Periodic cosmic string formation and dynamics
A bstract We study string formation and dynamics in a scalar field theory with a global U(1) symmetry. If a scalar field Φ subject to a wine-bottle potential is initially displaced from the potential minimum, and even if this is done uniformly and coherently over large spatial patches, we show that...
Saved in:
Published in | The journal of high energy physics Vol. 2025; no. 8; pp. 80 - 77 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
12.08.2025
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 1029-8479 1029-8479 |
DOI | 10.1007/JHEP08(2025)080 |
Cover
Abstract | A
bstract
We study string formation and dynamics in a scalar field theory with a global U(1) symmetry. If a scalar field Φ subject to a wine-bottle potential is initially displaced from the potential minimum, and even if this is done uniformly and coherently over large spatial patches, we show that small spatial perturbations to Φ grow through parametric resonance as Φ oscillates; this observation holds over a wide range of initial U(1) charge densities. We show that the growth of these perturbations leads to the formation of spatially coherent, temporally stable
counter-rotating regions
; i.e., spatially connected regions that exhibit Φ evolution with large and opposite-sign rotation speeds in field space and that persist over long durations. These counter-rotating regions are separated by domain boundaries characterized by a large field gradient and zero rotational speed in field space. We find that string or vortex topological defects form, are confined to, and then annihilate periodically on these domain boundaries. We demonstrate these periodic dynamics with numerical simulations in both 2 + 1 and 3 + 1 dimensions, in both Minkowski spacetime and in a radiation-dominated Friedmann-Lemaître-Robertson-Walker (FLRW) universe, and we explain some features of the evolution (semi-)analytically. At late times in an expanding universe, when Φ approaches the minimum of the potential, we find counter-rotating regions and vortices to dissipate into scalar radiation. Phenomenologically, periodic bursts of string formation and annihilation are expected to lead to periodic bursts of gravitational-wave production. For small initial U(1) charge density, these gravitational-wave bursts can be synchronized across the whole Universe. Owing to their periodic nature, it is possible that they could give rise to a gravitational-wave frequency spectrum consisting of a forest of fully or partially resolved peaks. We find that these periodic scalar field dynamics also occur with large (but not fine-tuned) initial U(1) charge density; they may thus have implications for models that depend on a coherent field rotation, such as kination and the axion kinetic-misalignment mechanism. |
---|---|
AbstractList | Abstract We study string formation and dynamics in a scalar field theory with a global U(1) symmetry. If a scalar field Φ subject to a wine-bottle potential is initially displaced from the potential minimum, and even if this is done uniformly and coherently over large spatial patches, we show that small spatial perturbations to Φ grow through parametric resonance as Φ oscillates; this observation holds over a wide range of initial U(1) charge densities. We show that the growth of these perturbations leads to the formation of spatially coherent, temporally stable counter-rotating regions; i.e., spatially connected regions that exhibit Φ evolution with large and opposite-sign rotation speeds in field space and that persist over long durations. These counter-rotating regions are separated by domain boundaries characterized by a large field gradient and zero rotational speed in field space. We find that string or vortex topological defects form, are confined to, and then annihilate periodically on these domain boundaries. We demonstrate these periodic dynamics with numerical simulations in both 2 + 1 and 3 + 1 dimensions, in both Minkowski spacetime and in a radiation-dominated Friedmann-Lemaître-Robertson-Walker (FLRW) universe, and we explain some features of the evolution (semi-)analytically. At late times in an expanding universe, when Φ approaches the minimum of the potential, we find counter-rotating regions and vortices to dissipate into scalar radiation. Phenomenologically, periodic bursts of string formation and annihilation are expected to lead to periodic bursts of gravitational-wave production. For small initial U(1) charge density, these gravitational-wave bursts can be synchronized across the whole Universe. Owing to their periodic nature, it is possible that they could give rise to a gravitational-wave frequency spectrum consisting of a forest of fully or partially resolved peaks. We find that these periodic scalar field dynamics also occur with large (but not fine-tuned) initial U(1) charge density; they may thus have implications for models that depend on a coherent field rotation, such as kination and the axion kinetic-misalignment mechanism. A bstract We study string formation and dynamics in a scalar field theory with a global U(1) symmetry. If a scalar field Φ subject to a wine-bottle potential is initially displaced from the potential minimum, and even if this is done uniformly and coherently over large spatial patches, we show that small spatial perturbations to Φ grow through parametric resonance as Φ oscillates; this observation holds over a wide range of initial U(1) charge densities. We show that the growth of these perturbations leads to the formation of spatially coherent, temporally stable counter-rotating regions ; i.e., spatially connected regions that exhibit Φ evolution with large and opposite-sign rotation speeds in field space and that persist over long durations. These counter-rotating regions are separated by domain boundaries characterized by a large field gradient and zero rotational speed in field space. We find that string or vortex topological defects form, are confined to, and then annihilate periodically on these domain boundaries. We demonstrate these periodic dynamics with numerical simulations in both 2 + 1 and 3 + 1 dimensions, in both Minkowski spacetime and in a radiation-dominated Friedmann-Lemaître-Robertson-Walker (FLRW) universe, and we explain some features of the evolution (semi-)analytically. At late times in an expanding universe, when Φ approaches the minimum of the potential, we find counter-rotating regions and vortices to dissipate into scalar radiation. Phenomenologically, periodic bursts of string formation and annihilation are expected to lead to periodic bursts of gravitational-wave production. For small initial U(1) charge density, these gravitational-wave bursts can be synchronized across the whole