Designing Single-Arm Clinical Trials: Principles, Applications, and Methodological Considerations

Single-arm trials (SATs) are clinical studies without a parallel control group, serving as a vital alternative to randomized controlled trials (RCTs) in scenarios where traditional trial designs are impractical. These trials are particularly relevant in rare diseases, advanced malignancies, novel tr...

Full description

Saved in:
Bibliographic Details
Published inAnnals of Clinical Epidemiology Vol. 7; no. 3; pp. 90 - 98
Main Authors Yao, Shuna, Shang, Qingyao, Ouyang, Meishuo, Zhou, Heng, Yao, Zhihua, Liu, Yanyan, Luo, Sheng
Format Journal Article
LanguageEnglish
Published Japan Society for Clinical Epidemiology 01.07.2025
一般社団法人 日本臨床疫学会
Subjects
Online AccessGet full text
ISSN2434-4338
2434-4338
DOI10.37737/ace.25011

Cover

Abstract Single-arm trials (SATs) are clinical studies without a parallel control group, serving as a vital alternative to randomized controlled trials (RCTs) in scenarios where traditional trial designs are impractical. These trials are particularly relevant in rare diseases, advanced malignancies, novel treatment modalities, and life-threatening conditions, where ethical concerns, logistical challenges, or small patient populations limit the feasibility of RCTs. SATs enable expedited evaluation of therapeutic interventions, often forming the foundation for regulatory approvals.This article explores the principles, applications, and methodological considerations of SATs. Their advantages include smaller sample size requirements, faster timelines, and regulatory acceptance by agencies such as the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA). Despite these benefits, SATs face challenges, such as potential biases due to the lack of a control group, limitations in endpoints, and reliance on historical controls that may compromise result validity. Best practices in SAT design are outlined, including refining scientific questions, defining eligibility criteria, selecting clinically meaningful endpoints, and employing robust statistical methods like Simon’s two-stage design and Bayesian approaches.
AbstractList Single-arm trials (SATs) are clinical studies without a parallel control group, serving as a vital alternative to randomized controlled trials (RCTs) in scenarios where traditional trial designs are impractical. These trials are particularly relevant in rare diseases, advanced malignancies, novel treatment modalities, and life-threatening conditions, where ethical concerns, logistical challenges, or small patient populations limit the feasibility of RCTs. SATs enable expedited evaluation of therapeutic interventions, often forming the foundation for regulatory approvals. This article explores the principles, applications, and methodological considerations of SATs. Their advantages include smaller sample size requirements, faster timelines, and regulatory acceptance by agencies such as the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA). Despite these benefits, SATs face challenges, such as potential biases due to the lack of a control group, limitations in endpoints, and reliance on historical controls that may compromise result validity. Best practices in SAT design are outlined, including refining scientific questions, defining eligibility criteria, selecting clinically meaningful endpoints, and employing robust statistical methods like Simon’s two-stage design and Bayesian approaches.
Single-arm trials (SATs) are clinical studies without a parallel control group, serving as a vital alternative to randomized controlled trials (RCTs) in scenarios where traditional trial designs are impractical. These trials are particularly relevant in rare diseases, advanced malignancies, novel treatment modalities, and life-threatening conditions, where ethical concerns, logistical challenges, or small patient populations limit the feasibility of RCTs. SATs enable expedited evaluation of therapeutic interventions, often forming the foundation for regulatory approvals. This article explores the principles, applications, and methodological considerations of SATs. Their advantages include smaller sample size requirements, faster timelines, and regulatory acceptance by agencies such as the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA). Despite these benefits, SATs face challenges, such as potential biases due to the lack of a control group, limitations in endpoints, and reliance on historical controls that may compromise result validity. Best practices in SAT design are outlined, including refining scientific questions, defining eligibility criteria, selecting clinically meaningful endpoints, and employing robust statistical methods like Simon's two-stage design and Bayesian approaches.Single-arm trials (SATs) are clinical studies without a parallel control group, serving as a vital alternative to randomized controlled trials (RCTs) in scenarios where traditional trial designs are impractical. These trials are particularly relevant in rare diseases, advanced malignancies, novel treatment modalities, and life-threatening conditions, where ethical concerns, logistical challenges, or small patient populations limit the feasibility of RCTs. SATs enable expedited evaluation of therapeutic interventions, often forming the foundation for regulatory approvals. This article explores the principles, applications, and methodological considerations of SATs. Their advantages include smaller sample size requirements, faster timelines, and regulatory acceptance by agencies such as the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA). Despite these benefits, SATs face challenges, such as potential biases due to the lack of a control group, limitations in endpoints, and reliance on historical controls that may compromise result validity. Best practices in SAT design are outlined, including refining scientific questions, defining eligibility criteria, selecting clinically meaningful endpoints, and employing robust statistical methods like Simon's two-stage design and Bayesian approaches.
ArticleNumber 25011
Author Zhihua Yao
Sheng Luo
Shuna Yao
Qingyao Shang
Yanyan Liu
Meishuo Ouyang
Heng Zhou
Author_xml – sequence: 1
  givenname: Shuna
  surname: Yao
  fullname: Yao, Shuna
– sequence: 2
  givenname: Qingyao
  surname: Shang
  fullname: Shang, Qingyao
– sequence: 3
  givenname: Meishuo
  surname: Ouyang
  fullname: Ouyang, Meishuo
– sequence: 4
  givenname: Heng
  surname: Zhou
  fullname: Zhou, Heng
– sequence: 5
  givenname: Zhihua
  surname: Yao
  fullname: Yao, Zhihua
– sequence: 6
  givenname: Yanyan
  surname: Liu
  fullname: Liu, Yanyan
– sequence: 7
  givenname: Sheng
  surname: Luo
  fullname: Luo, Sheng
BackLink https://cir.nii.ac.jp/crid/1390866448354232320$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/40697795$$D View this record in MEDLINE/PubMed
BookMark eNpVkUuLFDEUhYOMOA9n4w-QWriQwRrzqkoiiDTtE0YUHNchnbpVnSGdlEm14L83XTU24yI3ublfzoGcc3QSYgCEnhF8zYRg4rWxcE0bTMgjdEY54zVnTJ48OJ-iy5zvMMZUCIJV8wSdctwqIVRzhsx7yG4ILgzVj1I81Ku0q9beBWeNr26TMz6_qb4nF6wbPeRX1WocfRlOLobSmdBVX2Haxi76OMyP1mXgOkgL8hQ97osGXN7vF-jnxw-368_1zbdPX9arm9oyRkmt2k1LjWS9EFRioAL6pmVw6OiGWKwIUIYpNrSzrZKyx51UhvK2awQBq9gFerfojvvNDjoLYUrG6zG5nUl_dDRO_z8JbquH-FsTSoXiuCkKL-8VUvy1hzzpncsWvDcB4j5rRhnlUmF2MHv-0Ozo8u9jC3C1ADbFnBP0R4RgPQenS3B6Dq7ALxY4OKetO1TCFJZty7lkDacHZ1ywtwt2lyczwFHRpMlZD7Og0KysWfZ4b7cmaQjsLwRAqs8
Cites_doi 10.1182/blood-2023-189855
10.1056/NEJMoa1505237
10.1016/B978-0-323-88423-5.00033-9
10.1001/jamaoncol.2022.5985
10.1016/j.therap.2019.11.007
10.1016/j.jclinepi.2019.05.033
10.1001/jamainternmed.2020.2250
10.1007/s43441-024-00693-8
10.1016/0197-2456(89)90015-9
10.1016/j.cct.2024.107506
10.1080/10543406.2022.2058529
10.3389/fonc.2023.1048242
10.20892/j.issn.2095-3941.2023.0360
10.1136/spcare-2024-004984
10.1016/S1470-2045(19)30088-9
ContentType Journal Article
Copyright 2025 Society for Clinical Epidemiology
2025 Society for Clinical Epidemiology.
2025 Society for Clinical Epidemiology 2025 Society for Clinical Epidemiology
Copyright_xml – notice: 2025 Society for Clinical Epidemiology
– notice: 2025 Society for Clinical Epidemiology.
– notice: 2025 Society for Clinical Epidemiology 2025 Society for Clinical Epidemiology
DBID RYH
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.37737/ace.25011
DatabaseName CiNii Complete
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate OPTIMIZING SINGLE-ARM CLINICAL TRIAL
EISSN 2434-4338
EndPage 98
ExternalDocumentID PMC12279405
40697795
10_37737_ace_25011
article_ace_7_3_7_25011_article_char_en
Genre Journal Article
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
JSF
JSH
M~E
OK1
PGMZT
RJT
RPM
RZJ
RYH
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c3321-96b62a83f77280e27ef563e77282b1c091e23020a2dc6988f0d89a246d571ec93
ISSN 2434-4338
IngestDate Tue Sep 30 17:02:44 EDT 2025
Thu Jul 24 01:48:10 EDT 2025
Sat Jul 26 01:47:28 EDT 2025
Wed Oct 01 05:52:46 EDT 2025
Thu Jun 26 21:12:19 EDT 2025
Wed Sep 03 06:30:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Single-arm clinical trials
Historical controls
Clinical trial design
Regulatory approval
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
2025 Society for Clinical Epidemiology.
This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3321-96b62a83f77280e27ef563e77282b1c091e23020a2dc6988f0d89a246d571ec93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC12279405
PMID 40697795
PQID 3232489039
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12279405
proquest_miscellaneous_3232489039
pubmed_primary_40697795
crossref_primary_10_37737_ace_25011
nii_cinii_1390866448354232320
jstage_primary_article_ace_7_3_7_25011_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-Jul-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-Jul-01
  day: 01
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Annals of Clinical Epidemiology
PublicationTitleAlternate Ann Clin Epidemiol
PublicationTitle_FL Annals of Clinical Epidemiology
Ann Clin Epidemiol
ACE
PublicationYear 2025
Publisher Society for Clinical Epidemiology
一般社団法人 日本臨床疫学会
Publisher_xml – name: Society for Clinical Epidemiology
– name: 一般社団法人 日本臨床疫学会
References 11. Committee for Medicinal Products for Human Use (CHMP). Reflection-paper-establishing-efficacy-based-single-arm-trials-submitted-pivotal-evidence-marketing-authorisation. In: Amsterdam, Netherlands: European Medicines Agency (EMA); 2023.
9. Cucherat M, Laporte S, Delaitre O, et al. From single-arm studies to externally controlled studies. Methodological considerations and guidelines. Therapie. 2020;75:21–27.
7. Agrawal S, Arora S, Amiri-Kordestani L, et al. Use of Single-Arm Trials for US Food and Drug Administration Drug Approval in Oncology, 2002–2021. JAMA Oncol. 2023;9:266–272.
10. Ladanie A, Speich B, Briel M, et al. Single pivotal trials with few corroborating characteristics were used for FDA approval of cancer therapies. J Clin Epidemiol. 2019;114:49–59.
16. Hussein A, Levy V, Chevret S. Single-arm phase 3 designs: An oxymoron? Contemp Clin Trials. 2024;141:107506.
6. Subramaniam D, Anderson-Smits C, Rubinstein R, et al. A Framework for the Use and Likelihood of Regulatory Acceptance of Single-Arm Trials. Ther Innov Regul Sci. 2024;58:1214–1232.
1. Tang L, Zhou M, Xia L, et al. [Rethinking the marketing strategy of anti-tumor drugs by single-arm trials supported]. Zhonghua Zhong Liu Za Zhi. 2022;44:587–592.
5. Zhang H, Liu S, Ge C, et al. Single-arm trials for domestic oncology drug approvals in China. Cancer Biol Med. 2023;20:799–805.
13. Ruan J, Martin P, Shah B, et al. Lenalidomide plus Rituximab as Initial Treatment for Mantle-Cell Lymphoma. N Engl J Med. 2015;373:1835–1844.
15. Kim DW, Eala M, Lee G, et al. Phases of clinical trials. In: Translational Radiation Oncology. edn. Amsterdam, Netherlands: Elsevier; 2023:369–375.
2. Wang M, Ma H, Shi Y, et al. Single-arm clinical trials: design, ethics, principles. BMJ Support Palliat Care. 2024:spcare-2024-004984.
4. Hilal T, Gonzalez-Velez M, Prasad V. Limitations in Clinical Trials Leading to Anticancer Drug Approvals by the US Food and Drug Administration. JAMA Intern Med. 2020;180:1108–1115.
17. Zou D, Zhang E, Wu S, et al. Use of Single-Arm Trials in FDA Approvals of Treatments in Relapsed or Refractory B-Cell Lymphoma. In: ASH. vol. 142.USA: Blood; 2023:7250.
18. Simon R. Optimal two-stage designs for phase II clinical trials. Control Clin Trials. 1989;10:1–10.
12. Ladanie A, Speich B, Briel M, et al. Single pivotal trials with few corroborating characteristics were used for FDA approval of cancer therapies. J Clin Epidemiol. 2019:49–59.
3. Sampayo-Cordero M, Miguel-Huguet B, Malfettone A, et al. A single-arm study design with non-inferiority and superiority time-to-event endpoints: a tool for proof-of-concept and de-intensification strategies in breast cancer. Front Oncol. 2023;13:1048242.
14. Shitara K, Iwata H, Takahashi S, et al. Trastuzumab deruxtecan (DS-8201a) in patients with advanced HER2-positive gastric cancer: a dose-expansion, phase 1 study. Lancet Oncol. 2019;20:827–836.
8. Ji Z, Lin J, Lin J. Optimal sample size determination for single-arm trials in pediatric and rare populations with Bayesian borrowing. J Biopharm Stat. 2022;32:529–546.
11
12
13
14
15
16
17
18
1
2
3
4
5
6
7
8
9
10
References_xml – reference: 10. Ladanie A, Speich B, Briel M, et al. Single pivotal trials with few corroborating characteristics were used for FDA approval of cancer therapies. J Clin Epidemiol. 2019;114:49–59.
– reference: 6. Subramaniam D, Anderson-Smits C, Rubinstein R, et al. A Framework for the Use and Likelihood of Regulatory Acceptance of Single-Arm Trials. Ther Innov Regul Sci. 2024;58:1214–1232.
– reference: 18. Simon R. Optimal two-stage designs for phase II clinical trials. Control Clin Trials. 1989;10:1–10.
– reference: 8. Ji Z, Lin J, Lin J. Optimal sample size determination for single-arm trials in pediatric and rare populations with Bayesian borrowing. J Biopharm Stat. 2022;32:529–546.
– reference: 14. Shitara K, Iwata H, Takahashi S, et al. Trastuzumab deruxtecan (DS-8201a) in patients with advanced HER2-positive gastric cancer: a dose-expansion, phase 1 study. Lancet Oncol. 2019;20:827–836.
– reference: 5. Zhang H, Liu S, Ge C, et al. Single-arm trials for domestic oncology drug approvals in China. Cancer Biol Med. 2023;20:799–805.
– reference: 15. Kim DW, Eala M, Lee G, et al. Phases of clinical trials. In: Translational Radiation Oncology. edn. Amsterdam, Netherlands: Elsevier; 2023:369–375.
– reference: 12. Ladanie A, Speich B, Briel M, et al. Single pivotal trials with few corroborating characteristics were used for FDA approval of cancer therapies. J Clin Epidemiol. 2019:49–59.
– reference: 16. Hussein A, Levy V, Chevret S. Single-arm phase 3 designs: An oxymoron? Contemp Clin Trials. 2024;141:107506.
– reference: 17. Zou D, Zhang E, Wu S, et al. Use of Single-Arm Trials in FDA Approvals of Treatments in Relapsed or Refractory B-Cell Lymphoma. In: ASH. vol. 142.USA: Blood; 2023:7250.
– reference: 3. Sampayo-Cordero M, Miguel-Huguet B, Malfettone A, et al. A single-arm study design with non-inferiority and superiority time-to-event endpoints: a tool for proof-of-concept and de-intensification strategies in breast cancer. Front Oncol. 2023;13:1048242.
– reference: 7. Agrawal S, Arora S, Amiri-Kordestani L, et al. Use of Single-Arm Trials for US Food and Drug Administration Drug Approval in Oncology, 2002–2021. JAMA Oncol. 2023;9:266–272.
– reference: 11. Committee for Medicinal Products for Human Use (CHMP). Reflection-paper-establishing-efficacy-based-single-arm-trials-submitted-pivotal-evidence-marketing-authorisation. In: Amsterdam, Netherlands: European Medicines Agency (EMA); 2023.
– reference: 4. Hilal T, Gonzalez-Velez M, Prasad V. Limitations in Clinical Trials Leading to Anticancer Drug Approvals by the US Food and Drug Administration. JAMA Intern Med. 2020;180:1108–1115.
– reference: 13. Ruan J, Martin P, Shah B, et al. Lenalidomide plus Rituximab as Initial Treatment for Mantle-Cell Lymphoma. N Engl J Med. 2015;373:1835–1844.
– reference: 2. Wang M, Ma H, Shi Y, et al. Single-arm clinical trials: design, ethics, principles. BMJ Support Palliat Care. 2024:spcare-2024-004984.
– reference: 1. Tang L, Zhou M, Xia L, et al. [Rethinking the marketing strategy of anti-tumor drugs by single-arm trials supported]. Zhonghua Zhong Liu Za Zhi. 2022;44:587–592.
– reference: 9. Cucherat M, Laporte S, Delaitre O, et al. From single-arm studies to externally controlled studies. Methodological considerations and guidelines. Therapie. 2020;75:21–27.
– ident: 17
  doi: 10.1182/blood-2023-189855
– ident: 13
  doi: 10.1056/NEJMoa1505237
– ident: 15
  doi: 10.1016/B978-0-323-88423-5.00033-9
– ident: 7
  doi: 10.1001/jamaoncol.2022.5985
– ident: 9
  doi: 10.1016/j.therap.2019.11.007
– ident: 1
– ident: 10
  doi: 10.1016/j.jclinepi.2019.05.033
– ident: 11
– ident: 4
  doi: 10.1001/jamainternmed.2020.2250
– ident: 12
  doi: 10.1016/j.jclinepi.2019.05.033
– ident: 6
  doi: 10.1007/s43441-024-00693-8
– ident: 18
  doi: 10.1016/0197-2456(89)90015-9
– ident: 16
  doi: 10.1016/j.cct.2024.107506
– ident: 8
  doi: 10.1080/10543406.2022.2058529
– ident: 3
  doi: 10.3389/fonc.2023.1048242
– ident: 5
  doi: 10.20892/j.issn.2095-3941.2023.0360
– ident: 2
  doi: 10.1136/spcare-2024-004984
– ident: 14
  doi: 10.1016/S1470-2045(19)30088-9
SSID ssj0002771095
Score 2.3004377
Snippet Single-arm trials (SATs) are clinical studies without a parallel control group, serving as a vital alternative to randomized controlled trials (RCTs) in...
SourceID pubmedcentral
proquest
pubmed
crossref
nii
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 90
SubjectTerms Clinical trial design
Historical controls
Regulatory approval
Seminar
Single-arm clinical trials
Title Designing Single-Arm Clinical Trials: Principles, Applications, and Methodological Considerations
URI https://www.jstage.jst.go.jp/article/ace/7/3/7_25011/_article/-char/en
https://cir.nii.ac.jp/crid/1390866448354232320
https://www.ncbi.nlm.nih.gov/pubmed/40697795
https://www.proquest.com/docview/3232489039
https://pubmed.ncbi.nlm.nih.gov/PMC12279405
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Annals of Clinical Epidemiology, 2025/07/01, Vol.7(3), pp.90-98
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2434-4338
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002771095
  issn: 2434-4338
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (WRLC)
  customDbUrl:
  eissn: 2434-4338
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002771095
  issn: 2434-4338
  databaseCode: RPM
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6lBSEuqLwNLTKCG3Xr7Nr76K0qoAopCNRUKlwsP9ZKKuQgGh_KP-BfM7O73thpDoVDVsk-bMffeHZmPA9C3sKONUaoI8a4AgWlLiLJKh1pUXJdlXVcVxgoPPnMT8-TTxfpxWj0p-e11C6Lg_L3xriS_0EV-gBXjJL9B2T9QaEDvgO-0ALC0N4K4_fG_cLk1Ibmh44AtncnXazj1FwBqvxfOou6LT3ce2fdOW9OTCFpzwi7Mp49c96NhMs-plKvisx6-_y33Jhgz2Zt4_n-WWeb_goXe50vvH23vXYDEz2_mrV-4Pts0dqt0W2vzjpBU-_J6pgYTViCUVmWx-oNfY4Lix6xsR5HtcVE3d5sC1avc30mhEkckJf6ACQ6x7wHqbXXtjzviAgqkFmdwdrMrN0id6jgnPYMP5fm_Sw6raJDrL96m-zWLD_0px6IN3cvQcLH1A1bzXy-SYVZ98TtiTbTHfLA6SThsSWwh2Skm0fk3sR5XTwmuaezcEVnYUdnoaWzo3BFZfthn8b2Q6CwcEhh4ZDCnpDzjx-mJ6eRK80RlYyhUw8vOM0lqwWWN9NU6DrlTOMvWoxLEEI16LY0zmlVciVlHVdS5TThVSrGulTsKdluFo1-TsJKKRDZZVqrBERzWUlMqsfjRIgqKfK6Dsib7o5mP20GluwmbAHh9mb7Oe6pNFNExuBjJvp-jGoEJhKQPQAng_sJLahDoOKjyYKl6MHAaByQ1x1sGXBefJ2WN3rRXmU4nEgVMxWQZxZGf3KMJxdCpQGRA4D9BMzqPhxp5jOT3X2MOT1BjXpxq__9ktxfPXa7ZHv5q9V7ICYvi1eGgP8CS-29aQ
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+Single-Arm+Clinical+Trials%3A+Principles%2C+Applications%2C+and+Methodological+Considerations&rft.jtitle=Annals+of+clinical+epidemiology&rft.au=Yao%2C+Shuna&rft.au=Shang%2C+Qingyao&rft.au=Ouyang%2C+Meishuo&rft.au=Zhou%2C+Heng&rft.date=2025-07-01&rft.issn=2434-4338&rft.eissn=2434-4338&rft.volume=7&rft.issue=3&rft.spage=90&rft.epage=98&rft_id=info:doi/10.37737%2Face.25011&rft.externalDBID=n%2Fa&rft.externalDocID=10_37737_ace_25011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2434-4338&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2434-4338&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2434-4338&client=summon