Performance of hybrid exchange-correlation potential for photocatalytic silver chromate and molybdate: LCAO theory and Compton spectroscopy

Linear combination of atomic orbitals (LCAO) method has been employed to compute the Mulliken's population (MP), energy bands, density of states (DOS), band gaps and electron momentum densities (EMDs) of Ag2TMO4 (TM = Cr and Mo). The LCAO prescription has been considered within the framework of...

Full description

Saved in:
Bibliographic Details
Published inPhysica. B, Condensed matter Vol. 560; pp. 236 - 243
Main Authors Meena, Seema Kumari, Heda, N.L., Arora, Gunjan, Meena, Lekhraj, Ahuja, B.L.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.05.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0921-4526
1873-2135
DOI10.1016/j.physb.2019.02.036

Cover

Abstract Linear combination of atomic orbitals (LCAO) method has been employed to compute the Mulliken's population (MP), energy bands, density of states (DOS), band gaps and electron momentum densities (EMDs) of Ag2TMO4 (TM = Cr and Mo). The LCAO prescription has been considered within the framework of density functional theory (DFT) and a newly suggested Hartree-Fock incorporated DFT scheme namely PBESOL0. These approximations for exchange and correlation potentials have been validated by comparing the deduced EMDs with the experimental Compton profiles using 137Cs radio isotope. It is observed that PBESOL0 scheme based EMDs show better agreement with the experimental profiles than other approximations considered in the present work. The energy bands and DOS confirm the semiconducting nature of both the Ag-based oxides. In addition, the relative nature of bonding in both the iso-electronic compounds has also been compared on the basis of equal-valence-electron-density profiles and MP data, which depict that Ag2MoO4 has more ionic character than that of Ag2CrO4. •First-ever Compton profile (CP) measurements of Ag2CrO4 and Ag2MoO4.•Electronic properties and CPs using LCAO scheme and comparison with experiment.•Analysed relative nature of bonding using EVED profiles and Mulliken's population.•Validated use of hybrid HF + DFT (PBESOL0) potential to predict electronic response.
AbstractList Linear combination of atomic orbitals (LCAO) method has been employed to compute the Mulliken's population (MP), energy bands, density of states (DOS), band gaps and electron momentum densities (EMDs) of Ag2TMO4 (TM = Cr and Mo). The LCAO prescription has been considered within the framework of density functional theory (DFT) and a newly suggested Hartree-Fock incorporated DFT scheme namely PBESOL0. These approximations for exchange and correlation potentials have been validated by comparing the deduced EMDs with the experimental Compton profiles using 137Cs radio isotope. It is observed that PBESOL0 scheme based EMDs show better agreement with the experimental profiles than other approximations considered in the present work. The energy bands and DOS confirm the semiconducting nature of both the Ag-based oxides. In addition, the relative nature of bonding in both the iso-electronic compounds has also been compared on the basis of equal-valence-electron-density profiles and MP data, which depict that Ag2MoO4 has more ionic character than that of Ag2CrO4.
Linear combination of atomic orbitals (LCAO) method has been employed to compute the Mulliken's population (MP), energy bands, density of states (DOS), band gaps and electron momentum densities (EMDs) of Ag2TMO4 (TM = Cr and Mo). The LCAO prescription has been considered within the framework of density functional theory (DFT) and a newly suggested Hartree-Fock incorporated DFT scheme namely PBESOL0. These approximations for exchange and correlation potentials have been validated by comparing the deduced EMDs with the experimental Compton profiles using 137Cs radio isotope. It is observed that PBESOL0 scheme based EMDs show better agreement with the experimental profiles than other approximations considered in the present work. The energy bands and DOS confirm the semiconducting nature of both the Ag-based oxides. In addition, the relative nature of bonding in both the iso-electronic compounds has also been compared on the basis of equal-valence-electron-density profiles and MP data, which depict that Ag2MoO4 has more ionic character than that of Ag2CrO4. •First-ever Compton profile (CP) measurements of Ag2CrO4 and Ag2MoO4.•Electronic properties and CPs using LCAO scheme and comparison with experiment.•Analysed relative nature of bonding using EVED profiles and Mulliken's population.•Validated use of hybrid HF + DFT (PBESOL0) potential to predict electronic response.
Author Meena, Seema Kumari
Ahuja, B.L.
Arora, Gunjan
Heda, N.L.
Meena, Lekhraj
Author_xml – sequence: 1
  givenname: Seema Kumari
  surname: Meena
  fullname: Meena, Seema Kumari
  organization: Department of Physics, M.L. Sukhadia University, Udaipur, 313001, Rajasthan, India
– sequence: 2
  givenname: N.L.
  surname: Heda
  fullname: Heda, N.L.
  organization: Department of Pure and Applied Physics, University of Kota, Kota, 324005, Rajasthan, India
– sequence: 3
  givenname: Gunjan
  surname: Arora
  fullname: Arora, Gunjan
  organization: Department of Physics, M.L. Sukhadia University, Udaipur, 313001, Rajasthan, India
– sequence: 4
  givenname: Lekhraj
  surname: Meena
  fullname: Meena, Lekhraj
  organization: Department of Physics, M.L. Sukhadia University, Udaipur, 313001, Rajasthan, India
– sequence: 5
  givenname: B.L.
  surname: Ahuja
  fullname: Ahuja, B.L.
  email: blahuja@yahoo.com
  organization: Department of Physics, M.L. Sukhadia University, Udaipur, 313001, Rajasthan, India
BookMark eNqFkc1u1DAQgC3USmxLn6AXS5wT_JNfJA7VigLSSuVAz9bYnhCvkjjYbkWegZfG3eXEAeZijTzfzPjzFblY_IKE3HJWcsabd8dyHbeoS8F4XzJRMtm8IjvetbIQXNYXZMd6wYuqFs1rchXjkeXgLd-RX18xDD7MsBikfqDjpoOzFH-aEZbvWBgfAk6QnF_o6hMuycFEM0HX0SdvIMG0JWdodNMzBmrG4GdISGGxdPbTpm3O3tPD_u6BphF92E5Xez-vKfeMK5oUfDR-3d6QywGmiDd_zmvyeP_x2_5zcXj49GV_dyiMlDwVViPUIPpqqPWga2iganqpTQuN4LqrBEDVYTe0zGhuKt121rasa2uOPQdr5DV5e-67Bv_jCWNSR_8UljxSCSEqWfFatrmqP1eZvF4MOCjj0klECuAmxZl6ca-O6uRevbhXTKjsPrPyL3YNboaw_Yf6cKYwP_7ZYVDROMwfY13IlpT17p_8b4b1pZw
CitedBy_id crossref_primary_10_1039_D0RA02953J
crossref_primary_10_1016_j_ssc_2024_115458
crossref_primary_10_1007_s10853_019_04289_8
crossref_primary_10_1016_j_physb_2023_415129
crossref_primary_10_1016_j_msec_2020_110765
crossref_primary_10_1016_j_nuclphysbps_2023_07_015
Cites_doi 10.1016/j.physb.2015.12.035
10.1016/0092-640X(75)90030-3
10.3762/bjnano.5.77
10.1016/j.jallcom.2017.02.055
10.1016/S0927-0256(03)00104-6
10.1103/PhysRevLett.100.136406
10.1016/j.apsusc.2015.08.084
10.1021/jp4118024
10.1021/ic500335x
10.1103/PhysRevLett.77.3865
10.1016/j.commatsci.2015.04.001
10.1021/jp401524s
10.1039/C5CE01662B
10.1002/ppsc.201400162
10.1021/jp077127w
10.1021/jp808907e
10.1088/0022-3719/5/13/012
10.1016/j.radphyschem.2012.04.010
10.1016/j.nimb.2005.10.011
10.1021/acs.cgd.5b00455
10.1039/C5TA05248C
10.1021/acs.inorgchem.6b01452
10.1016/j.jpcs.2016.01.016
10.1016/j.radphyschem.2015.08.002
10.1080/14786439808206579
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV May 1, 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV May 1, 2019
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1016/j.physb.2019.02.036
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-2135
EndPage 243
ExternalDocumentID 10_1016_j_physb_2019_02_036
S0921452619301231
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
T5K
TN5
XPP
YNT
ZMT
~02
~G-
29O
6TJ
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADIYS
ADMUD
ADNMO
ADVLN
AEIPS
AFFNX
AFJKZ
AGHFR
AGQPQ
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
FEDTE
FGOYB
HMV
HVGLF
HZ~
H~9
MVM
NDZJH
R2-
SEW
SPG
SSZ
VOH
WUQ
XJT
XOL
~HD
7U5
8FD
AFXIZ
AGCQF
AGRNS
L7M
SSH
ID FETCH-LOGICAL-c331t-dbea5a294f5bfb5a6a4693bc7a621b842aa48e8f70cb1c4b78dd708751e91adc3
IEDL.DBID .~1
ISSN 0921-4526
IngestDate Sun Jul 13 04:26:37 EDT 2025
Wed Oct 01 04:19:46 EDT 2025
Thu Apr 24 23:07:47 EDT 2025
Fri Feb 23 02:32:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords LCAO calculations
Density functional theory
X-ray scattering
Electronic structure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-dbea5a294f5bfb5a6a4693bc7a621b842aa48e8f70cb1c4b78dd708751e91adc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2224341537
PQPubID 2045421
PageCount 8
ParticipantIDs proquest_journals_2224341537
crossref_citationtrail_10_1016_j_physb_2019_02_036
crossref_primary_10_1016_j_physb_2019_02_036
elsevier_sciencedirect_doi_10_1016_j_physb_2019_02_036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
2019-05-00
20190501
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Physica. B, Condensed matter
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Dovesi, R Saunders, Roetti, Orlando, Zicovich-Wilson, Pascale, Civalleri, Doll, Harrison, Bush, D'Arco, Llunell, Causa, Neol (bib18) 2014
Cooper, Mijnarends, Shiotani, Sakai, Bansil (bib15) 2004
Zhang, Yu, Liu, Liu (bib6) 2015; 358
Zhao, Truhlar (bib24) 2008; 128
Ng, Fan (bib12) 2015; 15
Felsteiner, Pattison, Cooper (bib20) 1974; 30
Meena, Heda, Kumar, Bhatt, Mund, Ahuja (bib30) 2016; 484
Sharma, Heda, Suthar, Bhatt, Sharma, Ahuja (bib31) 2015; 104
Ouyang, Li, Quyang, Yu, Ye, Zou (bib3) 2008; 112
Cunha, Sczancoski, Nogueira, de Oliveira, Lustosa, Longo, Cavalcante (bib13) 2015; 17
Meena, Heda, Mund, Ahuja (bib29) 2015; 117
Cheng, Shao, Shao, Wei, Wu (bib2) 2009; 113
Gouveia, Sczancoski, Ferrer, Lima, Santos, Li, Santos, Longo, Cavalcante (bib9) 2014; 53
Perdew, Burke, Ernzerhof (bib25) 1996; 77
Perdew, Ruzsinszky, Csonka, Vydrov, Scuseria, Constantin, Zhou, Burke (bib23) 2008; 100
Heda, Ahuja (bib16) 2010
Santamaría-Pérez, Bandiello, Errandonea, Ruiz-Fuertes, Gomis, Sans, Manjón, Rodríguez-Hernández, Muñoz (bib4) 2013; 117
Biggs, Mendelsohn, Mann (bib21) 1975; 16
Silva, Gracia, Fabbro, dos Santos, Beltrán-Mir, Cordoncillo, Longo, Andrés (bib7) 2016; 55
da Silva Sousa, Nobre, Júnior, Sambrano, dos Reis Albuquerque, dos Santos Binda, da Costa Couceiro, Brito, Cavalcante, de Morais Chaves Santos, de Matos (bib14) 2018
Timms (bib19) 1989
Andrés, Ferrer, Gracia, Beltran, Longo, Cruvinel, Tranquilin, Longo (bib11) 2015; 32
von Barth, Hedin (bib22) 1972; 5
Ahuja, Sharma, Mathur (bib17) 2006; 244
Xu, Cao, Zhang, Cheng, Yu (bib5) 2014; 5
Xu, Cheng, Zhang, Wang, Yu, Ho (bib1) 2015; 3
.
Kokalj (bib28) 2003; 28
Beltrán, Gracia, Longo, Andrés (bib10) 2014; 118
Bhamu, Dashora, Arora, Ahuja (bib33) 2012; 81
Ahuja, Sharma, Heda, Tiwari, Kumar, Meena, Bhatt (bib32) 2016; 92
Kushwaha, Uğur, Akbudak, Uğur (bib8) 2017; 704
Ahuja (10.1016/j.physb.2019.02.036_bib17) 2006; 244
Ouyang (10.1016/j.physb.2019.02.036_bib3) 2008; 112
Cooper (10.1016/j.physb.2019.02.036_bib15) 2004
Gouveia (10.1016/j.physb.2019.02.036_bib9) 2014; 53
Sharma (10.1016/j.physb.2019.02.036_bib31) 2015; 104
Perdew (10.1016/j.physb.2019.02.036_bib25) 1996; 77
Beltrán (10.1016/j.physb.2019.02.036_bib10) 2014; 118
Meena (10.1016/j.physb.2019.02.036_bib29) 2015; 117
Bhamu (10.1016/j.physb.2019.02.036_bib33) 2012; 81
Cunha (10.1016/j.physb.2019.02.036_bib13) 2015; 17
Timms (10.1016/j.physb.2019.02.036_bib19) 1989
Andrés (10.1016/j.physb.2019.02.036_bib11) 2015; 32
Santamaría-Pérez (10.1016/j.physb.2019.02.036_bib4) 2013; 117
Biggs (10.1016/j.physb.2019.02.036_bib21) 1975; 16
Heda (10.1016/j.physb.2019.02.036_bib16) 2010
da Silva Sousa (10.1016/j.physb.2019.02.036_bib14) 2018
Kokalj (10.1016/j.physb.2019.02.036_bib28) 2003; 28
Kushwaha (10.1016/j.physb.2019.02.036_bib8) 2017; 704
Dovesi (10.1016/j.physb.2019.02.036_bib18) 2014
Ng (10.1016/j.physb.2019.02.036_bib12) 2015; 15
Xu (10.1016/j.physb.2019.02.036_bib1) 2015; 3
Ahuja (10.1016/j.physb.2019.02.036_bib32) 2016; 92
Xu (10.1016/j.physb.2019.02.036_bib5) 2014; 5
von Barth (10.1016/j.physb.2019.02.036_bib22) 1972; 5
Cheng (10.1016/j.physb.2019.02.036_bib2) 2009; 113
10.1016/j.physb.2019.02.036_bib27
Zhao (10.1016/j.physb.2019.02.036_bib24) 2008; 128
10.1016/j.physb.2019.02.036_bib26
Meena (10.1016/j.physb.2019.02.036_bib30) 2016; 484
Felsteiner (10.1016/j.physb.2019.02.036_bib20) 1974; 30
Zhang (10.1016/j.physb.2019.02.036_bib6) 2015; 358
Silva (10.1016/j.physb.2019.02.036_bib7) 2016; 55
Perdew (10.1016/j.physb.2019.02.036_bib23) 2008; 100
References_xml – volume: 5
  start-page: 658
  year: 2014
  end-page: 666
  ident: bib5
  publication-title: Beilstein J. Nanotechnol.
– volume: 484
  start-page: 1
  year: 2016
  end-page: 6
  ident: bib30
  publication-title: Physica B
– volume: 104
  start-page: 205
  year: 2015
  end-page: 211
  ident: bib31
  publication-title: Comput. Mater. Sci.
– year: 2018
  ident: bib14
  publication-title: Arab. J. Chem.
– volume: 17
  start-page: 8207
  year: 2015
  end-page: 8211
  ident: bib13
  publication-title: CrystEngComm
– year: 2004
  ident: bib15
  article-title: X-ray Compton Scattering
– volume: 244
  start-page: 419
  year: 2006
  end-page: 426
  ident: bib17
  publication-title: Nucl. Instrum. Methods B
– volume: 5
  start-page: 1629
  year: 1972
  end-page: 1642
  ident: bib22
  publication-title: J. Phys. C Solid State Phys.
– volume: 28
  start-page: 155
  year: 2003
  end-page: 168
  ident: bib28
  publication-title: Comput. Mater. Sci.
– volume: 53
  start-page: 5589
  year: 2014
  end-page: 5599
  ident: bib9
  publication-title: Inorg. Chem.
– volume: 32
  start-page: 646
  year: 2015
  end-page: 651
  ident: bib11
  publication-title: Part. Part. Syst. Char.
– volume: 15
  start-page: 3032
  year: 2015
  end-page: 3037
  ident: bib12
  publication-title: Cryst. Growth Des.
– year: 1989
  ident: bib19
  article-title: Compton Scattering Studies of Spin and Momentum Densities
– volume: 16
  start-page: 201
  year: 1975
  end-page: 308
  ident: bib21
  publication-title: Atomic Data Nucl. Data Tables
– year: 2014
  ident: bib18
  article-title: CRYSTAL14 User's Manual
– volume: 358
  start-page: 457
  year: 2015
  end-page: 462
  ident: bib6
  publication-title: Appl. Sur. Sci.
– volume: 100
  year: 2008
  ident: bib23
  publication-title: Phys. Rev. Lett.
– volume: 117
  start-page: 93
  year: 2015
  end-page: 101
  ident: bib29
  publication-title: Radiat. Phys. Chem.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: bib25
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 20153
  year: 2015
  end-page: 20166
  ident: bib1
  publication-title: J. Mater. Chem. A
– start-page: 25
  year: 2010
  end-page: 30
  ident: bib16
  publication-title: Recent Trends in Radiation Physics Research
– volume: 92
  start-page: 53
  year: 2016
  end-page: 63
  ident: bib32
  publication-title: J. Phys. Chem. Solid.
– reference: .
– volume: 118
  start-page: 3724
  year: 2014
  end-page: 3732
  ident: bib10
  publication-title: J. Phys. Chem. C
– volume: 55
  start-page: 8961
  year: 2016
  end-page: 8970
  ident: bib7
  publication-title: Inorg. Chem.
– volume: 117
  start-page: 12239
  year: 2013
  end-page: 12248
  ident: bib4
  publication-title: J. Phys. Chem. C
– volume: 128
  year: 2008
  ident: bib24
  publication-title: J. Chem. Phys.
– volume: 30
  start-page: 537
  year: 1974
  end-page: 548
  ident: bib20
  publication-title: Philos. Mag.
– volume: 81
  start-page: 728
  year: 2012
  end-page: 734
  ident: bib33
  publication-title: Radiat. Phys. Chem.
– volume: 113
  start-page: 1764
  year: 2009
  end-page: 1768
  ident: bib2
  publication-title: J. Phys. Chem. C
– volume: 704
  start-page: 101
  year: 2017
  end-page: 108
  ident: bib8
  publication-title: J. Alloy. Comp.
– volume: 112
  start-page: 3134
  year: 2008
  end-page: 3141
  ident: bib3
  publication-title: J. Phys. Chem. C
– volume: 484
  start-page: 1
  year: 2016
  ident: 10.1016/j.physb.2019.02.036_bib30
  publication-title: Physica B
  doi: 10.1016/j.physb.2015.12.035
– volume: 16
  start-page: 201
  year: 1975
  ident: 10.1016/j.physb.2019.02.036_bib21
  publication-title: Atomic Data Nucl. Data Tables
  doi: 10.1016/0092-640X(75)90030-3
– volume: 5
  start-page: 658
  year: 2014
  ident: 10.1016/j.physb.2019.02.036_bib5
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.5.77
– volume: 704
  start-page: 101
  year: 2017
  ident: 10.1016/j.physb.2019.02.036_bib8
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2017.02.055
– year: 2004
  ident: 10.1016/j.physb.2019.02.036_bib15
– volume: 28
  start-page: 155
  year: 2003
  ident: 10.1016/j.physb.2019.02.036_bib28
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/S0927-0256(03)00104-6
– start-page: 25
  year: 2010
  ident: 10.1016/j.physb.2019.02.036_bib16
– volume: 100
  year: 2008
  ident: 10.1016/j.physb.2019.02.036_bib23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.136406
– volume: 358
  start-page: 457
  year: 2015
  ident: 10.1016/j.physb.2019.02.036_bib6
  publication-title: Appl. Sur. Sci.
  doi: 10.1016/j.apsusc.2015.08.084
– volume: 118
  start-page: 3724
  year: 2014
  ident: 10.1016/j.physb.2019.02.036_bib10
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4118024
– volume: 53
  start-page: 5589
  year: 2014
  ident: 10.1016/j.physb.2019.02.036_bib9
  publication-title: Inorg. Chem.
  doi: 10.1021/ic500335x
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.physb.2019.02.036_bib25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– year: 1989
  ident: 10.1016/j.physb.2019.02.036_bib19
– volume: 104
  start-page: 205
  year: 2015
  ident: 10.1016/j.physb.2019.02.036_bib31
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2015.04.001
– year: 2014
  ident: 10.1016/j.physb.2019.02.036_bib18
– ident: 10.1016/j.physb.2019.02.036_bib27
– volume: 128
  year: 2008
  ident: 10.1016/j.physb.2019.02.036_bib24
  publication-title: J. Chem. Phys.
– volume: 117
  start-page: 12239
  year: 2013
  ident: 10.1016/j.physb.2019.02.036_bib4
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp401524s
– volume: 17
  start-page: 8207
  year: 2015
  ident: 10.1016/j.physb.2019.02.036_bib13
  publication-title: CrystEngComm
  doi: 10.1039/C5CE01662B
– volume: 32
  start-page: 646
  year: 2015
  ident: 10.1016/j.physb.2019.02.036_bib11
  publication-title: Part. Part. Syst. Char.
  doi: 10.1002/ppsc.201400162
– volume: 112
  start-page: 3134
  year: 2008
  ident: 10.1016/j.physb.2019.02.036_bib3
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp077127w
– volume: 113
  start-page: 1764
  year: 2009
  ident: 10.1016/j.physb.2019.02.036_bib2
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp808907e
– year: 2018
  ident: 10.1016/j.physb.2019.02.036_bib14
  publication-title: Arab. J. Chem.
– volume: 5
  start-page: 1629
  year: 1972
  ident: 10.1016/j.physb.2019.02.036_bib22
  publication-title: J. Phys. C Solid State Phys.
  doi: 10.1088/0022-3719/5/13/012
– volume: 81
  start-page: 728
  year: 2012
  ident: 10.1016/j.physb.2019.02.036_bib33
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2012.04.010
– volume: 244
  start-page: 419
  year: 2006
  ident: 10.1016/j.physb.2019.02.036_bib17
  publication-title: Nucl. Instrum. Methods B
  doi: 10.1016/j.nimb.2005.10.011
– ident: 10.1016/j.physb.2019.02.036_bib26
– volume: 15
  start-page: 3032
  year: 2015
  ident: 10.1016/j.physb.2019.02.036_bib12
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.5b00455
– volume: 3
  start-page: 20153
  year: 2015
  ident: 10.1016/j.physb.2019.02.036_bib1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA05248C
– volume: 55
  start-page: 8961
  year: 2016
  ident: 10.1016/j.physb.2019.02.036_bib7
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b01452
– volume: 92
  start-page: 53
  year: 2016
  ident: 10.1016/j.physb.2019.02.036_bib32
  publication-title: J. Phys. Chem. Solid.
  doi: 10.1016/j.jpcs.2016.01.016
– volume: 117
  start-page: 93
  year: 2015
  ident: 10.1016/j.physb.2019.02.036_bib29
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2015.08.002
– volume: 30
  start-page: 537
  year: 1974
  ident: 10.1016/j.physb.2019.02.036_bib20
  publication-title: Philos. Mag.
  doi: 10.1080/14786439808206579
SSID ssj0000171
Score 2.2761767
Snippet Linear combination of atomic orbitals (LCAO) method has been employed to compute the Mulliken's population (MP), energy bands, density of states (DOS), band...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 236
SubjectTerms Approximation
Band gap
Cesium 137
Cesium isotopes
Chemical compounds
Chromates
Chromium
Density
Density functional theory
Density of states
Electron density profiles
Electronic structure
Electrons
Energy bands
Exchanging
LCAO calculations
Molybdenum
Photocatalysis
Silver compounds
X-ray scattering
Title Performance of hybrid exchange-correlation potential for photocatalytic silver chromate and molybdate: LCAO theory and Compton spectroscopy
URI https://dx.doi.org/10.1016/j.physb.2019.02.036
https://www.proquest.com/docview/2224341537
Volume 560
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2135
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000171
  issn: 0921-4526
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-2135
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000171
  issn: 0921-4526
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2135
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000171
  issn: 0921-4526
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2135
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000171
  issn: 0921-4526
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWRUhwQFAWUbZUPnBcb_Nw7IRbVVGVVxeJrdSb5VfUrkoTtUHaXPgD_Gk8TgJlhXrgmGTsRB5nHtY33yD0hlHJjAv7iTVJQCjnmmSRZYQCt5oxKs59F4XPCzZf0g-rZHWGpl0tDMAqW9vf2HRvrds743Y1x-VmM_4aZMCyDRlADIGBr2CnHLoYXP0IjyikfNIFwgSkO-Yhj_GC0wMF-K7ME3d6nuZ_eqd7dto7n9lT9KSNGvGk-bBn6Mzu-ujxEZdgHz30WE59eI5-fvlTDICLHK9rqMrC9q4p8iUaGnI0EDhcFhXAhdzcbgQu10VV-AOd2r0IHzYAm8Z6vS9cXGux3Bn8rdjWCk4J3uJP08k19oWQtX8EpsVFktgXbwJJZlHW52g5e3cznZO25wLRcRxWxCgrExllNE9UrhLJpMufY6W5ZFGoUhpJSVOb5jzQKtRU8dQYDqz4oc1CaXT8AvV2xc6-RJg7CandFogCTWWUponkjOUsM0pDN_EBirq1FrolJIe-GFvRIc9uhVeQAAWJIBJOQQN0-XtQ2fBxnBZnnRLFX9tKOI9xeuCwU7lo_-qDcLEUdV4_ifmr_533Aj2CqwYyOUS9av_dvnZhTaVGft-O0IPJ-4_zxS9W7_rG
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQqIIeUHkJ2i340GPN5uHYCbfVCrS0y0MqSNwsv6JdtGwiNkjk0j_An8bjJC1FiEOPScZO5HHmYX3zDULfGJXMuLCfWJMEhHKuSRZZRihwqxmj4tx3UTg7Z6Nr-uMmuVlCw64WBmCVre1vbLq31u2dfrua_XI67f8KMmDZhgwghsDApUAr7pJDBnb4O3zBIeWzLpAmIN5RD3mQFxwfKAB4ZZ650xM1v-meXhlq731OPqH1NmzEg-bLNtCSnW-ijy_IBDfRBw_m1Ist9HT5txoAFzme1FCWhe1jU-VLNHTkaDBwuCwqwAu5ud0IXE6KqvAnOrV7EV5MATeN9eS-cIGtxXJu8F0xqxUcExzh8XBwgX0lZO0fgW1xoST21ZvAklmU9Ta6Pjm-Go5I23SB6DgOK2KUlYmMMponKleJZNIl0LHSXLIoVCmNpKSpTXMeaBVqqnhqDAda_NBmoTQ63kHL82JudxHmTkJqtweiQFMZpWkiOWM5y4zS0E58D0XdWgvdMpJDY4yZ6KBnt8IrSICCRBAJp6A99P3PoLIh5HhfnHVKFP_sK-FcxvsDe53KRftbL4QLpqhz-0nMP__vvAdodXR1Nhbj0_OfX9AaPGnwkz20XN0_2K8uxqnUvt_Dzxpx_Fs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+hybrid+exchange-correlation+potential+for+photocatalytic+silver+chromate+and+molybdate%3A+LCAO+theory+and+Compton+spectroscopy&rft.jtitle=Physica.+B%2C+Condensed+matter&rft.au=Meena%2C+Seema+Kumari&rft.au=Heda%2C+NL&rft.au=Arora%2C+Gunjan&rft.au=Meena%2C+Lekhraj&rft.date=2019-05-01&rft.pub=Elsevier+BV&rft.issn=0921-4526&rft.eissn=1873-2135&rft.volume=560&rft.spage=236&rft_id=info:doi/10.1016%2Fj.physb.2019.02.036&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-4526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-4526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-4526&client=summon