Universe. Owing to their periodic nature, it is possible that they could give rise to a gravitational-wave frequency spectrum consisting of a forest of fully or partially resolved peaks. We find that these periodic scalar field dynamics also occur with large (but not fine-tuned) initial U(1) charge density; they may thus have implications for models that depend on a coherent field rotation, such as kination and the axion kinetic-misalignment mechanism. We study string formation and dynamics in a scalar field theory with a global U(1) symmetry. If a scalar field Φ subject to a wine-bottle potential is initially displaced from the potential minimum, and even if this is done uniformly and coherently over large spatial patches, we show that small spatial perturbations to Φ grow through parametric resonance as Φ oscillates; this observation holds over a wide range of initial U(1) charge densities. We show that the growth of these perturbations leads to the formation of spatially coherent, temporally stable counter-rotating regions ; i.e., spatially connected regions that exhibit Φ evolution with large and opposite-sign rotation speeds in field space and that persist over long durations. These counter-rotating regions are separated by domain boundaries characterized by a large field gradient and zero rotational speed in field space. We find that string or vortex topological defects form, are confined to, and then annihilate periodically on these domain boundaries. We demonstrate these periodic dynamics with numerical simulations in both 2 + 1 and 3 + 1 dimensions, in both Minkowski spacetime and in a radiation-dominated Friedmann-Lemaître-Robertson-Walker (FLRW) universe, and we explain some features of the evolution (semi-)analytically. At late times in an expanding universe, when Φ approaches the minimum of the potential, we find counter-rotating regions and vortices to dissipate into scalar radiation. Phenomenologically, periodic bursts of string formation and annihilation are expected to lead to periodic bursts of gravitational-wave production. For small initial U(1) charge density, these gravitational-wave bursts can be synchronized across the whole Universe. Owing to their periodic nature, it is possible that they could give rise to a gravitational-wave frequency spectrum consisting of a forest of fully or partially resolved peaks. We find that these periodic scalar field dynamics also occur with large (but not fine-tuned) initial U(1) charge density; they may thus have implications for models that depend on a coherent field rotation, such as kination and the axion kinetic-misalignment mechanism. |
ArticleNumber | 80 |
Author | Fedderke, Michael A. Siemonsen, Nils Huang, Junwu |
Author_xml | – sequence: 1 givenname: Michael A. orcidid: 0000-0002-1319-1622 surname: Fedderke fullname: Fedderke, Michael A. email: mfedderke@perimeterinstitute.ca organization: Perimeter Institute for Theoretical Physics – sequence: 2 givenname: Junwu orcidid: 0000-0001-6007-7315 surname: Huang fullname: Huang, Junwu organization: Perimeter Institute for Theoretical Physics – sequence: 3 givenname: Nils orcidid: 0000-0001-5664-3521 surname: Siemonsen fullname: Siemonsen, Nils organization: Princeton Gravity Initiative, Princeton University, Department of Physics, Princeton University |
BookMark | eNp1kL1PwzAQxS1UJNrCzBqJBYbQs53E9oiqlhZVogPMluOPKlUbFzsd-t_jEgQsTHe6u_fu6TdCg9a3FqFbDI8YgE1eFrM18HsCpHwADhdoiIGInBdMDP70V2gU4xYAl1jAEOVrGxpvGp1pH_epxC407SZzPuxV1_g2U63JzKlVaRmv0aVTu2hvvusYvc9nb9NFvnp9Xk6fVrmmlHQ5rYCBoJphwxmvMOaaGGeVMdRWwrmSpiBOW14zosGSsqgEccbwlLIoDaFjtOx9jVdbeQjNXoWT9KqRXwMfNlKFrtE7KwlRjFWiZjWYomZOGSs4x7TguODpS_K6670OwX8cbezk1h9Dm-JLSqhIWQQt09Wkv9LBxxis-_mKQZ75yp6vPPOViW9SQK-IhzMxG359_5N8AjxSfBU |
Cites_doi | 10.1103/PhysRevLett.19.822 10.1088/0264-9381/22/2/014 10.1016/j.physletb.2007.11.072 10.1007/s41114-021-00032-5 10.1103/PhysRevD.31.3052 10.1063/1.1754056 10.1103/PhysRevLett.129.141103 10.1007/JHEP12(2022)089 10.1103/PhysRevD.107.124018 10.1103/PhysRevD.62.043527 10.1103/PhysRevB.55.485 10.1103/PhysRevD.110.035021 10.1016/s0079-6417(08)60077-3 10.1103/PhysRevD.44.340 10.1103/PhysRevD.56.7597 10.2307/j.ctvcm4htt 10.1088/0305-4470/9/8/029 10.1103/PhysRevD.42.2491 10.1103/PhysRevLett.73.3195 10.1103/RevModPhys.59.1001 10.1103/PhysRevD.28.1243 10.1088/1475-7516/2016/01/004 10.1088/1475-7516/2021/06/034 10.1103/PhysRevD.61.083510 10.1016/0378-4371(93)90503-V 10.1103/PhysRevLett.47.1556 10.1103/PhysRevLett.55.2887 10.1038/s41467-022-28669-y 10.1103/PhysRevD.109.055005 10.1103/PhysRevB.52.7537 10.21468/SciPostPhys.10.2.050 10.1145/3569951.3597559 10.1016/S0370-1573(96)00009-9 10.1103/RevModPhys.87.803 10.1007/s11467-011-0205-0 10.1103/PhysRevD.46.532 10.1103/PhysRevD.58.083516 10.1103/PhysRevB.84.174510 10.1007/JHEP08(2025)080 10.1016/0003-4916(78)90252-X 10.1016/S0370-2693(02)02590-X 10.1088/2058-7058/12/4/23 10.1016/0370-2693(90)90613-B 10.1016/0370-1573(80)90091-5 10.1103/PhysRevD.63.123512 10.1093/acprof:oso/9780199564842.001.0001 10.1142/S0218271815300037 10.1103/PhysRevLett.120.211602 10.1103/PhysRevD.56.3258 10.1103/6v21-d6sj 10.1007/JHEP08(2024)126 10.1103/PhysRevLett.70.2158 10.1103/PhysRevD.82.083518 10.1146/annurev.ns.42.120192.001141 10.1103/PhysRevX.6.031043 10.1007/JHEP02(2024)223 10.1016/0550-3213(87)90403-2 10.1016/j.physrep.2019.09.001 10.1103/PhysRevLett.76.3758 10.1038/317505a0 10.1088/1475-7516/2013/11/030 10.1088/1475-7516/2020/08/036 10.1016/0550-3213(85)90021-5 10.1115/1.4039144 10.1016/S0370-2693(98)01094-6 10.3847/1538-4357/ad0031 10.1103/PhysRevD.103.044022 10.1103/PhysRevD.78.036008 10.1103/RevModPhys.38.298 10.1103/PhysRevD.73.065020 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
DOI | 10.1007/JHEP08(2025)080 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 77 |
ExternalDocumentID | oai_doaj_org_article_22a7769b7b0d4b7fade988134814879f 10_1007_JHEP08_2025_080 |
GroupedDBID | 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMVHM ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP N5L N9A NB0 O93 OK1 P62 P9T PHGZM PHGZT PIMPY PQGLB PROAC PUEGO R9I RO9 S1Z S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c332t-3607093c71d8786118c2dfeadd3e69ff53479fce8b72c0e254692fdd810245d23 |
IEDL.DBID | 8FG |
ISSN | 1029-8479 |
IngestDate | Mon Sep 15 19:42:19 EDT 2025 Mon Sep 08 03:22:01 EDT 2025 Thu Sep 18 00:10:15 EDT 2025 Mon Sep 08 01:10:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Cosmology of Theories BSM New Light Particles Axions and ALPs Early Universe Particle Physics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c332t-3607093c71d8786118c2dfeadd3e69ff53479fce8b72c0e254692fdd810245d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1319-1622 0000-0001-6007-7315 0000-0001-5664-3521 |
OpenAccessLink | https://www.proquest.com/docview/3239534935?pq-origsite=%requestingapplication% |
PQID | 3239534935 |
PQPubID | 2034718 |
PageCount | 77 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_22a7769b7b0d4b7fade988134814879f proquest_journals_3239534935 crossref_primary_10_1007_JHEP08_2025_080 springer_journals_10_1007_JHEP08_2025_080 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-12 |
PublicationDateYYYYMMDD | 2025-08-12 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2025 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | M Kawasaki (26939_CR26) 2013; 11 S Sachdev (26939_CR49) 1999; 12 26939_CR1 26939_CR50 P Ao (26939_CR31) 1993; 70 26939_CR51 26939_CR15 26939_CR59 26939_CR56 Y Levin (26939_CR60) 2023; 959 26939_CR57 26939_CR54 26939_CR11 TWB Kibble (26939_CR2) 1980; 67 AJ Beekman (26939_CR61) 2011; 6 26939_CR18 26939_CR19 26939_CR16 26939_CR17 M Gorghetto (26939_CR70) 2021; 06 AD Linde (26939_CR13) 1990; 246 PW Anderson (26939_CR29) 1966; 38 26939_CR81 26939_CR82 26939_CR80 26939_CR47 I Affleck (26939_CR41) 1985; 249 26939_CR48 26939_CR46 26939_CR43 26939_CR44 26939_CR42 WJ Trela (26939_CR30) 1967; 19 EJ Weinberg (26939_CR52) 1992; 42 RT Co (26939_CR40) 2020; 08 FL Bezrukov (26939_CR38) 2008; 659 E Varoquaux (26939_CR77) 2015; 87 WH Zurek (26939_CR5) 1985; 317 26939_CR72 26939_CR71 R Basu (26939_CR14) 1991; 44 T Senthil (26939_CR55) 2019; 827 L Fleury (26939_CR83) 2016; 01 M Gorghetto (26939_CR6) 2021; 10 26939_CR36 26939_CR37 L Kofman (26939_CR45) 1994; 73 26939_CR78 26939_CR79 26939_CR76 26939_CR33 26939_CR74 26939_CR75 FDM Haldane (26939_CR32) 1985; 55 J Pearl (26939_CR58) 1964; 5 26939_CR39 M Buschmann (26939_CR7) 2022; 13 M Gorghetto (26939_CR12) 2024; 08 WE East (26939_CR24) 2022; 12 EB Sonin (26939_CR35) 1997; 55 26939_CR62 M Gorghetto (26939_CR10) 2024; 02 MA Amin (26939_CR73) 2014; 24 26939_CR9 26939_CR25 ME Peskin (26939_CR53) 1978; 113 26939_CR69 26939_CR23 DJ Thouless (26939_CR34) 1993; 200 26939_CR67 26939_CR8 26939_CR68 26939_CR21 26939_CR22 26939_CR66 26939_CR3 26939_CR63 26939_CR20 26939_CR64 WH Zurek (26939_CR4) 1993; 24 26939_CR27 N Aggarwal (26939_CR65) 2021; 24 26939_CR28 |
References_xml | – ident: 26939_CR56 – volume: 19 start-page: 822 year: 1967 ident: 26939_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.19.822 – ident: 26939_CR27 – ident: 26939_CR81 doi: 10.1088/0264-9381/22/2/014 – volume: 659 start-page: 703 year: 2008 ident: 26939_CR38 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2007.11.072 – volume: 24 start-page: 4 year: 2021 ident: 26939_CR65 publication-title: Living Rev. Rel. doi: 10.1007/s41114-021-00032-5 – ident: 26939_CR69 doi: 10.1103/PhysRevD.31.3052 – volume: 5 start-page: 65 year: 1964 ident: 26939_CR58 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1754056 – ident: 26939_CR23 doi: 10.1103/PhysRevLett.129.141103 – volume: 12 start-page: 089 year: 2022 ident: 26939_CR24 publication-title: JHEP doi: 10.1007/JHEP12(2022)089 – ident: 26939_CR36 doi: 10.1103/PhysRevD.107.124018 – ident: 26939_CR63 doi: 10.1103/PhysRevD.62.043527 – volume: 55 start-page: 485 year: 1997 ident: 26939_CR35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.55.485 – ident: 26939_CR9 doi: 10.1103/PhysRevD.110.035021 – ident: 26939_CR28 doi: 10.1016/s0079-6417(08)60077-3 – ident: 26939_CR46 – volume: 44 start-page: 340 year: 1991 ident: 26939_CR14 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.44.340 – ident: 26939_CR17 doi: 10.1103/PhysRevD.56.7597 – ident: 26939_CR76 doi: 10.2307/j.ctvcm4htt – volume: 24 start-page: 1301 year: 1993 ident: 26939_CR4 publication-title: Acta Phys. Polon. B – ident: 26939_CR1 doi: 10.1088/0305-4470/9/8/029 – ident: 26939_CR44 doi: 10.1103/PhysRevD.42.2491 – volume: 73 start-page: 3195 year: 1994 ident: 26939_CR45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.73.3195 – ident: 26939_CR50 doi: 10.1103/RevModPhys.59.1001 – ident: 26939_CR62 doi: 10.1103/PhysRevD.28.1243 – volume: 01 start-page: 004 year: 2016 ident: 26939_CR83 publication-title: JCAP doi: 10.1088/1475-7516/2016/01/004 – volume: 06 start-page: 034 year: 2021 ident: 26939_CR70 publication-title: JCAP doi: 10.1088/1475-7516/2021/06/034 – ident: 26939_CR19 doi: 10.1103/PhysRevD.61.083510 – volume: 200 start-page: 42 year: 1993 ident: 26939_CR34 publication-title: Physica A doi: 10.1016/0378-4371(93)90503-V – ident: 26939_CR54 doi: 10.1103/PhysRevLett.47.1556 – volume: 55 start-page: 2887 year: 1985 ident: 26939_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.55.2887 – volume: 13 start-page: 1049 year: 2022 ident: 26939_CR7 publication-title: Nature Commun. doi: 10.1038/s41467-022-28669-y – ident: 26939_CR8 doi: 10.1103/PhysRevD.109.055005 – ident: 26939_CR57 doi: 10.1103/PhysRevB.52.7537 – volume: 10 start-page: 050 year: 2021 ident: 26939_CR6 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.10.2.050 – ident: 26939_CR74 doi: 10.1145/3569951.3597559 – ident: 26939_CR43 – ident: 26939_CR68 – ident: 26939_CR3 doi: 10.1016/S0370-1573(96)00009-9 – volume: 87 start-page: 803 year: 2015 ident: 26939_CR77 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.87.803 – ident: 26939_CR22 – volume: 6 start-page: 357 year: 2011 ident: 26939_CR61 publication-title: Front. Phys. (Beijing) doi: 10.1007/s11467-011-0205-0 – ident: 26939_CR16 doi: 10.1103/PhysRevD.46.532 – ident: 26939_CR18 doi: 10.1103/PhysRevD.58.083516 – ident: 26939_CR59 doi: 10.1103/PhysRevB.84.174510 – ident: 26939_CR42 doi: 10.1007/JHEP08(2025)080 – volume: 113 start-page: 122 year: 1978 ident: 26939_CR53 publication-title: Annals Phys. doi: 10.1016/0003-4916(78)90252-X – ident: 26939_CR64 doi: 10.1016/S0370-2693(02)02590-X – ident: 26939_CR47 – volume: 12 start-page: 33 year: 1999 ident: 26939_CR49 publication-title: Phys. World doi: 10.1088/2058-7058/12/4/23 – volume: 246 start-page: 353 year: 1990 ident: 26939_CR13 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(90)90613-B – volume: 67 start-page: 183 year: 1980 ident: 26939_CR2 publication-title: Phys. Rept. doi: 10.1016/0370-1573(80)90091-5 – ident: 26939_CR72 doi: 10.1103/PhysRevD.63.123512 – ident: 26939_CR75 doi: 10.1093/acprof:oso/9780199564842.001.0001 – ident: 26939_CR67 – volume: 24 start-page: 1530003 year: 2014 ident: 26939_CR73 publication-title: Int. J. Mod. Phys. D doi: 10.1142/S0218271815300037 – ident: 26939_CR39 doi: 10.1103/PhysRevLett.120.211602 – ident: 26939_CR25 doi: 10.1103/PhysRevD.56.3258 – ident: 26939_CR11 doi: 10.1103/6v21-d6sj – volume: 08 start-page: 126 year: 2024 ident: 26939_CR12 publication-title: JHEP doi: 10.1007/JHEP08(2024)126 – ident: 26939_CR21 – volume: 70 start-page: 2158 year: 1993 ident: 26939_CR31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.70.2158 – ident: 26939_CR71 doi: 10.1103/PhysRevD.82.083518 – volume: 42 start-page: 177 year: 1992 ident: 26939_CR52 publication-title: Ann. Rev. Nucl. Part. Sci. doi: 10.1146/annurev.ns.42.120192.001141 – ident: 26939_CR78 doi: 10.1103/PhysRevX.6.031043 – volume: 02 start-page: 223 year: 2024 ident: 26939_CR10 publication-title: JHEP doi: 10.1007/JHEP02(2024)223 – ident: 26939_CR15 doi: 10.1016/0550-3213(87)90403-2 – ident: 26939_CR51 – volume: 827 start-page: 1 year: 2019 ident: 26939_CR55 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2019.09.001 – ident: 26939_CR33 doi: 10.1103/PhysRevLett.76.3758 – volume: 317 start-page: 505 year: 1985 ident: 26939_CR5 publication-title: Nature doi: 10.1038/317505a0 – volume: 11 start-page: 030 year: 2013 ident: 26939_CR26 publication-title: JCAP doi: 10.1088/1475-7516/2013/11/030 – volume: 08 start-page: 036 year: 2020 ident: 26939_CR40 publication-title: JCAP doi: 10.1088/1475-7516/2020/08/036 – volume: 249 start-page: 361 year: 1985 ident: 26939_CR41 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(85)90021-5 – ident: 26939_CR48 doi: 10.1115/1.4039144 – ident: 26939_CR20 – ident: 26939_CR66 – ident: 26939_CR37 doi: 10.1016/S0370-2693(98)01094-6 – volume: 959 start-page: 84 year: 2023 ident: 26939_CR60 publication-title: Astrophys. J. doi: 10.3847/1538-4357/ad0031 – ident: 26939_CR82 doi: 10.1103/PhysRevD.103.044022 – ident: 26939_CR79 doi: 10.1103/PhysRevD.78.036008 – volume: 38 start-page: 298 year: 1966 ident: 26939_CR29 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.38.298 – ident: 26939_CR80 doi: 10.1103/PhysRevD.73.065020 |
SSID | ssj0015190 |
Score | 2.481252 |
Snippet | A
bstract
We study string formation and dynamics in a scalar field theory with a global U(1) symmetry. If a scalar field Φ subject to a wine-bottle potential... We study string formation and dynamics in a scalar field theory with a global U(1) symmetry. If a scalar field Φ subject to a wine-bottle potential is... Abstract We study string formation and dynamics in a scalar field theory with a global U(1) symmetry. If a scalar field Φ subject to a wine-bottle potential is... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 80 |
SubjectTerms | Axions and ALPs Boundaries Bursts Charge density Classical and Quantum Gravitation Cosmology of Theories BSM Domains Dynamics Early Universe Particle Physics Elementary Particles Field theory Frequency spectrum Gravitational waves Minkowski space Misalignment New Light Particles Perturbation Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Radiation Regular Article - Theoretical Physics Relativity Theory Rotation Scalars String Theory Universe |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iCF7EJ65W2YOH9rB0N9ndJEeVllJQerDQW0gyiXhwK7b-fyf7qFUQL54W9sXsN8nmmyTzDSE3JtW0LKRPvAGZ5JDRRHKJoUquU505bXwespEfHsvJPJ8uisVWqa-wJ6yRB26AG1KqOS-l4SaF3HCvwUkhspA_ilxb-vD3xWGsC6ba9QPkJWkn5JPy4XQymqWij4F-MagVILfGoFqq_xu__LEkWo8040Ny0FLE-LYx7YjsuOqY7NVbNe3qhCQzbDRLeLGxXa5e8RAqb1TP8SYNMdYVxNBUml-dkvl49HQ_SdqiB4lljK4TVmInlMzyDAQXJfJ_S8Gjv4G5UnpfhNRPb50wnNrUBTl7ST2AyMIiKlB2RnarZeXOSWwoky4Hl9kCo2DhZSHxKS2QUOeggUWk38Gg3hptC9WpGDeIqYCYQsQichdg2twWRKnrE-gq1bpK_eWqiPQ6kFXbU1aKoZH4TZIVERl0wH9d_sWei_-w55Lsh_eFGeKM9sju-v3DXSHFWJvrujV9AtA5yjg priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86EbyIn1id0oOH7VBsk6ZJjjo2xkDZwcFuIZ_iwU7s_P996cdkigdPLW0C6e8lze_l5f2C0K1OFS6o8InXViS5zXAimABXJVepypzSPg_ZyI9PxXSRz5Z02YokhVyYH_H7u9l0PE_5AFx0OgRys4v2KPx1w969UTHahAuAhqSdbs_vSltTTq3Mv0Unf0RA64llcoQOW0YY3zcmPEY7rjxB-_XOTFOdomQOfWRlX01sVtUbXMJBG-VLvMk6jFVpY9scLF-docVk_DyaJu0ZB4khBK8TUsCYE8SwzHLGC6D7BlsP5rXEFcJ7GjI9vXFcM2xSF9TrBfbW8izETC0m56hXrkp3gWKNiXC5dZmh4PRyL6iAWooDf86tsiRCgw4G-d5IWchOtLhBTAbEJCAWoYcA06ZY0KCuH4BpZNulJcaKsUJoplOba-aVdYLzLGT2ghckfIT6HciyHRiVJNBI-CZBaISGHfDfr_9oz-U_yl6hg3Ab1n0z3Ee99cenuwbisNY3daf5Aoa_ubo priority: 102 providerName: Springer Nature |
