Performance of hybrid exchange-correlation potential for photocatalytic silver chromate and molybdate: LCAO theory and Compton spectroscopy
Linear combination of atomic orbitals (LCAO) method has been employed to compute the Mulliken's population (MP), energy bands, density of states (DOS), band gaps and electron momentum densities (EMDs) of Ag2TMO4 (TM = Cr and Mo). The LCAO prescription has been considered within the framework of...
Saved in:
| Published in | Physica. B, Condensed matter Vol. 560; pp. 236 - 243 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier B.V
01.05.2019
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0921-4526 1873-2135 |
| DOI | 10.1016/j.physb.2019.02.036 |
Cover
| Abstract | Linear combination of atomic orbitals (LCAO) method has been employed to compute the Mulliken's population (MP), energy bands, density of states (DOS), band gaps and electron momentum densities (EMDs) of Ag2TMO4 (TM = Cr and Mo). The LCAO prescription has been considered within the framework of density functional theory (DFT) and a newly suggested Hartree-Fock incorporated DFT scheme namely PBESOL0. These approximations for exchange and correlation potentials have been validated by comparing the deduced EMDs with the experimental Compton profiles using 137Cs radio isotope. It is observed that PBESOL0 scheme based EMDs show better agreement with the experimental profiles than other approximations considered in the present work. The energy bands and DOS confirm the semiconducting nature of both the Ag-based oxides. In addition, the relative nature of bonding in both the iso-electronic compounds has also been compared on the basis of equal-valence-electron-density profiles and MP data, which depict that Ag2MoO4 has more ionic character than that of Ag2CrO4.
•First-ever Compton profile (CP) measurements of Ag2CrO4 and Ag2MoO4.•Electronic properties and CPs using LCAO scheme and comparison with experiment.•Analysed relative nature of bonding using EVED profiles and Mulliken's population.•Validated use of hybrid HF + DFT (PBESOL0) potential to predict electronic response. |
|---|---|
| AbstractList | Linear combination of atomic orbitals (LCAO) method has been employed to compute the Mulliken's population (MP), energy bands, density of states (DOS), band gaps and electron momentum densities (EMDs) of Ag2TMO4 (TM = Cr and Mo). The LCAO prescription has been considered within the framework of density functional theory (DFT) and a newly suggested Hartree-Fock incorporated DFT scheme namely PBESOL0. These approximations for exchange and correlation potentials have been validated by comparing the deduced EMDs with the experimental Compton profiles using 137Cs radio isotope. It is observed that PBESOL0 scheme based EMDs show better agreement with the experimental profiles than other approximations considered in the present work. The energy bands and DOS confirm the semiconducting nature of both the Ag-based oxides. In addition, the relative nature of bonding in both the iso-electronic compounds has also been compared on the basis of equal-valence-electron-density profiles and MP data, which depict that Ag2MoO4 has more ionic character than that of Ag2CrO4. Linear combination of atomic orbitals (LCAO) method has been employed to compute the Mulliken's population (MP), energy bands, density of states (DOS), band gaps and electron momentum densities (EMDs) of Ag2TMO4 (TM = Cr and Mo). The LCAO prescription has been considered within the framework of density functional theory (DFT) and a newly suggested Hartree-Fock incorporated DFT scheme namely PBESOL0. These approximations for exchange and correlation potentials have been validated by comparing the deduced EMDs with the experimental Compton profiles using 137Cs radio isotope. It is observed that PBESOL0 scheme based EMDs show better agreement with the experimental profiles than other approximations considered in the present work. The energy bands and DOS confirm the semiconducting nature of both the Ag-based oxides. In addition, the relative nature of bonding in both the iso-electronic compounds has also been compared on the basis of equal-valence-electron-density profiles and MP data, which depict that Ag2MoO4 has more ionic character than that of Ag2CrO4. •First-ever Compton profile (CP) measurements of Ag2CrO4 and Ag2MoO4.•Electronic properties and CPs using LCAO scheme and comparison with experiment.•Analysed relative nature of bonding using EVED profiles and Mulliken's population.•Validated use of hybrid HF + DFT (PBESOL0) potential to predict electronic response. |
| Author | Meena, Seema Kumari Ahuja, B.L. Arora, Gunjan Heda, N.L. Meena, Lekhraj |
| Author_xml | – sequence: 1 givenname: Seema Kumari surname: Meena fullname: Meena, Seema Kumari organization: Department of Physics, M.L. Sukhadia University, Udaipur, 313001, Rajasthan, India – sequence: 2 givenname: N.L. surname: Heda fullname: Heda, N.L. organization: Department of Pure and Applied Physics, University of Kota, Kota, 324005, Rajasthan, India – sequence: 3 givenname: Gunjan surname: Arora fullname: Arora, Gunjan organization: Department of Physics, M.L. Sukhadia University, Udaipur, 313001, Rajasthan, India – sequence: 4 givenname: Lekhraj surname: Meena fullname: Meena, Lekhraj organization: Department of Physics, M.L. Sukhadia University, Udaipur, 313001, Rajasthan, India – sequence: 5 givenname: B.L. surname: Ahuja fullname: Ahuja, B.L. email: blahuja@yahoo.com organization: Department of Physics, M.L. Sukhadia University, Udaipur, 313001, Rajasthan, India |
| BookMark | eNqFkc1u1DAQgC3USmxLn6AXS5wT_JNfJA7VigLSSuVAz9bYnhCvkjjYbkWegZfG3eXEAeZijTzfzPjzFblY_IKE3HJWcsabd8dyHbeoS8F4XzJRMtm8IjvetbIQXNYXZMd6wYuqFs1rchXjkeXgLd-RX18xDD7MsBikfqDjpoOzFH-aEZbvWBgfAk6QnF_o6hMuycFEM0HX0SdvIMG0JWdodNMzBmrG4GdISGGxdPbTpm3O3tPD_u6BphF92E5Xez-vKfeMK5oUfDR-3d6QywGmiDd_zmvyeP_x2_5zcXj49GV_dyiMlDwVViPUIPpqqPWga2iganqpTQuN4LqrBEDVYTe0zGhuKt121rasa2uOPQdr5DV5e-67Bv_jCWNSR_8UljxSCSEqWfFatrmqP1eZvF4MOCjj0klECuAmxZl6ca-O6uRevbhXTKjsPrPyL3YNboaw_Yf6cKYwP_7ZYVDROMwfY13IlpT17p_8b4b1pZw |
| CitedBy_id | crossref_primary_10_1039_D0RA02953J crossref_primary_10_1016_j_ssc_2024_115458 crossref_primary_10_1007_s10853_019_04289_8 crossref_primary_10_1016_j_physb_2023_415129 crossref_primary_10_1016_j_msec_2020_110765 crossref_primary_10_1016_j_nuclphysbps_2023_07_015 |
| Cites_doi | 10.1016/j.physb.2015.12.035 10.1016/0092-640X(75)90030-3 10.3762/bjnano.5.77 10.1016/j.jallcom.2017.02.055 10.1016/S0927-0256(03)00104-6 10.1103/PhysRevLett.100.136406 10.1016/j.apsusc.2015.08.084 10.1021/jp4118024 10.1021/ic500335x 10.1103/PhysRevLett.77.3865 10.1016/j.commatsci.2015.04.001 10.1021/jp401524s 10.1039/C5CE01662B 10.1002/ppsc.201400162 10.1021/jp077127w 10.1021/jp808907e 10.1088/0022-3719/5/13/012 10.1016/j.radphyschem.2012.04.010 10.1016/j.nimb.2005.10.011 10.1021/acs.cgd.5b00455 10.1039/C5TA05248C 10.1021/acs.inorgchem.6b01452 10.1016/j.jpcs.2016.01.016 10.1016/j.radphyschem.2015.08.002 10.1080/14786439808206579 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. Copyright Elsevier BV May 1, 2019 |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV May 1, 2019 |
| DBID | AAYXX CITATION 7U5 8FD L7M |
| DOI | 10.1016/j.physb.2019.02.036 |
| DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1873-2135 |
| EndPage | 243 |
| ExternalDocumentID | 10_1016_j_physb_2019_02_036 S0921452619301231 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABNEU ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ T5K TN5 XPP YNT ZMT ~02 ~G- 29O 6TJ AAEDT AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ADIYS ADMUD ADNMO ADVLN AEIPS AFFNX AFJKZ AGHFR AGQPQ AIIUN ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS FEDTE FGOYB HMV HVGLF HZ~ H~9 MVM NDZJH R2- SEW SPG SSZ VOH WUQ XJT XOL ~HD 7U5 8FD AFXIZ AGCQF AGRNS L7M SSH |
| ID | FETCH-LOGICAL-c331t-dbea5a294f5bfb5a6a4693bc7a621b842aa48e8f70cb1c4b78dd708751e91adc3 |
| IEDL.DBID | .~1 |
| ISSN | 0921-4526 |
| IngestDate | Sun Jul 13 04:26:37 EDT 2025 Wed Oct 01 04:19:46 EDT 2025 Thu Apr 24 23:07:47 EDT 2025 Fri Feb 23 02:32:01 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | LCAO calculations Density functional theory X-ray scattering Electronic structure |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c331t-dbea5a294f5bfb5a6a4693bc7a621b842aa48e8f70cb1c4b78dd708751e91adc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2224341537 |
| PQPubID | 2045421 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2224341537 crossref_citationtrail_10_1016_j_physb_2019_02_036 crossref_primary_10_1016_j_physb_2019_02_036 elsevier_sciencedirect_doi_10_1016_j_physb_2019_02_036 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-01 2019-05-00 20190501 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Physica. B, Condensed matter |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Dovesi, R Saunders, Roetti, Orlando, Zicovich-Wilson, Pascale, Civalleri, Doll, Harrison, Bush, D'Arco, Llunell, Causa, Neol (bib18) 2014 Cooper, Mijnarends, Shiotani, Sakai, Bansil (bib15) 2004 Zhang, Yu, Liu, Liu (bib6) 2015; 358 Zhao, Truhlar (bib24) 2008; 128 Ng, Fan (bib12) 2015; 15 Felsteiner, Pattison, Cooper (bib20) 1974; 30 Meena, Heda, Kumar, Bhatt, Mund, Ahuja (bib30) 2016; 484 Sharma, Heda, Suthar, Bhatt, Sharma, Ahuja (bib31) 2015; 104 Ouyang, Li, Quyang, Yu, Ye, Zou (bib3) 2008; 112 Cunha, Sczancoski, Nogueira, de Oliveira, Lustosa, Longo, Cavalcante (bib13) 2015; 17 Meena, Heda, Mund, Ahuja (bib29) 2015; 117 Cheng, Shao, Shao, Wei, Wu (bib2) 2009; 113 Gouveia, Sczancoski, Ferrer, Lima, Santos, Li, Santos, Longo, Cavalcante (bib9) 2014; 53 Perdew, Burke, Ernzerhof (bib25) 1996; 77 Perdew, Ruzsinszky, Csonka, Vydrov, Scuseria, Constantin, Zhou, Burke (bib23) 2008; 100 Heda, Ahuja (bib16) 2010 Santamaría-Pérez, Bandiello, Errandonea, Ruiz-Fuertes, Gomis, Sans, Manjón, Rodríguez-Hernández, Muñoz (bib4) 2013; 117 Biggs, Mendelsohn, Mann (bib21) 1975; 16 Silva, Gracia, Fabbro, dos Santos, Beltrán-Mir, Cordoncillo, Longo, Andrés (bib7) 2016; 55 da Silva Sousa, Nobre, Júnior, Sambrano, dos Reis Albuquerque, dos Santos Binda, da Costa Couceiro, Brito, Cavalcante, de Morais Chaves Santos, de Matos (bib14) 2018 Timms (bib19) 1989 Andrés, Ferrer, Gracia, Beltran, Longo, Cruvinel, Tranquilin, Longo (bib11) 2015; 32 von Barth, Hedin (bib22) 1972; 5 Ahuja, Sharma, Mathur (bib17) 2006; 244 Xu, Cao, Zhang, Cheng, Yu (bib5) 2014; 5 Xu, Cheng, Zhang, Wang, Yu, Ho (bib1) 2015; 3 . Kokalj (bib28) 2003; 28 Beltrán, Gracia, Longo, Andrés (bib10) 2014; 118 Bhamu, Dashora, Arora, Ahuja (bib33) 2012; 81 Ahuja, Sharma, Heda, Tiwari, Kumar, Meena, Bhatt (bib32) 2016; 92 Kushwaha, Uğur, Akbudak, Uğur (bib8) 2017; 704 Ahuja (10.1016/j.physb.2019.02.036_bib17) 2006; 244 Ouyang (10.1016/j.physb.2019.02.036_bib3) 2008; 112 Cooper (10.1016/j.physb.2019.02.036_bib15) 2004 Gouveia (10.1016/j.physb.2019.02.036_bib9) 2014; 53 Sharma (10.1016/j.physb.2019.02.036_bib31) 2015; 104 Perdew (10.1016/j.physb.2019.02.036_bib25) 1996; 77 Beltrán (10.1016/j.physb.2019.02.036_bib10) 2014; 118 Meena (10.1016/j.physb.2019.02.036_bib29) 2015; 117 Bhamu (10.1016/j.physb.2019.02.036_bib33) 2012; 81 Cunha (10.1016/j.physb.2019.02.036_bib13) 2015; 17 Timms (10.1016/j.physb.2019.02.036_bib19) 1989 Andrés (10.1016/j.physb.2019.02.036_bib11) 2015; 32 Santamaría-Pérez (10.1016/j.physb.2019.02.036_bib4) 2013; 117 Biggs (10.1016/j.physb.2019.02.036_bib21) 1975; 16 Heda (10.1016/j.physb.2019.02.036_bib16) 2010 da Silva Sousa (10.1016/j.physb.2019.02.036_bib14) 2018 Kokalj (10.1016/j.physb.2019.02.036_bib28) 2003; 28 Kushwaha (10.1016/j.physb.2019.02.036_bib8) 2017; 704 Dovesi (10.1016/j.physb.2019.02.036_bib18) 2014 Ng (10.1016/j.physb.2019.02.036_bib12) 2015; 15 Xu (10.1016/j.physb.2019.02.036_bib1) 2015; 3 Ahuja (10.1016/j.physb.2019.02.036_bib32) 2016; 92 Xu (10.1016/j.physb.2019.02.036_bib5) 2014; 5 von Barth (10.1016/j.physb.2019.02.036_bib22) 1972; 5 Cheng (10.1016/j.physb.2019.02.036_bib2) 2009; 113 10.1016/j.physb.2019.02.036_bib27 Zhao (10.1016/j.physb.2019.02.036_bib24) 2008; 128 10.1016/j.physb.2019.02.036_bib26 Meena (10.1016/j.physb.2019.02.036_bib30) 2016; 484 Felsteiner (10.1016/j.physb.2019.02.036_bib20) 1974; 30 Zhang (10.1016/j.physb.2019.02.036_bib6) 2015; 358 Silva (10.1016/j.physb.2019.02.036_bib7) 2016; 55 Perdew (10.1016/j.physb.2019.02.036_bib23) 2008; 100 |
| References_xml | – volume: 5 start-page: 658 year: 2014 end-page: 666 ident: bib5 publication-title: Beilstein J. Nanotechnol. – volume: 484 start-page: 1 year: 2016 end-page: 6 ident: bib30 publication-title: Physica B – volume: 104 start-page: 205 year: 2015 end-page: 211 ident: bib31 publication-title: Comput. Mater. Sci. – year: 2018 ident: bib14 publication-title: Arab. J. Chem. – volume: 17 start-page: 8207 year: 2015 end-page: 8211 ident: bib13 publication-title: CrystEngComm – year: 2004 ident: bib15 article-title: X-ray Compton Scattering – volume: 244 start-page: 419 year: 2006 end-page: 426 ident: bib17 publication-title: Nucl. Instrum. Methods B – volume: 5 start-page: 1629 year: 1972 end-page: 1642 ident: bib22 publication-title: J. Phys. C Solid State Phys. – volume: 28 start-page: 155 year: 2003 end-page: 168 ident: bib28 publication-title: Comput. Mater. Sci. – volume: 53 start-page: 5589 year: 2014 end-page: 5599 ident: bib9 publication-title: Inorg. Chem. – volume: 32 start-page: 646 year: 2015 end-page: 651 ident: bib11 publication-title: Part. Part. Syst. Char. – volume: 15 start-page: 3032 year: 2015 end-page: 3037 ident: bib12 publication-title: Cryst. Growth Des. – year: 1989 ident: bib19 article-title: Compton Scattering Studies of Spin and Momentum Densities – volume: 16 start-page: 201 year: 1975 end-page: 308 ident: bib21 publication-title: Atomic Data Nucl. Data Tables – year: 2014 ident: bib18 article-title: CRYSTAL14 User's Manual – volume: 358 start-page: 457 year: 2015 end-page: 462 ident: bib6 publication-title: Appl. Sur. Sci. – volume: 100 year: 2008 ident: bib23 publication-title: Phys. Rev. Lett. – volume: 117 start-page: 93 year: 2015 end-page: 101 ident: bib29 publication-title: Radiat. Phys. Chem. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: bib25 publication-title: Phys. Rev. Lett. – volume: 3 start-page: 20153 year: 2015 end-page: 20166 ident: bib1 publication-title: J. Mater. Chem. A – start-page: 25 year: 2010 end-page: 30 ident: bib16 publication-title: Recent Trends in Radiation Physics Research – volume: 92 start-page: 53 year: 2016 end-page: 63 ident: bib32 publication-title: J. Phys. Chem. Solid. – reference: . – volume: 118 start-page: 3724 year: 2014 end-page: 3732 ident: bib10 publication-title: J. Phys. Chem. C – volume: 55 start-page: 8961 year: 2016 end-page: 8970 ident: bib7 publication-title: Inorg. Chem. – volume: 117 start-page: 12239 year: 2013 end-page: 12248 ident: bib4 publication-title: J. Phys. Chem. C – volume: 128 year: 2008 ident: bib24 publication-title: J. Chem. Phys. – volume: 30 start-page: 537 year: 1974 end-page: 548 ident: bib20 publication-title: Philos. Mag. – volume: 81 start-page: 728 year: 2012 end-page: 734 ident: bib33 publication-title: Radiat. Phys. Chem. – volume: 113 start-page: 1764 year: 2009 end-page: 1768 ident: bib2 publication-title: J. Phys. Chem. C – volume: 704 start-page: 101 year: 2017 end-page: 108 ident: bib8 publication-title: J. Alloy. Comp. – volume: 112 start-page: 3134 year: 2008 end-page: 3141 ident: bib3 publication-title: J. Phys. Chem. C – volume: 484 start-page: 1 year: 2016 ident: 10.1016/j.physb.2019.02.036_bib30 publication-title: Physica B doi: 10.1016/j.physb.2015.12.035 – volume: 16 start-page: 201 year: 1975 ident: 10.1016/j.physb.2019.02.036_bib21 publication-title: Atomic Data Nucl. Data Tables doi: 10.1016/0092-640X(75)90030-3 – volume: 5 start-page: 658 year: 2014 ident: 10.1016/j.physb.2019.02.036_bib5 publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.5.77 – volume: 704 start-page: 101 year: 2017 ident: 10.1016/j.physb.2019.02.036_bib8 publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2017.02.055 – year: 2004 ident: 10.1016/j.physb.2019.02.036_bib15 – volume: 28 start-page: 155 year: 2003 ident: 10.1016/j.physb.2019.02.036_bib28 publication-title: Comput. Mater. Sci. doi: 10.1016/S0927-0256(03)00104-6 – start-page: 25 year: 2010 ident: 10.1016/j.physb.2019.02.036_bib16 – volume: 100 year: 2008 ident: 10.1016/j.physb.2019.02.036_bib23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.136406 – volume: 358 start-page: 457 year: 2015 ident: 10.1016/j.physb.2019.02.036_bib6 publication-title: Appl. Sur. Sci. doi: 10.1016/j.apsusc.2015.08.084 – volume: 118 start-page: 3724 year: 2014 ident: 10.1016/j.physb.2019.02.036_bib10 publication-title: J. Phys. Chem. C doi: 10.1021/jp4118024 – volume: 53 start-page: 5589 year: 2014 ident: 10.1016/j.physb.2019.02.036_bib9 publication-title: Inorg. Chem. doi: 10.1021/ic500335x – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.physb.2019.02.036_bib25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – year: 1989 ident: 10.1016/j.physb.2019.02.036_bib19 – volume: 104 start-page: 205 year: 2015 ident: 10.1016/j.physb.2019.02.036_bib31 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2015.04.001 – year: 2014 ident: 10.1016/j.physb.2019.02.036_bib18 – ident: 10.1016/j.physb.2019.02.036_bib27 – volume: 128 year: 2008 ident: 10.1016/j.physb.2019.02.036_bib24 publication-title: J. Chem. Phys. – volume: 117 start-page: 12239 year: 2013 ident: 10.1016/j.physb.2019.02.036_bib4 publication-title: J. Phys. Chem. C doi: 10.1021/jp401524s – volume: 17 start-page: 8207 year: 2015 ident: 10.1016/j.physb.2019.02.036_bib13 publication-title: CrystEngComm doi: 10.1039/C5CE01662B – volume: 32 start-page: 646 year: 2015 ident: 10.1016/j.physb.2019.02.036_bib11 publication-title: Part. Part. Syst. Char. doi: 10.1002/ppsc.201400162 – volume: 112 start-page: 3134 year: 2008 ident: 10.1016/j.physb.2019.02.036_bib3 publication-title: J. Phys. Chem. C doi: 10.1021/jp077127w – volume: 113 start-page: 1764 year: 2009 ident: 10.1016/j.physb.2019.02.036_bib2 publication-title: J. Phys. Chem. C doi: 10.1021/jp808907e – year: 2018 ident: 10.1016/j.physb.2019.02.036_bib14 publication-title: Arab. J. Chem. – volume: 5 start-page: 1629 year: 1972 ident: 10.1016/j.physb.2019.02.036_bib22 publication-title: J. Phys. C Solid State Phys. doi: 10.1088/0022-3719/5/13/012 – volume: 81 start-page: 728 year: 2012 ident: 10.1016/j.physb.2019.02.036_bib33 publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2012.04.010 – volume: 244 start-page: 419 year: 2006 ident: 10.1016/j.physb.2019.02.036_bib17 publication-title: Nucl. Instrum. Methods B doi: 10.1016/j.nimb.2005.10.011 – ident: 10.1016/j.physb.2019.02.036_bib26 – volume: 15 start-page: 3032 year: 2015 ident: 10.1016/j.physb.2019.02.036_bib12 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.5b00455 – volume: 3 start-page: 20153 year: 2015 ident: 10.1016/j.physb.2019.02.036_bib1 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA05248C – volume: 55 start-page: 8961 year: 2016 ident: 10.1016/j.physb.2019.02.036_bib7 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b01452 – volume: 92 start-page: 53 year: 2016 ident: 10.1016/j.physb.2019.02.036_bib32 publication-title: J. Phys. Chem. Solid. doi: 10.1016/j.jpcs.2016.01.016 – volume: 117 start-page: 93 year: 2015 ident: 10.1016/j.physb.2019.02.036_bib29 publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2015.08.002 – volume: 30 start-page: 537 year: 1974 ident: 10.1016/j.physb.2019.02.036_bib20 publication-title: Philos. Mag. doi: 10.1080/14786439808206579 |
| SSID | ssj0000171 |
| Score | 2.2761767 |
| Snippet | Linear combination of atomic orbitals (LCAO) method has been employed to compute the Mulliken's population (MP), energy bands, density of states (DOS), band... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 236 |
| SubjectTerms | Approximation Band gap Cesium 137 Cesium isotopes Chemical compounds Chromates Chromium Density Density functional theory Density of states Electron density profiles Electronic structure Electrons Energy bands Exchanging LCAO calculations Molybdenum Photocatalysis Silver compounds X-ray scattering |
| Title | Performance of hybrid exchange-correlation potential for photocatalytic silver chromate and molybdate: LCAO theory and Compton spectroscopy |
| URI | https://dx.doi.org/10.1016/j.physb.2019.02.036 https://www.proquest.com/docview/2224341537 |
| Volume | 560 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2135 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000171 issn: 0921-4526 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-2135 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000171 issn: 0921-4526 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2135 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000171 issn: 0921-4526 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2135 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000171 issn: 0921-4526 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWRUhwQFAWUbZUPnBcb_Nw7IRbVVGVVxeJrdSb5VfUrkoTtUHaXPgD_Gk8TgJlhXrgmGTsRB5nHtY33yD0hlHJjAv7iTVJQCjnmmSRZYQCt5oxKs59F4XPCzZf0g-rZHWGpl0tDMAqW9vf2HRvrds743Y1x-VmM_4aZMCyDRlADIGBr2CnHLoYXP0IjyikfNIFwgSkO-Yhj_GC0wMF-K7ME3d6nuZ_eqd7dto7n9lT9KSNGvGk-bBn6Mzu-ujxEZdgHz30WE59eI5-fvlTDICLHK9rqMrC9q4p8iUaGnI0EDhcFhXAhdzcbgQu10VV-AOd2r0IHzYAm8Z6vS9cXGux3Bn8rdjWCk4J3uJP08k19oWQtX8EpsVFktgXbwJJZlHW52g5e3cznZO25wLRcRxWxCgrExllNE9UrhLJpMufY6W5ZFGoUhpJSVOb5jzQKtRU8dQYDqz4oc1CaXT8AvV2xc6-RJg7CandFogCTWWUponkjOUsM0pDN_EBirq1FrolJIe-GFvRIc9uhVeQAAWJIBJOQQN0-XtQ2fBxnBZnnRLFX9tKOI9xeuCwU7lo_-qDcLEUdV4_ifmr_533Aj2CqwYyOUS9av_dvnZhTaVGft-O0IPJ-4_zxS9W7_rG |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQqIIeUHkJ2i340GPN5uHYCbfVCrS0y0MqSNwsv6JdtGwiNkjk0j_An8bjJC1FiEOPScZO5HHmYX3zDULfGJXMuLCfWJMEhHKuSRZZRihwqxmj4tx3UTg7Z6Nr-uMmuVlCw64WBmCVre1vbLq31u2dfrua_XI67f8KMmDZhgwghsDApUAr7pJDBnb4O3zBIeWzLpAmIN5RD3mQFxwfKAB4ZZ650xM1v-meXhlq731OPqH1NmzEg-bLNtCSnW-ijy_IBDfRBw_m1Ist9HT5txoAFzme1FCWhe1jU-VLNHTkaDBwuCwqwAu5ud0IXE6KqvAnOrV7EV5MATeN9eS-cIGtxXJu8F0xqxUcExzh8XBwgX0lZO0fgW1xoST21ZvAklmU9Ta6Pjm-Go5I23SB6DgOK2KUlYmMMponKleJZNIl0LHSXLIoVCmNpKSpTXMeaBVqqnhqDAda_NBmoTQ63kHL82JudxHmTkJqtweiQFMZpWkiOWM5y4zS0E58D0XdWgvdMpJDY4yZ6KBnt8IrSICCRBAJp6A99P3PoLIh5HhfnHVKFP_sK-FcxvsDe53KRftbL4QLpqhz-0nMP__vvAdodXR1Nhbj0_OfX9AaPGnwkz20XN0_2K8uxqnUvt_Dzxpx_Fs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+hybrid+exchange-correlation+potential+for+photocatalytic+silver+chromate+and+molybdate%3A+LCAO+theory+and+Compton+spectroscopy&rft.jtitle=Physica.+B%2C+Condensed+matter&rft.au=Meena%2C+Seema+Kumari&rft.au=Heda%2C+NL&rft.au=Arora%2C+Gunjan&rft.au=Meena%2C+Lekhraj&rft.date=2019-05-01&rft.pub=Elsevier+BV&rft.issn=0921-4526&rft.eissn=1873-2135&rft.volume=560&rft.spage=236&rft_id=info:doi/10.1016%2Fj.physb.2019.02.036&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-4526&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-4526&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-4526&client=summon |