Paleo‐stratigraphic permeability anisotropy controls supergene mimetic martite goethite deposits

The Hamersley Basin in Western Australia is one of the world's largest iron ore‐producing regions, hosting two types of ore in banded iron formations: the high‐grade martite‐microplaty haematite and the supergene martite‐goethite ores. With the high‐grade ores almost entirely mined in the last...

Full description

Saved in:
Bibliographic Details
Published inBasin research Vol. 35; no. 2; pp. 572 - 591
Main Authors Poulet, Thomas, Giraldo, Juan Felipe, Ramanaidou, Erick, Piechocka, Agnieszka, Calo, Victor M.
Format Journal Article
LanguageEnglish
Published Oxford Wiley Subscription Services, Inc 01.04.2023
Subjects
Online AccessGet full text
ISSN0950-091X
1365-2117
1365-2117
DOI10.1111/bre.12723

Cover

Abstract The Hamersley Basin in Western Australia is one of the world's largest iron ore‐producing regions, hosting two types of ore in banded iron formations: the high‐grade martite‐microplaty haematite and the supergene martite‐goethite ores. With the high‐grade ores almost entirely mined in the last decade, the supergene ores have more recently become the dominant resource of interest. Consequently, understanding the genesis of these martite‐goethite deposits is a critical step for exploration. Yet, although various models exist, there is still no consensus on how these mineral resources formed, complicating the prediction of resource volume and location. Here, we show that the paleo‐stratigraphic permeability anisotropy (with higher permeability along strata than across) controls the supergene mimetic enrichment transport process and, subsequently, the mineralisation distribution. We introduce a flow model that implicitly represents strata with a potential function that orients the permeability tensor accurately. The numerical solver uses automatic mesh adaptivity to deliver robust solutions. By accurately reproducing the mineralisation patterns in specific deposits, we identify and quantify the paleo‐water table level and permeability anisotropy ratio as the two main controlling parameters for the mineralisation distribution. These insights provide new timing constraints for the mineralisation and the physical process of iron enrichment, suggesting much more potential mineralisation volume in the paleo‐reconstructed zones than previously anticipated. These flow models allow us to draw geological conclusions with few a priori assumptions required for the genetic model in which the transport component is dominant. The predictive power of this methodology will allow targeted drilling to narrow down the prospective areas and lower exploration costs. Furthermore, the methodology's generality applies to other commodities in sedimentary basins involving supergene processes and will improve our understanding of various genetic models. Supergene mimetic iron ore deposits are mainly controlled by the paleo‐stratigraphic permeability anisotropy. Numerical flow simulations provide spatial and temporal mineralisation constraints, showing that chemistry is not necessarily required to explain mineralisation patterns. This schematic drawing of reconstructed strata for one of the scenarios modelled highlights the role of the paleo‐water table (horizontal dashed line) as top boundary condition for the fluid flow (black arrows), whose direction and intensity are strongly affected by the strata orientation and anisotropy.
AbstractList The Hamersley Basin in Western Australia is one of the world's largest iron ore‐producing regions, hosting two types of ore in banded iron formations: the high‐grade martite‐microplaty haematite and the supergene martite‐goethite ores. With the high‐grade ores almost entirely mined in the last decade, the supergene ores have more recently become the dominant resource of interest. Consequently, understanding the genesis of these martite‐goethite deposits is a critical step for exploration. Yet, although various models exist, there is still no consensus on how these mineral resources formed, complicating the prediction of resource volume and location. Here, we show that the paleo‐stratigraphic permeability anisotropy (with higher permeability along strata than across) controls the supergene mimetic enrichment transport process and, subsequently, the mineralisation distribution. We introduce a flow model that implicitly represents strata with a potential function that orients the permeability tensor accurately. The numerical solver uses automatic mesh adaptivity to deliver robust solutions. By accurately reproducing the mineralisation patterns in specific deposits, we identify and quantify the paleo‐water table level and permeability anisotropy ratio as the two main controlling parameters for the mineralisation distribution. These insights provide new timing constraints for the mineralisation and the physical process of iron enrichment, suggesting much more potential mineralisation volume in the paleo‐reconstructed zones than previously anticipated. These flow models allow us to draw geological conclusions with few a priori assumptions required for the genetic model in which the transport component is dominant. The predictive power of this methodology will allow targeted drilling to narrow down the prospective areas and lower exploration costs. Furthermore, the methodology's generality applies to other commodities in sedimentary basins involving supergene processes and will improve our understanding of various genetic models.
The Hamersley Basin in Western Australia is one of the world's largest iron ore‐producing regions, hosting two types of ore in banded iron formations: the high‐grade martite‐microplaty haematite and the supergene martite‐goethite ores. With the high‐grade ores almost entirely mined in the last decade, the supergene ores have more recently become the dominant resource of interest. Consequently, understanding the genesis of these martite‐goethite deposits is a critical step for exploration. Yet, although various models exist, there is still no consensus on how these mineral resources formed, complicating the prediction of resource volume and location. Here, we show that the paleo‐stratigraphic permeability anisotropy (with higher permeability along strata than across) controls the supergene mimetic enrichment transport process and, subsequently, the mineralisation distribution. We introduce a flow model that implicitly represents strata with a potential function that orients the permeability tensor accurately. The numerical solver uses automatic mesh adaptivity to deliver robust solutions. By accurately reproducing the mineralisation patterns in specific deposits, we identify and quantify the paleo‐water table level and permeability anisotropy ratio as the two main controlling parameters for the mineralisation distribution. These insights provide new timing constraints for the mineralisation and the physical process of iron enrichment, suggesting much more potential mineralisation volume in the paleo‐reconstructed zones than previously anticipated. These flow models allow us to draw geological conclusions with few a priori assumptions required for the genetic model in which the transport component is dominant. The predictive power of this methodology will allow targeted drilling to narrow down the prospective areas and lower exploration costs. Furthermore, the methodology's generality applies to other commodities in sedimentary basins involving supergene processes and will improve our understanding of various genetic models. Supergene mimetic iron ore deposits are mainly controlled by the paleo‐stratigraphic permeability anisotropy. Numerical flow simulations provide spatial and temporal mineralisation constraints, showing that chemistry is not necessarily required to explain mineralisation patterns. This schematic drawing of reconstructed strata for one of the scenarios modelled highlights the role of the paleo‐water table (horizontal dashed line) as top boundary condition for the fluid flow (black arrows), whose direction and intensity are strongly affected by the strata orientation and anisotropy.
Author Calo, Victor M.
Poulet, Thomas
Ramanaidou, Erick
Giraldo, Juan Felipe
Piechocka, Agnieszka
Author_xml – sequence: 1
  givenname: Thomas
  orcidid: 0000-0001-7351-3083
  surname: Poulet
  fullname: Poulet, Thomas
  email: thomas.poulet@csiro.au
  organization: CSIRO Mineral Resources
– sequence: 2
  givenname: Juan Felipe
  surname: Giraldo
  fullname: Giraldo, Juan Felipe
  organization: Curtin University
– sequence: 3
  givenname: Erick
  surname: Ramanaidou
  fullname: Ramanaidou, Erick
  organization: CSIRO Mineral Resources
– sequence: 4
  givenname: Agnieszka
  surname: Piechocka
  fullname: Piechocka, Agnieszka
  organization: CSIRO Mineral Resources
– sequence: 5
  givenname: Victor M.
  surname: Calo
  fullname: Calo, Victor M.
  organization: Curtin University
BookMark eNp9kMtKxDAYhYMoOF4WvkHBlUKdXFqbLlW8wYAiCu5Ckv6dydA2Nckg3fkIPqNPYsa6EjWb_IvvHA7fDtrsbAcIHRB8QuKbKgcnhBaUbaAJYad5SgkpNtEElzlOcUmet9GO90uMMc8JmSB1LxuwH2_vPjgZzNzJfmF00oNrQSrTmDAksjPeBmf7IdG2i0fjE7-KyBw6SFrTQoiRVrpgAiRzC2GxPirorTfB76GtWjYe9r__XfR0dfl4cZPO7q5vL85mqWaMspTWWJekIJyrihJV8JxTDBSyslRFzVRRUaAKVI0znZe8ovhUaSpxJiud4UqyXXQ89q66Xg6vsmlE70ycNQiCxdqOiHbEl50IH45w7-zLCnwQS7tyXdwnaME5YxxneaSmI6Wd9d5BLbQJUdPagjTNr71HPxL_bfhufzUNDH-D4vzhckx8AsOaljE
CitedBy_id crossref_primary_10_3390_mca28010007
crossref_primary_10_1007_s10040_023_02708_4
Cites_doi 10.1144/sp393.11
10.1179/174327506x138931
10.1016/j.jsg.2014.03.005
10.1016/j.jocs.2021.101306
10.1016/j.sedgeo.2016.04.015
10.1080/08120099.2014.898408
10.1016/j.geothermics.2020.101998
10.5382/SP.21.14
10.5194/gmd‐14‐3915‐2021
10.5382/AV100.20
10.1111/bre.12318
10.1111/ter.12311
10.1016/j.marpetgeo.2018.08.016
10.5382/econgeo.4734
10.2113/96.4.837
10.5382/Rev.15.08
10.1080/08120099.2021.1863860
10.1016/j.gca.2013.03.037
10.1179/174327506x138959
10.2113/gsecongeo.75.2.184
10.1016/j.cma.2021.113686
10.1002/nme.2579
10.1002/nme.6912
10.1179/1743275814y.0000000038
10.1007/BF00203975
10.1130/0091‐7613(1999)027<0175:shofgh>2.3.co;2
10.1016/B978-0-08-095975-7.01115-3
10.1007/s11004‐014‐9540‐3
10.1016/j.cma.2021.114027
10.1179/037174510X12853354810624
10.1111/bre.12324
10.1002/nme.6790
10.1179/037174510x12853354810543
10.1029/2007jb005004
10.1016/j.cma.2020.112891
ContentType Journal Article
Copyright 2022 Commonwealth Scientific and Industrial Research Organisation. published by International Association of Sedimentologists and European Association of Geoscientists and Engineers and John Wiley & Sons Ltd.
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 Commonwealth Scientific and Industrial Research Organisation. published by International Association of Sedimentologists and European Association of Geoscientists and Engineers and John Wiley & Sons Ltd.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7UA
C1K
F1W
H96
L.G
ADTOC
UNPAY
DOI 10.1111/bre.12723
DatabaseName Wiley Online Library Open Access
CrossRef
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1365-2117
EndPage 591
ExternalDocumentID 10.1111/bre.12723
10_1111_bre_12723
BRE12723
Genre article
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
23N
24P
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
ESX
F00
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
VH1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WUPDE
WXSBR
WYISQ
XG1
ZY4
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
ABJIA
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
RIG
7UA
C1K
F1W
H96
L.G
ADTOC
UNPAY
ID FETCH-LOGICAL-c3323-2f0c917188bd21b785820e2e499b7f3b7d2e2bebf04c598d206bc2a04adc40da3
IEDL.DBID UNPAY
ISSN 0950-091X
1365-2117
IngestDate Tue Aug 19 18:11:23 EDT 2025
Wed Aug 13 09:41:11 EDT 2025
Wed Oct 01 03:28:36 EDT 2025
Thu Apr 24 23:00:23 EDT 2025
Wed Jan 22 16:13:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution-NonCommercial-NoDerivs
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3323-2f0c917188bd21b785820e2e499b7f3b7d2e2bebf04c598d206bc2a04adc40da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7351-3083
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bre.12723
PQID 2788338045
PQPubID 1026374
PageCount 20
ParticipantIDs unpaywall_primary_10_1111_bre_12723
proquest_journals_2788338045
crossref_citationtrail_10_1111_bre_12723
crossref_primary_10_1111_bre_12723
wiley_primary_10_1111_bre_12723_BRE12723
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Basin research
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 68
1966; 1
2019; 31
2021; 123
2020; 363
1999; 27
2008; 15
2014; 46
2016; 341
2005
2019; 108
2014; 393
1993
2021; 122
2021; 385
2002
2021; 50
2006; 115
2014; 61
2014; 67
2021; 90
2021; 14
2009; 79
2017; 30
1980; 75
2021; 377
2010; 119
2022
2021
2013; 117
2020; 115
2018
2017
2016
1982
2014
2008; 113
1970; 119
2001; 96
1985; 13
2014; 123
Clout J. M. F. (e_1_2_11_12_1) 2017
Trendall A. F. (e_1_2_11_44_1) 1970
e_1_2_11_10_1
e_1_2_11_32_1
Morris R. C. (e_1_2_11_31_1) 1985
Simonson B. M. (e_1_2_11_40_1) 1993
e_1_2_11_36_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_2_1
Kepert D. A. (e_1_2_11_21_1) 2018
Morris R. C. (e_1_2_11_30_1) 1982
Lascelles D. F. (e_1_2_11_25_1) 2002
e_1_2_11_20_1
e_1_2_11_46_1
Conliffe J. (e_1_2_11_14_1) 2016
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
United States Geological Survey (USGS) (e_1_2_11_45_1) 2022
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
Wellmann F. (e_1_2_11_47_1) 2018
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_39_1
Australia (e_1_2_11_3_1) 2021
e_1_2_11_19_1
References_xml – volume: 61
  start-page: 513
  issue: 4
  year: 2014
  end-page: 586
  article-title: The cenozoic detrital iron deposits of the hamersley province, Western Australia
  publication-title: Australian Journal of Earth Sciences
– volume: 14
  start-page: 3915
  issue: 6
  year: 2021
  end-page: 3937
  article-title: LoopStructural 1.0: Time‐aware geological modelling
  publication-title: Geoscientific Model Development
– year: 2005
– volume: 79
  start-page: 1309
  issue: 11
  year: 2009
  end-page: 1331
  article-title: Gmsh: A 3‐d finite element mesh generator with built‐in pre‐ and post‐processing facilities
  publication-title: International Journal for Numerical Methods in Engineering
– year: 2021
– start-page: 351
  year: 2017
  end-page: 358
– volume: 113
  issue: B1
  year: 2008
  article-title: Permeability anisotropy and its relations with porous medium structure
  publication-title: Journal of Geophysical Research
– volume: 123
  start-page: 1717
  year: 2021
  end-page: 1735
  article-title: Incompressible flow modeling using an adaptive stabilized finite element method based on residual minimization
  publication-title: International Journal for Numerical Methods in Engineering.
– volume: 363
  year: 2020
  article-title: An adaptive stabilized conforming finite element method via residual minimization on dual discon‐ tinuous galerkin norms
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 123
  start-page: 135
  issue: 2
  year: 2014
  end-page: 145
  article-title: Mineral resource estimation of the brockman 4 iron ore deposit in the pilbara region
  publication-title: Applied Earth Science
– volume: 15
  start-page: 197
  year: 2008
  end-page: 221
– start-page: 282
  year: 2018
– volume: 68
  start-page: 782
  issue: 6
  year: 2021
  end-page: 798
  article-title: Petrography of martite–goethite ore and implications for ore genesis, south flank, hamersley province, Western Australia
  publication-title: Australian Journal of Earth Sciences
– volume: 119
  start-page: 49
  issue: 1
  year: 2010
  end-page: 55
  article-title: Stratigraphic and structural setting of iron mineralisation at e deposit (east), area c, hamersley province, Western Australia
  publication-title: Applied Earth Science
– year: 2016
– start-page: 16
  year: 1993
– year: 2018
– start-page: 107
  year: 2002
  end-page: 126
– volume: 75
  start-page: 184
  year: 1980
  end-page: 209
  article-title: A textural and mineralogical study of the relationship of iron ore to banded iron‐formation in the hamersley iron province of Western Australia
  publication-title: Economic Geology
– volume: 122
  start-page: 6234
  issue: 21
  year: 2021
  end-page: 6252
  article-title: Automatically adaptive stabilized finite elements and continuation analysis for compaction banding in geomaterials
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 31
  start-page: 361
  issue: 2
  year: 2019
  end-page: 379
  article-title: Thermal and exhumation histories of the northern subalpine chains (Bauges and Bornes–France): Evidence from forward thermal modeling coupling clay mineral diagenesis, organic maturity and carbonate clumped isotope ( 47) data
  publication-title: Basin Research
– volume: 90
  year: 2021
  article-title: Influence of permeability anisotropy and layering on geothermal battery energy storage
  publication-title: Geothermics
– volume: 13
  start-page: 73
  year: 1985
  end-page: 235
– volume: 27
  start-page: 175
  issue: 2
  year: 1999
  article-title: Synorogenic hydrothermal origin for giant hamersley iron oxide ore bodies
  publication-title: Geology
– year: 1982
– volume: 115
  start-page: 139
  issue: 4
  year: 2006
  end-page: 145
  article-title: Structural controls of bedded iron ore in the hamersley province, Western Australia – An example from the paraburdoo ranges
  publication-title: Applied Earth Science
– volume: 385
  year: 2021
  article-title: Automatically adaptive, stabilized finite element method via residual minimization for hetero‐ geneous, anisotropic advection–diffusion–reaction problems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 46
  start-page: 931
  issue: 8
  year: 2014
  end-page: 953
  article-title: Three‐dimensional modelling of geological surfaces using generalized interpolation with radial basis functions
  publication-title: Mathematical Geosciences
– volume: 115
  start-page: 115
  issue: 4
  year: 2006
  end-page: 125
  article-title: Iron formation‐hosted iron ores in the hamersley province of Western Australia
  publication-title: Applied Earth Science
– volume: 119
  start-page: 1
  year: 1970
  end-page: 365
– volume: 393
  start-page: 81
  issue: 1
  year: 2014
  end-page: 115
  article-title: A mineral system approach to iron ore in archaean and palaeoproterozoic BIF of Western Australia
  publication-title: Geological Society, London, Special Publications
– volume: 1
  start-page: 53
  year: 1966
  end-page: 59
  article-title: Stratigraphic‐structural‐paleoclimatic controls of the newly discovered iron ore deposits of Western Australia
  publication-title: Mineralium Deposita
– volume: 67
  start-page: 268
  year: 2014
  end-page: 292
  article-title: Structural evolution of the mount wall region in the hamersley province, Western Australia and its control on hydrothermal alteration and formation of high‐grade iron deposits
  publication-title: Journal of Structural Geology
– volume: 115
  start-page: 627
  issue: 3
  year: 2020
  end-page: 659
  article-title: A new fluid‐flow model for the genesis of banded iron formation‐hosted martite‐goethite mineralization, with special reference to the north and south flank deposits of the hamersley province, Western Australia
  publication-title: Economic Geology
– year: 2022
– volume: 31
  start-page: 228
  issue: 2
  year: 2019
  end-page: 252
  article-title: Integrated 3d forward stratigraphic and petroleum system modeling of the levant basin, eastern mediterranean
  publication-title: Basin Research
– volume: 108
  start-page: 705
  year: 2019
  end-page: 713
  article-title: Permeability anisotropy and relative permeability in sediments from the national gas hydrate program expedition 02, offshore India
  publication-title: Marine and Petroleum Geology
– start-page: 313
  year: 2014
  end-page: 355
– volume: 96
  start-page: 837
  year: 2001
  end-page: 873
  article-title: Genesis of high‐grade hematite orebodies of the hamersley province, Western Australia
  publication-title: Economic Geology
– volume: 30
  start-page: 78
  issue: 1
  year: 2017
  end-page: 85
  article-title: Exhumation history and timing of supergene copper mineralisation in an arid climate: New thermochronological data from the Centinela District, Atacama, Chile
  publication-title: Terra Nova
– volume: 117
  start-page: 283
  year: 2013
  end-page: 312
  article-title: 40Ar/39Ar and (U–Th)/He – 4He/3He geochronology of landscape evolution and channel iron deposit genesis at Lynn peak, Western Australia
  publication-title: Geochimica et Cosmochimica Acta
– volume: 377
  year: 2021
  article-title: Goal‐oriented adaptivity for a conforming residual minimization method in a dual discontinuous galerkin norm
  publication-title: Computer Methods in Applied Mechanics and Engineering
– start-page: 1
  year: 2018
  end-page: 121
– volume: 119
  start-page: 56
  year: 2010
  end-page: 59
  article-title: A synopsis of the channel iron deposits of the Hamersley Province, Western Australia
  publication-title: Applied Earth Science
– volume: 341
  start-page: 232
  year: 2016
  end-page: 244
  article-title: The origin of terrestrial pisoliths and pisolitic iron ore deposits: Raindrops and sheetwash in a semi‐arid environment
  publication-title: Sedimentary Geology
– volume: 50
  year: 2021
  article-title: DGIRM: Discontinuous galerkin based isogeometric residual minimization for the stokes problem
  publication-title: Journal of Computational Science
– volume-title: Resources and energy quarterly, december 2021
  year: 2021
  ident: e_1_2_11_3_1
– start-page: 73
  volume-title: Handbook of strata‐bound and stratiform ore deposits
  year: 1985
  ident: e_1_2_11_31_1
– start-page: 107
  volume-title: Iron ore 2002 conference
  year: 2002
  ident: e_1_2_11_25_1
– start-page: 1
  volume-title: Advances in geophysics
  year: 2018
  ident: e_1_2_11_47_1
– ident: e_1_2_11_2_1
  doi: 10.1144/sp393.11
– ident: e_1_2_11_11_1
  doi: 10.1179/174327506x138931
– volume-title: Geology and geochemistry of high‐grade iron‐ore deposits in the kivivic Timmins and ruth lake areas, western labrador
  year: 2016
  ident: e_1_2_11_14_1
– ident: e_1_2_11_17_1
  doi: 10.1016/j.jsg.2014.03.005
– ident: e_1_2_11_27_1
  doi: 10.1016/j.jocs.2021.101306
– start-page: 1
  volume-title: The iron formations of the precambrian hamersley group, western australia with special reference to the associated crocidolite
  year: 1970
  ident: e_1_2_11_44_1
– ident: e_1_2_11_26_1
  doi: 10.1016/j.sedgeo.2016.04.015
– ident: e_1_2_11_22_1
  doi: 10.1080/08120099.2014.898408
– ident: e_1_2_11_32_1
  doi: 10.1016/j.geothermics.2020.101998
– ident: e_1_2_11_23_1
  doi: 10.5382/SP.21.14
– ident: e_1_2_11_19_1
  doi: 10.5194/gmd‐14‐3915‐2021
– ident: e_1_2_11_13_1
  doi: 10.5382/AV100.20
– ident: e_1_2_11_4_1
  doi: 10.1111/bre.12318
– ident: e_1_2_11_39_1
  doi: 10.1111/ter.12311
– ident: e_1_2_11_15_1
  doi: 10.1016/j.marpetgeo.2018.08.016
– ident: e_1_2_11_34_1
  doi: 10.5382/econgeo.4734
– ident: e_1_2_11_42_1
  doi: 10.2113/96.4.837
– ident: e_1_2_11_43_1
  doi: 10.5382/Rev.15.08
– ident: e_1_2_11_33_1
  doi: 10.1080/08120099.2021.1863860
– ident: e_1_2_11_46_1
  doi: 10.1016/j.gca.2013.03.037
– volume-title: Petrological aspects of the Marandoo iron ore deposit
  year: 1982
  ident: e_1_2_11_30_1
– ident: e_1_2_11_16_1
  doi: 10.1179/174327506x138959
– ident: e_1_2_11_29_1
  doi: 10.2113/gsecongeo.75.2.184
– ident: e_1_2_11_38_1
  doi: 10.1016/j.cma.2021.113686
– volume-title: Iron ore statistics and information
  year: 2022
  ident: e_1_2_11_45_1
– ident: e_1_2_11_18_1
  doi: 10.1002/nme.2579
– ident: e_1_2_11_24_1
  doi: 10.1002/nme.6912
– ident: e_1_2_11_41_1
  doi: 10.1179/1743275814y.0000000038
– ident: e_1_2_11_7_1
  doi: 10.1007/BF00203975
– ident: e_1_2_11_35_1
  doi: 10.1130/0091‐7613(1999)027<0175:shofgh>2.3.co;2
– ident: e_1_2_11_37_1
  doi: 10.1016/B978-0-08-095975-7.01115-3
– start-page: 282
  volume-title: The mapped stratigraphy and structure of the mining area c region, hamersley province
  year: 2018
  ident: e_1_2_11_21_1
– ident: e_1_2_11_20_1
  doi: 10.1007/s11004‐014‐9540‐3
– ident: e_1_2_11_9_1
  doi: 10.1016/j.cma.2021.114027
– ident: e_1_2_11_36_1
  doi: 10.1179/037174510X12853354810624
– start-page: 16
  volume-title: Lithology and proposed revisions in stratigraphic nomenclature of the wittenoom formation (dolomite) and overlying formations, hamersley group, Western Australia
  year: 1993
  ident: e_1_2_11_40_1
– ident: e_1_2_11_28_1
  doi: 10.1111/bre.12324
– start-page: 351
  volume-title: Monograph 32 ‐ Australian ore deposits
  year: 2017
  ident: e_1_2_11_12_1
– ident: e_1_2_11_8_1
  doi: 10.1002/nme.6790
– ident: e_1_2_11_5_1
  doi: 10.1179/037174510x12853354810543
– ident: e_1_2_11_10_1
  doi: 10.1029/2007jb005004
– ident: e_1_2_11_6_1
  doi: 10.1016/j.cma.2020.112891
SSID ssj0008511
Score 2.3793156
Snippet The Hamersley Basin in Western Australia is one of the world's largest iron ore‐producing regions, hosting two types of ore in banded iron formations: the...
SourceID unpaywall
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 572
SubjectTerms Anisotropy
Deposits
Distribution
Drilling
Exploration
Finite element method
finite elements simulation
fluid flow modelling
Goethite
Groundwater table
Haematite
Hematite
Iron
iron ore
Iron ores
martite goethite
Methods
Mineral resources
Mineralization
numerical stabilization
Ores
Permeability
Robustness (mathematics)
Sedimentary basins
Strata
Stratigraphy
supergene genetic model
Tensors
Transport processes
Water table
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iiF58i-uLoB68dMkm7bbFk4q6CIosCnsQStIksrjblm2L1JM_wd_oLzFJHz5QES-lh2lpMzOZb9qZbwDYp9LX7ZO-ZVNfHVyJLeZwbKk8jNpdzolwde_w5VW3d2tfDJzBFDise2FKfojmg5v2DLNfawenLP3g5CpjbHewizXTZ4c45hdt_506SiOJkmcPWSomDipWIV3F01z5ORa9A8zZPEpo8UhHo8-Q1cScswVwVz9tWWry0M4z1g6fvhA5_vN1FsF8hUXhUWk8S2BKRMtg5tzM-i1WALtWwSN-fX4pqXUNtfUwhInay0XJ7l1AGg3TOJvESQGrovcUpnliWjoFHA_HukcSjrV9ZgLex0LXOgrIhSkWS1fB7dnpzUnPqkYyWCEhmFhYolAleB3PYxx3mOs5CkEILFTexFxJmMuxwEwwiezQ8T2OUZeFmCKb8tBGnJI1MB3FkVgHEHmSeYhzyX3HFoQwlZh5wmEM2xJJ12mBg1o5QVjxleuxGaOgzlvUkgVmyVpgtxFNSpKO74S2ag0HlZ-mAXb1sGVP4doW2Gu0_ttNDowSf5YIjvun5mTj76KbYE5PsS8LgrbAdDbJxbbCOhnbMUb9BqMG_TQ
  priority: 102
  providerName: Wiley-Blackwell
Title Paleo‐stratigraphic permeability anisotropy controls supergene mimetic martite goethite deposits
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbre.12723
https://www.proquest.com/docview/2788338045
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bre.12723
UnpaywallVersion publishedVersion
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0950-091X
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1365-2117
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008511
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFH_aOiFOsDEQRdtkAYddUhzbqZPj_jJN2lRNVCqnYMc2qmiTaEmFyomPwGfcJ5ntJJ06AULiYuXgWMn7_5L3fg_gvTCJa59MAiYSu3BDAhkpEtg8TLChUlRz1zt8dT28GLPLSTRp55y6XpgGH2L1wc1phrfXTsFLZRo736n6B5s1DkLCCd2EraH7w9SDrfH16Ohzg7CHA-sNJ6vOqzDkLbbQ2r3rHukhzHy6yEux_C5ms_XA1Xue8-fwpXvmpuDk22BRy0H24xGc43-81DY8a6NSdNSI0Q5s6PwFPPnop_4ud0GOrBsp7n7-akB2Pcj1NEOlteq6wfleIpFPq6K-LcolasvfK1QtSt_cqdF8OnfdkmjuJLXW6GuhXdWjRkr7srHqJYzPzz6dXATtcIYgo5TQgBic2VQvjGOpSCh5HNlYQhNtMyjJDZVcEU2klgazLEpiRfBQZkRgJlTGsBL0FfTyItevAeHYyBgrS4gkYppSaVO0WEdSEmaw4VEfDjsGpVmLXO4GaMzSLoOxJEs9yfrwdrW1bOA6frdpr-Ny2mpslRLuxi7HNsLtw7sV5_92yKFn5J93pMc3Z_7izT8duAe9-nah922MU8sD2CRsZNfTG3LQyvQ9t38Bbw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xEIIL4inKY7GAA5esXNtpEmkvgArlKYRA6i2yYxtVapOItEK98RP4jfyStZ00bCVYcYlymOTgeX1jzXwDcMR1ZMcnI4_xyDwCTTzhS-KZOoyzlpRUBXZ2-Pau1XliV12_OwN_JrMwJT9EfeFmPcPFa-vg9kL6Hy83JePvJgkInYV51iLY2jRh93UctliiZNrDnsmK3YpXyPbx1J9OZ6NPiLk4SnM-fuX9_jRodVnnfAWWK7iITkr9rsKMStdg4cKt4x2vg7g38T37eHsv2W8d-3QvQbkJt6ok4B4jnvaKbPiS5WNU9aUXqBjlbupSoUFvYMcY0cCa0FCh50zZdkSFpHL9XMUGPJ23H886XrU1wUsoJdQjGiemBmuGoZCkKYLQN0leEWVKGxFoKgJJFBFKaMwSPwolwS2REI4ZlwnDktNNmEuzVG0BwqEWIZZSy8hnilJhaqdQ-UIQprEO_AYcT04vTipKcbvZoh9PSgtz0LE76AYc1KJ5yaPxldDuRAVx5UpFTAK7Dzk00LMBh7Va_veTY6ew7yXi04e2e9n-ueg-LHYeb2_im8u76x1Yskvny_6dXZgbvozUnoEmQ_HLWeBfU8Dgow
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xUCkX-qJiCwWr5cAlK6_tbBJxgpaFQosQKtIeKkV2bFer7iYRyapaTvwEfiO_BNtJlodahLhEOUyixOPJfF808w3AJteRbZ-MPMYjcwg08YQviWd4GGddKakKbO_wj-PuwRk77Pv9GdhuemEqfYjpDzcbGe57bQM8l_pOkBvG2O6QgNBZmGddw64sIjq91Y6yUKIS2sOeSYr9WlbIlvFML72fjG4R5stxmvPJXz4c3sesLun0XsGv5nGrWpM_7XEp2snFAyXHZ77Pa1iqwSjaqXbPG5hR6Vt4se-G_U7egTgx2SO7vryqtHWdtvUgQbn5mKtK3nuCeDoosvI8yyeornovUDHOXU-nQqPByDZJopHdoKVCvzNlix0VkspVixXLcNbb-_nlwKtnMngJpYR6ROPEMLxOGApJOiIIfQMhFFGGOIlAUxFIoohQQmOW-FEoCe6KhHDMuEwYlpy-h7k0S9UKIBxqEWIptYx8pigVhpmFyheCMI114Ldgq3FOnNSC5XZuxjBuiItZstgtWQs-TU3zSqXjX0ZrjYfjOlCLmAR22nJogG0LPk-9_thNtpwT_28R757uuZMPTzfdgIWTr734-7fjo1VYtBPtq-KgNZgrz8fqo8E9pVh3-_sGbikADg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86EU9-ixOVoB68dKZJu7RHFT8QFBEH81STJpHh1hbbIfPkn-Df6F9ikraTiYrgpfSQhvZ9v_S93wNgj6nQtE-GjsdCfaEKO9wX2NF5GPPaQhBJTe_w5VX7vONddP1uNefU9MKU-BDjAzejGdZeGwXPhCrtfK3qBzprbLmYYjINZtrmD1MDzHSurg_vSoQ95Ghv2B13XrkurbCFJp6d9EifYebcMMnY6Jn1-5OBq_U8pwvgvn7nsuDksTUseCt--QLn-I-PWgTzVVQKD0sxWgJTMlkGs2d26u9oBfBr7UbS99e3EmTXglz3Yphpqy5LnO8RZEkvT4unNBvBqvw9h_kws82dEg56A9MtCQdGUgsJH1Jpqh4lFNKWjeWroHN6cnt87lTDGZyYEEwcrFCsUz03CLjALqeBr2MJiaXOoDhVhFOBJeaSK-TFfhgIjNo8xgx5TMQeEoysgUaSJnIdQBQoHiChCRH6niSE6xQtkD7n2FNIUb8J9msGRXGFXG4GaPSjOoPRJIssyZpgZ7w0K-E6vlu0WXM5qjQ2jzA1Y5cDHeE2we6Y879tsm8Z-fOK6OjmxN5s_GnDTdAonoZyS8c4Bd-u5PgDuBH_oA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paleo%E2%80%90stratigraphic+permeability+anisotropy+controls+supergene+mimetic+martite+goethite+deposits&rft.jtitle=Basin+research&rft.au=Poulet%2C+Thomas&rft.au=Giraldo%2C+Juan+Felipe&rft.au=Ramanaidou%2C+Erick&rft.au=Piechocka%2C+Agnieszka&rft.date=2023-04-01&rft.issn=0950-091X&rft.eissn=1365-2117&rft.volume=35&rft.issue=2&rft.spage=572&rft.epage=591&rft_id=info:doi/10.1111%2Fbre.12723&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_bre_12723
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-091X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-091X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-091X&client=summon