Title | Periodic cosmic string formation and dynamics |
URI | https://link.springer.com/article/10.1007/JHEP08(2025)080 https://www.proquest.com/docview/3239534935 https://doaj.org/article/22a7769b7b0d4b7fade988134814879f |
Volume | 2025 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: 8FG dateStart: 20121201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: C6C dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: C24 dateStart: 20100101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: U2A dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BTtwwEB21oEq9VNAWdYGucuAAh4jEdmL7hGC1ywoJtKq6ErfI9tiIQxMgy_93nE0WWgkujpI4VvQ8tmc8njcARzYzrCx0SINFnQrMWaqlJlNFmMzk3tggYjTy9U05X4qr2-K233Br-2OVw5zYTdTYuLhHfsoZ1wUXmhdnD49pzBoVvat9Co2PsJ0zkqQYKT673HgRSDvJBjqfTJ5ezaeLTB2TuV-cdDyQr1aijrD_Hy3zP8dot97MduBLrygm5-ue3YUPvv4Kn7oDm679BumCRKfBe5e4pv1Dl5h_o75LNsGIiakxwXW--fY7LGfT35N52qc-SB3nbJXykoai5k7mqKQqyQpwDAP1OnJf6hCKGAAanFdWMpf5SGqvWUBUeXSlIuN7sFU3tf8BiSXgvECfu4JsYRV0oekro0itFmiQj-B4gKF6WDNcVAOX8RqxKiJWEWIjuIgwbapFauruQfN0V_WSXjFmpCy1lTZDYWUw6LVSeQz4JeNIhxEcDiBX_Xhpq5feHcHJAPzL6zf-Z__9pg7gc6wZd4Bzdghbq6dn_5NUiJUdd3Iyhu2L6c3iF91NmIhlORl3RjmVS3b-FwZox1Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQguiKdYKJADSO0hamI7sX1AqIUu26d6aKXejJ8VB5LSLEL9U_2NzCSbLSDBradISRxFnz_bMx7PNwBvXWFZXemUJxd0LkLJci01uirCFraM1iVB2ciHR_XsVOydVWcrcD3mwtCxynFO7Cfq0HraI9_kjOuKC82rDxffc6oaRdHVsYTGQIv9ePUTXbbu_e4n7N93jE13Tj7O8kVVgdxzzuY5r5HlmntZBiVVjQa2ZyEhoIHHWqdUUW5l8lE5yXwRSS9esxSCKilKGUjoAKf8O4JzTlr9avp5GbVAa6gY5YMKubk32zku1DpDs2Kj1538beXrCwT8YdX-FYjt17fpQ3iwMEyzrYFJj2AlNo_hbn9A1HdPID9Gqrbhq898233DC9X7aM6zZfJjZpuQhaG-ffcUTm8FlGew2rRNfA6Zw46KIsTSV-h7q6Qrja2sQjNeBBv4BNZHGMzFoKhhRu3kATFDiBlEbALbBNPyNZLC7m-0l-dmMbIMY1bKWjvpiiCcTDZErVRJCcbojOk0gbURZLMYn525YdMENkbgbx7_439e_P9Tb-De7OTwwBzsHu2_hPvUinafS7YGq_PLH_EVmi9z97rnTAZfbpukvwBkqf4_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1VW4G4ID7FQoEcQGoP0SZ2EtuHClG6q20LqxWiUm_G9tgVB5LSLEL9i_wqxtlkC0hw6ylSEkfR89ie8fi9AXhlM8OqUoU0WFRpgTlLlVAUqhQmM7k3NhSRjfxhUc1Pi-Oz8mwLfg5cmHiscpgTu4kaGxf3yCeccVXyQvFyEvpjEcvD2ZuLb2msIBUzrUM5DdOXWcD9Tm6sJ3mc-KsfFM61-0eH1PevGZtNP72bp33FgdRxzlYpr2gEKO5EjlLIipxvxzAQ2Mh9pUIoI-8yOC-tYC7zUUtesYAo85jBxCiCQMvBtoh80RFsH0wXy4-bnAb5StkgLpSJyfF8uszkLiOnY69TpfxtXezKB_zh8_6Vpu1Wv9k9uNu7rcnbtZ3dhy1fP4Bb3fFR1z6EdEmG3OAXl7im_UqXWA2kPk821MjE1JjgVW3oYfsITm8ElscwqpvaP4HEUjf6An3uSorMZVClolZGkpNfoEE-ht0BBn2x1tvQg7LyGjEdEdOE2BgOIkyb16JQdnejuTzX_bjTjBkhKmWFzbCwIhj0Sso80o8pVFNhDDsDyLofva2-trUx7A3AXz_-x_88_f-nXsJtMlj9_mhx8gzuxEZxazpnOzBaXX73z8m3WdkXvdEk8Pmm7fQXlnkJKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Periodic+cosmic+string+formation+and+dynamics&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Fedderke%2C+Michael+A.&rft.au=Huang%2C+Junwu&rft.au=Siemonsen%2C+Nils&rft.date=2025-08-12&rft.issn=1029-8479&rft.eissn=1029-8479&rft.volume=2025&rft.issue=8&rft_id=info:doi/10.1007%2FJHEP08%282025%29080&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_JHEP08_2025_080 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |