Finite element solution of the Fokker–Planck equation for single domain particles
The Fokker–Planck equation derived by Brown for the probability density function of the orientation of the magnetic moment of single domain particles is one of the basic equations in the theory of superparamagnetism. Brown’s equation has an analytical solution, which is represented as a series in sp...
Saved in:
| Published in | Physica. B, Condensed matter Vol. 599; p. 412535 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier B.V
15.12.2020
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0921-4526 1873-2135 |
| DOI | 10.1016/j.physb.2020.412535 |
Cover
| Abstract | The Fokker–Planck equation derived by Brown for the probability density function of the orientation of the magnetic moment of single domain particles is one of the basic equations in the theory of superparamagnetism. Brown’s equation has an analytical solution, which is represented as a series in spherical harmonics with time-dependent coefficients. This analytical solution is commonly used when studying problems related to Brown’s equation. However, for particles with complex magnetic anisotropy, calculating the coefficients of the analytical solution can be a rather difficult task. In this paper, we propose an algorithm for the numerical solution of Brown’s equation based on the finite element method. The algorithm allows numerically solving Brown’s equation for particles with anisotropy of a fairly general form for constant and variable magnetic fields and with time-dependent temperature and other model parameters. In particular, an example of the numerical solution of an equation for particles with cubic anisotropy accounting two anisotropy constants and variable temperature is presented.
•The Fokker–Planck equation is solved numerically using FEM.•The efficient way to create a triangular grid on the sphere surface is described.•Numerical examples regarded to magnetization and demagnetization under heating are presented. |
|---|---|
| AbstractList | The Fokker–Planck equation derived by Brown for the probability density function of the orientation of the magnetic moment of single domain particles is one of the basic equations in the theory of superparamagnetism. Brown's equation has an analytical solution, which is represented as a series in spherical harmonics with time-dependent coefficients. This analytical solution is commonly used when studying problems related to Brown's equation. However, for particles with complex magnetic anisotropy, calculating the coefficients of the analytical solution can be a rather difficult task. In this paper, we propose an algorithm for the numerical solution of Brown's equation based on the finite element method. The algorithm allows numerically solving Brown's equation for particles with anisotropy of a fairly general form for constant and variable magnetic fields and with time-dependent temperature and other model parameters. In particular, an example of the numerical solution of an equation for particles with cubic anisotropy accounting two anisotropy constants and variable temperature is presented. The Fokker–Planck equation derived by Brown for the probability density function of the orientation of the magnetic moment of single domain particles is one of the basic equations in the theory of superparamagnetism. Brown’s equation has an analytical solution, which is represented as a series in spherical harmonics with time-dependent coefficients. This analytical solution is commonly used when studying problems related to Brown’s equation. However, for particles with complex magnetic anisotropy, calculating the coefficients of the analytical solution can be a rather difficult task. In this paper, we propose an algorithm for the numerical solution of Brown’s equation based on the finite element method. The algorithm allows numerically solving Brown’s equation for particles with anisotropy of a fairly general form for constant and variable magnetic fields and with time-dependent temperature and other model parameters. In particular, an example of the numerical solution of an equation for particles with cubic anisotropy accounting two anisotropy constants and variable temperature is presented. •The Fokker–Planck equation is solved numerically using FEM.•The efficient way to create a triangular grid on the sphere surface is described.•Numerical examples regarded to magnetization and demagnetization under heating are presented. |
| ArticleNumber | 412535 |
| Author | Peskov, N.V. |
| Author_xml | – sequence: 1 givenname: N.V. surname: Peskov fullname: Peskov, N.V. email: peskov@cs.msu.ru organization: Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow, Russian Federation |
| BookMark | eNqFkDtOAzEQhi0EEkngBDSWqDf4ta-CAkUEkCKBBNSW4x0TJxs7sR2kdNyBG3ISNgkVBUwzxfzfjObro2PnHSB0QcmQElpczYer2TZOh4wwMhSU5Tw_Qj1alTxjlOfHqEdqRjORs-IU9WOck65oSXvoeWydTYChhSW4hKNvN8l6h73BaQZ47BcLCF8fn0-tcnqBYb1R-7nxAUfr3lrAjV8q6_BKhWR1C_EMnRjVRjj_6QP0Or59Gd1nk8e7h9HNJNOc05RBSQnnRU0qAKUb1mhKFWG0aowhBW_0lJbMCFYJLaa1mGpW1iUwUetaG1MCH6DLw95V8OsNxCTnfhNcd1IyURV5zrjgXYofUjr4GAMYuQp2qcJWUiJ39uRc7u3JnT15sNdR9S9K27T_PAVl23_Y6wML3fPvFoKM2oLT0NgAOsnG2z_5bwoJj8s |
| CitedBy_id | crossref_primary_10_1088_1402_4896_adb353 crossref_primary_10_1109_TMAG_2021_3084335 crossref_primary_10_1016_j_compstruc_2022_106896 crossref_primary_10_1007_s11071_024_09513_y crossref_primary_10_1016_j_cma_2022_115424 crossref_primary_10_1007_s11071_024_10522_0 crossref_primary_10_1038_s41598_021_94712_5 crossref_primary_10_1063_5_0083822 |
| Cites_doi | 10.1103/PhysRev.130.1677 10.1016/S0304-8853(99)00594-6 10.1103/PhysRevLett.96.067208 10.1103/PhysRevB.86.104423 10.1016/S0021-9045(02)00016-3 10.1175/MWR-D-12-00236.1 10.1063/1.2399304 10.1098/rsta.1948.0007 10.1103/PhysRevB.51.15947 10.1103/PhysRevB.58.3267 10.1016/S0304-8853(01)00951-9 10.1016/j.physb.2019.07.004 10.1016/j.jmmm.2004.11.233 10.1109/TMAG.2004.836740 10.1103/PhysRevB.54.9237 10.1103/PhysRevB.81.024412 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Dec 15, 2020 |
| Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Dec 15, 2020 |
| DBID | AAYXX CITATION 7U5 8FD L7M |
| DOI | 10.1016/j.physb.2020.412535 |
| DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1873-2135 |
| ExternalDocumentID | 10_1016_j_physb_2020_412535 S0921452620305330 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABNEU ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ T5K TN5 XPP YNT ZMT ~02 ~G- 29O 6TJ AAEDT AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ADIYS ADMUD ADNMO ADVLN AEIPS AFFNX AFJKZ AGHFR AGQPQ AIIUN ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EJD FEDTE FGOYB HMV HVGLF HZ~ H~9 MVM NDZJH R2- SEW SPG SSZ VOH WUQ XJT XOL ~HD 7U5 8FD AFXIZ AGCQF AGRNS BNPGV L7M SSH |
| ID | FETCH-LOGICAL-c331t-e710336908eeacd2dc11a0218dff063dcb172f4284c4b94bc2797e249c9cff7e3 |
| IEDL.DBID | .~1 |
| ISSN | 0921-4526 |
| IngestDate | Fri Jul 25 04:53:51 EDT 2025 Thu Oct 16 04:33:20 EDT 2025 Thu Apr 24 23:06:28 EDT 2025 Fri Feb 23 02:45:24 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fokker–Planck equation Finite element solution Single domain particles |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c331t-e710336908eeacd2dc11a0218dff063dcb172f4284c4b94bc2797e249c9cff7e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2486552343 |
| PQPubID | 2045421 |
| ParticipantIDs | proquest_journals_2486552343 crossref_primary_10_1016_j_physb_2020_412535 crossref_citationtrail_10_1016_j_physb_2020_412535 elsevier_sciencedirect_doi_10_1016_j_physb_2020_412535 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-15 |
| PublicationDateYYYYMMDD | 2020-12-15 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Physica. B, Condensed matter |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Néel (b4) 1949; 228 Ouari, Aktaou, Kalmykov (b20) 2010; 81 Kalmykov, Coffey, Ouaria, Titov (b18) 2005; 292 Gilbert (b2) 2004; 40 Heikes, Randall, Konor (b14) 2013; 141 Cheng, Jalil, Lee, Okabe (b11) 2006; 96 Stoner, Wohlfarth (b3) 1948; 240 Peskov, Semendyaeva (b13) 2019; 571 Cullity, Graham (b1) 2009 Risken (b8) 1989 Brown (b5) 1963; 130 Dimitrov, Wysin (b10) 1996; 54 Melenev, Yu. L. Raikher, Rusakov, Perzynski (b12) 2012; 86 Coffey, Kalmykov (b6) 2017 Coffey, Crothers, Yu.P. Kalmykov, Waldron (b15) 1995; 51 Coffeya, Kalmykovb, Titov (b17) 2002; 241 Zhaoa, Zhu (b9) 2003; 120 Yu.P. Kalmykov, Titov, Coffey (b16) 1998; 58 Ouari, Kalmykov (b19) 2006; 100 Kalmykov, Titov (b7) 2000; 210 Risken (10.1016/j.physb.2020.412535_b8) 1989 Gilbert (10.1016/j.physb.2020.412535_b2) 2004; 40 Stoner (10.1016/j.physb.2020.412535_b3) 1948; 240 Coffey (10.1016/j.physb.2020.412535_b6) 2017 Coffey (10.1016/j.physb.2020.412535_b15) 1995; 51 Ouari (10.1016/j.physb.2020.412535_b20) 2010; 81 Peskov (10.1016/j.physb.2020.412535_b13) 2019; 571 Zhaoa (10.1016/j.physb.2020.412535_b9) 2003; 120 Ouari (10.1016/j.physb.2020.412535_b19) 2006; 100 Kalmykov (10.1016/j.physb.2020.412535_b18) 2005; 292 Melenev (10.1016/j.physb.2020.412535_b12) 2012; 86 Dimitrov (10.1016/j.physb.2020.412535_b10) 1996; 54 Néel (10.1016/j.physb.2020.412535_b4) 1949; 228 Kalmykov (10.1016/j.physb.2020.412535_b7) 2000; 210 Cullity (10.1016/j.physb.2020.412535_b1) 2009 Coffeya (10.1016/j.physb.2020.412535_b17) 2002; 241 Yu.P. Kalmykov (10.1016/j.physb.2020.412535_b16) 1998; 58 Heikes (10.1016/j.physb.2020.412535_b14) 2013; 141 Brown (10.1016/j.physb.2020.412535_b5) 1963; 130 Cheng (10.1016/j.physb.2020.412535_b11) 2006; 96 |
| References_xml | – volume: 241 start-page: 400 year: 2002 end-page: 414 ident: b17 article-title: Nonlinear response of fine superparamagnetic particles to the sudden change of a strong uniform DC magnetic field publication-title: J. Magn. Magn. Mater. – volume: 130 start-page: 1677 year: 1963 end-page: 1686 ident: b5 article-title: Thermal fluctuations of a single-domain particle publication-title: Phys. Rev. – volume: 120 start-page: 136 year: 2003 end-page: 152 ident: b9 article-title: Matrix-valued continued fractions publication-title: J. Approx. Theory – volume: 228 start-page: 664 year: 1949 end-page: 666 ident: b4 article-title: Influence des fluctuations thermiques sur l’aimantation de grains ferromagnétiques très fins publication-title: C. R. Acad. Sci. Paris – volume: 40 start-page: 3443 year: 2004 end-page: 3449 ident: b2 article-title: A phenomenological theory of damping in ferromagnetic materials publication-title: IEEE Trans. Magn. – volume: 96 year: 2006 ident: b11 article-title: Mapping the Monte Carlo scheme to Langevin dynamics: A fokker–Planck approach publication-title: Phys. Rev. Lett. – year: 2009 ident: b1 article-title: Introduction To Magnetic Materials – year: 2017 ident: b6 article-title: The Langevin Equation – volume: 292 start-page: 372 year: 2005 end-page: 384 ident: b18 article-title: Damping dependence of the magnetization relaxation time of single-domain ferromagnetic particles publication-title: J. Magn. Magn. Mater. – volume: 240 start-page: 599 year: 1948 end-page: 642 ident: b3 article-title: A mechanism of magnetic hysteresis in heterogeneous alloys publication-title: Philos. Trans. R. Soc. London, Ser. A – volume: 141 start-page: 4450 year: 2013 end-page: 4469 ident: b14 article-title: Optimized icosahedral grids: Performance of finite-difference operators and multigrid solver publication-title: Mon. Weather Rev. – volume: 54 start-page: 9237 year: 1996 end-page: 9241 ident: b10 article-title: Magnetic properties of superparamagnetic particles by a Monte Carlo method publication-title: Phys. Rev. B – volume: 51 start-page: 15947 year: 1995 end-page: 15956 ident: b15 article-title: Constant-magnetic-field effect in Néel relaxation of single-domain ferromagnetic particles publication-title: Phys. Rev. B – volume: 210 start-page: 233 year: 2000 end-page: 243 ident: b7 article-title: Derivation of matrix elements for the system of moment equations governing the kinetics of superparamagnetic particles publication-title: J. Magn. Magn. Mater. – volume: 86 year: 2012 ident: b12 article-title: Time quantification for Monte Carlo modeling of superparamagnetic relaxation publication-title: Phys. Rev. B – volume: 100 year: 2006 ident: b19 article-title: Dynamics of the magnetization of single domain particles having triaxial anisotropy subjected to a uniform dc magnetic field publication-title: J. Appl. Phys. – year: 1989 ident: b8 article-title: The Fokker–Planck Equation, Methods of Solutions and Applications – volume: 81 year: 2010 ident: b20 article-title: Reversal time of the magnetization of antiferromagnetic nanoparticles publication-title: Phys. Rev. B – volume: 571 start-page: 142 year: 2019 end-page: 148 ident: b13 article-title: Numerical solution of Fokker–Planck equation for single domain particles publication-title: Physica B – volume: 58 start-page: 3267 year: 1998 end-page: 3276 ident: b16 article-title: Longitudinal complex magnetic susceptibility and relaxation time of superparamagnetic particles with cubic magnetic anisotropy publication-title: Phys. Rev. B – volume: 130 start-page: 1677 year: 1963 ident: 10.1016/j.physb.2020.412535_b5 article-title: Thermal fluctuations of a single-domain particle publication-title: Phys. Rev. doi: 10.1103/PhysRev.130.1677 – volume: 228 start-page: 664 year: 1949 ident: 10.1016/j.physb.2020.412535_b4 article-title: Influence des fluctuations thermiques sur l’aimantation de grains ferromagnétiques très fins publication-title: C. R. Acad. Sci. Paris – volume: 210 start-page: 233 year: 2000 ident: 10.1016/j.physb.2020.412535_b7 article-title: Derivation of matrix elements for the system of moment equations governing the kinetics of superparamagnetic particles publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(99)00594-6 – year: 2017 ident: 10.1016/j.physb.2020.412535_b6 – volume: 96 year: 2006 ident: 10.1016/j.physb.2020.412535_b11 article-title: Mapping the Monte Carlo scheme to Langevin dynamics: A fokker–Planck approach publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.067208 – volume: 86 year: 2012 ident: 10.1016/j.physb.2020.412535_b12 article-title: Time quantification for Monte Carlo modeling of superparamagnetic relaxation publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.104423 – volume: 120 start-page: 136 year: 2003 ident: 10.1016/j.physb.2020.412535_b9 article-title: Matrix-valued continued fractions publication-title: J. Approx. Theory doi: 10.1016/S0021-9045(02)00016-3 – volume: 141 start-page: 4450 year: 2013 ident: 10.1016/j.physb.2020.412535_b14 article-title: Optimized icosahedral grids: Performance of finite-difference operators and multigrid solver publication-title: Mon. Weather Rev. doi: 10.1175/MWR-D-12-00236.1 – volume: 100 year: 2006 ident: 10.1016/j.physb.2020.412535_b19 article-title: Dynamics of the magnetization of single domain particles having triaxial anisotropy subjected to a uniform dc magnetic field publication-title: J. Appl. Phys. doi: 10.1063/1.2399304 – volume: 240 start-page: 599 year: 1948 ident: 10.1016/j.physb.2020.412535_b3 article-title: A mechanism of magnetic hysteresis in heterogeneous alloys publication-title: Philos. Trans. R. Soc. London, Ser. A doi: 10.1098/rsta.1948.0007 – volume: 51 start-page: 15947 year: 1995 ident: 10.1016/j.physb.2020.412535_b15 article-title: Constant-magnetic-field effect in Néel relaxation of single-domain ferromagnetic particles publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.51.15947 – volume: 58 start-page: 3267 year: 1998 ident: 10.1016/j.physb.2020.412535_b16 article-title: Longitudinal complex magnetic susceptibility and relaxation time of superparamagnetic particles with cubic magnetic anisotropy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.3267 – year: 2009 ident: 10.1016/j.physb.2020.412535_b1 – year: 1989 ident: 10.1016/j.physb.2020.412535_b8 – volume: 241 start-page: 400 year: 2002 ident: 10.1016/j.physb.2020.412535_b17 article-title: Nonlinear response of fine superparamagnetic particles to the sudden change of a strong uniform DC magnetic field publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(01)00951-9 – volume: 571 start-page: 142 year: 2019 ident: 10.1016/j.physb.2020.412535_b13 article-title: Numerical solution of Fokker–Planck equation for single domain particles publication-title: Physica B doi: 10.1016/j.physb.2019.07.004 – volume: 292 start-page: 372 year: 2005 ident: 10.1016/j.physb.2020.412535_b18 article-title: Damping dependence of the magnetization relaxation time of single-domain ferromagnetic particles publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2004.11.233 – volume: 40 start-page: 3443 year: 2004 ident: 10.1016/j.physb.2020.412535_b2 article-title: A phenomenological theory of damping in ferromagnetic materials publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2004.836740 – volume: 54 start-page: 9237 year: 1996 ident: 10.1016/j.physb.2020.412535_b10 article-title: Magnetic properties of superparamagnetic particles by a Monte Carlo method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.9237 – volume: 81 year: 2010 ident: 10.1016/j.physb.2020.412535_b20 article-title: Reversal time of the magnetization of antiferromagnetic nanoparticles publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.024412 |
| SSID | ssj0000171 |
| Score | 2.355478 |
| Snippet | The Fokker–Planck equation derived by Brown for the probability density function of the orientation of the magnetic moment of single domain particles is one of... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 412535 |
| SubjectTerms | Algorithms Anisotropy Exact solutions Finite element method Finite element solution Fokker-Planck equation Magnetic anisotropy Magnetic domains Magnetic fields Magnetic moments Magnetism Probability density functions Single domain particles Spherical harmonics Temperature Temperature dependence Time dependence |
| Title | Finite element solution of the Fokker–Planck equation for single domain particles |
| URI | https://dx.doi.org/10.1016/j.physb.2020.412535 https://www.proquest.com/docview/2486552343 |
| Volume | 599 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2135 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000171 issn: 0921-4526 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2135 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000171 issn: 0921-4526 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-2135 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000171 issn: 0921-4526 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-2135 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000171 issn: 0921-4526 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTwIxEG0IxkQPRlEjiqQHjy6w27LLHgmRoEYuSMKt2U67CYKAgFfjf_Af-kuc2Q-DxnDwuJvpZjNtZ940r28YuwLZAuNr7YArrIMZ3zoacF9BEFHKiLSJ6ED_oe_3hvJu1BwVWCe_C0O0yiz2pzE9idbZm3rmzfpiPK4PGiGpbJOguqALpVS3SxlQF4Pam7shIZUUXWTskHWuPJRwvOj0QGOR6DVqEjN90vPtz-z0K04nyad7yA4y1Mjb6Y8dsYKdldj-hpZgie0mXE5YHbNBd0xAktuUGc7z1cXnMUe4x7vzycQuP98_qGERTLh9SeW-OeJXTkcHU8vN_Dkaz_gi582dsGH35rHTc7LeCQ4I4a4di8hBCCx9WxZDq_EMuG5E-dzEMaISAxqRS4y1hwSpQ6nBC8LAYi0GIcRxYMUpK87mM3vGeOijVexj7dMUMoq9ljEQaon2vjQhBGXm5T5TkAmLU3-LqcoZZE8qcbQiR6vU0WV2_T1okepqbDf388lQP5aHwsi_fWAlnzqV7c6V8iRdx_WEFOf__e4F26MnIra4zQorrpev9hLhyVpXk_VXZTvt2_te_wsn8OVJ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELUqEAIGBAXERwEPjISS2E2aEVVE5XOhlbpZ8dmRSiEtUFbEf-Af8ku4cxJUEGJgTHKJorN99551fsfYIcg2mFBrD3xhPcz41tOA6wqilFJGqk1KG_rXN2G3Ly8GrUGNdaqzMFRWWcb-Iqa7aF3eaZbebE6Gw-btSUwq2ySoLuhAKfL2ebyMiIEdv_ozGlKOdZG1R-aV9JAr8qLtA40sMTg5lpjqXdO3X9PTj0Dtsk-yylZK2MhPiz9bYzWb19nyjJhgnS24Yk54Xme3yZCQJLdFaTivphcfZxzxHk_Go5F9-nh7p45FMOL2sdD75ghgOe0d3Ftuxg_pMOeTqnBug_WTs16n65XNEzwQwp96FqGDEMh92xZjqwkM-H5KCd1kGcISAxqhS4bkQ4LUsdQQRHFkkYxBDFkWWbHJ5vJxbrcYj0O0ykIkPy0h0yxoGwOxlmgfShNDtM2CymcKSmVxanBxr6oSsjvlHK3I0apw9DY7-nppUghr_G0eVoOhvs0PhaH_7xcb1dCpcnk-q0DSedxASLHz3-8esMVu7_pKXZ3fXO6yJXpCVS5-q8Hmpk8vdg-xylTvu7n4CYod5t4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+element+solution+of+the+Fokker%E2%80%93Planck+equation+for+single+domain+particles&rft.jtitle=Physica.+B%2C+Condensed+matter&rft.au=Peskov%2C+N.V.&rft.date=2020-12-15&rft.pub=Elsevier+B.V&rft.issn=0921-4526&rft.eissn=1873-2135&rft.volume=599&rft_id=info:doi/10.1016%2Fj.physb.2020.412535&rft.externalDocID=S0921452620305330 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-4526&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-4526&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-4526&client=summon |