Paleo‐stratigraphic permeability anisotropy controls supergene mimetic martite goethite deposits
The Hamersley Basin in Western Australia is one of the world's largest iron ore‐producing regions, hosting two types of ore in banded iron formations: the high‐grade martite‐microplaty haematite and the supergene martite‐goethite ores. With the high‐grade ores almost entirely mined in the last...
Saved in:
Published in | Basin research Vol. 35; no. 2; pp. 572 - 591 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Wiley Subscription Services, Inc
01.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0950-091X 1365-2117 1365-2117 |
DOI | 10.1111/bre.12723 |
Cover
Abstract | The Hamersley Basin in Western Australia is one of the world's largest iron ore‐producing regions, hosting two types of ore in banded iron formations: the high‐grade martite‐microplaty haematite and the supergene martite‐goethite ores. With the high‐grade ores almost entirely mined in the last decade, the supergene ores have more recently become the dominant resource of interest. Consequently, understanding the genesis of these martite‐goethite deposits is a critical step for exploration. Yet, although various models exist, there is still no consensus on how these mineral resources formed, complicating the prediction of resource volume and location. Here, we show that the paleo‐stratigraphic permeability anisotropy (with higher permeability along strata than across) controls the supergene mimetic enrichment transport process and, subsequently, the mineralisation distribution. We introduce a flow model that implicitly represents strata with a potential function that orients the permeability tensor accurately. The numerical solver uses automatic mesh adaptivity to deliver robust solutions. By accurately reproducing the mineralisation patterns in specific deposits, we identify and quantify the paleo‐water table level and permeability anisotropy ratio as the two main controlling parameters for the mineralisation distribution. These insights provide new timing constraints for the mineralisation and the physical process of iron enrichment, suggesting much more potential mineralisation volume in the paleo‐reconstructed zones than previously anticipated. These flow models allow us to draw geological conclusions with few a priori assumptions required for the genetic model in which the transport component is dominant. The predictive power of this methodology will allow targeted drilling to narrow down the prospective areas and lower exploration costs. Furthermore, the methodology's generality applies to other commodities in sedimentary basins involving supergene processes and will improve our understanding of various genetic models.
Supergene mimetic iron ore deposits are mainly controlled by the paleo‐stratigraphic permeability anisotropy. Numerical flow simulations provide spatial and temporal mineralisation constraints, showing that chemistry is not necessarily required to explain mineralisation patterns. This schematic drawing of reconstructed strata for one of the scenarios modelled highlights the role of the paleo‐water table (horizontal dashed line) as top boundary condition for the fluid flow (black arrows), whose direction and intensity are strongly affected by the strata orientation and anisotropy. |
---|---|
AbstractList | The Hamersley Basin in Western Australia is one of the world's largest iron ore‐producing regions, hosting two types of ore in banded iron formations: the high‐grade martite‐microplaty haematite and the supergene martite‐goethite ores. With the high‐grade ores almost entirely mined in the last decade, the supergene ores have more recently become the dominant resource of interest. Consequently, understanding the genesis of these martite‐goethite deposits is a critical step for exploration. Yet, although various models exist, there is still no consensus on how these mineral resources formed, complicating the prediction of resource volume and location. Here, we show that the paleo‐stratigraphic permeability anisotropy (with higher permeability along strata than across) controls the supergene mimetic enrichment transport process and, subsequently, the mineralisation distribution. We introduce a flow model that implicitly represents strata with a potential function that orients the permeability tensor accurately. The numerical solver uses automatic mesh adaptivity to deliver robust solutions. By accurately reproducing the mineralisation patterns in specific deposits, we identify and quantify the paleo‐water table level and permeability anisotropy ratio as the two main controlling parameters for the mineralisation distribution. These insights provide new timing constraints for the mineralisation and the physical process of iron enrichment, suggesting much more potential mineralisation volume in the paleo‐reconstructed zones than previously anticipated. These flow models allow us to draw geological conclusions with few a priori assumptions required for the genetic model in which the transport component is dominant. The predictive power of this methodology will allow targeted drilling to narrow down the prospective areas and lower exploration costs. Furthermore, the methodology's generality applies to other commodities in sedimentary basins involving supergene processes and will improve our understanding of various genetic models. The Hamersley Basin in Western Australia is one of the world's largest iron ore‐producing regions, hosting two types of ore in banded iron formations: the high‐grade martite‐microplaty haematite and the supergene martite‐goethite ores. With the high‐grade ores almost entirely mined in the last decade, the supergene ores have more recently become the dominant resource of interest. Consequently, understanding the genesis of these martite‐goethite deposits is a critical step for exploration. Yet, although various models exist, there is still no consensus on how these mineral resources formed, complicating the prediction of resource volume and location. Here, we show that the paleo‐stratigraphic permeability anisotropy (with higher permeability along strata than across) controls the supergene mimetic enrichment transport process and, subsequently, the mineralisation distribution. We introduce a flow model that implicitly represents strata with a potential function that orients the permeability tensor accurately. The numerical solver uses automatic mesh adaptivity to deliver robust solutions. By accurately reproducing the mineralisation patterns in specific deposits, we identify and quantify the paleo‐water table level and permeability anisotropy ratio as the two main controlling parameters for the mineralisation distribution. These insights provide new timing constraints for the mineralisation and the physical process of iron enrichment, suggesting much more potential mineralisation volume in the paleo‐reconstructed zones than previously anticipated. These flow models allow us to draw geological conclusions with few a priori assumptions required for the genetic model in which the transport component is dominant. The predictive power of this methodology will allow targeted drilling to narrow down the prospective areas and lower exploration costs. Furthermore, the methodology's generality applies to other commodities in sedimentary basins involving supergene processes and will improve our understanding of various genetic models. Supergene mimetic iron ore deposits are mainly controlled by the paleo‐stratigraphic permeability anisotropy. Numerical flow simulations provide spatial and temporal mineralisation constraints, showing that chemistry is not necessarily required to explain mineralisation patterns. This schematic drawing of reconstructed strata for one of the scenarios modelled highlights the role of the paleo‐water table (horizontal dashed line) as top boundary condition for the fluid flow (black arrows), whose direction and intensity are strongly affected by the strata orientation and anisotropy. |
Author | Calo, Victor M. Poulet, Thomas Ramanaidou, Erick Giraldo, Juan Felipe Piechocka, Agnieszka |
Author_xml | – sequence: 1 givenname: Thomas orcidid: 0000-0001-7351-3083 surname: Poulet fullname: Poulet, Thomas email: thomas.poulet@csiro.au organization: CSIRO Mineral Resources – sequence: 2 givenname: Juan Felipe surname: Giraldo fullname: Giraldo, Juan Felipe organization: Curtin University – sequence: 3 givenname: Erick surname: Ramanaidou fullname: Ramanaidou, Erick organization: CSIRO Mineral Resources – sequence: 4 givenname: Agnieszka surname: Piechocka fullname: Piechocka, Agnieszka organization: CSIRO Mineral Resources – sequence: 5 givenname: Victor M. surname: Calo fullname: Calo, Victor M. organization: Curtin University |
BookMark | eNp9kMtKxDAYhYMoOF4WvkHBlUKdXFqbLlW8wYAiCu5Ckv6dydA2Nckg3fkIPqNPYsa6EjWb_IvvHA7fDtrsbAcIHRB8QuKbKgcnhBaUbaAJYad5SgkpNtEElzlOcUmet9GO90uMMc8JmSB1LxuwH2_vPjgZzNzJfmF00oNrQSrTmDAksjPeBmf7IdG2i0fjE7-KyBw6SFrTQoiRVrpgAiRzC2GxPirorTfB76GtWjYe9r__XfR0dfl4cZPO7q5vL85mqWaMspTWWJekIJyrihJV8JxTDBSyslRFzVRRUaAKVI0znZe8ovhUaSpxJiud4UqyXXQ89q66Xg6vsmlE70ycNQiCxdqOiHbEl50IH45w7-zLCnwQS7tyXdwnaME5YxxneaSmI6Wd9d5BLbQJUdPagjTNr71HPxL_bfhufzUNDH-D4vzhckx8AsOaljE |
CitedBy_id | crossref_primary_10_3390_mca28010007 crossref_primary_10_1007_s10040_023_02708_4 |
Cites_doi | 10.1144/sp393.11 10.1179/174327506x138931 10.1016/j.jsg.2014.03.005 10.1016/j.jocs.2021.101306 10.1016/j.sedgeo.2016.04.015 10.1080/08120099.2014.898408 10.1016/j.geothermics.2020.101998 10.5382/SP.21.14 10.5194/gmd‐14‐3915‐2021 10.5382/AV100.20 10.1111/bre.12318 10.1111/ter.12311 10.1016/j.marpetgeo.2018.08.016 10.5382/econgeo.4734 10.2113/96.4.837 10.5382/Rev.15.08 10.1080/08120099.2021.1863860 10.1016/j.gca.2013.03.037 10.1179/174327506x138959 10.2113/gsecongeo.75.2.184 10.1016/j.cma.2021.113686 10.1002/nme.2579 10.1002/nme.6912 10.1179/1743275814y.0000000038 10.1007/BF00203975 10.1130/0091‐7613(1999)027<0175:shofgh>2.3.co;2 10.1016/B978-0-08-095975-7.01115-3 10.1007/s11004‐014‐9540‐3 10.1016/j.cma.2021.114027 10.1179/037174510X12853354810624 10.1111/bre.12324 10.1002/nme.6790 10.1179/037174510x12853354810543 10.1029/2007jb005004 10.1016/j.cma.2020.112891 |
ContentType | Journal Article |
Copyright | 2022 Commonwealth Scientific and Industrial Research Organisation. published by International Association of Sedimentologists and European Association of Geoscientists and Engineers and John Wiley & Sons Ltd. 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 Commonwealth Scientific and Industrial Research Organisation. published by International Association of Sedimentologists and European Association of Geoscientists and Engineers and John Wiley & Sons Ltd. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7UA C1K F1W H96 L.G ADTOC UNPAY |
DOI | 10.1111/bre.12723 |
DatabaseName | Wiley Online Library Open Access CrossRef Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1365-2117 |
EndPage | 591 |
ExternalDocumentID | 10.1111/bre.12723 10_1111_bre_12723 BRE12723 |
Genre | article |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 23N 24P 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM EBS EJD ESX F00 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 VH1 W8V W99 WBKPD WIH WIK WOHZO WQJ WUPDE WXSBR WYISQ XG1 ZY4 ZZTAW ~02 ~IA ~WT AAMMB AAYXX ABJIA AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION RIG 7UA C1K F1W H96 L.G ADTOC UNPAY |
ID | FETCH-LOGICAL-c3323-2f0c917188bd21b785820e2e499b7f3b7d2e2bebf04c598d206bc2a04adc40da3 |
IEDL.DBID | UNPAY |
ISSN | 0950-091X 1365-2117 |
IngestDate | Tue Aug 19 18:11:23 EDT 2025 Wed Aug 13 09:41:11 EDT 2025 Wed Oct 01 03:28:36 EDT 2025 Thu Apr 24 23:00:23 EDT 2025 Wed Jan 22 16:13:39 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution-NonCommercial-NoDerivs cc-by-nc-nd |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3323-2f0c917188bd21b785820e2e499b7f3b7d2e2bebf04c598d206bc2a04adc40da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7351-3083 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bre.12723 |
PQID | 2788338045 |
PQPubID | 1026374 |
PageCount | 20 |
ParticipantIDs | unpaywall_primary_10_1111_bre_12723 proquest_journals_2788338045 crossref_citationtrail_10_1111_bre_12723 crossref_primary_10_1111_bre_12723 wiley_primary_10_1111_bre_12723_BRE12723 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2023 2023-04-00 20230401 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Basin research |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 68 1966; 1 2019; 31 2021; 123 2020; 363 1999; 27 2008; 15 2014; 46 2016; 341 2005 2019; 108 2014; 393 1993 2021; 122 2021; 385 2002 2021; 50 2006; 115 2014; 61 2014; 67 2021; 90 2021; 14 2009; 79 2017; 30 1980; 75 2021; 377 2010; 119 2022 2021 2013; 117 2020; 115 2018 2017 2016 1982 2014 2008; 113 1970; 119 2001; 96 1985; 13 2014; 123 Clout J. M. F. (e_1_2_11_12_1) 2017 Trendall A. F. (e_1_2_11_44_1) 1970 e_1_2_11_10_1 e_1_2_11_32_1 Morris R. C. (e_1_2_11_31_1) 1985 Simonson B. M. (e_1_2_11_40_1) 1993 e_1_2_11_36_1 e_1_2_11_13_1 e_1_2_11_35_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_2_1 Kepert D. A. (e_1_2_11_21_1) 2018 Morris R. C. (e_1_2_11_30_1) 1982 Lascelles D. F. (e_1_2_11_25_1) 2002 e_1_2_11_20_1 e_1_2_11_46_1 Conliffe J. (e_1_2_11_14_1) 2016 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 United States Geological Survey (USGS) (e_1_2_11_45_1) 2022 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 Wellmann F. (e_1_2_11_47_1) 2018 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 e_1_2_11_37_1 e_1_2_11_38_1 e_1_2_11_39_1 Australia (e_1_2_11_3_1) 2021 e_1_2_11_19_1 |
References_xml | – volume: 61 start-page: 513 issue: 4 year: 2014 end-page: 586 article-title: The cenozoic detrital iron deposits of the hamersley province, Western Australia publication-title: Australian Journal of Earth Sciences – volume: 14 start-page: 3915 issue: 6 year: 2021 end-page: 3937 article-title: LoopStructural 1.0: Time‐aware geological modelling publication-title: Geoscientific Model Development – year: 2005 – volume: 79 start-page: 1309 issue: 11 year: 2009 end-page: 1331 article-title: Gmsh: A 3‐d finite element mesh generator with built‐in pre‐ and post‐processing facilities publication-title: International Journal for Numerical Methods in Engineering – year: 2021 – start-page: 351 year: 2017 end-page: 358 – volume: 113 issue: B1 year: 2008 article-title: Permeability anisotropy and its relations with porous medium structure publication-title: Journal of Geophysical Research – volume: 123 start-page: 1717 year: 2021 end-page: 1735 article-title: Incompressible flow modeling using an adaptive stabilized finite element method based on residual minimization publication-title: International Journal for Numerical Methods in Engineering. – volume: 363 year: 2020 article-title: An adaptive stabilized conforming finite element method via residual minimization on dual discon‐ tinuous galerkin norms publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 123 start-page: 135 issue: 2 year: 2014 end-page: 145 article-title: Mineral resource estimation of the brockman 4 iron ore deposit in the pilbara region publication-title: Applied Earth Science – volume: 15 start-page: 197 year: 2008 end-page: 221 – start-page: 282 year: 2018 – volume: 68 start-page: 782 issue: 6 year: 2021 end-page: 798 article-title: Petrography of martite–goethite ore and implications for ore genesis, south flank, hamersley province, Western Australia publication-title: Australian Journal of Earth Sciences – volume: 119 start-page: 49 issue: 1 year: 2010 end-page: 55 article-title: Stratigraphic and structural setting of iron mineralisation at e deposit (east), area c, hamersley province, Western Australia publication-title: Applied Earth Science – year: 2016 – start-page: 16 year: 1993 – year: 2018 – start-page: 107 year: 2002 end-page: 126 – volume: 75 start-page: 184 year: 1980 end-page: 209 article-title: A textural and mineralogical study of the relationship of iron ore to banded iron‐formation in the hamersley iron province of Western Australia publication-title: Economic Geology – volume: 122 start-page: 6234 issue: 21 year: 2021 end-page: 6252 article-title: Automatically adaptive stabilized finite elements and continuation analysis for compaction banding in geomaterials publication-title: International Journal for Numerical Methods in Engineering – volume: 31 start-page: 361 issue: 2 year: 2019 end-page: 379 article-title: Thermal and exhumation histories of the northern subalpine chains (Bauges and Bornes–France): Evidence from forward thermal modeling coupling clay mineral diagenesis, organic maturity and carbonate clumped isotope ( 47) data publication-title: Basin Research – volume: 90 year: 2021 article-title: Influence of permeability anisotropy and layering on geothermal battery energy storage publication-title: Geothermics – volume: 13 start-page: 73 year: 1985 end-page: 235 – volume: 27 start-page: 175 issue: 2 year: 1999 article-title: Synorogenic hydrothermal origin for giant hamersley iron oxide ore bodies publication-title: Geology – year: 1982 – volume: 115 start-page: 139 issue: 4 year: 2006 end-page: 145 article-title: Structural controls of bedded iron ore in the hamersley province, Western Australia – An example from the paraburdoo ranges publication-title: Applied Earth Science – volume: 385 year: 2021 article-title: Automatically adaptive, stabilized finite element method via residual minimization for hetero‐ geneous, anisotropic advection–diffusion–reaction problems publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 46 start-page: 931 issue: 8 year: 2014 end-page: 953 article-title: Three‐dimensional modelling of geological surfaces using generalized interpolation with radial basis functions publication-title: Mathematical Geosciences – volume: 115 start-page: 115 issue: 4 year: 2006 end-page: 125 article-title: Iron formation‐hosted iron ores in the hamersley province of Western Australia publication-title: Applied Earth Science – volume: 119 start-page: 1 year: 1970 end-page: 365 – volume: 393 start-page: 81 issue: 1 year: 2014 end-page: 115 article-title: A mineral system approach to iron ore in archaean and palaeoproterozoic BIF of Western Australia publication-title: Geological Society, London, Special Publications – volume: 1 start-page: 53 year: 1966 end-page: 59 article-title: Stratigraphic‐structural‐paleoclimatic controls of the newly discovered iron ore deposits of Western Australia publication-title: Mineralium Deposita – volume: 67 start-page: 268 year: 2014 end-page: 292 article-title: Structural evolution of the mount wall region in the hamersley province, Western Australia and its control on hydrothermal alteration and formation of high‐grade iron deposits publication-title: Journal of Structural Geology – volume: 115 start-page: 627 issue: 3 year: 2020 end-page: 659 article-title: A new fluid‐flow model for the genesis of banded iron formation‐hosted martite‐goethite mineralization, with special reference to the north and south flank deposits of the hamersley province, Western Australia publication-title: Economic Geology – year: 2022 – volume: 31 start-page: 228 issue: 2 year: 2019 end-page: 252 article-title: Integrated 3d forward stratigraphic and petroleum system modeling of the levant basin, eastern mediterranean publication-title: Basin Research – volume: 108 start-page: 705 year: 2019 end-page: 713 article-title: Permeability anisotropy and relative permeability in sediments from the national gas hydrate program expedition 02, offshore India publication-title: Marine and Petroleum Geology – start-page: 313 year: 2014 end-page: 355 – volume: 96 start-page: 837 year: 2001 end-page: 873 article-title: Genesis of high‐grade hematite orebodies of the hamersley province, Western Australia publication-title: Economic Geology – volume: 30 start-page: 78 issue: 1 year: 2017 end-page: 85 article-title: Exhumation history and timing of supergene copper mineralisation in an arid climate: New thermochronological data from the Centinela District, Atacama, Chile publication-title: Terra Nova – volume: 117 start-page: 283 year: 2013 end-page: 312 article-title: 40Ar/39Ar and (U–Th)/He – 4He/3He geochronology of landscape evolution and channel iron deposit genesis at Lynn peak, Western Australia publication-title: Geochimica et Cosmochimica Acta – volume: 377 year: 2021 article-title: Goal‐oriented adaptivity for a conforming residual minimization method in a dual discontinuous galerkin norm publication-title: Computer Methods in Applied Mechanics and Engineering – start-page: 1 year: 2018 end-page: 121 – volume: 119 start-page: 56 year: 2010 end-page: 59 article-title: A synopsis of the channel iron deposits of the Hamersley Province, Western Australia publication-title: Applied Earth Science – volume: 341 start-page: 232 year: 2016 end-page: 244 article-title: The origin of terrestrial pisoliths and pisolitic iron ore deposits: Raindrops and sheetwash in a semi‐arid environment publication-title: Sedimentary Geology – volume: 50 year: 2021 article-title: DGIRM: Discontinuous galerkin based isogeometric residual minimization for the stokes problem publication-title: Journal of Computational Science – volume-title: Resources and energy quarterly, december 2021 year: 2021 ident: e_1_2_11_3_1 – start-page: 73 volume-title: Handbook of strata‐bound and stratiform ore deposits year: 1985 ident: e_1_2_11_31_1 – start-page: 107 volume-title: Iron ore 2002 conference year: 2002 ident: e_1_2_11_25_1 – start-page: 1 volume-title: Advances in geophysics year: 2018 ident: e_1_2_11_47_1 – ident: e_1_2_11_2_1 doi: 10.1144/sp393.11 – ident: e_1_2_11_11_1 doi: 10.1179/174327506x138931 – volume-title: Geology and geochemistry of high‐grade iron‐ore deposits in the kivivic Timmins and ruth lake areas, western labrador year: 2016 ident: e_1_2_11_14_1 – ident: e_1_2_11_17_1 doi: 10.1016/j.jsg.2014.03.005 – ident: e_1_2_11_27_1 doi: 10.1016/j.jocs.2021.101306 – start-page: 1 volume-title: The iron formations of the precambrian hamersley group, western australia with special reference to the associated crocidolite year: 1970 ident: e_1_2_11_44_1 – ident: e_1_2_11_26_1 doi: 10.1016/j.sedgeo.2016.04.015 – ident: e_1_2_11_22_1 doi: 10.1080/08120099.2014.898408 – ident: e_1_2_11_32_1 doi: 10.1016/j.geothermics.2020.101998 – ident: e_1_2_11_23_1 doi: 10.5382/SP.21.14 – ident: e_1_2_11_19_1 doi: 10.5194/gmd‐14‐3915‐2021 – ident: e_1_2_11_13_1 doi: 10.5382/AV100.20 – ident: e_1_2_11_4_1 doi: 10.1111/bre.12318 – ident: e_1_2_11_39_1 doi: 10.1111/ter.12311 – ident: e_1_2_11_15_1 doi: 10.1016/j.marpetgeo.2018.08.016 – ident: e_1_2_11_34_1 doi: 10.5382/econgeo.4734 – ident: e_1_2_11_42_1 doi: 10.2113/96.4.837 – ident: e_1_2_11_43_1 doi: 10.5382/Rev.15.08 – ident: e_1_2_11_33_1 doi: 10.1080/08120099.2021.1863860 – ident: e_1_2_11_46_1 doi: 10.1016/j.gca.2013.03.037 – volume-title: Petrological aspects of the Marandoo iron ore deposit year: 1982 ident: e_1_2_11_30_1 – ident: e_1_2_11_16_1 doi: 10.1179/174327506x138959 – ident: e_1_2_11_29_1 doi: 10.2113/gsecongeo.75.2.184 – ident: e_1_2_11_38_1 doi: 10.1016/j.cma.2021.113686 – volume-title: Iron ore statistics and information year: 2022 ident: e_1_2_11_45_1 – ident: e_1_2_11_18_1 doi: 10.1002/nme.2579 – ident: e_1_2_11_24_1 doi: 10.1002/nme.6912 – ident: e_1_2_11_41_1 doi: 10.1179/1743275814y.0000000038 – ident: e_1_2_11_7_1 doi: 10.1007/BF00203975 – ident: e_1_2_11_35_1 doi: 10.1130/0091‐7613(1999)027<0175:shofgh>2.3.co;2 – ident: e_1_2_11_37_1 doi: 10.1016/B978-0-08-095975-7.01115-3 – start-page: 282 volume-title: The mapped stratigraphy and structure of the mining area c region, hamersley province year: 2018 ident: e_1_2_11_21_1 – ident: e_1_2_11_20_1 doi: 10.1007/s11004‐014‐9540‐3 – ident: e_1_2_11_9_1 doi: 10.1016/j.cma.2021.114027 – ident: e_1_2_11_36_1 doi: 10.1179/037174510X12853354810624 – start-page: 16 volume-title: Lithology and proposed revisions in stratigraphic nomenclature of the wittenoom formation (dolomite) and overlying formations, hamersley group, Western Australia year: 1993 ident: e_1_2_11_40_1 – ident: e_1_2_11_28_1 doi: 10.1111/bre.12324 – start-page: 351 volume-title: Monograph 32 ‐ Australian ore deposits year: 2017 ident: e_1_2_11_12_1 – ident: e_1_2_11_8_1 doi: 10.1002/nme.6790 – ident: e_1_2_11_5_1 doi: 10.1179/037174510x12853354810543 – ident: e_1_2_11_10_1 doi: 10.1029/2007jb005004 – ident: e_1_2_11_6_1 doi: 10.1016/j.cma.2020.112891 |
SSID | ssj0008511 |
Score | 2.3793156 |
Snippet | The Hamersley Basin in Western Australia is one of the world's largest iron ore‐producing regions, hosting two types of ore in banded iron formations: the... |
SourceID | unpaywall proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 572 |
SubjectTerms | Anisotropy Deposits Distribution Drilling Exploration Finite element method finite elements simulation fluid flow modelling Goethite Groundwater table Haematite Hematite Iron iron ore Iron ores martite goethite Methods Mineral resources Mineralization numerical stabilization Ores Permeability Robustness (mathematics) Sedimentary basins Strata Stratigraphy supergene genetic model Tensors Transport processes Water table |
SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iiF58i-uLoB68dMkm7bbFk4q6CIosCnsQStIksrjblm2L1JM_wd_oLzFJHz5QES-lh2lpMzOZb9qZbwDYp9LX7ZO-ZVNfHVyJLeZwbKk8jNpdzolwde_w5VW3d2tfDJzBFDise2FKfojmg5v2DLNfawenLP3g5CpjbHewizXTZ4c45hdt_506SiOJkmcPWSomDipWIV3F01z5ORa9A8zZPEpo8UhHo8-Q1cScswVwVz9tWWry0M4z1g6fvhA5_vN1FsF8hUXhUWk8S2BKRMtg5tzM-i1WALtWwSN-fX4pqXUNtfUwhInay0XJ7l1AGg3TOJvESQGrovcUpnliWjoFHA_HukcSjrV9ZgLex0LXOgrIhSkWS1fB7dnpzUnPqkYyWCEhmFhYolAleB3PYxx3mOs5CkEILFTexFxJmMuxwEwwiezQ8T2OUZeFmCKb8tBGnJI1MB3FkVgHEHmSeYhzyX3HFoQwlZh5wmEM2xJJ12mBg1o5QVjxleuxGaOgzlvUkgVmyVpgtxFNSpKO74S2ag0HlZ-mAXb1sGVP4doW2Gu0_ttNDowSf5YIjvun5mTj76KbYE5PsS8LgrbAdDbJxbbCOhnbMUb9BqMG_TQ priority: 102 providerName: Wiley-Blackwell |
Title | Paleo‐stratigraphic permeability anisotropy controls supergene mimetic martite goethite deposits |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbre.12723 https://www.proquest.com/docview/2788338045 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bre.12723 |
UnpaywallVersion | publishedVersion |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0950-091X databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1365-2117 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008511 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFH_aOiFOsDEQRdtkAYddUhzbqZPj_jJN2lRNVCqnYMc2qmiTaEmFyomPwGfcJ5ntJJ06AULiYuXgWMn7_5L3fg_gvTCJa59MAiYSu3BDAhkpEtg8TLChUlRz1zt8dT28GLPLSTRp55y6XpgGH2L1wc1phrfXTsFLZRo736n6B5s1DkLCCd2EraH7w9SDrfH16Ohzg7CHA-sNJ6vOqzDkLbbQ2r3rHukhzHy6yEux_C5ms_XA1Xue8-fwpXvmpuDk22BRy0H24xGc43-81DY8a6NSdNSI0Q5s6PwFPPnop_4ud0GOrBsp7n7-akB2Pcj1NEOlteq6wfleIpFPq6K-LcolasvfK1QtSt_cqdF8OnfdkmjuJLXW6GuhXdWjRkr7srHqJYzPzz6dXATtcIYgo5TQgBic2VQvjGOpSCh5HNlYQhNtMyjJDZVcEU2klgazLEpiRfBQZkRgJlTGsBL0FfTyItevAeHYyBgrS4gkYppSaVO0WEdSEmaw4VEfDjsGpVmLXO4GaMzSLoOxJEs9yfrwdrW1bOA6frdpr-Ny2mpslRLuxi7HNsLtw7sV5_92yKFn5J93pMc3Z_7izT8duAe9-nah922MU8sD2CRsZNfTG3LQyvQ9t38Bbw |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xEIIL4inKY7GAA5esXNtpEmkvgArlKYRA6i2yYxtVapOItEK98RP4jfyStZ00bCVYcYlymOTgeX1jzXwDcMR1ZMcnI4_xyDwCTTzhS-KZOoyzlpRUBXZ2-Pau1XliV12_OwN_JrMwJT9EfeFmPcPFa-vg9kL6Hy83JePvJgkInYV51iLY2jRh93UctliiZNrDnsmK3YpXyPbx1J9OZ6NPiLk4SnM-fuX9_jRodVnnfAWWK7iITkr9rsKMStdg4cKt4x2vg7g38T37eHsv2W8d-3QvQbkJt6ok4B4jnvaKbPiS5WNU9aUXqBjlbupSoUFvYMcY0cCa0FCh50zZdkSFpHL9XMUGPJ23H886XrU1wUsoJdQjGiemBmuGoZCkKYLQN0leEWVKGxFoKgJJFBFKaMwSPwolwS2REI4ZlwnDktNNmEuzVG0BwqEWIZZSy8hnilJhaqdQ-UIQprEO_AYcT04vTipKcbvZoh9PSgtz0LE76AYc1KJ5yaPxldDuRAVx5UpFTAK7Dzk00LMBh7Va_veTY6ew7yXi04e2e9n-ueg-LHYeb2_im8u76x1Yskvny_6dXZgbvozUnoEmQ_HLWeBfU8Dgow |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xUCkX-qJiCwWr5cAlK6_tbBJxgpaFQosQKtIeKkV2bFer7iYRyapaTvwEfiO_BNtJlodahLhEOUyixOPJfF808w3AJteRbZ-MPMYjcwg08YQviWd4GGddKakKbO_wj-PuwRk77Pv9GdhuemEqfYjpDzcbGe57bQM8l_pOkBvG2O6QgNBZmGddw64sIjq91Y6yUKIS2sOeSYr9WlbIlvFML72fjG4R5stxmvPJXz4c3sesLun0XsGv5nGrWpM_7XEp2snFAyXHZ77Pa1iqwSjaqXbPG5hR6Vt4se-G_U7egTgx2SO7vryqtHWdtvUgQbn5mKtK3nuCeDoosvI8yyeornovUDHOXU-nQqPByDZJopHdoKVCvzNlix0VkspVixXLcNbb-_nlwKtnMngJpYR6ROPEMLxOGApJOiIIfQMhFFGGOIlAUxFIoohQQmOW-FEoCe6KhHDMuEwYlpy-h7k0S9UKIBxqEWIptYx8pigVhpmFyheCMI114Ldgq3FOnNSC5XZuxjBuiItZstgtWQs-TU3zSqXjX0ZrjYfjOlCLmAR22nJogG0LPk-9_thNtpwT_28R757uuZMPTzfdgIWTr734-7fjo1VYtBPtq-KgNZgrz8fqo8E9pVh3-_sGbikADg |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86EU9-ixOVoB68dKZJu7RHFT8QFBEH81STJpHh1hbbIfPkn-Df6F9ikraTiYrgpfSQhvZ9v_S93wNgj6nQtE-GjsdCfaEKO9wX2NF5GPPaQhBJTe_w5VX7vONddP1uNefU9MKU-BDjAzejGdZeGwXPhCrtfK3qBzprbLmYYjINZtrmD1MDzHSurg_vSoQ95Ghv2B13XrkurbCFJp6d9EifYebcMMnY6Jn1-5OBq_U8pwvgvn7nsuDksTUseCt--QLn-I-PWgTzVVQKD0sxWgJTMlkGs2d26u9oBfBr7UbS99e3EmTXglz3Yphpqy5LnO8RZEkvT4unNBvBqvw9h_kws82dEg56A9MtCQdGUgsJH1Jpqh4lFNKWjeWroHN6cnt87lTDGZyYEEwcrFCsUz03CLjALqeBr2MJiaXOoDhVhFOBJeaSK-TFfhgIjNo8xgx5TMQeEoysgUaSJnIdQBQoHiChCRH6niSE6xQtkD7n2FNIUb8J9msGRXGFXG4GaPSjOoPRJIssyZpgZ7w0K-E6vlu0WXM5qjQ2jzA1Y5cDHeE2we6Y879tsm8Z-fOK6OjmxN5s_GnDTdAonoZyS8c4Bd-u5PgDuBH_oA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paleo%E2%80%90stratigraphic+permeability+anisotropy+controls+supergene+mimetic+martite+goethite+deposits&rft.jtitle=Basin+research&rft.au=Poulet%2C+Thomas&rft.au=Giraldo%2C+Juan+Felipe&rft.au=Ramanaidou%2C+Erick&rft.au=Piechocka%2C+Agnieszka&rft.date=2023-04-01&rft.issn=0950-091X&rft.eissn=1365-2117&rft.volume=35&rft.issue=2&rft.spage=572&rft.epage=591&rft_id=info:doi/10.1111%2Fbre.12723&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_bre_12723 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-091X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-091X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-091X&client=summon |