doi_10_1016_j_jocs_2022_101578
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of computational science
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Applegate, Bixby, Chvatal, Cook (b3) 2006
Goldberg (b8) 1989
Cplex-IBM-ILOG (b24) 2009; 46
Myszkowski, Laszczyk, Dziadek (b12) 2019
Eshragh, Filar (b31) 2011; 36
Eshragh, Filar, Kalinowski, Mohammadian (b32) 2020; 45
Wang (b16) 2018; 12
Nguyen (b22) 2009
Bock, Klamroth (b7) 2019; 112
Filar, Gondzio, Ejov (b2) 2004; 29
Haythorpe (b25) 2018; 83
Ejov, Filar, Haythorpe, Nguyen (b20) 2009; 34
Sato, Aguirre, Tanaka (b29) 2007
Borkar, Ejov, Filar, Nguyen (b4) 2012
Dewilde, Cattrysse, Coene, Spieksma, Vansteenwegen (b10) 2013; 40
Murua, Galar, Santana (b14) 2020
Lenstra, Kan (b5) 1975; 26
Shim, Tan, Chia, Chong (b26) 2011; 23
Schütze, Laumanns, Coello, Dellnitz, Talbi (b19) 2008; 41
Chiba, Nishizeki (b1) 1989; 10
Baniasadi, Ejov, Filar, Haythorpe, Rossomakhine (b15) 2014; 6
Jäger, Zhang (b18) 2010; 39
Basu, Gajulapalli, Ghosh (b17) 2013; 50
Deb, Pratap, Agarwal, Meyarivan (b27) 2002; 6
Fortin, Rainville, Gardner, Parizeau, Gagné (b28) 2012; 13
Eshragh, Filar, Haytorpe (b30) 2011; 189
George, Amudha (b6) 2020
Feinberg (b21) 2000; 25
Van-Rossum, Drake (b23) 2009
Jaszkiewicz (b13) 2002; 137
Lianshuan, Zegyan (b9) 2009
Chen, Liu, Li, Wang, Wang, Gao (b11) 2019; 7
Shim (10.1016/j.jocs.2022.101578_b26) 2011; 23
Cplex-IBM-ILOG (10.1016/j.jocs.2022.101578_b24) 2009; 46
Lenstra (10.1016/j.jocs.2022.101578_b5) 1975; 26
Filar (10.1016/j.jocs.2022.101578_b2) 2004; 29
Borkar (10.1016/j.jocs.2022.101578_b4) 2012
Feinberg (10.1016/j.jocs.2022.101578_b21) 2000; 25
Jaszkiewicz (10.1016/j.jocs.2022.101578_b13) 2002; 137
Eshragh (10.1016/j.jocs.2022.101578_b30) 2011; 189
Chiba (10.1016/j.jocs.2022.101578_b1) 1989; 10
Applegate (10.1016/j.jocs.2022.101578_b3) 2006
Schütze (10.1016/j.jocs.2022.101578_b19) 2008; 41
Haythorpe (10.1016/j.jocs.2022.101578_b25) 2018; 83
Van-Rossum (10.1016/j.jocs.2022.101578_b23) 2009
Lianshuan (10.1016/j.jocs.2022.101578_b9) 2009
George (10.1016/j.jocs.2022.101578_b6) 2020
Eshragh (10.1016/j.jocs.2022.101578_b31) 2011; 36
Myszkowski (10.1016/j.jocs.2022.101578_b12) 2019
Fortin (10.1016/j.jocs.2022.101578_b28) 2012; 13
Dewilde (10.1016/j.jocs.2022.101578_b10) 2013; 40
Basu (10.1016/j.jocs.2022.101578_b17) 2013; 50
Jäger (10.1016/j.jocs.2022.101578_b18) 2010; 39
Nguyen (10.1016/j.jocs.2022.101578_b22) 2009
Deb (10.1016/j.jocs.2022.101578_b27) 2002; 6
Murua (10.1016/j.jocs.2022.101578_b14) 2020
Chen (10.1016/j.jocs.2022.101578_b11) 2019; 7
Wang (10.1016/j.jocs.2022.101578_b16) 2018; 12
Baniasadi (10.1016/j.jocs.2022.101578_b15) 2014; 6
Ejov (10.1016/j.jocs.2022.101578_b20) 2009; 34
Goldberg (10.1016/j.jocs.2022.101578_b8) 1989
Sato (10.1016/j.jocs.2022.101578_b29) 2007
Bock (10.1016/j.jocs.2022.101578_b7) 2019; 112
Eshragh (10.1016/j.jocs.2022.101578_b32) 2020; 45
References_xml – year: 2009
  ident: b23
  article-title: Python 3 Reference Manual
– year: 2009
  ident: b22
  article-title: Hamiltonian cycle problem, Markov decision processes and graph spectra
– volume: 25
  start-page: 130
  year: 2000
  end-page: 140
  ident: b21
  article-title: Constrained discounted Markov decision process and Hamiltonian cycles
  publication-title: Math. Oper. Res.
– volume: 189
  start-page: 103
  year: 2011
  end-page: 125
  ident: b30
  article-title: A hybrid simulation-optimization algorithm for the Hamiltonian cycle problem
  publication-title: Ann. Oper. Res.
– volume: 40
  start-page: 1700
  year: 2013
  end-page: 1707
  ident: b10
  article-title: Heuristics for the traveling repairman problem with profits
  publication-title: Comput. Operat. Res.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b27
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 13
  start-page: 2171
  year: 2012
  end-page: 2175
  ident: b28
  article-title: DEAP: Evolutionary algorithms made easy
  publication-title: J. Mach. Learn. Res.
– start-page: 231
  year: 2020
  end-page: 237
  ident: b14
  article-title: Adaptation of a branching algorithm to solve the multi-objective Hamiltonian cycle problem
  publication-title: Operations Research Proceedings 2019
– volume: 36
  start-page: 258
  year: 2011
  end-page: 270
  ident: b31
  article-title: Hamiltonian cycles, random walks and discounted occupational measures
  publication-title: Math. Oper. Res.
– volume: 6
  start-page: 55
  year: 2014
  end-page: 75
  ident: b15
  article-title: Deterministic ”Snakes and Ladders” heuristic for the Hamiltonian cycle problem
  publication-title: Math. Program. Comput.
– volume: 112
  year: 2019
  ident: b7
  article-title: Combining traveling salesman and traveling repairman problems: a multi-objective approach based on multiple scenarios
  publication-title: Comput. Oper. Res.
– year: 1989
  ident: b8
  article-title: Genetic Algorithms In Search, Optimization And Machine Learning
– volume: 45
  start-page: 713
  year: 2020
  end-page: 721
  ident: b32
  article-title: Hamiltonian cycles and subsets of discounted occupational measures
  publication-title: Math. Oper. Res.
– volume: 34
  start-page: 758
  year: 2009
  end-page: 768
  ident: b20
  article-title: Refined MDP-based branch-and-fix algorithm for the Hamiltonian cycle problem
  publication-title: Math. Oper. Res.
– volume: 83
  start-page: 98
  year: 2018
  end-page: 107
  ident: b25
  article-title: FHCP challenge set: The first set of structurally difficult instances of the Hamiltonian cycle problem
  publication-title: Bull. ICA
– volume: 26
  start-page: 717
  year: 1975
  end-page: 733
  ident: b5
  article-title: Some simple applications of the travelling salesman problem
  publication-title: J. Oper. Res. Soc.
– volume: 29
  start-page: 315
  year: 2004
  end-page: 334
  ident: b2
  article-title: An interior point heuristic for the Hamiltonian cycle problem via Markov decision process
  publication-title: J. Global Optim.
– volume: 7
  start-page: 66964
  year: 2019
  end-page: 66979
  ident: b11
  article-title: A new evolutionary multiobjective model for traveling salesman problem
  publication-title: IEEE Access
– start-page: 67
  year: 2019
  end-page: 76
  ident: b12
  article-title: A non-dominated sorting tournament genetic algorithm for multi-objective travelling salesman problem
  publication-title: Proceedings Of The Federated Conference On Computer Science And Information Systems
– year: 2006
  ident: b3
  article-title: The Traveling Salesman Problem: A Computational Study
– volume: 12
  start-page: 198
  year: 2018
  end-page: 206
  ident: b16
  article-title: An improved method to compute sparse graphs for traveling salesman problem
  publication-title: Int. J. Ind. Manuf. Eng.
– volume: 41
  start-page: 559
  year: 2008
  end-page: 577
  ident: b19
  article-title: Convergence of stochastic search algorithms to finite size Pareto set approximations
  publication-title: J. Global Optim.
– year: 2012
  ident: b4
  article-title: Hamiltonian Cycle Problem And Markov Chains
– start-page: 585
  year: 2009
  end-page: 588
  ident: b9
  article-title: An improved Pareto genetic algorithm for multi-objective TSP
  publication-title: 2009 Fifth International Conference On Natural Computation
– volume: 46
  start-page: 157
  year: 2009
  ident: b24
  article-title: V12. 1: User’s manual for CPLEX
  publication-title: Int. Bus. Mach. Corporation
– volume: 10
  start-page: 187
  year: 1989
  end-page: 211
  ident: b1
  article-title: The Hamiltonian cycle problem is linear-time solvable for 4-connected planar graphs
  publication-title: J. Algorithms
– volume: 23
  start-page: 207
  year: 2011
  end-page: 241
  ident: b26
  article-title: Evolutionary algorithms for solving multi-objective travelling salesman problem
  publication-title: Flex. Serv. Manuf. J.
– volume: 39
  start-page: 663
  year: 2010
  end-page: 687
  ident: b18
  article-title: An effective algorithm for and phase transitions of the directed Hamiltonian cycle problem
  publication-title: J. Artif. Intell. Res.
– start-page: 141
  year: 2020
  end-page: 151
  ident: b6
  article-title: Genetic algorithm based multi-objective optimization framework to solve traveling salesman problem
  publication-title: Advances In Computing And Intelligent Systems
– volume: 137
  start-page: 50
  year: 2002
  end-page: 71
  ident: b13
  article-title: Genetic local search for multi-objective combinatorial optimization
  publication-title: Eur. J. Oper. Res.
– volume: 50
  start-page: 75
  year: 2013
  end-page: 88
  ident: b17
  article-title: A fast tabu search implementation for large asymmetric traveling salesman problems defined on sparse graphs
  publication-title: OPSEARCH
– start-page: 5
  year: 2007
  end-page: 20
  ident: b29
  article-title: Controlling dominance area of solutions and its impact on the performance of MOEAs
  publication-title: International Conference On Evolutionary Multi-Criterion Optimization
– start-page: 5
  year: 2007
  ident: 10.1016/j.jocs.2022.101578_b29
  article-title: Controlling dominance area of solutions and its impact on the performance of MOEAs
– year: 2006
  ident: 10.1016/j.jocs.2022.101578_b3
– volume: 137
  start-page: 50
  year: 2002
  ident: 10.1016/j.jocs.2022.101578_b13
  article-title: Genetic local search for multi-objective combinatorial optimization
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(01)00104-7
– volume: 189
  start-page: 103
  year: 2011
  ident: 10.1016/j.jocs.2022.101578_b30
  article-title: A hybrid simulation-optimization algorithm for the Hamiltonian cycle problem
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-009-0565-9
– volume: 34
  start-page: 758
  year: 2009
  ident: 10.1016/j.jocs.2022.101578_b20
  article-title: Refined MDP-based branch-and-fix algorithm for the Hamiltonian cycle problem
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1090.0398
– start-page: 231
  year: 2020
  ident: 10.1016/j.jocs.2022.101578_b14
  article-title: Adaptation of a branching algorithm to solve the multi-objective Hamiltonian cycle problem
– year: 2012
  ident: 10.1016/j.jocs.2022.101578_b4
– volume: 13
  start-page: 2171
  year: 2012
  ident: 10.1016/j.jocs.2022.101578_b28
  article-title: DEAP: Evolutionary algorithms made easy
  publication-title: J. Mach. Learn. Res.
– volume: 112
  year: 2019
  ident: 10.1016/j.jocs.2022.101578_b7
  article-title: Combining traveling salesman and traveling repairman problems: a multi-objective approach based on multiple scenarios
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2019.104766
– volume: 40
  start-page: 1700
  year: 2013
  ident: 10.1016/j.jocs.2022.101578_b10
  article-title: Heuristics for the traveling repairman problem with profits
  publication-title: Comput. Operat. Res.
  doi: 10.1016/j.cor.2013.01.003
– volume: 23
  start-page: 207
  year: 2011
  ident: 10.1016/j.jocs.2022.101578_b26
  article-title: Evolutionary algorithms for solving multi-objective travelling salesman problem
  publication-title: Flex. Serv. Manuf. J.
  doi: 10.1007/s10696-011-9099-y
– volume: 7
  start-page: 66964
  year: 2019
  ident: 10.1016/j.jocs.2022.101578_b11
  article-title: A new evolutionary multiobjective model for traveling salesman problem
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917838
– volume: 26
  start-page: 717
  year: 1975
  ident: 10.1016/j.jocs.2022.101578_b5
  article-title: Some simple applications of the travelling salesman problem
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.1975.151
– volume: 29
  start-page: 315
  year: 2004
  ident: 10.1016/j.jocs.2022.101578_b2
  article-title: An interior point heuristic for the Hamiltonian cycle problem via Markov decision process
  publication-title: J. Global Optim.
  doi: 10.1023/B:JOGO.0000044772.11089.1a
– start-page: 141
  year: 2020
  ident: 10.1016/j.jocs.2022.101578_b6
  article-title: Genetic algorithm based multi-objective optimization framework to solve traveling salesman problem
– volume: 50
  start-page: 75
  year: 2013
  ident: 10.1016/j.jocs.2022.101578_b17
  article-title: A fast tabu search implementation for large asymmetric traveling salesman problems defined on sparse graphs
  publication-title: OPSEARCH
  doi: 10.1007/s12597-012-0088-z
– start-page: 67
  year: 2019
  ident: 10.1016/j.jocs.2022.101578_b12
  article-title: A non-dominated sorting tournament genetic algorithm for multi-objective travelling salesman problem
  doi: 10.15439/2019F192
– volume: 25
  start-page: 130
  year: 2000
  ident: 10.1016/j.jocs.2022.101578_b21
  article-title: Constrained discounted Markov decision process and Hamiltonian cycles
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.25.1.130.15210
– year: 2009
  ident: 10.1016/j.jocs.2022.101578_b22
– volume: 12
  start-page: 198
  year: 2018
  ident: 10.1016/j.jocs.2022.101578_b16
  article-title: An improved method to compute sparse graphs for traveling salesman problem
  publication-title: Int. J. Ind. Manuf. Eng.
– volume: 36
  start-page: 258
  year: 2011
  ident: 10.1016/j.jocs.2022.101578_b31
  article-title: Hamiltonian cycles, random walks and discounted occupational measures
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1110.0492
– start-page: 585
  year: 2009
  ident: 10.1016/j.jocs.2022.101578_b9
  article-title: An improved Pareto genetic algorithm for multi-objective TSP
– volume: 46
  start-page: 157
  issue: 53
  year: 2009
  ident: 10.1016/j.jocs.2022.101578_b24
  article-title: V12. 1: User’s manual for CPLEX
  publication-title: Int. Bus. Mach. Corporation
– year: 1989
  ident: 10.1016/j.jocs.2022.101578_b8
– volume: 39
  start-page: 663
  year: 2010
  ident: 10.1016/j.jocs.2022.101578_b18
  article-title: An effective algorithm for and phase transitions of the directed Hamiltonian cycle problem
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.3109
– volume: 83
  start-page: 98
  year: 2018
  ident: 10.1016/j.jocs.2022.101578_b25
  article-title: FHCP challenge set: The first set of structurally difficult instances of the Hamiltonian cycle problem
  publication-title: Bull. ICA
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.jocs.2022.101578_b27
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 6
  start-page: 55
  year: 2014
  ident: 10.1016/j.jocs.2022.101578_b15
  article-title: Deterministic ”Snakes and Ladders” heuristic for the Hamiltonian cycle problem
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-013-0059-2
– volume: 41
  start-page: 559
  year: 2008
  ident: 10.1016/j.jocs.2022.101578_b19
  article-title: Convergence of stochastic search algorithms to finite size Pareto set approximations
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-007-9265-7
– volume: 45
  start-page: 713
  year: 2020
  ident: 10.1016/j.jocs.2022.101578_b32
  article-title: Hamiltonian cycles and subsets of discounted occupational measures
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2019.1009
– volume: 10
  start-page: 187
  year: 1989
  ident: 10.1016/j.jocs.2022.101578_b1
  article-title: The Hamiltonian cycle problem is linear-time solvable for 4-connected planar graphs
  publication-title: J. Algorithms
  doi: 10.1016/0196-6774(89)90012-6
– year: 2009
  ident: 10.1016/j.jocs.2022.101578_b23
SSID ssj0000388913
Score 2.238093
Snippet The Hamiltonian cycle problem consists of finding a cycle in a given graph that passes through every single vertex exactly once, or determining that this...
SourceID unpaywall
swepub
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 101578
SubjectTerms Branching algorithm
Discrete optimization problems
Drift och underhållsteknik
Graph theory
Hamiltonian cycle problem
Multi-objective optimization
Operation and Maintenance
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9RAEB7KFap90LYqPa1lHxQU3XqbTTbp42l7HIJF0JMKwrK72Vzvml7KNYdtf31nukkrSkXfkjBJFmay883m228AXhgf51GRCu6UlDx2TnGcAx33siCiTZKlnpYGPh2o4Sj-eJgcLkHbsu43eQGEK4l6JyLaJL6sEkTbHVgeHXzuf6c6KktTTr_hbo-FaPbFBArXtHKkyB1FdCGhTmp35J4gEroK9xazU3Px05TlL0lm8DCQHc-utQmJW3K8s6jtjrv8U7nxzvGvwYMGYbJ-CIl1WPKzDVhpCe4bsN58zmfsVaM5_foR_PhSlbS0wBAPsmuSIa_sNEyGbEiLIIgRMZKYu8CHsqYNDaOHjplh76k9xxHHIfHB5JxRasyZKcfVfFIfnTyG0WD_64chbxovcCdlVHMb9bxUToi0EHGK3hKFz6XpOZtaLGNzr-JcRnlhLE6XPeGNMllsIjRQRmVxIp9AZ1bN_CYwi-aFlNYYs4ulZGFVjpDJo3VqBVawXXjTukSfBn0N3RLPppocqMmBOjiwC0nrNd0ghJD5NSaAv973Mrj45h2kqr03-dbX1Xysy3qhs12slbvw9iYC_mE4T__P_Bncp7PA-9mCTj1f-OcIaWq73UT1FYbp8eE
  priority: 102
  providerName: Unpaywall
Title Solving the multi-objective Hamiltonian cycle problem using a Branch-and-Fix based algorithm
URI https://dx.doi.org/10.1016/j.jocs.2022.101578
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-89825
http://hdl.handle.net/11556/1271
UnpaywallVersion submittedVersion
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1877-7511
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388913
  issn: 1877-7503
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1877-7511
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388913
  issn: 1877-7503
  databaseCode: ACRLP
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1877-7511
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388913
  issn: 1877-7503
  databaseCode: .~1
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Journal
  customDbUrl:
  eissn: 1877-7511
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388913
  issn: 1877-7503
  databaseCode: AIKHN
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1877-7511
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388913
  issn: 1877-7503
  databaseCode: AKRWK
  dateStart: 20100501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemIcH2MLEBWhlMfgAJBKZ1nDjtYxlUBUSFNIqGhGTZjtOlCklVUsFe-Nu5i50KHkBoT1Gss2OdLz_fne6DkEfaxVmUp5xZKQSLrZUMMNAyJ3IMtEmGqUPXwPuZnM7jtxfJxQ4563JhMKwyYL_H9Batw0g_cLO_Kor-OcdSdskAJLJNCG4z2OMUuxi8-Mm3fhasdjJquyQjPcMJIXfGh3kta4tVu6MIBxLstvaX-8kXEt0ntzbVSl9912X520U0uU0OggZJx36Th2THVUfkZhfAfkQOw-_6jT4JNaWf3iFfzusSXQcU9D3aBhGy2iw92NEpOjlABwRJofYKFqWhzQzFRRdU05fYfuOS6Spjk-IHxasvo7pc1Ouiufx6l8wnrz-eTVlorMCsEFHDTDRwQlrO05zHKZwGz10m9MCa1ICZmjkZZyLKcm0ADgfcaamHsY6AQGo5jBNxj-xWdeWOCTVAngthtNYjMBVzIzNQiRxQp4aDhdojzzp2qpWvn6G6wLKlQuYrZL7yzO-RpOO4-kMKFAD8P-c99sez_QZWzX5VfBqrer1QZbNRwxHYwj3yfHt6_7Gd-9fczgnZwzcf4POA7DbrjXsIuktjTlvhPCU3xm_eTWfwnM8-jD__AjyH7tY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5NQ2LwgNgAUX76ASQQeK3jxGkfx6AqsO1lG9oDkmU7TpcqJFVJBXvhb-cuTip4ACFeHduxzufPd6fzdwDPjI-zKE8Fd0pKHjunOGKg417mlGiTjFNPoYHjEzU7jz9cJBdbcNi_haG0yg77A6a3aN21DDtpDpdFMTwVRGWXjFAj2wfB6AJdi5MoJQ9s_4fYBFqI7mTSlkmmAZxGdI9nQp7XonZE2x1F1JBQubU_XFCBSfQm7Kyrpbn6Zsryl5toehtudSYkOwir3IUtX-3B9T6DfQ92u_P6lb3oSKVf3oHPp3VJsQOGBh9rswh5bRcB7diMohxoBKKqMHeFk7KuzgyjSefMsDdUf-OSmyrj0-I7o7svY6ac16uiufxyF86n784OZ7yrrMCdlFHDbTTyUjkh0lzEKW6HyH0mzcjZ1KKfmnkVZzLKcmMRD0fCG2XGsYmwgzJqHCfyHmxXdeXvA7PYPZfSGmMm6CvmVmVoE3nsnVqBLuoAXvXi1MtAoKH7zLKFJuFrEr4Owh9A0ktc_6YGGhH-r-Oeh-3Z_INos98Wnw50vZrrslnr8QSd4QG83uzePyznwX8u5ynszM6Oj_TR-5OPD-EGfQnZPo9gu1mt_WM0ZBr7pFXUn1Si7rs
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9RAEB7KFap90LYqPa1lHxQU3XqbTTbp42l7HIJF0JMKwrK72Vzvml7KNYdtf31nukkrSkXfkjBJFmay883m228AXhgf51GRCu6UlDx2TnGcAx33siCiTZKlnpYGPh2o4Sj-eJgcLkHbsu43eQGEK4l6JyLaJL6sEkTbHVgeHXzuf6c6KktTTr_hbo-FaPbFBArXtHKkyB1FdCGhTmp35J4gEroK9xazU3Px05TlL0lm8DCQHc-utQmJW3K8s6jtjrv8U7nxzvGvwYMGYbJ-CIl1WPKzDVhpCe4bsN58zmfsVaM5_foR_PhSlbS0wBAPsmuSIa_sNEyGbEiLIIgRMZKYu8CHsqYNDaOHjplh76k9xxHHIfHB5JxRasyZKcfVfFIfnTyG0WD_64chbxovcCdlVHMb9bxUToi0EHGK3hKFz6XpOZtaLGNzr-JcRnlhLE6XPeGNMllsIjRQRmVxIp9AZ1bN_CYwi-aFlNYYs4ulZGFVjpDJo3VqBVawXXjTukSfBn0N3RLPppocqMmBOjiwC0nrNd0ghJD5NSaAv973Mrj45h2kqr03-dbX1Xysy3qhs12slbvw9iYC_mE4T__P_Bncp7PA-9mCTj1f-OcIaWq73UT1FYbp8eE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+the+multi-objective+Hamiltonian+cycle+problem+using+a+Branch-and-Fix+based+algorithm&rft.jtitle=Journal+of+computational+science&rft.au=Murua%2C+M.&rft.au=Galar%2C+Diego&rft.au=Santana%2C+R.&rft.date=2022-04-01&rft.issn=1877-7503&rft.volume=60&rft_id=info:doi/10.1016%2Fj.jocs.2022.101578&rft.externalDocID=oai_DiVA_org_ltu_89825
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon