A structural health monitoring Python code to detect small changes in frequencies

•A new frequency estimation algorithm and an application written in Python (PyFEST) are introduced.•The high accuracy of PyFEST is demonstrated involving generated signals with known frequencies.•The application is tested for real systems to detect small mass changes and quantify frequency changes d...

Full description

Saved in:
Bibliographic Details
Published inMechanical systems and signal processing Vol. 147; p. 107087
Main Authors Nedelcu, Dorian, Gillich, Gilbert-Rainer
Format Journal Article
LanguageEnglish
Published Berlin Elsevier Ltd 15.01.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0888-3270
1096-1216
DOI10.1016/j.ymssp.2020.107087

Cover

Abstract •A new frequency estimation algorithm and an application written in Python (PyFEST) are introduced.•The high accuracy of PyFEST is demonstrated involving generated signals with known frequencies.•The application is tested for real systems to detect small mass changes and quantify frequency changes due to damage.•Structural alteration is observed in a very early state and the position of damage is found precisely. Observing the occurrence of cracks in the early stage remains a challenge, as changes in the modal parameters produced by these cracks are small. This remark is also valid for deeper cracks because in most experiments it is possible to acquire short signals, which ensure a coarse frequency resolution. Therefore, the accurate estimation of frequency by standard methods is impossible. To improve frequency readability, we designed an algorithm that we implemented in the PyFEST application, written in Python programming language. It allows a fast and accurate calculation of harmonic components of a signal. PyFEST is based on an original signal post-processing algorithm, which consists of overlapping spectra for the signal iteratively cropped. The different signal lengths ensure different positions of the spectral lines in the overlapped spectrum. Therefore, adding numerous spectral lines of different positions in the overlapped spectrum we obtain a dense spectrum with significantly increased frequency resolution. From this spectrum, we select the three magnitudes of the individual spectra found in the frequency range of interest. By interpolation, we attain the maximum that has usually an inter-line position representing the estimated frequency. To this frequency, we apply a correction term that is known a priori and so we improve the frequency estimation. To test the reliability of PyFEST, we provide examples for signals generated with known frequencies that have one or more harmonic components. For signals containing one harmonic component the exact frequency was found, while for signals with multiple components the error are less than 0.1%. The frequency change is exactly estimated for both types of signals. Because PyFEST allows observing minor frequency changes, so we succeed to localize the crack position and severity in real beams with high precision.
AbstractList •A new frequency estimation algorithm and an application written in Python (PyFEST) are introduced.•The high accuracy of PyFEST is demonstrated involving generated signals with known frequencies.•The application is tested for real systems to detect small mass changes and quantify frequency changes due to damage.•Structural alteration is observed in a very early state and the position of damage is found precisely. Observing the occurrence of cracks in the early stage remains a challenge, as changes in the modal parameters produced by these cracks are small. This remark is also valid for deeper cracks because in most experiments it is possible to acquire short signals, which ensure a coarse frequency resolution. Therefore, the accurate estimation of frequency by standard methods is impossible. To improve frequency readability, we designed an algorithm that we implemented in the PyFEST application, written in Python programming language. It allows a fast and accurate calculation of harmonic components of a signal. PyFEST is based on an original signal post-processing algorithm, which consists of overlapping spectra for the signal iteratively cropped. The different signal lengths ensure different positions of the spectral lines in the overlapped spectrum. Therefore, adding numerous spectral lines of different positions in the overlapped spectrum we obtain a dense spectrum with significantly increased frequency resolution. From this spectrum, we select the three magnitudes of the individual spectra found in the frequency range of interest. By interpolation, we attain the maximum that has usually an inter-line position representing the estimated frequency. To this frequency, we apply a correction term that is known a priori and so we improve the frequency estimation. To test the reliability of PyFEST, we provide examples for signals generated with known frequencies that have one or more harmonic components. For signals containing one harmonic component the exact frequency was found, while for signals with multiple components the error are less than 0.1%. The frequency change is exactly estimated for both types of signals. Because PyFEST allows observing minor frequency changes, so we succeed to localize the crack position and severity in real beams with high precision.
Observing the occurrence of cracks in the early stage remains a challenge, as changes in the modal parameters produced by these cracks are small. This remark is also valid for deeper cracks because in most experiments it is possible to acquire short signals, which ensure a coarse frequency resolution. Therefore, the accurate estimation of frequency by standard methods is impossible. To improve frequency readability, we designed an algorithm that we implemented in the PyFEST application, written in Python programming language. It allows a fast and accurate calculation of harmonic components of a signal. PyFEST is based on an original signal post-processing algorithm, which consists of overlapping spectra for the signal iteratively cropped. The different signal lengths ensure different positions of the spectral lines in the overlapped spectrum. Therefore, adding numerous spectral lines of different positions in the overlapped spectrum we obtain a dense spectrum with significantly increased frequency resolution. From this spectrum, we select the three magnitudes of the individual spectra found in the frequency range of interest. By interpolation, we attain the maximum that has usually an inter-line position representing the estimated frequency. To this frequency, we apply a correction term that is known a priori and so we improve the frequency estimation. To test the reliability of PyFEST, we provide examples for signals generated with known frequencies that have one or more harmonic components. For signals containing one harmonic component the exact frequency was found, while for signals with multiple components the error are less than 0.1%. The frequency change is exactly estimated for both types of signals. Because PyFEST allows observing minor frequency changes, so we succeed to localize the crack position and severity in real beams with high precision.
ArticleNumber 107087
Author Gillich, Gilbert-Rainer
Nedelcu, Dorian
Author_xml – sequence: 1
  givenname: Dorian
  surname: Nedelcu
  fullname: Nedelcu, Dorian
– sequence: 2
  givenname: Gilbert-Rainer
  orcidid: 0000-0003-4962-2567
  surname: Gillich
  fullname: Gillich, Gilbert-Rainer
  email: gr.gillich@uem.ro
BookMark eNqFkE1LAzEQhoNUsK3-Ai8Bz1vz1Wz24KEUv0BQQc8hTWbblG1Sk1Tov3drPXnQ08DwPvMyzwgNQgyA0CUlE0qovF5P9puctxNG2GFTE1WfoCEljawoo3KAhkQpVXFWkzM0ynlNCGkEkUP0OsO5pJ0tu2Q6vALTlRXexOBLTD4s8cu-rGLANjrAJWIHBWzBeWO6DtuVCUvI2AfcJvjYQbAe8jk6bU2X4eJnjtH73e3b_KF6er5_nM-eKss5LZWzUtrFFDjUjjGYKrponTKypbwhtVsYRxUDJoltWyWEEgsqqOCcWGr4tGn5GF0d725T7Ltz0eu4S6Gv1ExMhRBMKtGnmmPKpphzglZbX0zxMZRkfKcp0QeDeq2_DeqDQX002LP8F7tNfmPS_h_q5khB__ynh6RzryVYcD717rSL_k_-C9hGjlo
CitedBy_id crossref_primary_10_1016_j_ndteint_2022_102783
crossref_primary_10_3390_s21155215
crossref_primary_10_1007_s42417_021_00376_w
crossref_primary_10_1109_ACCESS_2022_3160744
crossref_primary_10_1016_j_compstruct_2020_113339
crossref_primary_10_1177_00368504211064487
crossref_primary_10_24193_subbeng_2024_1_9
crossref_primary_10_3390_s21206887
crossref_primary_10_21595_vp_2023_23678
crossref_primary_10_3390_s22031118
crossref_primary_10_1155_2023_2238021
crossref_primary_10_32604_sdhm_2022_020418
crossref_primary_10_21595_vp_2022_22999
crossref_primary_10_3390_app12147231
Cites_doi 10.1109/TIM.1979.4314779
10.1016/j.engfracmech.2018.09.032
10.1115/1.1410933
10.1109/19.50426
10.1109/19.137352
10.1109/78.295186
10.3901/JME.2010.05.043
10.1016/j.ymssp.2018.07.018
10.1016/j.sigpro.2013.04.027
10.1243/JMES_JOUR_1978_020_016_02
10.1016/j.ymssp.2010.08.009
10.1109/MSP.2007.361611
10.1016/j.ymssp.2018.05.037
10.1002/j.1538-7305.1970.tb01766.x
10.1016/j.ymssp.2019.06.027
10.1016/j.jsv.2019.02.017
10.1080/17415977.2018.1442834
10.1016/j.measurement.2008.08.006
10.1109/TIM.1983.4315077
10.1016/j.ymssp.2018.05.022
10.3390/s18124131
10.1016/j.engstruct.2018.09.070
10.1590/1679-78251795
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Jan 15, 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 15, 2021
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ymssp.2020.107087
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
ExternalDocumentID 10_1016_j_ymssp_2020_107087
S0888327020304738
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
XPP
ZMT
ZU3
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
~HD
7SC
7SP
8FD
AGCQF
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c331t-dc66cb5e3e7d22e581bfd8a6f13907dbad182e260cff84484b1414330c1a359f3
IEDL.DBID .~1
ISSN 0888-3270
IngestDate Sun Sep 07 03:34:53 EDT 2025
Thu Oct 16 04:41:46 EDT 2025
Thu Apr 24 23:11:11 EDT 2025
Fri Feb 23 02:47:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Frequency estimation
Python language
Damage detection
Algorithm
Discrete Fourier Transform
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-dc66cb5e3e7d22e581bfd8a6f13907dbad182e260cff84484b1414330c1a359f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4962-2567
PQID 2454442684
PQPubID 2045429
ParticipantIDs proquest_journals_2454442684
crossref_citationtrail_10_1016_j_ymssp_2020_107087
crossref_primary_10_1016_j_ymssp_2020_107087
elsevier_sciencedirect_doi_10_1016_j_ymssp_2020_107087
PublicationCentury 2000
PublicationDate 2021-01-15
PublicationDateYYYYMMDD 2021-01-15
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-15
  day: 15
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Mechanical systems and signal processing
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Grandke (b0085) 1983; 32
Gillich, Nedelcu, Minda, Lupu (b0110) 2019
Quinn (b0060) 1994; 42
Friswell (b0180) 2008; 499
Ntakpe, Gillich, Mituletu, Praisach, Gillich (b0105) 2016; 13
Dahak, Touat, Kharoubi (b0140) 2019; 27
Jacobsen, Kootsookos (b0090) 2007; 24
Sohn, Farrar, Hunter, Worden (b0010) 2001; 123
dos Santos Souza, Vandepitte, Tita, de Medeiros (b0005) 2019; 115
Djukanovic, Popovic, Mitrovic (b0095) 2016
Gillich, Praisach, Abdel Wahab, Gillich, Mituletu, Nitescu (b0170) 2016; 2016
Khatir, Abdel Wahab, Boutchicha, Khatir (b0030) 2019; 448
Gillich, Praisach (b0135) 2014; 96
Herman (b0115) 2016
Khatir, Abdel Wahab (b0015) 2019; 205
Tiachacht, Bouazzouni, Khatir, Abdel Wahab, Behtani, Capozucca (b0025) 2018; 177
Gillich, Tufisi, Vasile, Gillich (b0150) 2019; 16
Rife, Vincent (b0050) 1970; 49
Sha, Radzieński, Cao, Ostachowicz (b0145) 2019; 132
Jain, Collins, Davis (b0055) 1979; 28
Minda, Gillich (b0080) 2017; 24
Minda, Praisach, Gillich, Minda, Gillich (b0175) 2013; 10
Tran-Ngoc, Khatir, De Roeck, Bui-Tien, Nguyen-Ngoc, Abdel Wahab (b0020) 2018; 18
Chioncel, Gillich, Tirian, Ntakpe (b0040) 2015; 12
Belega, Dallet (b0075) 2009; 42
Chioncel, Gillich, Mituletu, Gillich, Pelea (b0165) 2015; 12
Gillich, Maia, Mituletu, Praisach, Tufoi, Negru (b0035) 2015; 12
Gillich, Minda, Korka (b0120) 2017; 2
Mituletu, Gillich, Maia (b0130) 2019; 116
Adams, Cawley, Pye, Stone (b0160) 1978; 20
Gillich, Furdui, Wahab, Korka (b0155) 2019; 115
Huibin, Kang (b0045) 2011; 25
Schoukens, Pintelon, Hamme (b0070) 1992; 41
Offelli, Petri (b0065) 1990; 39
Ding, Zheng, Yang (b0100) 2010; 46
Gillich, Nedelcu (b0125) 2020; v1
Ding (10.1016/j.ymssp.2020.107087_b0100) 2010; 46
Gillich (10.1016/j.ymssp.2020.107087_b0170) 2016; 2016
dos Santos Souza (10.1016/j.ymssp.2020.107087_b0005) 2019; 115
Minda (10.1016/j.ymssp.2020.107087_b0080) 2017; 24
Schoukens (10.1016/j.ymssp.2020.107087_b0070) 1992; 41
Sha (10.1016/j.ymssp.2020.107087_b0145) 2019; 132
Gillich (10.1016/j.ymssp.2020.107087_b0150) 2019; 16
Khatir (10.1016/j.ymssp.2020.107087_b0030) 2019; 448
Belega (10.1016/j.ymssp.2020.107087_b0075) 2009; 42
Gillich (10.1016/j.ymssp.2020.107087_b0120) 2017; 2
Offelli (10.1016/j.ymssp.2020.107087_b0065) 1990; 39
Quinn (10.1016/j.ymssp.2020.107087_b0060) 1994; 42
Friswell (10.1016/j.ymssp.2020.107087_b0180) 2008; 499
Adams (10.1016/j.ymssp.2020.107087_b0160) 1978; 20
Khatir (10.1016/j.ymssp.2020.107087_b0015) 2019; 205
Chioncel (10.1016/j.ymssp.2020.107087_b0040) 2015; 12
Rife (10.1016/j.ymssp.2020.107087_b0050) 1970; 49
Tiachacht (10.1016/j.ymssp.2020.107087_b0025) 2018; 177
Huibin (10.1016/j.ymssp.2020.107087_b0045) 2011; 25
Ntakpe (10.1016/j.ymssp.2020.107087_b0105) 2016; 13
Dahak (10.1016/j.ymssp.2020.107087_b0140) 2019; 27
Gillich (10.1016/j.ymssp.2020.107087_b0135) 2014; 96
Jacobsen (10.1016/j.ymssp.2020.107087_b0090) 2007; 24
Tran-Ngoc (10.1016/j.ymssp.2020.107087_b0020) 2018; 18
Gillich (10.1016/j.ymssp.2020.107087_b0155) 2019; 115
Gillich (10.1016/j.ymssp.2020.107087_b0125) 2020; v1
Mituletu (10.1016/j.ymssp.2020.107087_b0130) 2019; 116
Sohn (10.1016/j.ymssp.2020.107087_b0010) 2001; 123
Gillich (10.1016/j.ymssp.2020.107087_b0035) 2015; 12
Gillich (10.1016/j.ymssp.2020.107087_b0110) 2019
Herman (10.1016/j.ymssp.2020.107087_b0115) 2016
Chioncel (10.1016/j.ymssp.2020.107087_b0165) 2015; 12
Grandke (10.1016/j.ymssp.2020.107087_b0085) 1983; 32
Djukanovic (10.1016/j.ymssp.2020.107087_b0095) 2016
Minda (10.1016/j.ymssp.2020.107087_b0175) 2013; 10
Jain (10.1016/j.ymssp.2020.107087_b0055) 1979; 28
References_xml – volume: 10
  start-page: 15
  year: 2013
  end-page: 18
  ident: b0175
  article-title: On the efficiency of different dissimilarity estimators used in damage detection
  publication-title: Rom. J. Acoust. Vib.
– volume: 448
  start-page: 230
  year: 2019
  end-page: 246
  ident: b0030
  article-title: Structural health monitoring using modal strain energy damage indicator coupled with teaching-learning-based optimization algorithm and isogeometric analysis
  publication-title: J. Sound Vib.
– volume: 115
  start-page: 82
  year: 2019
  end-page: 101
  ident: b0005
  article-title: Dynamic response of laminated composites using design of experiments: an experimental and numerical study
  publication-title: Mech. Syst. Signal Process.
– volume: 24
  start-page: 211
  year: 2017
  end-page: 218
  ident: b0080
  article-title: Sinc function based interpolation method to accurate evaluate the natural frequencies
  publication-title: Analele Univ. Eftimie Murgu Resita. Fasc. Ing.
– volume: 13
  start-page: 98
  year: 2016
  end-page: 103
  ident: b0105
  article-title: An accurate frequency estimation algorithm with application in modal analysis
  publication-title: Rom. J. Acoust. Vib.
– volume: v1
  year: 2020
  ident: b0125
  article-title: PyFEST - a Python code for accurate frequency estimation
  publication-title: Mendeley Data
– volume: 132
  start-page: 335
  year: 2019
  end-page: 352
  ident: b0145
  article-title: A novel method for single and multiple damage detection in beams using relative natural frequency changes
  publication-title: Mech. Syst. Signal Process.
– volume: 42
  start-page: 1256
  year: 1994
  end-page: 1268
  ident: b0060
  article-title: Estimating frequency by interpolation using Fourier coefficients
  publication-title: IEEE Trans. Signal Process.
– start-page: 44
  year: 2019
  end-page: 49
  ident: b0110
  article-title: An algorithm to find the two spectral lines on the main lobe of a DFT
  publication-title: Proceedings of ICMS 2019 & COMEC 2019
– volume: 49
  start-page: 197
  year: 1970
  end-page: 228
  ident: b0050
  article-title: Use of discrete Fourier transform in the measurement of frequencies and levels of tones
  publication-title: Bell Syst. Technol. J.
– volume: 123
  start-page: 706
  year: 2001
  end-page: 711
  ident: b0010
  article-title: Structural health monitoring using statistical pattern recognition techniques
  publication-title: J. Dyn. Sys Meas. Control.
– volume: 32
  start-page: 350
  year: 1983
  end-page: 355
  ident: b0085
  article-title: Interpolation algorithms for Discrete Fourier Transforms of weighted signals
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 12
  start-page: 151
  year: 2015
  end-page: 154
  ident: b0165
  article-title: Visual method to recognize breathing cracks from frequency change
  publication-title: Rom. J. Acoust. Vib.
– volume: 499
  start-page: 13
  year: 2008
  end-page: 66
  ident: b0180
  article-title: Damage identification using inverse methods
  publication-title: CISM Int. Cent. Mech. Sci. Courses Lect.
– volume: 16
  start-page: 47
  year: 2019
  end-page: 51
  ident: b0150
  article-title: Statistical method for damage severity and frequency drop estimation for a cracked beam using static test data
  publication-title: Rom. J. Acoust. Vib.
– volume: 46
  start-page: 43
  year: 2010
  end-page: 48
  ident: b0100
  article-title: Frequency estimation accuracy analysis and improvement of energy barycenter correction method for discrete spectrum
  publication-title: J. Mech. Eng.
– volume: 25
  start-page: 452
  year: 2011
  end-page: 464
  ident: b0045
  article-title: Energy based signal parameter estimation method and a comparative study of different frequency estimators
  publication-title: Mech. Syst. Signal Process.
– volume: 116
  start-page: 693
  year: 2019
  end-page: 709
  ident: b0130
  article-title: A method for an accurate estimation of natural frequencies using swept-sine acoustic excitation
  publication-title: Mech. Syst. Signal Process.
– volume: 39
  start-page: 106
  year: 1990
  end-page: 111
  ident: b0065
  article-title: Interpolation techniques for real-time multi-frequency waveform analysis
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 41
  start-page: 226
  year: 1992
  end-page: 232
  ident: b0070
  article-title: The interpolated fast Fourier transform: a comparative study
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 2016
  year: 2016
  ident: b0170
  article-title: Free vibration of a perfectly clamped-free beam with stepwise eccentric distributed masses
  publication-title: Shock Vib.
– volume: 18
  year: 2018
  ident: b0020
  article-title: Model updating for Nam O bridge using particle swarm optimization algorithm and genetic algorithm
  publication-title: Sensors (Switzerland)
– year: 2016
  ident: b0115
  article-title: Introduction to Fourier Analysis
– volume: 205
  start-page: 285
  year: 2019
  end-page: 300
  ident: b0015
  article-title: Fast simulations for solving fracture mechanics inverse problems using POD-RBF XIGA and Jaya algorithm
  publication-title: Eng. Fract. Mech.
– volume: 177
  start-page: 421
  year: 2018
  end-page: 430
  ident: b0025
  article-title: Damage assessment in structures using combination of a modified Cornwell indicator and genetic algorithm
  publication-title: Eng. Struct.
– volume: 27
  start-page: 89
  year: 2019
  end-page: 114
  ident: b0140
  article-title: Damage detection in beam through change in measured frequency and undamaged curvature mode shape
  publication-title: Inverse Probl. Sci. Eng.
– volume: 12
  start-page: 16
  year: 2015
  end-page: 19
  ident: b0040
  article-title: Limits of the Discrete Fourier Transform in exact identifying of the vibrations frequency
  publication-title: Rom. J. Acoust. Vib.
– volume: 115
  start-page: 361
  year: 2019
  end-page: 379
  ident: b0155
  article-title: A robust damage detection method based on multi-modal analysis in variable temperature conditions
  publication-title: Mech. Syst. Signal Process.
– year: 2016
  ident: b0095
  article-title: Precise sinusoid frequency estimation based on parabolic interpolation
  publication-title: 2016 24th Telecommun. Forum (TELFOR)
– volume: 42
  start-page: 420
  year: 2009
  end-page: 426
  ident: b0075
  article-title: Multifrequency signal analysis by Interpolated DFT method with maximum sidelobe decay windows
  publication-title: Meas. J. Int. Meas. Confed.
– volume: 28
  start-page: 113
  year: 1979
  end-page: 122
  ident: b0055
  article-title: High accuracy analog measurements via interpolated FFT
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 96
  start-page: 29
  year: 2014
  end-page: 44
  ident: b0135
  article-title: Modal identification and damage detection in beam-like structures using the power spectrum and time-frequency analysis
  publication-title: Signal Process.
– volume: 20
  start-page: 93
  year: 1978
  end-page: 100
  ident: b0160
  article-title: A vibration technique for nondestructively assessing the integrity of structures
  publication-title: J. Mech. Eng. Sci.
– volume: 2
  start-page: 37
  year: 2017
  end-page: 48
  ident: b0120
  article-title: Precise estimation of the resonant frequencies of mechanical structures involving a pseudo-sinc based technique
  publication-title: J. Eng. Sci. Innov.
– volume: 12
  start-page: 2311
  year: 2015
  end-page: 2329
  ident: b0035
  article-title: Early structural damage assessment by using an improved frequency evaluation algorithm
  publication-title: Lat. Am. J. Solids Struct.
– volume: 24
  start-page: 123
  year: 2007
  end-page: 125
  ident: b0090
  article-title: Fast, accurate frequency estimators
  publication-title: IEEE Signal Process Mag.
– volume: 28
  start-page: 113
  year: 1979
  ident: 10.1016/j.ymssp.2020.107087_b0055
  article-title: High accuracy analog measurements via interpolated FFT
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.1979.4314779
– volume: 205
  start-page: 285
  year: 2019
  ident: 10.1016/j.ymssp.2020.107087_b0015
  article-title: Fast simulations for solving fracture mechanics inverse problems using POD-RBF XIGA and Jaya algorithm
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2018.09.032
– volume: 123
  start-page: 706
  year: 2001
  ident: 10.1016/j.ymssp.2020.107087_b0010
  article-title: Structural health monitoring using statistical pattern recognition techniques
  publication-title: J. Dyn. Sys Meas. Control.
  doi: 10.1115/1.1410933
– volume: 39
  start-page: 106
  year: 1990
  ident: 10.1016/j.ymssp.2020.107087_b0065
  article-title: Interpolation techniques for real-time multi-frequency waveform analysis
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/19.50426
– volume: 41
  start-page: 226
  year: 1992
  ident: 10.1016/j.ymssp.2020.107087_b0070
  article-title: The interpolated fast Fourier transform: a comparative study
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/19.137352
– volume: 42
  start-page: 1256
  year: 1994
  ident: 10.1016/j.ymssp.2020.107087_b0060
  article-title: Estimating frequency by interpolation using Fourier coefficients
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.295186
– year: 2016
  ident: 10.1016/j.ymssp.2020.107087_b0095
  article-title: Precise sinusoid frequency estimation based on parabolic interpolation
– volume: 46
  start-page: 43
  issue: 05
  year: 2010
  ident: 10.1016/j.ymssp.2020.107087_b0100
  article-title: Frequency estimation accuracy analysis and improvement of energy barycenter correction method for discrete spectrum
  publication-title: J. Mech. Eng.
  doi: 10.3901/JME.2010.05.043
– volume: 116
  start-page: 693
  year: 2019
  ident: 10.1016/j.ymssp.2020.107087_b0130
  article-title: A method for an accurate estimation of natural frequencies using swept-sine acoustic excitation
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.07.018
– volume: 96
  start-page: 29
  year: 2014
  ident: 10.1016/j.ymssp.2020.107087_b0135
  article-title: Modal identification and damage detection in beam-like structures using the power spectrum and time-frequency analysis
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2013.04.027
– volume: 16
  start-page: 47
  year: 2019
  ident: 10.1016/j.ymssp.2020.107087_b0150
  article-title: Statistical method for damage severity and frequency drop estimation for a cracked beam using static test data
  publication-title: Rom. J. Acoust. Vib.
– volume: 499
  start-page: 13
  year: 2008
  ident: 10.1016/j.ymssp.2020.107087_b0180
  article-title: Damage identification using inverse methods
  publication-title: CISM Int. Cent. Mech. Sci. Courses Lect.
– volume: 2
  start-page: 37
  year: 2017
  ident: 10.1016/j.ymssp.2020.107087_b0120
  article-title: Precise estimation of the resonant frequencies of mechanical structures involving a pseudo-sinc based technique
  publication-title: J. Eng. Sci. Innov.
– volume: 20
  start-page: 93
  year: 1978
  ident: 10.1016/j.ymssp.2020.107087_b0160
  article-title: A vibration technique for nondestructively assessing the integrity of structures
  publication-title: J. Mech. Eng. Sci.
  doi: 10.1243/JMES_JOUR_1978_020_016_02
– volume: 25
  start-page: 452
  year: 2011
  ident: 10.1016/j.ymssp.2020.107087_b0045
  article-title: Energy based signal parameter estimation method and a comparative study of different frequency estimators
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2010.08.009
– volume: 12
  start-page: 16
  year: 2015
  ident: 10.1016/j.ymssp.2020.107087_b0040
  article-title: Limits of the Discrete Fourier Transform in exact identifying of the vibrations frequency
  publication-title: Rom. J. Acoust. Vib.
– volume: 24
  start-page: 123
  year: 2007
  ident: 10.1016/j.ymssp.2020.107087_b0090
  article-title: Fast, accurate frequency estimators
  publication-title: IEEE Signal Process Mag.
  doi: 10.1109/MSP.2007.361611
– volume: 115
  start-page: 361
  year: 2019
  ident: 10.1016/j.ymssp.2020.107087_b0155
  article-title: A robust damage detection method based on multi-modal analysis in variable temperature conditions
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.05.037
– volume: 49
  start-page: 197
  year: 1970
  ident: 10.1016/j.ymssp.2020.107087_b0050
  article-title: Use of discrete Fourier transform in the measurement of frequencies and levels of tones
  publication-title: Bell Syst. Technol. J.
  doi: 10.1002/j.1538-7305.1970.tb01766.x
– year: 2016
  ident: 10.1016/j.ymssp.2020.107087_b0115
– volume: 132
  start-page: 335
  year: 2019
  ident: 10.1016/j.ymssp.2020.107087_b0145
  article-title: A novel method for single and multiple damage detection in beams using relative natural frequency changes
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.06.027
– volume: v1
  year: 2020
  ident: 10.1016/j.ymssp.2020.107087_b0125
  article-title: PyFEST - a Python code for accurate frequency estimation
  publication-title: Mendeley Data
– volume: 448
  start-page: 230
  year: 2019
  ident: 10.1016/j.ymssp.2020.107087_b0030
  article-title: Structural health monitoring using modal strain energy damage indicator coupled with teaching-learning-based optimization algorithm and isogeometric analysis
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2019.02.017
– volume: 27
  start-page: 89
  year: 2019
  ident: 10.1016/j.ymssp.2020.107087_b0140
  article-title: Damage detection in beam through change in measured frequency and undamaged curvature mode shape
  publication-title: Inverse Probl. Sci. Eng.
  doi: 10.1080/17415977.2018.1442834
– volume: 42
  start-page: 420
  year: 2009
  ident: 10.1016/j.ymssp.2020.107087_b0075
  article-title: Multifrequency signal analysis by Interpolated DFT method with maximum sidelobe decay windows
  publication-title: Meas. J. Int. Meas. Confed.
  doi: 10.1016/j.measurement.2008.08.006
– volume: 32
  start-page: 350
  year: 1983
  ident: 10.1016/j.ymssp.2020.107087_b0085
  article-title: Interpolation algorithms for Discrete Fourier Transforms of weighted signals
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.1983.4315077
– volume: 2016
  year: 2016
  ident: 10.1016/j.ymssp.2020.107087_b0170
  article-title: Free vibration of a perfectly clamped-free beam with stepwise eccentric distributed masses
  publication-title: Shock Vib.
– volume: 115
  start-page: 82
  year: 2019
  ident: 10.1016/j.ymssp.2020.107087_b0005
  article-title: Dynamic response of laminated composites using design of experiments: an experimental and numerical study
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.05.022
– volume: 18
  year: 2018
  ident: 10.1016/j.ymssp.2020.107087_b0020
  article-title: Model updating for Nam O bridge using particle swarm optimization algorithm and genetic algorithm
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s18124131
– volume: 177
  start-page: 421
  year: 2018
  ident: 10.1016/j.ymssp.2020.107087_b0025
  article-title: Damage assessment in structures using combination of a modified Cornwell indicator and genetic algorithm
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2018.09.070
– volume: 13
  start-page: 98
  year: 2016
  ident: 10.1016/j.ymssp.2020.107087_b0105
  article-title: An accurate frequency estimation algorithm with application in modal analysis
  publication-title: Rom. J. Acoust. Vib.
– volume: 10
  start-page: 15
  year: 2013
  ident: 10.1016/j.ymssp.2020.107087_b0175
  article-title: On the efficiency of different dissimilarity estimators used in damage detection
  publication-title: Rom. J. Acoust. Vib.
– start-page: 44
  year: 2019
  ident: 10.1016/j.ymssp.2020.107087_b0110
  article-title: An algorithm to find the two spectral lines on the main lobe of a DFT
– volume: 12
  start-page: 151
  year: 2015
  ident: 10.1016/j.ymssp.2020.107087_b0165
  article-title: Visual method to recognize breathing cracks from frequency change
  publication-title: Rom. J. Acoust. Vib.
– volume: 24
  start-page: 211
  year: 2017
  ident: 10.1016/j.ymssp.2020.107087_b0080
  article-title: Sinc function based interpolation method to accurate evaluate the natural frequencies
  publication-title: Analele Univ. Eftimie Murgu Resita. Fasc. Ing.
– volume: 12
  start-page: 2311
  year: 2015
  ident: 10.1016/j.ymssp.2020.107087_b0035
  article-title: Early structural damage assessment by using an improved frequency evaluation algorithm
  publication-title: Lat. Am. J. Solids Struct.
  doi: 10.1590/1679-78251795
SSID ssj0009406
Score 2.4017792
Snippet •A new frequency estimation algorithm and an application written in Python (PyFEST) are introduced.•The high accuracy of PyFEST is demonstrated involving...
Observing the occurrence of cracks in the early stage remains a challenge, as changes in the modal parameters produced by these cracks are small. This remark...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107087
SubjectTerms Algorithm
Algorithms
Cracks
Damage detection
Discrete Fourier Transform
Flaw detection
Frequency estimation
Frequency ranges
Interpolation
Line spectra
Post-production processing
Programming languages
Python
Python language
Signal processing
Structural health monitoring
Title A structural health monitoring Python code to detect small changes in frequencies
URI https://dx.doi.org/10.1016/j.ymssp.2020.107087
https://www.proquest.com/docview/2454442684
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: AKRWK
  dateStart: 19870101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrFaSw4ejc1ukt3tsRRLVSiKFnoL2Tyg0m6L20sv_nYz-_CF9OB1mSzLJJl8s_nmG4SuqBIeJvQsEQJ-3VAVkcS5gESgfaWtAJQMbItxNJrw-6mYNtCgroUBWmUV-8uYXkTr6km38mZ3NZt1n_3-8Msxhqs0ymMGBb-cx9DF4Ob9i-bR40V_TTAmYF0rDxUcr80iz0G0MoQnMQVe3d-n0684XRw-wwO0X6FG3C8_7BA1bHaE9r5pCR6jpz4utWBBRwOX5Y14UexYMMCPG1AJwFDCjtdLbCzcHuB8oeZzXFb_5niWYfdWcqt9An2CJsPbl8GIVP0SiGYsWBOjo0inwjIbmzC0wiNSZxIVOY_yaGxSZXwyYX0Co51LfFrG04B7uMSoDhQTPcdOUTNbZvYMYadSxo1y1MMzzl2cMCu0iXSgrY4TkbZQWPtJ6kpMHHpazGXNGnuVhXMlOFeWzm2h689Bq1JLY7t5VE-A_LEkpI_22we26-mS1Y7MZcgF5xy0bc7_-94LtBsCo4UGJBBt1PSTai89JFmnnWLNddBO_-5hNP4AH2Tgeg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOQAHxCoKBXzgSGgSL0mPVUVVoFQgWqk3y_EiFXUT6aUXvh1PFjahHrhaYysa2-M38ZtnhK58yRxMaBqPMfh140vuxdYGHgftK2UYoGRgW_R5d0jvR2xUQe2yFgZolUXsz2N6Fq2LlkbhzcZiPG68uP3hlmMEV2k-jUi8gTYpCyPIwG7ev3geTZo9sAnWHpiX0kMZyWs1TVNQrQyhJfKBWPf38fQrUGenT2cP7RawEbfyL9tHFTM7QDvfxAQP0XML52KwIKSB8_pGPM22LBjgpxXIBGCoYcfLOdYGrg9wOpWTCc7Lf1M8nmH7lpOrXQZ9hIad20G76xUPJniKkGDpacW5SpghJtJhaJiDpFbHklsH8_xIJ1K7bMK4DEZZG7u8jCYBdXiJ-CqQhDUtOUbV2XxmThC2MiFUS-s7fEapjWJimNJcBcqoKGZJDYWln4Qq1MThUYuJKGljryJzrgDnity5NXT92WmRi2msN-flBIgfa0K4cL--Y72cLlFsyVSElFFKQdzm9L_jXqKt7uCxJ3p3_YcztB0CvcUPvIDVUdVNsDl3-GSZXGTr7wNqPuIP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+structural+health+monitoring+Python+code+to+detect+small+changes+in+frequencies&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Nedelcu%2C+Dorian&rft.au=Gillich%2C+Gilbert-Rainer&rft.date=2021-01-15&rft.pub=Elsevier+Ltd&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=147&rft_id=info:doi/10.1016%2Fj.ymssp.2020.107087&rft.externalDocID=S0888327020304738
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon