Applications of python to evaluate the performance of decision tree‐based boosting algorithms

The scope for identifying scalable solutions through the application of machine learning algorithms on diverse datasets has increased manifold with rapid advancements in the field of computer science and technology. This article demonstrates a step‐by‐step approach to the applications of python to e...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental progress & sustainable energy Vol. 37; no. 2; pp. 618 - 623
Main Authors Kadiyala, Akhil, Kumar, Ashok
Format Journal Article
LanguageEnglish
Published 01.03.2018
Subjects
Online AccessGet full text
ISSN1944-7442
1944-7450
DOI10.1002/ep.12888

Cover

Abstract The scope for identifying scalable solutions through the application of machine learning algorithms on diverse datasets has increased manifold with rapid advancements in the field of computer science and technology. This article demonstrates a step‐by‐step approach to the applications of python to evaluate the performance of decision tree‐based gradient boosting machine (gbm), lightgbm, extreme gradient boosting (xgboost), and adaptive boosting (adaboost) algorithms for predicting the in‐bus carbon dioxide concentrations. Among the four boosting algorithms examined in this study, the xgboost algorithm provided better results on the basis of predictive model evaluation with operational performance measures. The readers may adopt the methods (inclusive of the python coding) discussed in this article to successfully address their own data science problems. © 2017 American Institute of Chemical Engineers Environ Prog, 37: 618–623, 2018
AbstractList The scope for identifying scalable solutions through the application of machine learning algorithms on diverse datasets has increased manifold with rapid advancements in the field of computer science and technology. This article demonstrates a step‐by‐step approach to the applications of python to evaluate the performance of decision tree‐based gradient boosting machine (gbm), lightgbm, extreme gradient boosting (xgboost), and adaptive boosting (adaboost) algorithms for predicting the in‐bus carbon dioxide concentrations. Among the four boosting algorithms examined in this study, the xgboost algorithm provided better results on the basis of predictive model evaluation with operational performance measures. The readers may adopt the methods (inclusive of the python coding) discussed in this article to successfully address their own data science problems. © 2017 American Institute of Chemical Engineers Environ Prog, 37: 618–623, 2018
Author Kadiyala, Akhil
Kumar, Ashok
Author_xml – sequence: 1
  givenname: Akhil
  surname: Kadiyala
  fullname: Kadiyala, Akhil
  organization: The University of Toledo
– sequence: 2
  givenname: Ashok
  surname: Kumar
  fullname: Kumar, Ashok
  email: akumar@utnet.utoledo.edu
  organization: The University of Toledo
BookMark eNp10MtKAzEUBuAgFWyr4CNk6WZqbjPNLEupFyjoQtchkzlpI9NJSKLSnY_gM_ok2lZciK7OWXz_gfOP0KD3PSB0TsmEEsIuIUwok1IeoSGthSimoiSDn12wEzRK6YmQiou6HiI1C6FzRmfn-4S9xWGb177H2WN40d2zzoDzGnCAaH3c6N7ATrVgXHI7FwE-3t4bnaDFjfcpu36Fdbfy0eX1Jp2iY6u7BGffc4werxYP85tieXd9O58tC8M5kwXTouW8rRpJbGlkq7kBQTgQLUqwpAZKK00MBVETsII2glSMTQEso7LUUz5Gk8NdE31KEawyLu-_ylG7TlGidvUoCGpfz1fg4lcgRLfRcfsXLQ701XWw_depxf3BfwL9SXgU
CitedBy_id crossref_primary_10_1002_ep_13016
crossref_primary_10_1080_07373937_2023_2288667
crossref_primary_10_1016_j_nantod_2025_102660
crossref_primary_10_1109_ACCESS_2024_3478783
crossref_primary_10_1002_ep_13018
crossref_primary_10_3390_jcm12031193
crossref_primary_10_1080_01431161_2021_1945158
crossref_primary_10_1021_acs_est_2c07561
crossref_primary_10_1088_1757_899X_740_1_012133
crossref_primary_10_3390_agriculture13010008
crossref_primary_10_1080_08827508_2024_2395828
crossref_primary_10_3390_logistics4010001
crossref_primary_10_3390_rs13183745
crossref_primary_10_1016_j_oceaneng_2023_113738
crossref_primary_10_1109_JSEN_2023_3264205
crossref_primary_10_1016_j_ijmst_2024_11_012
crossref_primary_10_1016_j_knosys_2022_109713
crossref_primary_10_1016_j_measurement_2023_113485
crossref_primary_10_2196_41725
crossref_primary_10_1016_j_jhydrol_2021_127367
crossref_primary_10_1080_16066359_2021_1887147
crossref_primary_10_3390_computers12010001
crossref_primary_10_1007_s00704_024_05293_y
crossref_primary_10_3390_informatics9040080
crossref_primary_10_3390_w14213509
crossref_primary_10_1002_cite_202100134
crossref_primary_10_1016_j_ecoinf_2023_102133
crossref_primary_10_1016_j_ecoenv_2022_113332
crossref_primary_10_1155_2020_3180628
crossref_primary_10_1002_est2_70035
crossref_primary_10_3390_d14090706
crossref_primary_10_3390_rs12081334
Cites_doi 10.2174/1875040001104010001
10.1007/s11869-011-0163-2
10.1002/ep.12021
10.1002/ep.10292
10.1002/ep.11708
10.1002/ep.12676
10.1002/ep.12523
10.3390/atmos3020266
10.1080/10962247.2012.741054
10.2174/1874829501003010055
10.1002/ep.12387
10.1016/j.jhazmat.2012.01.072
10.1002/ep.12119
10.1002/ep.12349
10.1002/ep.12273
10.1002/ep.11959
10.1002/ep.10527
10.1002/ep.11642
10.1002/ep.12786
10.1002/ep.12199
ContentType Journal Article
Copyright 2018 American Institute of Chemical Engineers
Copyright_xml – notice: 2018 American Institute of Chemical Engineers
DBID AAYXX
CITATION
DOI 10.1002/ep.12888
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-7450
EndPage 623
ExternalDocumentID 10_1002_ep_12888
EP12888
Genre reviewArticle
GroupedDBID ..I
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJCF
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOD
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADOZA
ADXAS
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BCU
BDRZF
BEC
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GUQSH
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
ITG
ITH
IX1
J0M
JPC
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PATMY
PQQKQ
PROAC
PTHSS
PYCSY
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
S0X
SJFOW
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c3328-2a4d33d6b80f5c8da3ce403e0a45ef09e116a0c1e490ef41b406227eef2185a73
IEDL.DBID DR2
ISSN 1944-7442
IngestDate Thu Apr 24 22:56:05 EDT 2025
Sat Oct 25 05:35:51 EDT 2025
Wed Jan 22 16:39:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3328-2a4d33d6b80f5c8da3ce403e0a45ef09e116a0c1e490ef41b406227eef2185a73
PageCount 6
ParticipantIDs crossref_citationtrail_10_1002_ep_12888
crossref_primary_10_1002_ep_12888
wiley_primary_10_1002_ep_12888_EP12888
PublicationCentury 2000
PublicationDate March 2018
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationTitle Environmental progress & sustainable energy
PublicationYear 2018
References 2015; 34
2012; 3
2012
2017; 36
2010; 29
2008; 27
2013; 63
2018
2013
2010; 3
2011; 4
2012; 213–214
2013; 6
2012; 31
2014; 33
2016; 35
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
Kadiyala A. (e_1_2_9_18_1) 2012
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 34
  start-page: 319
  year: 2015
  end-page: 323
  article-title: Univariate time series based back propagation neural network modeling of air quality inside a public transportation bus using available software
  publication-title: Environmental Progress & Sustainable Energy
– volume: 36
  start-page: 1358
  year: 2017
  end-page: 1364
  article-title: Applications of R to evaluate environmental data science problems
  publication-title: Environmental Progress & Sustainable Energy
– volume: 31
  start-page: 494
  year: 2012
  end-page: 499
  article-title: Univariate time series prediction of air quality inside a public transportation bus using available software
  publication-title: Environmental Progress & Sustainable Energy
– volume: 27
  start-page: 160
  year: 2008
  end-page: 168
  article-title: Application of CART and Minitab software to identify variables affecting indoor concentration levels
  publication-title: Environmental Progress
– volume: 33
  start-page: 337
  year: 2014
  end-page: 341
  article-title: Multivariate time series models for prediction of air quality inside a public transportation bus using available software
  publication-title: Environmental Progress & Sustainable Energy
– volume: 31
  start-page: 170
  year: 2012
  end-page: 175
  article-title: Evaluation of indoor air quality models with the ranked statistical performance measures using available software
  publication-title: Environmental Progress and Sustainable Energy
– volume: 36
  start-page: 1580
  year: 2017
  end-page: 1586
  article-title: Applications of Python to evaluate environmental data science problems
  publication-title: Environmental Progress & Sustainable Energy
– volume: 33
  start-page: 1069
  year: 2014
  end-page: 1073
  article-title: Vector time series models for prediction of air quality inside a public transportation bus using available software
  publication-title: Environmental Progress & Sustainable Energy
– start-page: 123
  year: 2012
– volume: 36
  start-page: 4
  year: 2017
  end-page: 10
  article-title: Vector time series‐based radial basis function neural network modeling of air quality inside a public transportation bus using available software
  publication-title: Environmental Progress & Sustainable Energy
– volume: 29
  start-page: 398
  year: 2010
  end-page: 405
  article-title: Application of MATLAB to select an optimum performing genetic algorithm for predicting in‐vehicle pollutant concentrations
  publication-title: Environmental Progress & Sustainable Energy
– volume: 63
  start-page: 205
  year: 2013
  end-page: 218
  article-title: Development of hybrid genetic‐algorithm‐based neural networks using regression trees for modeling air quality inside a public transportation bus
  publication-title: Journal of Air & Waste Management Association
– volume: 35
  start-page: 7
  year: 2016
  end-page: 13
  article-title: Vector time series based back propagation neural network modeling of air quality inside a public transportation bus using available software
  publication-title: Environmental Progress & Sustainable Energy
– volume: 3
  start-page: 266
  year: 2012
  end-page: 287
  article-title: An examination of the sensitivity of sulfur dioxide, nitric oxide, and nitrogen dioxide concentrations to the important factors affecting air quality inside a public transportation bus
  publication-title: Atmosphere
– volume: 34
  start-page: 1259
  year: 2015
  end-page: 1266
  article-title: Multivariate time series based back propagation neural network modeling of air quality inside a public transportation bus using available software
  publication-title: Environmental Progress & Sustainable Energy
– year: 2018
– volume: 35
  start-page: 931
  year: 2016
  end-page: 935
  article-title: Multivariate time series based radial basis function neural network modeling of air quality inside a public transportation bus using available software
  publication-title: Environmental Progress & Sustainable Energy
– volume: 4
  start-page: 1
  year: 2011
  end-page: 20
  article-title: Study of in‐vehicle pollutant variation in public transport buses operating on alternative fuels in the City of Toledo, Ohio
  publication-title: The Open Environmental & Biological Monitoring Journal
– volume: 3
  start-page: 55
  year: 2010
  end-page: 70
  article-title: Study of occupant exposure of drivers and commuters with temporal variation of in‐vehicle pollutant concentrations in public transport buses operating on alternative diesel fuels
  publication-title: The Open Environmental Engineering Journal
– volume: 35
  start-page: 320
  year: 2016
  end-page: 324
  article-title: Univariate time series based radial basis function neural network modeling of air quality inside a public transportation bus using available software
  publication-title: Environmental Progress & Sustainable Energy
– year: 2012
– volume: 6
  start-page: 215
  year: 2013
  end-page: 224
  article-title: Quantification of in‐vehicle gaseous contaminants of carbon dioxide and carbon monoxide under varying climatic conditions
  publication-title: Air Quality, Atmosphere and Health
– volume: 213–214
  start-page: 140
  year: 2012
  end-page: 146
  article-title: Development and application of a methodology to identify and rank the important factors affecting in‐vehicle particulate matter
  publication-title: Journal of Hazardous Materials
– year: 2013
– ident: e_1_2_9_7_1
  doi: 10.2174/1875040001104010001
– volume-title: Handbook of genetic algorithms: new research
  year: 2012
  ident: e_1_2_9_18_1
– ident: e_1_2_9_19_1
  doi: 10.1007/s11869-011-0163-2
– ident: e_1_2_9_10_1
  doi: 10.1002/ep.12021
– ident: e_1_2_9_17_1
  doi: 10.1002/ep.10292
– ident: e_1_2_9_8_1
  doi: 10.1002/ep.11708
– ident: e_1_2_9_28_1
– ident: e_1_2_9_2_1
  doi: 10.1002/ep.12676
– ident: e_1_2_9_16_1
  doi: 10.1002/ep.12523
– ident: e_1_2_9_25_1
– ident: e_1_2_9_22_1
  doi: 10.3390/atmos3020266
– ident: e_1_2_9_24_1
  doi: 10.1080/10962247.2012.741054
– ident: e_1_2_9_20_1
– ident: e_1_2_9_6_1
  doi: 10.2174/1874829501003010055
– ident: e_1_2_9_4_1
– ident: e_1_2_9_15_1
  doi: 10.1002/ep.12387
– ident: e_1_2_9_21_1
  doi: 10.1016/j.jhazmat.2012.01.072
– ident: e_1_2_9_11_1
  doi: 10.1002/ep.12119
– ident: e_1_2_9_14_1
  doi: 10.1002/ep.12349
– ident: e_1_2_9_5_1
– ident: e_1_2_9_27_1
– ident: e_1_2_9_13_1
  doi: 10.1002/ep.12273
– ident: e_1_2_9_9_1
  doi: 10.1002/ep.11959
– ident: e_1_2_9_23_1
  doi: 10.1002/ep.10527
– ident: e_1_2_9_26_1
– ident: e_1_2_9_30_1
  doi: 10.1002/ep.11642
– ident: e_1_2_9_3_1
  doi: 10.1002/ep.12786
– ident: e_1_2_9_12_1
  doi: 10.1002/ep.12199
– ident: e_1_2_9_29_1
SSID ssj0063499
Score 2.363646
SecondaryResourceType review_article
Snippet The scope for identifying scalable solutions through the application of machine learning algorithms on diverse datasets has increased manifold with rapid...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
StartPage 618
SubjectTerms adaboost
anaconda
biodiesel
data science
gbm
indoor air quality
lightgbm
numpy
public transportation buses
python
scikit‐learn
spyder
xgboost
Title Applications of python to evaluate the performance of decision tree‐based boosting algorithms
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fep.12888
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1944-7442
  databaseCode: DR2
  dateStart: 20000101
  customDbUrl:
  isFulltext: true
  eissn: 1944-7450
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063499
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEA3iSQ9-i99EED11N2mSpj0usiKCIqKw4KEk7UTFdVvcetCTP8Hf6C8xSbvrKgriqZcphCSTeZPMvIfQXkK0yazfBDQLZcBVLIIkMRAQELHWxi66F4M5PYuOr_hJT_SaqkrXC1PzQ4wv3Jxn-PPaObjSw_YnaSiULXu2xq7Pl7LIZ1MXY-aoiHEvHWlTdB5IzsMR7ywJ26Mfv0SiSWTqQ8vRPLoeDaquKLlvPVW6lb1842v836gX0FyDOHGn3iKLaAoGS2h2godwGaWdiWdsXBhcPjtKAVwVuGEDB2yBIi4_uwycVd7o82D3sv3--uYiYo4tbB-6Wmqs-jfF4111-zBcQVdH3cvD46BRXggyxkLrOornjOWRjokRWZwrlgEnDIjiAgxJgNJIkYwCTwgYTrWFBWEoAYxFDEJJtoqmB8UA1hCWcSKUkIpGUtlcVWhpaAg5oxArxiFaRwejVUizhpbcqWP005pQOUyhTP2UraPdsWVZU3H8YLPvZ_9Xg7R77r8bfzXcRDMWI8V12dkWmq4en2Db4pBK7_gd9wGrldtR
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8QwEMcHHwf14Ft8G0H01N20SdoUTyLK-kREwYNQ0naiou4WrQc9-RH8jH4Skz7WVRTEUy9TCEkm8588fgOwFtJYJ8ZvHDfxAocrKZww1OhQFDKOtRn0ohjM0bHfOuf7F-KiDzbrtzAlH6K74WY9o1ivrYPbDenmJzUUs4ZZXKXsh0HumzTFKqLTLjvKZ7woHmmSdO4EnHs1eZZ6zfrPL7GoV5sWwWV3DC7rZpV3Sm4bT3ncSF6-ERv_2e5xGK1EJ9kqZ8kE9GF7EkZ6UIRTEG31nGSTjibZs6UKkLxDKiA4EqMVSfb50MBapVWJHmIPt99f32xQTIlR7o_2OjVRd1edh5v8-v5xGs53d862W05VfMFJGPOM9yieMpb6saRaJDJVLEFOGVLFBWoaouv6iiYu8pCi5m5slIHnBYjaiAahAjYDA-1OG2eBBDIUSgTK9QNl0lURB9r1MGUuSsU4-nOwUQ9DlFRkclsg4y4qmcpehFlUdNkcrHYts5LG8YPNetH9vxpEOyfFd_6vhisw1Do7OowO944PFmDYSCZZ3kJbhIH84QmXjCzJ4-Vi-n0AcLLfcg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8QwEMcHHyB68C2-jSB66po2SZviSdTFNyIKHoSSthMVdbdoPejJj-Bn9JOY9LGuoiCeeplCSDKZf5LJbwBWQhrrxPiN4yZe4HAlhROGGh2KQsaxNoNeFIM5OvZ3z_n-hbjogY36LUzJh-gcuFnPKNZr6-CYpXr9kxqKWcMsrlL2Qj8XobT5fNunHXaUz3hRPNJs0rkTcO7V5Fnqrdd_folF3dq0CC7NEbism1XmlNw2nvK4kbx8Izb-s92jMFyJTrJZzpIx6MHWOAx1oQgnINrsuskmbU2yZ0sVIHmbVEBwJEYrkuzzoYG1SqsSPcRebr-_vtmgmBKj3B9tOjVRd1fth5v8-v5xEs6bO2dbu05VfMFJGPOM9yieMpb6saRaJDJVLEFOGVLFBWoaouv6iiYu8pCi5m5slIHnBYjaiAahAjYFfa12C6eBBDIUSgTK9QNltqsiDrTrYcpclIpx9GdgrR6GKKnI5LZAxl1UMpW9CLOo6LIZWO5YZiWN4web1aL7fzWIdk6K7-xfDZdg4GS7GR3uHR_MwaBRTLJMQpuHvvzhCReMKsnjxWL2fQBFDt72
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications+of+python+to+evaluate+the+performance+of+decision+tree%E2%80%90based+boosting+algorithms&rft.jtitle=Environmental+progress+%26+sustainable+energy&rft.au=Kadiyala%2C+Akhil&rft.au=Kumar%2C+Ashok&rft.date=2018-03-01&rft.issn=1944-7442&rft.eissn=1944-7450&rft.volume=37&rft.issue=2&rft.spage=618&rft.epage=623&rft_id=info:doi/10.1002%2Fep.12888&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ep_12888
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-7442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-7442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-7442&client=summon