An improved AE detection method of rail defect based on multi-level ANC with VSS-LMS
•An improved AE detection method of rail defect is proposed.•A rail-wheel test rig is set up to obtain the defect signals and noise signals.•Multi-level noise cancellation is employed to eliminate complex noises at high speed.•Improved tongue-like curve is utilized to enhance the performance of LMS....
        Saved in:
      
    
          | Published in | Mechanical systems and signal processing Vol. 99; pp. 420 - 433 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin
          Elsevier Ltd
    
        15.01.2018
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0888-3270 1096-1216  | 
| DOI | 10.1016/j.ymssp.2017.06.029 | 
Cover
| Abstract | •An improved AE detection method of rail defect is proposed.•A rail-wheel test rig is set up to obtain the defect signals and noise signals.•Multi-level noise cancellation is employed to eliminate complex noises at high speed.•Improved tongue-like curve is utilized to enhance the performance of LMS.•Filter lengths are investigated to obtain a better noise suppression performance.
In order to ensure the safety and reliability of railway system, Acoustic Emission (AE) method is employed to investigate rail defect detection. However, little attention has been paid to the defect detection at high speed, especially for noise interference suppression. Based on AE technology, this paper presents an improved rail defect detection method by multi-level ANC with VSS-LMS. Multi-level noise cancellation based on SANC and ANC is utilized to eliminate complex noises at high speed, and tongue-shaped curve with index adjustment factor is proposed to enhance the performance of variable step-size algorithm. Defect signals and reference signals are acquired by the rail-wheel test rig. The features of noise signals and defect signals are analyzed for effective detection. The effectiveness of the proposed method is demonstrated by comparing with the previous study, and different filter lengths are investigated to obtain a better noise suppression performance. Meanwhile, the detection ability of the proposed method is verified at the top speed of the test rig. The results clearly illustrate that the proposed method is effective in detecting rail defects at high speed, especially for noise interference suppression. | 
    
|---|---|
| AbstractList | In order to ensure the safety and reliability of railway system, Acoustic Emission (AE) method is employed to investigate rail defect detection. However, little attention has been paid to the defect detection at high speed, especially for noise interference suppression. Based on AE technology, this paper presents an improved rail defect detection method by multi-level ANC with VSS-LMS. Multi-level noise cancellation based on SANC and ANC is utilized to eliminate complex noises at high speed, and tongue-shaped curve with index adjustment factor is proposed to enhance the performance of variable step-size algorithm. Defect signals and reference signals are acquired by the rail-wheel test rig. The features of noise signals and defect signals are analyzed for effective detection. The effectiveness of the proposed method is demonstrated by comparing with the previous study, and different filter lengths are investigated to obtain a better noise suppression performance. Meanwhile, the detection ability of the proposed method is verified at the top speed of the test rig. The results clearly illustrate that the proposed method is effective in detecting rail defects at high speed, especially for noise interference suppression. •An improved AE detection method of rail defect is proposed.•A rail-wheel test rig is set up to obtain the defect signals and noise signals.•Multi-level noise cancellation is employed to eliminate complex noises at high speed.•Improved tongue-like curve is utilized to enhance the performance of LMS.•Filter lengths are investigated to obtain a better noise suppression performance. In order to ensure the safety and reliability of railway system, Acoustic Emission (AE) method is employed to investigate rail defect detection. However, little attention has been paid to the defect detection at high speed, especially for noise interference suppression. Based on AE technology, this paper presents an improved rail defect detection method by multi-level ANC with VSS-LMS. Multi-level noise cancellation based on SANC and ANC is utilized to eliminate complex noises at high speed, and tongue-shaped curve with index adjustment factor is proposed to enhance the performance of variable step-size algorithm. Defect signals and reference signals are acquired by the rail-wheel test rig. The features of noise signals and defect signals are analyzed for effective detection. The effectiveness of the proposed method is demonstrated by comparing with the previous study, and different filter lengths are investigated to obtain a better noise suppression performance. Meanwhile, the detection ability of the proposed method is verified at the top speed of the test rig. The results clearly illustrate that the proposed method is effective in detecting rail defects at high speed, especially for noise interference suppression.  | 
    
| Author | Zhang, Xin Hu, Hengshan Sun, Mingjian Cui, Yiming Wang, Yan  | 
    
| Author_xml | – sequence: 1 givenname: Xin surname: Zhang fullname: Zhang, Xin email: zhangxin7030@gmail.com organization: Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China – sequence: 2 givenname: Yiming surname: Cui fullname: Cui, Yiming email: cuiyiminghit@gmail.com organization: Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China – sequence: 3 givenname: Yan surname: Wang fullname: Wang, Yan email: wyabc@hit.edu.cn organization: Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China – sequence: 4 givenname: Mingjian surname: Sun fullname: Sun, Mingjian email: sunmingjian@hit.edu.cn organization: Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China – sequence: 5 givenname: Hengshan surname: Hu fullname: Hu, Hengshan email: hhs@hit.edu.cn organization: Department of Astronautics and Mechanics, Harbin Institute of Technology, Harbin 150001, PR China  | 
    
| BookMark | eNqFkL1OwzAYRS1UJMrPE7BYYk74bCduPDBUFX9SgaHAarnOV9VVmhTbLerb41AmBpg83Hts33NKBm3XIiGXDHIGTF6v8v06hE3OgY1ykDlwdUSGDJTMGGdyQIZQVVUm-AhOyGkIKwBQBcgheR231K03vtthTce3tMaINrqupWuMy66m3YJ645oULFJA5yakYh9vm-iyBnfY0PHzhH66uKTvs1k2fZqdk-OFaQJe_Jxn5O3u9nXykE1f7h8n42lmhWAxQwnzkqt6bthI2KKwyCxYwytWCi6FsgWwSlYKbc3L2vA5L1jJK1GYUojSFOKMXB3uTf__2GKIetVtfZue1ExJCSOhZN9Sh5b1XQgeF9q6aPqNsV-mGeheol7pb4m6l6hB6iQxseIXu_Fubfz-H-rmQGEav3PodbAOW4u180mirjv3J_8FsKeMqg | 
    
| CitedBy_id | crossref_primary_10_1080_00423114_2022_2065316 crossref_primary_10_1016_j_ijleo_2022_168607 crossref_primary_10_1109_TIM_2024_3350150 crossref_primary_10_3390_app15073546 crossref_primary_10_3390_s23177437 crossref_primary_10_1016_j_measurement_2023_113238 crossref_primary_10_1109_TIM_2019_2909940 crossref_primary_10_1145_3674117 crossref_primary_10_1177_03611981211021547 crossref_primary_10_1093_comjnl_bxaa013 crossref_primary_10_1016_j_jsv_2018_09_014 crossref_primary_10_1088_1361_6501_ada81f crossref_primary_10_1109_ACCESS_2020_3017691 crossref_primary_10_1061__ASCE_CP_1943_5487_0000799 crossref_primary_10_1177_1475921720922797 crossref_primary_10_1088_1361_6501_ad006b crossref_primary_10_1007_s11249_019_1147_x crossref_primary_10_1016_j_ndteint_2024_103209 crossref_primary_10_1007_s10836_020_05893_2 crossref_primary_10_3390_s21092994 crossref_primary_10_1016_j_ymssp_2020_107546 crossref_primary_10_1016_j_ymssp_2022_109773 crossref_primary_10_1109_ACCESS_2022_3217227 crossref_primary_10_1016_j_apacoust_2019_107141 crossref_primary_10_1016_j_ymssp_2022_109568 crossref_primary_10_1016_j_neucom_2018_12_057 crossref_primary_10_1109_JSEN_2023_3324668 crossref_primary_10_1109_TIM_2023_3273681 crossref_primary_10_1109_TIM_2018_2803830 crossref_primary_10_1109_TIM_2023_3291733 crossref_primary_10_1016_j_apacoust_2018_08_020 crossref_primary_10_1155_2022_3039624 crossref_primary_10_1007_s11042_024_19346_x  | 
    
| Cites_doi | 10.1016/j.apacoust.2014.06.004 10.1016/j.ndteint.2004.02.001 10.1016/0963-8695(92)90639-X 10.1016/j.ymssp.2015.04.014 10.1177/002199839402800402 10.1016/j.ymssp.2014.06.012 10.1016/j.apacoust.2015.11.018 10.1016/j.ymssp.2015.12.004 10.1016/j.ndteint.2003.06.002 10.1111/j.1365-246X.2012.05618.x 10.1016/S0888-3270(03)00012-8 10.1016/j.ymssp.2013.08.016 10.1016/S0963-8695(96)00051-5 10.1016/j.ymssp.2009.06.007 10.1016/j.jsv.2014.11.021 10.1177/1687814015620325  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Jan 15, 2018  | 
    
| Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Jan 15, 2018  | 
    
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1016/j.ymssp.2017.06.029 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1096-1216 | 
    
| EndPage | 433 | 
    
| ExternalDocumentID | 10_1016_j_ymssp_2017_06_029 S0888327017303412  | 
    
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SST SSV SSZ T5K XPP ZMT ZU3 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ ~HD 7SC 7SP 8FD AFXIZ AGCQF AGRNS JQ2 L7M L~C L~D SSH  | 
    
| ID | FETCH-LOGICAL-c331t-e60b529dba173c44ce1c0ca281532639c4018689ecd25da2b24152834a5335a43 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0888-3270 | 
    
| IngestDate | Fri Jul 25 07:19:48 EDT 2025 Thu Apr 24 23:13:09 EDT 2025 Thu Oct 16 04:39:40 EDT 2025 Fri Feb 23 02:47:45 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Acoustic emission Variable step-size algorithm Rail defect detection Adaptive noise cancellation  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c331t-e60b529dba173c44ce1c0ca281532639c4018689ecd25da2b24152834a5335a43 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 1966073964 | 
    
| PQPubID | 2045429 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | proquest_journals_1966073964 crossref_citationtrail_10_1016_j_ymssp_2017_06_029 crossref_primary_10_1016_j_ymssp_2017_06_029 elsevier_sciencedirect_doi_10_1016_j_ymssp_2017_06_029  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-01-15 | 
    
| PublicationDateYYYYMMDD | 2018-01-15 | 
    
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-15 day: 15  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Berlin | 
    
| PublicationPlace_xml | – name: Berlin | 
    
| PublicationTitle | Mechanical systems and signal processing | 
    
| PublicationYear | 2018 | 
    
| Publisher | Elsevier Ltd Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV  | 
    
| References | Ono (b0030) 2011; 2 Dalgaard, Auken, Larsen (b0070) 2012; 191 Antoni, Randall (b0085) 2004; 18 Hamstad (b0120) 2007; 25 Bollas, Papasalouros, Kourousis, Anastasopoulos (b0045) 2010; 28 Liang, Iwnicki, Ball, Young (b0075) 2015; 54–55 Ruiz-Carcel, Hernani-Ros, Cao, Corsar, Mba (b0080) 2015; 20 Yuan (b0105) 2014 Zhou, Shao (b0065) 2014; 42 Zhang, Feng, Wang, Shen (b0060) 2015; 339 Clark (b0005) 2004; 37 Zhang, Feng, Wang, Shen (b0010) 2014; 86 Deng, Hou, Wu (b0100) 2004; 9 Bruzelius, Mba (b0040) 2004; 37 Wevers (b0025) 1997; 30 Thakkar, Steel, Reuben (b0035) 2010; 24 Gary, Hamstad (b0115) 1994; 12 Zhang, Ma, Yan, Li (b0050) 2016; 105 Bianchi, Mayrhofer, Gröschl, Betz, Vernes (b0055) 2015; 64–65 Bakuckas, Prosser, Johnson (b0110) 1994; 28 Bassim (b0020) 1992; 25 Haykin (b0095) 2013 Tian, Qian (b0090) 2015; 7 Siracusano, Lamonaca, Tomasello (b0015) 2016; 75 Zhang (10.1016/j.ymssp.2017.06.029_b0060) 2015; 339 Bollas (10.1016/j.ymssp.2017.06.029_b0045) 2010; 28 Ruiz-Carcel (10.1016/j.ymssp.2017.06.029_b0080) 2015; 20 Ono (10.1016/j.ymssp.2017.06.029_b0030) 2011; 2 Wevers (10.1016/j.ymssp.2017.06.029_b0025) 1997; 30 Haykin (10.1016/j.ymssp.2017.06.029_b0095) 2013 Hamstad (10.1016/j.ymssp.2017.06.029_b0120) 2007; 25 Bassim (10.1016/j.ymssp.2017.06.029_b0020) 1992; 25 Liang (10.1016/j.ymssp.2017.06.029_b0075) 2015; 54–55 Bakuckas (10.1016/j.ymssp.2017.06.029_b0110) 1994; 28 Bruzelius (10.1016/j.ymssp.2017.06.029_b0040) 2004; 37 Clark (10.1016/j.ymssp.2017.06.029_b0005) 2004; 37 Bianchi (10.1016/j.ymssp.2017.06.029_b0055) 2015; 64–65 Antoni (10.1016/j.ymssp.2017.06.029_b0085) 2004; 18 Zhou (10.1016/j.ymssp.2017.06.029_b0065) 2014; 42 Siracusano (10.1016/j.ymssp.2017.06.029_b0015) 2016; 75 Gary (10.1016/j.ymssp.2017.06.029_b0115) 1994; 12 Zhang (10.1016/j.ymssp.2017.06.029_b0010) 2014; 86 Dalgaard (10.1016/j.ymssp.2017.06.029_b0070) 2012; 191 Yuan (10.1016/j.ymssp.2017.06.029_b0105) 2014 Zhang (10.1016/j.ymssp.2017.06.029_b0050) 2016; 105 Thakkar (10.1016/j.ymssp.2017.06.029_b0035) 2010; 24 Deng (10.1016/j.ymssp.2017.06.029_b0100) 2004; 9 Tian (10.1016/j.ymssp.2017.06.029_b0090) 2015; 7  | 
    
| References_xml | – volume: 28 start-page: 215 year: 2010 end-page: 228 ident: b0045 article-title: Acoustic emission on-line inspection of rail wheels publication-title: J. Acoust. Emission – volume: 20 start-page: 15 year: 2015 end-page: 23 ident: b0080 article-title: Application of linear prediction, self-adaptive noise cancellation and spectral kurtosis in identifying natural damage of a rolling element bearing in a gearbox publication-title: Int. J. Acoust. Vib. – volume: 7 start-page: 1 year: 2015 end-page: 12 ident: b0090 article-title: Planetary gearbox fault feature enhancement based on combined adaptive filter method publication-title: Adv. Mech. Eng. – volume: 25 start-page: 92 year: 2007 end-page: 106 ident: b0120 article-title: Acoustic emission signals generated by monopole (pencil lead break) versus dipole sources: finite element modeling and experiments publication-title: J. Acoust. Emission – volume: 37 start-page: 111 year: 2004 end-page: 118 ident: b0005 article-title: Rail flaw detection: overview and needs for future developments publication-title: NDT & E Int. – volume: 12 start-page: 157 year: 1994 end-page: 170 ident: b0115 article-title: On the far-field structure of waves generated by a pencil-break on a thin plate publication-title: J. Acoust. Emission – volume: 339 start-page: 419 year: 2015 end-page: 432 ident: b0060 article-title: Acoustic emission detection of rail defect based on wavelet transform and Shannon entropy publication-title: J. Sound Vib. – volume: 25 start-page: 287 year: 1992 end-page: 289 ident: b0020 article-title: Detection of fatigue crack propagation with acoustic emission publication-title: NDT & E Int. – start-page: 21 year: 2014 end-page: 22 ident: b0105 article-title: Study and Design of Adaptive Noise Canceller Based on DSP – volume: 105 start-page: 67 year: 2016 end-page: 74 ident: b0050 article-title: Defect detection and location in switch rails by acoustic emission and Lamb wave analysis: a feasibility study publication-title: Appl. Acoust. – volume: 54–55 start-page: 41 year: 2015 end-page: 51 ident: b0075 article-title: Adaptive noise cancelling and time-frequency techniques for rail surface defect detection publication-title: Mech. Syst. Signal Process. – start-page: 231 year: 2013 end-page: 235 ident: b0095 article-title: Adaptive Filter Theory – volume: 24 start-page: 256 year: 2010 end-page: 266 ident: b0035 article-title: Rail-wheel interaction monitoring using acoustic emission: a laboratory study of normal rolling signals with natural rail defects publication-title: Mech. Syst. Signal Process. – volume: 86 start-page: 80 year: 2014 end-page: 88 ident: b0010 article-title: An analysis of the simulated acoustic emission sources with different propagation distances, types and depths for rail defect detection publication-title: Appl. Acoust. – volume: 9 start-page: 282 year: 2004 end-page: 285 ident: b0100 article-title: Variable step adaptive filtering LMS algorithm based on tongue-like curve publication-title: J. Data Acquisition Process. – volume: 28 start-page: 305 year: 1994 end-page: 328 ident: b0110 article-title: Monitoring damage growth in titanium matrix composites using acoustic emission publication-title: J. Compos. Mater. – volume: 18 start-page: 89 year: 2004 end-page: 101 ident: b0085 article-title: Unsupervised noise cancellation for vibration signals: part I-evaluation of adaptive algorithms publication-title: Mech. Syst. Signal Process. – volume: 191 start-page: 88 year: 2012 end-page: 100 ident: b0070 article-title: Adaptive noise cancelling of multichannel magnetic resonance sounding signals publication-title: Geophys. J. Int. – volume: 30 start-page: 99 year: 1997 end-page: 106 ident: b0025 article-title: Listening to the sound of materials: acoustic emission for the analysis of material behavior publication-title: NDT & E Int. – volume: 37 start-page: 507 year: 2004 end-page: 516 ident: b0040 article-title: An initial investigation on the potential applicability of acoustic emission to rail track fault detection publication-title: NDT & E Int. – volume: 64–65 start-page: 441 year: 2015 end-page: 451 ident: b0055 article-title: Wavelet packet transform for detection of single events in acoustic emission signals publication-title: Mech. Syst. Signal Process. – volume: 2 start-page: 3 year: 2011 end-page: 18 ident: b0030 article-title: Application of acoustic emission for structure diagnosis publication-title: Diagnostyka-Diagnostics Struct. Health Monit. – volume: 75 start-page: 109 year: 2016 end-page: 122 ident: b0015 article-title: A framework for the damage evaluation of acoustic emission signals through Hilbert-Huang transform publication-title: Mech. Syst. Signal Process. – volume: 42 start-page: 225 year: 2014 end-page: 235 ident: b0065 article-title: Adaptive noise cancellation based on beehive pattern evolutionary digital filter publication-title: Mech. Syste. Signal Process. – volume: 86 start-page: 80 year: 2014 ident: 10.1016/j.ymssp.2017.06.029_b0010 article-title: An analysis of the simulated acoustic emission sources with different propagation distances, types and depths for rail defect detection publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2014.06.004 – volume: 9 start-page: 282 issue: 3 year: 2004 ident: 10.1016/j.ymssp.2017.06.029_b0100 article-title: Variable step adaptive filtering LMS algorithm based on tongue-like curve publication-title: J. Data Acquisition Process. – volume: 37 start-page: 507 year: 2004 ident: 10.1016/j.ymssp.2017.06.029_b0040 article-title: An initial investigation on the potential applicability of acoustic emission to rail track fault detection publication-title: NDT & E Int. doi: 10.1016/j.ndteint.2004.02.001 – volume: 25 start-page: 287 issue: 6 year: 1992 ident: 10.1016/j.ymssp.2017.06.029_b0020 article-title: Detection of fatigue crack propagation with acoustic emission publication-title: NDT & E Int. doi: 10.1016/0963-8695(92)90639-X – volume: 64–65 start-page: 441 year: 2015 ident: 10.1016/j.ymssp.2017.06.029_b0055 article-title: Wavelet packet transform for detection of single events in acoustic emission signals publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.04.014 – volume: 28 start-page: 305 issue: 4 year: 1994 ident: 10.1016/j.ymssp.2017.06.029_b0110 article-title: Monitoring damage growth in titanium matrix composites using acoustic emission publication-title: J. Compos. Mater. doi: 10.1177/002199839402800402 – volume: 25 start-page: 92 year: 2007 ident: 10.1016/j.ymssp.2017.06.029_b0120 article-title: Acoustic emission signals generated by monopole (pencil lead break) versus dipole sources: finite element modeling and experiments publication-title: J. Acoust. Emission – volume: 54–55 start-page: 41 year: 2015 ident: 10.1016/j.ymssp.2017.06.029_b0075 article-title: Adaptive noise cancelling and time-frequency techniques for rail surface defect detection publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2014.06.012 – volume: 20 start-page: 15 issue: 1 year: 2015 ident: 10.1016/j.ymssp.2017.06.029_b0080 article-title: Application of linear prediction, self-adaptive noise cancellation and spectral kurtosis in identifying natural damage of a rolling element bearing in a gearbox publication-title: Int. J. Acoust. Vib. – start-page: 231 year: 2013 ident: 10.1016/j.ymssp.2017.06.029_b0095 – volume: 2 start-page: 3 issue: 58 year: 2011 ident: 10.1016/j.ymssp.2017.06.029_b0030 article-title: Application of acoustic emission for structure diagnosis publication-title: Diagnostyka-Diagnostics Struct. Health Monit. – volume: 105 start-page: 67 year: 2016 ident: 10.1016/j.ymssp.2017.06.029_b0050 article-title: Defect detection and location in switch rails by acoustic emission and Lamb wave analysis: a feasibility study publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2015.11.018 – volume: 75 start-page: 109 year: 2016 ident: 10.1016/j.ymssp.2017.06.029_b0015 article-title: A framework for the damage evaluation of acoustic emission signals through Hilbert-Huang transform publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.12.004 – start-page: 21 year: 2014 ident: 10.1016/j.ymssp.2017.06.029_b0105 – volume: 12 start-page: 157 issue: 3–4 year: 1994 ident: 10.1016/j.ymssp.2017.06.029_b0115 article-title: On the far-field structure of waves generated by a pencil-break on a thin plate publication-title: J. Acoust. Emission – volume: 37 start-page: 111 issue: 2 year: 2004 ident: 10.1016/j.ymssp.2017.06.029_b0005 article-title: Rail flaw detection: overview and needs for future developments publication-title: NDT & E Int. doi: 10.1016/j.ndteint.2003.06.002 – volume: 191 start-page: 88 year: 2012 ident: 10.1016/j.ymssp.2017.06.029_b0070 article-title: Adaptive noise cancelling of multichannel magnetic resonance sounding signals publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2012.05618.x – volume: 18 start-page: 89 year: 2004 ident: 10.1016/j.ymssp.2017.06.029_b0085 article-title: Unsupervised noise cancellation for vibration signals: part I-evaluation of adaptive algorithms publication-title: Mech. Syst. Signal Process. doi: 10.1016/S0888-3270(03)00012-8 – volume: 42 start-page: 225 year: 2014 ident: 10.1016/j.ymssp.2017.06.029_b0065 article-title: Adaptive noise cancellation based on beehive pattern evolutionary digital filter publication-title: Mech. Syste. Signal Process. doi: 10.1016/j.ymssp.2013.08.016 – volume: 30 start-page: 99 issue: 2 year: 1997 ident: 10.1016/j.ymssp.2017.06.029_b0025 article-title: Listening to the sound of materials: acoustic emission for the analysis of material behavior publication-title: NDT & E Int. doi: 10.1016/S0963-8695(96)00051-5 – volume: 24 start-page: 256 issue: 1 year: 2010 ident: 10.1016/j.ymssp.2017.06.029_b0035 article-title: Rail-wheel interaction monitoring using acoustic emission: a laboratory study of normal rolling signals with natural rail defects publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2009.06.007 – volume: 339 start-page: 419 year: 2015 ident: 10.1016/j.ymssp.2017.06.029_b0060 article-title: Acoustic emission detection of rail defect based on wavelet transform and Shannon entropy publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2014.11.021 – volume: 7 start-page: 1 issue: 12 year: 2015 ident: 10.1016/j.ymssp.2017.06.029_b0090 article-title: Planetary gearbox fault feature enhancement based on combined adaptive filter method publication-title: Adv. Mech. Eng. doi: 10.1177/1687814015620325 – volume: 28 start-page: 215 year: 2010 ident: 10.1016/j.ymssp.2017.06.029_b0045 article-title: Acoustic emission on-line inspection of rail wheels publication-title: J. Acoust. Emission  | 
    
| SSID | ssj0009406 | 
    
| Score | 2.3970356 | 
    
| Snippet | •An improved AE detection method of rail defect is proposed.•A rail-wheel test rig is set up to obtain the defect signals and noise signals.•Multi-level noise... In order to ensure the safety and reliability of railway system, Acoustic Emission (AE) method is employed to investigate rail defect detection. However,...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 420 | 
    
| SubjectTerms | Acoustic emission Acoustic emission testing Acoustic noise Adaptive noise cancellation Emission analysis High speed Interference Rail defect detection Railways Reference signals Studies Tongue Variable step-size algorithm  | 
    
| Title | An improved AE detection method of rail defect based on multi-level ANC with VSS-LMS | 
    
| URI | https://dx.doi.org/10.1016/j.ymssp.2017.06.029 https://www.proquest.com/docview/1966073964  | 
    
| Volume | 99 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: AKRWK dateStart: 19870101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTwwEpqH8xqjqlV5dUmLulm240hFJa3aMrDw27lzEl5CHRjj2JZ1vvvu7Hy5I-Qqz7NQeGhprggt5mhpxXkI5g6uMhbSzoUyLN9RMJywu6k_bZBe_S8M0ior7C8x3aB11dKtpNldzmbdFOwD1DEElQIYZqbSMGMhVjG4ef-iecTM1NfEzrgAu848ZDheby_rNSatdEKTxNPEmX96p184bZzP4IDsV1EjTcqFHZKGLo7I3rdcgsdknBR0Zm4IdEaTPs30xrCsCloWiaaLnK7EbA4vkMFB0X1BI7xGSqE1R_IQTUY9ijez9ClNrYfH9IRMBv1xb2hVJRMs5XnOxtKBLX03zqQAqSjGlHaUrYQbAbC5EIwoOE5FQRRrlbl-JlxpHHjkMQFhny-Yd0qaxaLQZ4RmsbZzz5NwAJTMF34E02kptRPk-DUtbBG3FhVXVT5xLGsx5zVx7Jkb-XKUL0f6nBu3yPXnoGWZTmN796DeA_5DKzgA_vaB7XrHeGWUa-5gJlJQwYCd_3feC7ILT0j_sxy_TZqb1au-hKhkIztG7TpkJ7m9H44-AGxl334 | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JTwIxFG4IHtSDcY0oag8eHZnpdLYjIRJU4AIYbk3b6SQYHAjgwYu_3ffKjFsMB6_d0ry-rZ1vvkfIdZalkfTR0piMHO4Z5SRZBOYOoTKRys2ktijfftgZ8YdxMK6QVvkvDMIqC9-_9unWWxctjUKajflk0hiAfYA6RqBS4IY5Vhre4gGL8AZ2-_6F80i4LbCJo3EHbkk9ZEFeby_LJbJWepFl8bSJ5p_h6ZejttGnvU_2irSRNtc7OyAVkx-S3W9kgkdk2MzpxD4RmJQ272hqVhZmldN1lWg6y-hCTqbQgRAOivELGqEbMYXOFNFDtNlvUXyapU-DgdPtDY7JqH03bHWcomaCo33fWzkmdFXAklRJEIvmXBtPu1qyGDwbg2xEw30qDuPE6JQFqWTKRvDY5xLyvkBy_4RU81luTglNE-Nmvq_gBqh4IIMYljNKGS_M8HNaVCOsFJXQBaE41rWYihI59iysfAXKVyB-jiU1cvM5ab7m09g8PCzPQPxQCwEef_PEenliorDKpfCQihR0MORn_133imx3hr2u6N73H8_JDvQgFtDxgjqprhav5gJSlJW6tCr4AbS74RM | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+AE+detection+method+of+rail+defect+based+on+multi-level+ANC+with+VSS-LMS&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Zhang%2C+Xin&rft.au=Cui%2C+Yiming&rft.au=Wang%2C+Yan&rft.au=Sun%2C+Mingjian&rft.date=2018-01-15&rft.issn=0888-3270&rft.volume=99&rft.spage=420&rft.epage=433&rft_id=info:doi/10.1016%2Fj.ymssp.2017.06.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2017_06_029 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |