Finite element solution of the Fokker–Planck equation for single domain particles

The Fokker–Planck equation derived by Brown for the probability density function of the orientation of the magnetic moment of single domain particles is one of the basic equations in the theory of superparamagnetism. Brown’s equation has an analytical solution, which is represented as a series in sp...

Full description

Saved in:
Bibliographic Details
Published inPhysica. B, Condensed matter Vol. 599; p. 412535
Main Author Peskov, N.V.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.12.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0921-4526
1873-2135
DOI10.1016/j.physb.2020.412535

Cover

Abstract The Fokker–Planck equation derived by Brown for the probability density function of the orientation of the magnetic moment of single domain particles is one of the basic equations in the theory of superparamagnetism. Brown’s equation has an analytical solution, which is represented as a series in spherical harmonics with time-dependent coefficients. This analytical solution is commonly used when studying problems related to Brown’s equation. However, for particles with complex magnetic anisotropy, calculating the coefficients of the analytical solution can be a rather difficult task. In this paper, we propose an algorithm for the numerical solution of Brown’s equation based on the finite element method. The algorithm allows numerically solving Brown’s equation for particles with anisotropy of a fairly general form for constant and variable magnetic fields and with time-dependent temperature and other model parameters. In particular, an example of the numerical solution of an equation for particles with cubic anisotropy accounting two anisotropy constants and variable temperature is presented. •The Fokker–Planck equation is solved numerically using FEM.•The efficient way to create a triangular grid on the sphere surface is described.•Numerical examples regarded to magnetization and demagnetization under heating are presented.
AbstractList The Fokker–Planck equation derived by Brown for the probability density function of the orientation of the magnetic moment of single domain particles is one of the basic equations in the theory of superparamagnetism. Brown's equation has an analytical solution, which is represented as a series in spherical harmonics with time-dependent coefficients. This analytical solution is commonly used when studying problems related to Brown's equation. However, for particles with complex magnetic anisotropy, calculating the coefficients of the analytical solution can be a rather difficult task. In this paper, we propose an algorithm for the numerical solution of Brown's equation based on the finite element method. The algorithm allows numerically solving Brown's equation for particles with anisotropy of a fairly general form for constant and variable magnetic fields and with time-dependent temperature and other model parameters. In particular, an example of the numerical solution of an equation for particles with cubic anisotropy accounting two anisotropy constants and variable temperature is presented.
The Fokker–Planck equation derived by Brown for the probability density function of the orientation of the magnetic moment of single domain particles is one of the basic equations in the theory of superparamagnetism. Brown’s equation has an analytical solution, which is represented as a series in spherical harmonics with time-dependent coefficients. This analytical solution is commonly used when studying problems related to Brown’s equation. However, for particles with complex magnetic anisotropy, calculating the coefficients of the analytical solution can be a rather difficult task. In this paper, we propose an algorithm for the numerical solution of Brown’s equation based on the finite element method. The algorithm allows numerically solving Brown’s equation for particles with anisotropy of a fairly general form for constant and variable magnetic fields and with time-dependent temperature and other model parameters. In particular, an example of the numerical solution of an equation for particles with cubic anisotropy accounting two anisotropy constants and variable temperature is presented. •The Fokker–Planck equation is solved numerically using FEM.•The efficient way to create a triangular grid on the sphere surface is described.•Numerical examples regarded to magnetization and demagnetization under heating are presented.
ArticleNumber 412535
Author Peskov, N.V.
Author_xml – sequence: 1
  givenname: N.V.
  surname: Peskov
  fullname: Peskov, N.V.
  email: peskov@cs.msu.ru
  organization: Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow, Russian Federation
BookMark eNqFkDtOAzEQhi0EEkngBDSWqDf4ta-CAkUEkCKBBNSW4x0TJxs7sR2kdNyBG3ISNgkVBUwzxfzfjObro2PnHSB0QcmQElpczYer2TZOh4wwMhSU5Tw_Qj1alTxjlOfHqEdqRjORs-IU9WOck65oSXvoeWydTYChhSW4hKNvN8l6h73BaQZ47BcLCF8fn0-tcnqBYb1R-7nxAUfr3lrAjV8q6_BKhWR1C_EMnRjVRjj_6QP0Or59Gd1nk8e7h9HNJNOc05RBSQnnRU0qAKUb1mhKFWG0aowhBW_0lJbMCFYJLaa1mGpW1iUwUetaG1MCH6DLw95V8OsNxCTnfhNcd1IyURV5zrjgXYofUjr4GAMYuQp2qcJWUiJ39uRc7u3JnT15sNdR9S9K27T_PAVl23_Y6wML3fPvFoKM2oLT0NgAOsnG2z_5bwoJj8s
CitedBy_id crossref_primary_10_1088_1402_4896_adb353
crossref_primary_10_1109_TMAG_2021_3084335
crossref_primary_10_1016_j_compstruc_2022_106896
crossref_primary_10_1007_s11071_024_09513_y
crossref_primary_10_1016_j_cma_2022_115424
crossref_primary_10_1007_s11071_024_10522_0
crossref_primary_10_1038_s41598_021_94712_5
crossref_primary_10_1063_5_0083822
Cites_doi 10.1103/PhysRev.130.1677
10.1016/S0304-8853(99)00594-6
10.1103/PhysRevLett.96.067208
10.1103/PhysRevB.86.104423
10.1016/S0021-9045(02)00016-3
10.1175/MWR-D-12-00236.1
10.1063/1.2399304
10.1098/rsta.1948.0007
10.1103/PhysRevB.51.15947
10.1103/PhysRevB.58.3267
10.1016/S0304-8853(01)00951-9
10.1016/j.physb.2019.07.004
10.1016/j.jmmm.2004.11.233
10.1109/TMAG.2004.836740
10.1103/PhysRevB.54.9237
10.1103/PhysRevB.81.024412
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Dec 15, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Dec 15, 2020
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1016/j.physb.2020.412535
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-2135
ExternalDocumentID 10_1016_j_physb_2020_412535
S0921452620305330
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
T5K
TN5
XPP
YNT
ZMT
~02
~G-
29O
6TJ
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADIYS
ADMUD
ADNMO
ADVLN
AEIPS
AFFNX
AFJKZ
AGHFR
AGQPQ
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
EJD
FEDTE
FGOYB
HMV
HVGLF
HZ~
H~9
MVM
NDZJH
R2-
SEW
SPG
SSZ
VOH
WUQ
XJT
XOL
~HD
7U5
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
L7M
SSH
ID FETCH-LOGICAL-c331t-e710336908eeacd2dc11a0218dff063dcb172f4284c4b94bc2797e249c9cff7e3
IEDL.DBID .~1
ISSN 0921-4526
IngestDate Fri Jul 25 04:53:51 EDT 2025
Thu Oct 16 04:33:20 EDT 2025
Thu Apr 24 23:06:28 EDT 2025
Fri Feb 23 02:45:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fokker–Planck equation
Finite element solution
Single domain particles
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-e710336908eeacd2dc11a0218dff063dcb172f4284c4b94bc2797e249c9cff7e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2486552343
PQPubID 2045421
ParticipantIDs proquest_journals_2486552343
crossref_primary_10_1016_j_physb_2020_412535
crossref_citationtrail_10_1016_j_physb_2020_412535
elsevier_sciencedirect_doi_10_1016_j_physb_2020_412535
PublicationCentury 2000
PublicationDate 2020-12-15
PublicationDateYYYYMMDD 2020-12-15
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Physica. B, Condensed matter
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Néel (b4) 1949; 228
Ouari, Aktaou, Kalmykov (b20) 2010; 81
Kalmykov, Coffey, Ouaria, Titov (b18) 2005; 292
Gilbert (b2) 2004; 40
Heikes, Randall, Konor (b14) 2013; 141
Cheng, Jalil, Lee, Okabe (b11) 2006; 96
Stoner, Wohlfarth (b3) 1948; 240
Peskov, Semendyaeva (b13) 2019; 571
Cullity, Graham (b1) 2009
Risken (b8) 1989
Brown (b5) 1963; 130
Dimitrov, Wysin (b10) 1996; 54
Melenev, Yu. L. Raikher, Rusakov, Perzynski (b12) 2012; 86
Coffey, Kalmykov (b6) 2017
Coffey, Crothers, Yu.P. Kalmykov, Waldron (b15) 1995; 51
Coffeya, Kalmykovb, Titov (b17) 2002; 241
Zhaoa, Zhu (b9) 2003; 120
Yu.P. Kalmykov, Titov, Coffey (b16) 1998; 58
Ouari, Kalmykov (b19) 2006; 100
Kalmykov, Titov (b7) 2000; 210
Risken (10.1016/j.physb.2020.412535_b8) 1989
Gilbert (10.1016/j.physb.2020.412535_b2) 2004; 40
Stoner (10.1016/j.physb.2020.412535_b3) 1948; 240
Coffey (10.1016/j.physb.2020.412535_b6) 2017
Coffey (10.1016/j.physb.2020.412535_b15) 1995; 51
Ouari (10.1016/j.physb.2020.412535_b20) 2010; 81
Peskov (10.1016/j.physb.2020.412535_b13) 2019; 571
Zhaoa (10.1016/j.physb.2020.412535_b9) 2003; 120
Ouari (10.1016/j.physb.2020.412535_b19) 2006; 100
Kalmykov (10.1016/j.physb.2020.412535_b18) 2005; 292
Melenev (10.1016/j.physb.2020.412535_b12) 2012; 86
Dimitrov (10.1016/j.physb.2020.412535_b10) 1996; 54
Néel (10.1016/j.physb.2020.412535_b4) 1949; 228
Kalmykov (10.1016/j.physb.2020.412535_b7) 2000; 210
Cullity (10.1016/j.physb.2020.412535_b1) 2009
Coffeya (10.1016/j.physb.2020.412535_b17) 2002; 241
Yu.P. Kalmykov (10.1016/j.physb.2020.412535_b16) 1998; 58
Heikes (10.1016/j.physb.2020.412535_b14) 2013; 141
Brown (10.1016/j.physb.2020.412535_b5) 1963; 130
Cheng (10.1016/j.physb.2020.412535_b11) 2006; 96
References_xml – volume: 241
  start-page: 400
  year: 2002
  end-page: 414
  ident: b17
  article-title: Nonlinear response of fine superparamagnetic particles to the sudden change of a strong uniform DC magnetic field
  publication-title: J. Magn. Magn. Mater.
– volume: 130
  start-page: 1677
  year: 1963
  end-page: 1686
  ident: b5
  article-title: Thermal fluctuations of a single-domain particle
  publication-title: Phys. Rev.
– volume: 120
  start-page: 136
  year: 2003
  end-page: 152
  ident: b9
  article-title: Matrix-valued continued fractions
  publication-title: J. Approx. Theory
– volume: 228
  start-page: 664
  year: 1949
  end-page: 666
  ident: b4
  article-title: Influence des fluctuations thermiques sur l’aimantation de grains ferromagnétiques très fins
  publication-title: C. R. Acad. Sci. Paris
– volume: 40
  start-page: 3443
  year: 2004
  end-page: 3449
  ident: b2
  article-title: A phenomenological theory of damping in ferromagnetic materials
  publication-title: IEEE Trans. Magn.
– volume: 96
  year: 2006
  ident: b11
  article-title: Mapping the Monte Carlo scheme to Langevin dynamics: A fokker–Planck approach
  publication-title: Phys. Rev. Lett.
– year: 2009
  ident: b1
  article-title: Introduction To Magnetic Materials
– year: 2017
  ident: b6
  article-title: The Langevin Equation
– volume: 292
  start-page: 372
  year: 2005
  end-page: 384
  ident: b18
  article-title: Damping dependence of the magnetization relaxation time of single-domain ferromagnetic particles
  publication-title: J. Magn. Magn. Mater.
– volume: 240
  start-page: 599
  year: 1948
  end-page: 642
  ident: b3
  article-title: A mechanism of magnetic hysteresis in heterogeneous alloys
  publication-title: Philos. Trans. R. Soc. London, Ser. A
– volume: 141
  start-page: 4450
  year: 2013
  end-page: 4469
  ident: b14
  article-title: Optimized icosahedral grids: Performance of finite-difference operators and multigrid solver
  publication-title: Mon. Weather Rev.
– volume: 54
  start-page: 9237
  year: 1996
  end-page: 9241
  ident: b10
  article-title: Magnetic properties of superparamagnetic particles by a Monte Carlo method
  publication-title: Phys. Rev. B
– volume: 51
  start-page: 15947
  year: 1995
  end-page: 15956
  ident: b15
  article-title: Constant-magnetic-field effect in Néel relaxation of single-domain ferromagnetic particles
  publication-title: Phys. Rev. B
– volume: 210
  start-page: 233
  year: 2000
  end-page: 243
  ident: b7
  article-title: Derivation of matrix elements for the system of moment equations governing the kinetics of superparamagnetic particles
  publication-title: J. Magn. Magn. Mater.
– volume: 86
  year: 2012
  ident: b12
  article-title: Time quantification for Monte Carlo modeling of superparamagnetic relaxation
  publication-title: Phys. Rev. B
– volume: 100
  year: 2006
  ident: b19
  article-title: Dynamics of the magnetization of single domain particles having triaxial anisotropy subjected to a uniform dc magnetic field
  publication-title: J. Appl. Phys.
– year: 1989
  ident: b8
  article-title: The Fokker–Planck Equation, Methods of Solutions and Applications
– volume: 81
  year: 2010
  ident: b20
  article-title: Reversal time of the magnetization of antiferromagnetic nanoparticles
  publication-title: Phys. Rev. B
– volume: 571
  start-page: 142
  year: 2019
  end-page: 148
  ident: b13
  article-title: Numerical solution of Fokker–Planck equation for single domain particles
  publication-title: Physica B
– volume: 58
  start-page: 3267
  year: 1998
  end-page: 3276
  ident: b16
  article-title: Longitudinal complex magnetic susceptibility and relaxation time of superparamagnetic particles with cubic magnetic anisotropy
  publication-title: Phys. Rev. B
– volume: 130
  start-page: 1677
  year: 1963
  ident: 10.1016/j.physb.2020.412535_b5
  article-title: Thermal fluctuations of a single-domain particle
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.130.1677
– volume: 228
  start-page: 664
  year: 1949
  ident: 10.1016/j.physb.2020.412535_b4
  article-title: Influence des fluctuations thermiques sur l’aimantation de grains ferromagnétiques très fins
  publication-title: C. R. Acad. Sci. Paris
– volume: 210
  start-page: 233
  year: 2000
  ident: 10.1016/j.physb.2020.412535_b7
  article-title: Derivation of matrix elements for the system of moment equations governing the kinetics of superparamagnetic particles
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(99)00594-6
– year: 2017
  ident: 10.1016/j.physb.2020.412535_b6
– volume: 96
  year: 2006
  ident: 10.1016/j.physb.2020.412535_b11
  article-title: Mapping the Monte Carlo scheme to Langevin dynamics: A fokker–Planck approach
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.067208
– volume: 86
  year: 2012
  ident: 10.1016/j.physb.2020.412535_b12
  article-title: Time quantification for Monte Carlo modeling of superparamagnetic relaxation
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.104423
– volume: 120
  start-page: 136
  year: 2003
  ident: 10.1016/j.physb.2020.412535_b9
  article-title: Matrix-valued continued fractions
  publication-title: J. Approx. Theory
  doi: 10.1016/S0021-9045(02)00016-3
– volume: 141
  start-page: 4450
  year: 2013
  ident: 10.1016/j.physb.2020.412535_b14
  article-title: Optimized icosahedral grids: Performance of finite-difference operators and multigrid solver
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR-D-12-00236.1
– volume: 100
  year: 2006
  ident: 10.1016/j.physb.2020.412535_b19
  article-title: Dynamics of the magnetization of single domain particles having triaxial anisotropy subjected to a uniform dc magnetic field
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2399304
– volume: 240
  start-page: 599
  year: 1948
  ident: 10.1016/j.physb.2020.412535_b3
  article-title: A mechanism of magnetic hysteresis in heterogeneous alloys
  publication-title: Philos. Trans. R. Soc. London, Ser. A
  doi: 10.1098/rsta.1948.0007
– volume: 51
  start-page: 15947
  year: 1995
  ident: 10.1016/j.physb.2020.412535_b15
  article-title: Constant-magnetic-field effect in Néel relaxation of single-domain ferromagnetic particles
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.51.15947
– volume: 58
  start-page: 3267
  year: 1998
  ident: 10.1016/j.physb.2020.412535_b16
  article-title: Longitudinal complex magnetic susceptibility and relaxation time of superparamagnetic particles with cubic magnetic anisotropy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.58.3267
– year: 2009
  ident: 10.1016/j.physb.2020.412535_b1
– year: 1989
  ident: 10.1016/j.physb.2020.412535_b8
– volume: 241
  start-page: 400
  year: 2002
  ident: 10.1016/j.physb.2020.412535_b17
  article-title: Nonlinear response of fine superparamagnetic particles to the sudden change of a strong uniform DC magnetic field
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(01)00951-9
– volume: 571
  start-page: 142
  year: 2019
  ident: 10.1016/j.physb.2020.412535_b13
  article-title: Numerical solution of Fokker–Planck equation for single domain particles
  publication-title: Physica B
  doi: 10.1016/j.physb.2019.07.004
– volume: 292
  start-page: 372
  year: 2005
  ident: 10.1016/j.physb.2020.412535_b18
  article-title: Damping dependence of the magnetization relaxation time of single-domain ferromagnetic particles
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2004.11.233
– volume: 40
  start-page: 3443
  year: 2004
  ident: 10.1016/j.physb.2020.412535_b2
  article-title: A phenomenological theory of damping in ferromagnetic materials
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2004.836740
– volume: 54
  start-page: 9237
  year: 1996
  ident: 10.1016/j.physb.2020.412535_b10
  article-title: Magnetic properties of superparamagnetic particles by a Monte Carlo method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.9237
– volume: 81
  year: 2010
  ident: 10.1016/j.physb.2020.412535_b20
  article-title: Reversal time of the magnetization of antiferromagnetic nanoparticles
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.024412
SSID ssj0000171
Score 2.355478
Snippet The Fokker–Planck equation derived by Brown for the probability density function of the orientation of the magnetic moment of single domain particles is one of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 412535
SubjectTerms Algorithms
Anisotropy
Exact solutions
Finite element method
Finite element solution
Fokker-Planck equation
Magnetic anisotropy
Magnetic domains
Magnetic fields
Magnetic moments
Magnetism
Probability density functions
Single domain particles
Spherical harmonics
Temperature
Temperature dependence
Time dependence
Title Finite element solution of the Fokker–Planck equation for single domain particles
URI https://dx.doi.org/10.1016/j.physb.2020.412535
https://www.proquest.com/docview/2486552343
Volume 599
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2135
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000171
  issn: 0921-4526
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2135
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000171
  issn: 0921-4526
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-2135
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000171
  issn: 0921-4526
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-2135
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000171
  issn: 0921-4526
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTwIxEG0IxkQPRlEjiqQHjy6w27LLHgmRoEYuSMKt2U67CYKAgFfjf_Af-kuc2Q-DxnDwuJvpZjNtZ940r28YuwLZAuNr7YArrIMZ3zoacF9BEFHKiLSJ6ED_oe_3hvJu1BwVWCe_C0O0yiz2pzE9idbZm3rmzfpiPK4PGiGpbJOguqALpVS3SxlQF4Pam7shIZUUXWTskHWuPJRwvOj0QGOR6DVqEjN90vPtz-z0K04nyad7yA4y1Mjb6Y8dsYKdldj-hpZgie0mXE5YHbNBd0xAktuUGc7z1cXnMUe4x7vzycQuP98_qGERTLh9SeW-OeJXTkcHU8vN_Dkaz_gi582dsGH35rHTc7LeCQ4I4a4di8hBCCx9WxZDq_EMuG5E-dzEMaISAxqRS4y1hwSpQ6nBC8LAYi0GIcRxYMUpK87mM3vGeOijVexj7dMUMoq9ljEQaon2vjQhBGXm5T5TkAmLU3-LqcoZZE8qcbQiR6vU0WV2_T1okepqbDf388lQP5aHwsi_fWAlnzqV7c6V8iRdx_WEFOf__e4F26MnIra4zQorrpev9hLhyVpXk_VXZTvt2_te_wsn8OVJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELUqEAIGBAXERwEPjISS2E2aEVVE5XOhlbpZ8dmRSiEtUFbEf-Af8ku4cxJUEGJgTHKJorN99551fsfYIcg2mFBrD3xhPcz41tOA6wqilFJGqk1KG_rXN2G3Ly8GrUGNdaqzMFRWWcb-Iqa7aF3eaZbebE6Gw-btSUwq2ySoLuhAKfL2ebyMiIEdv_ozGlKOdZG1R-aV9JAr8qLtA40sMTg5lpjqXdO3X9PTj0Dtsk-yylZK2MhPiz9bYzWb19nyjJhgnS24Yk54Xme3yZCQJLdFaTivphcfZxzxHk_Go5F9-nh7p45FMOL2sdD75ghgOe0d3Ftuxg_pMOeTqnBug_WTs16n65XNEzwQwp96FqGDEMh92xZjqwkM-H5KCd1kGcISAxqhS4bkQ4LUsdQQRHFkkYxBDFkWWbHJ5vJxbrcYj0O0ykIkPy0h0yxoGwOxlmgfShNDtM2CymcKSmVxanBxr6oSsjvlHK3I0apw9DY7-nppUghr_G0eVoOhvs0PhaH_7xcb1dCpcnk-q0DSedxASLHz3-8esMVu7_pKXZ3fXO6yJXpCVS5-q8Hmpk8vdg-xylTvu7n4CYod5t4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+element+solution+of+the+Fokker%E2%80%93Planck+equation+for+single+domain+particles&rft.jtitle=Physica.+B%2C+Condensed+matter&rft.au=Peskov%2C+N.V.&rft.date=2020-12-15&rft.pub=Elsevier+B.V&rft.issn=0921-4526&rft.eissn=1873-2135&rft.volume=599&rft_id=info:doi/10.1016%2Fj.physb.2020.412535&rft.externalDocID=S0921452620305330
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-4526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-4526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-4526&client=summon