Improving classification performance of sonar targets by applying general regression neural network with PCA
The remote detection of undersea mines in shallow waters using active sonar is a crucial subject required to maintain the security of important harbors and cost line areas. The discrimination sonar returns from mines and returns from rocks on the sea floor by human experts is usually difficult and v...
        Saved in:
      
    
          | Published in | Expert systems with applications Vol. 35; no. 1; pp. 472 - 475 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.07.2008
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0957-4174 1873-6793  | 
| DOI | 10.1016/j.eswa.2007.07.021 | 
Cover
| Abstract | The remote detection of undersea mines in shallow waters using active sonar is a crucial subject required to maintain the security of important harbors and cost line areas. The discrimination sonar returns from mines and returns from rocks on the sea floor by human experts is usually difficult and very heavy workload. Neural network classifiers have been widely used in classification of complex sonar signals due to its adaptive and parallel processing ability. In this paper, due to the advantages on fast learning and convergence to the optimal regression surface as the number of samples becomes very large, general regression neural network (GRNN) has been used to solve the problem of classification underwater targets. Principal component analysis (PCA) has been established as a feature extraction method to improve classification performance. Receiver operating characteristic (ROC) analysis has been applied to the neural classifier to evaluate the sensitivity and specificity of diagnostic procedures. | 
    
|---|---|
| AbstractList | The remote detection of undersea mines in shallow waters using active sonar is a crucial subject required to maintain the security of important harbors and cost line areas. The discrimination sonar returns from mines and returns from rocks on the sea floor by human experts is usually difficult and very heavy workload. Neural network classifiers have been widely used in classification of complex sonar signals due to its adaptive and parallel processing ability. In this paper, due to the advantages on fast learning and convergence to the optimal regression surface as the number of samples becomes very large, general regression neural network (GRNN) has been used to solve the problem of classification underwater targets. Principal component analysis (PCA) has been established as a feature extraction method to improve classification performance. Receiver operating characteristic (ROC) analysis has been applied to the neural classifier to evaluate the sensitivity and specificity of diagnostic procedures. | 
    
| Author | Yıldırım, Tülay Erkmen, Burcu  | 
    
| Author_xml | – sequence: 1 givenname: Burcu surname: Erkmen fullname: Erkmen, Burcu – sequence: 2 givenname: Tülay surname: Yıldırım fullname: Yıldırım, Tülay email: tulay@yildiz.edu.tr  | 
    
| BookMark | eNp9kF9LwzAUxYNMcE6_gE958q0zadqmBV9k-Gcg6IM-h9v0dmZ2SU0yx769rfPJh8GBC5fzO3DOOZlYZ5GQK87mnPHiZj3HsIN5ypicj0r5CZnyUoqkkJWYkCmrcplkXGZn5DyENWNcDt4p6Zab3rtvY1dUdxCCaY2GaJylPfrW-Q1YjdS1NDgLnkbwK4yB1nsKfd_tR26FFj101OPK45AwsBa348di3Dn_SXcmftDXxd0FOW2hC3j5d2fk_eH-bfGUPL88Lhd3z4kWgsekqYUQaV41JQhe8lLzvEplrRnWutRlWtV5KwGKQrKGNRILaJHxDEqW8aLARszI9SF3qPa1xRDVxgSNXQcW3TYoIfIik6IajOXBqL0LwWOrtIm_9aMH0ynO1DivWqtxXjXOq0alfEDTf2jvzQb8_jh0e4BwaP9t0KugDQ4LN8ajjqpx5hj-A_7YmMw | 
    
| CitedBy_id | crossref_primary_10_1016_j_eswa_2015_04_018 crossref_primary_10_1016_j_isatra_2021_03_019 crossref_primary_10_1007_s00180_012_0386_1 crossref_primary_10_1016_j_eswa_2012_02_087 crossref_primary_10_1155_2019_6250483 crossref_primary_10_17341_gazimmfd_826453 crossref_primary_10_1007_s12204_013_1454_6 crossref_primary_10_1121_10_0015136 crossref_primary_10_1016_j_eswa_2024_123495 crossref_primary_10_1109_TSMC_2019_2915950 crossref_primary_10_3390_s22062293 crossref_primary_10_3390_a15080295 crossref_primary_10_1016_j_procs_2017_12_115 crossref_primary_10_3390_app13031510 crossref_primary_10_1016_j_imavis_2009_09_011 crossref_primary_10_1155_2023_6766820 crossref_primary_10_1371_journal_pone_0120976 crossref_primary_10_3390_signals3020012 crossref_primary_10_21595_jve_2016_16623 crossref_primary_10_1016_j_cmpb_2011_07_010 crossref_primary_10_1016_j_ijhydene_2013_04_007 crossref_primary_10_1016_j_neuroimage_2013_05_108 crossref_primary_10_1080_03081079_2012_707818 crossref_primary_10_3390_rs13081486 crossref_primary_10_1016_j_dsp_2009_09_001 crossref_primary_10_1049_iet_rsn_2016_0080 crossref_primary_10_1016_j_eswa_2012_02_102 crossref_primary_10_1016_j_eswa_2024_123431 crossref_primary_10_1121_10_0026481 crossref_primary_10_3390_app13148124 crossref_primary_10_3390_ai3030044 crossref_primary_10_1016_j_scitotenv_2020_140162 crossref_primary_10_1007_s10916_010_9480_5 crossref_primary_10_1108_03684921011062755 crossref_primary_10_31548_machinery_1_2024_43 crossref_primary_10_1021_acs_jproteome_0c00871 crossref_primary_10_1016_j_neunet_2012_12_001 crossref_primary_10_1155_2014_680596 crossref_primary_10_1007_s12665_011_0973_4 crossref_primary_10_1080_02626667_2014_944525 crossref_primary_10_1109_TGRS_2020_3045649 crossref_primary_10_1016_j_apacoust_2018_11_003 crossref_primary_10_1007_s00521_018_3920_4 crossref_primary_10_1007_s00521_018_3539_5 crossref_primary_10_1109_TCI_2020_2995999 crossref_primary_10_1007_s12517_016_2770_6 crossref_primary_10_6109_jkiice_2013_17_5_1083 crossref_primary_10_1016_j_compeleceng_2013_02_008 crossref_primary_10_3390_info15020083  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2007 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2007 Elsevier Ltd | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1016/j.eswa.2007.07.021 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1873-6793 | 
    
| EndPage | 475 | 
    
| ExternalDocumentID | 10_1016_j_eswa_2007_07_021 S0957417407002667  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABKBG ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c331t-db333259d8a31818c15927bc0ebc8c829b5f7aa6670d0d7e6afe014a804166ed3 | 
    
| IEDL.DBID | AIKHN | 
    
| ISSN | 0957-4174 | 
    
| IngestDate | Sun Sep 28 00:09:25 EDT 2025 Wed Oct 01 03:51:15 EDT 2025 Thu Apr 24 22:54:44 EDT 2025 Fri Feb 23 02:27:36 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | General regression neural networks Sonar target classification Receiver operating characteristic Principal component analysis  | 
    
| Language | English | 
    
| License | https://www.elsevier.com/tdm/userlicense/1.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c331t-db333259d8a31818c15927bc0ebc8c829b5f7aa6670d0d7e6afe014a804166ed3 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23  | 
    
| PQID | 33564739 | 
    
| PQPubID | 23500 | 
    
| PageCount | 4 | 
    
| ParticipantIDs | proquest_miscellaneous_33564739 crossref_citationtrail_10_1016_j_eswa_2007_07_021 crossref_primary_10_1016_j_eswa_2007_07_021 elsevier_sciencedirect_doi_10_1016_j_eswa_2007_07_021  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2008-07-01 | 
    
| PublicationDateYYYYMMDD | 2008-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2008 text: 2008-07-01 day: 01  | 
    
| PublicationDecade | 2000 | 
    
| PublicationTitle | Expert systems with applications | 
    
| PublicationYear | 2008 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Gorman, Sejnowski (bib4) 1988; 1 (pp. 57–68). Chen, C. H. (1992). Neural networks for active sonar classification. Pattern recognition, vol. II. conference B: Pattern recognition methodology and systems. Woods, K. S., & Bowyer, K. W. (1994). Generating ROC curves for artificial neural networks. Computer-based medical systems. (pp. 316–320). Istanbul, Turkey Yegnanarayana, Chouhan, Chandra Sekhar (bib15) 1992; 1 Gorman, Sejnowski (bib3) 1988; 36 (Vol. 3) (pp. 592–595). (pp. 223–225). North Cyprus, Nicosia. Kusy, M., & Zajdel, R. (2005). Comparison of two radial function based models: support vector machine and neural network in classification of ovarian cancer data. Larkin, M. J. (1997). Optimal feature extraction techniques to improve classification performance, with application to sonar signals. Neural networks for signal processing VII. Song, W., & Shaowei, X. (1997). Robust PCA based on neural networks. Shazeer, D. J., & Bello, M. G. (1991). Minehunting with multi-layer perceptrons. Neural networks for ocean engineering, 1991 2 (pp.785–788). . Jing, Y., & El-Hawary, F. (1994). A multilayered ANN architecture for underwater target tracking. Kapanoğlu, B., & Yıldırım T., (2004). Generalized regression neural networks for underwater target classification. Specht (bib13) 1991; 6 (pp. 438 – 440). (pp.503–508). San Diego, California USA. (pp. 201–206). Soares-Filho, W., Manoel de Seixas, J.,& Pereira Caloba, L. (2001). Principal component analysis for classifying passive sonar signals. Circuits and systems, ISCAS 2001. Erkmen, Yıldırım (bib2) 2006; vol. 345 Polat, O., & Yildirim, T. (2006). Hand geometry identification without feature extraction by general regression neural network. Expert systems with applications. Article in press. Available online (pp. 64–71).  | 
    
| References_xml | – reference: Polat, O., & Yildirim, T. (2006). Hand geometry identification without feature extraction by general regression neural network. Expert systems with applications. Article in press. Available online ( – reference: (pp. 316–320). Istanbul, Turkey, – volume: 1 start-page: 75 year: 1988 end-page: 89 ident: bib4 article-title: Analysis of hidden units in a layered network trained to classify sonar targets publication-title: Neural Networks – reference: Kusy, M., & Zajdel, R. (2005). Comparison of two radial function based models: support vector machine and neural network in classification of ovarian cancer data. – reference: 2 (pp.785–788). – reference: Chen, C. H. (1992). Neural networks for active sonar classification. Pattern recognition, vol. II. conference B: Pattern recognition methodology and systems. – reference: (pp. 201–206). – reference: (Vol. 3) (pp. 592–595). – reference: Song, W., & Shaowei, X. (1997). Robust PCA based on neural networks. – reference: Jing, Y., & El-Hawary, F. (1994). A multilayered ANN architecture for underwater target tracking. – reference: , (pp. 438 – 440). – volume: 6 start-page: 568 year: 1991 end-page: 576 ident: bib13 article-title: A general regression neural network publication-title: IEEE Transactions on Neural Networks – volume: 36 start-page: 1135 year: 1988 end-page: 1140 ident: bib3 article-title: Learned classification of sonar targets using a massively parallel network publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing – reference: (pp. 57–68). – reference: Soares-Filho, W., Manoel de Seixas, J.,& Pereira Caloba, L. (2001). Principal component analysis for classifying passive sonar signals. Circuits and systems, ISCAS 2001. – reference: Larkin, M. J. (1997). Optimal feature extraction techniques to improve classification performance, with application to sonar signals. Neural networks for signal processing VII. – reference: (pp.503–508). San Diego, California USA. – volume: vol. 345 start-page: 779 year: 2006 end-page: 784 ident: bib2 article-title: Conic section function neural networks for sonar target classification and performance evaluation using ROC analysis publication-title: Lecture notes in control and information sciences – reference: & – reference: Woods, K. S., & Bowyer, K. W. (1994). Generating ROC curves for artificial neural networks. Computer-based medical systems. – reference: (pp. 223–225). North Cyprus, Nicosia. – reference: Kapanoğlu, B., & Yıldırım T., (2004). Generalized regression neural networks for underwater target classification. – reference: (pp. 64–71). – reference: Shazeer, D. J., & Bello, M. G. (1991). Minehunting with multi-layer perceptrons. Neural networks for ocean engineering, 1991, – volume: 1 start-page: 395 year: 1992 end-page: 399 ident: bib15 article-title: Sonar target recognition using radial basis function networks. Singapore ICCS/ISITA ’92 publication-title: Communications on the Move – reference: ).  | 
    
| SSID | ssj0017007 | 
    
| Score | 2.2002032 | 
    
| Snippet | The remote detection of undersea mines in shallow waters using active sonar is a crucial subject required to maintain the security of important harbors and... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 472 | 
    
| SubjectTerms | General regression neural networks Principal component analysis Receiver operating characteristic Sonar target classification  | 
    
| Title | Improving classification performance of sonar targets by applying general regression neural network with PCA | 
    
| URI | https://dx.doi.org/10.1016/j.eswa.2007.07.021 https://www.proquest.com/docview/33564739  | 
    
| Volume | 35 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_M7eLFb_HbHLxJ3dK0TXccQ5mKIuhgt5Kk6ZhIN7aJePFv970lnSjoQegpzSvlJXkfye_9AnCm8yIpIh4GiguNCUohAmWECXLJQ4v5gYoV1Tvf3Se9fnQziAc16Fa1MASr9Lbf2fSFtfYtTa_N5mQ0aj5icIDuUGJGQolEIleggf4nTevQ6Fzf9u6Xhwn4XjrKPRmQgK-dcTAvO3tTnskQn5D_5p9-WOqF-7nagDUfN7KO-7VNqNlyC9arOxmYX6Lb8LLcJWCGAmNCAi2UzyZfJQJsXDAKwafMAcFnTL8zOsqmmic2dEzUbGqHDiRbMmK9xJbSYcYZbd6yh25nB_pXl0_dXuBvVAiMEHwe5FoIgQlPnipcyzw1GMyEUpuW1SY1adjWcSGVQmW28lYubaIKizmUIpKiJLG52IV6OS7tHrCIIo0Qu-uwHaGYxhHOBdoDSSRsvL0PvNJjZjzdON168ZJVuLLnjHRP92DKjJ6Q78P5UmbiyDb-7B1Xw5N9mzIZeoM_5U6rscxwLdEBiSrt-HWWCREnkRTtg39--RBWHZyE0LxHUJ9PX-0xxixzfQIrFx_8xM_MTzhb7RU | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aD3rxLdZnDt5kbZPsbtpjKUp9FcEK3kKSzUqlbEsfiBd_uzNNtqKgByGnkCzLJJlH8s03hJyZLE_zmPFIM2EgQMlFpK2wUSYZdxAf6ERjvvN9N-08xTfPyfMSaZe5MAirDLrf6_S5tg49tSDN2qjfrz2CcwDmUEJEgoFEKpfJSpxwiRHYxccC54H8c9IT7skIh4fMGQ_ycpM3HXgMoXH2m3X6oafnxudqk6wHr5G2_I9tkSVXbJONsiIDDQd0hwwWdwTUoluMOKC56OnoK0GADnOKDviYehj4hJp3ig_ZmPFEXzwPNR27Fw-RLShyXkJP4RHjFK9u6UO7tUueri577U4U6ilEVgg2jTIjhIBwJ2toOMmsYcGV4dLYujO2YRu8aZJcag2irGf1TLpU5w4iKI0URWnqMrFHKsWwcPuExuhncBhueDOGaQbWNxOgDSRSsLFmlbBSjsoGsnGseTFQJarsVaHssQqmVNg4q5LzxZyRp9r4c3RSLo_6tmEU2II_552Wa6ngJOHziC7ccDZRQiRpLEXz4J9fPiWrnd79nbq77t4ekjUPLEFc7xGpTMczdwzey9SczHfnJzKl7d0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+classification+performance+of+sonar+targets+by+applying+general+regression+neural+network+with+PCA&rft.jtitle=Expert+systems+with+applications&rft.au=Erkmen%2C+Burcu&rft.au=Yildirim%2C+Tulay&rft.date=2008-07-01&rft.issn=0957-4174&rft.volume=35&rft.issue=1-2&rft.spage=472&rft.epage=475&rft_id=info:doi/10.1016%2Fj.eswa.2007.07.021&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |