Improving classification performance of sonar targets by applying general regression neural network with PCA

The remote detection of undersea mines in shallow waters using active sonar is a crucial subject required to maintain the security of important harbors and cost line areas. The discrimination sonar returns from mines and returns from rocks on the sea floor by human experts is usually difficult and v...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 35; no. 1; pp. 472 - 475
Main Authors Erkmen, Burcu, Yıldırım, Tülay
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2008
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2007.07.021

Cover

Abstract The remote detection of undersea mines in shallow waters using active sonar is a crucial subject required to maintain the security of important harbors and cost line areas. The discrimination sonar returns from mines and returns from rocks on the sea floor by human experts is usually difficult and very heavy workload. Neural network classifiers have been widely used in classification of complex sonar signals due to its adaptive and parallel processing ability. In this paper, due to the advantages on fast learning and convergence to the optimal regression surface as the number of samples becomes very large, general regression neural network (GRNN) has been used to solve the problem of classification underwater targets. Principal component analysis (PCA) has been established as a feature extraction method to improve classification performance. Receiver operating characteristic (ROC) analysis has been applied to the neural classifier to evaluate the sensitivity and specificity of diagnostic procedures.
AbstractList The remote detection of undersea mines in shallow waters using active sonar is a crucial subject required to maintain the security of important harbors and cost line areas. The discrimination sonar returns from mines and returns from rocks on the sea floor by human experts is usually difficult and very heavy workload. Neural network classifiers have been widely used in classification of complex sonar signals due to its adaptive and parallel processing ability. In this paper, due to the advantages on fast learning and convergence to the optimal regression surface as the number of samples becomes very large, general regression neural network (GRNN) has been used to solve the problem of classification underwater targets. Principal component analysis (PCA) has been established as a feature extraction method to improve classification performance. Receiver operating characteristic (ROC) analysis has been applied to the neural classifier to evaluate the sensitivity and specificity of diagnostic procedures.
Author Yıldırım, Tülay
Erkmen, Burcu
Author_xml – sequence: 1
  givenname: Burcu
  surname: Erkmen
  fullname: Erkmen, Burcu
– sequence: 2
  givenname: Tülay
  surname: Yıldırım
  fullname: Yıldırım, Tülay
  email: tulay@yildiz.edu.tr
BookMark eNp9kF9LwzAUxYNMcE6_gE958q0zadqmBV9k-Gcg6IM-h9v0dmZ2SU0yx769rfPJh8GBC5fzO3DOOZlYZ5GQK87mnPHiZj3HsIN5ypicj0r5CZnyUoqkkJWYkCmrcplkXGZn5DyENWNcDt4p6Zab3rtvY1dUdxCCaY2GaJylPfrW-Q1YjdS1NDgLnkbwK4yB1nsKfd_tR26FFj101OPK45AwsBa348di3Dn_SXcmftDXxd0FOW2hC3j5d2fk_eH-bfGUPL88Lhd3z4kWgsekqYUQaV41JQhe8lLzvEplrRnWutRlWtV5KwGKQrKGNRILaJHxDEqW8aLARszI9SF3qPa1xRDVxgSNXQcW3TYoIfIik6IajOXBqL0LwWOrtIm_9aMH0ynO1DivWqtxXjXOq0alfEDTf2jvzQb8_jh0e4BwaP9t0KugDQ4LN8ajjqpx5hj-A_7YmMw
CitedBy_id crossref_primary_10_1016_j_eswa_2015_04_018
crossref_primary_10_1016_j_isatra_2021_03_019
crossref_primary_10_1007_s00180_012_0386_1
crossref_primary_10_1016_j_eswa_2012_02_087
crossref_primary_10_1155_2019_6250483
crossref_primary_10_17341_gazimmfd_826453
crossref_primary_10_1007_s12204_013_1454_6
crossref_primary_10_1121_10_0015136
crossref_primary_10_1016_j_eswa_2024_123495
crossref_primary_10_1109_TSMC_2019_2915950
crossref_primary_10_3390_s22062293
crossref_primary_10_3390_a15080295
crossref_primary_10_1016_j_procs_2017_12_115
crossref_primary_10_3390_app13031510
crossref_primary_10_1016_j_imavis_2009_09_011
crossref_primary_10_1155_2023_6766820
crossref_primary_10_1371_journal_pone_0120976
crossref_primary_10_3390_signals3020012
crossref_primary_10_21595_jve_2016_16623
crossref_primary_10_1016_j_cmpb_2011_07_010
crossref_primary_10_1016_j_ijhydene_2013_04_007
crossref_primary_10_1016_j_neuroimage_2013_05_108
crossref_primary_10_1080_03081079_2012_707818
crossref_primary_10_3390_rs13081486
crossref_primary_10_1016_j_dsp_2009_09_001
crossref_primary_10_1049_iet_rsn_2016_0080
crossref_primary_10_1016_j_eswa_2012_02_102
crossref_primary_10_1016_j_eswa_2024_123431
crossref_primary_10_1121_10_0026481
crossref_primary_10_3390_app13148124
crossref_primary_10_3390_ai3030044
crossref_primary_10_1016_j_scitotenv_2020_140162
crossref_primary_10_1007_s10916_010_9480_5
crossref_primary_10_1108_03684921011062755
crossref_primary_10_31548_machinery_1_2024_43
crossref_primary_10_1021_acs_jproteome_0c00871
crossref_primary_10_1016_j_neunet_2012_12_001
crossref_primary_10_1155_2014_680596
crossref_primary_10_1007_s12665_011_0973_4
crossref_primary_10_1080_02626667_2014_944525
crossref_primary_10_1109_TGRS_2020_3045649
crossref_primary_10_1016_j_apacoust_2018_11_003
crossref_primary_10_1007_s00521_018_3920_4
crossref_primary_10_1007_s00521_018_3539_5
crossref_primary_10_1109_TCI_2020_2995999
crossref_primary_10_1007_s12517_016_2770_6
crossref_primary_10_6109_jkiice_2013_17_5_1083
crossref_primary_10_1016_j_compeleceng_2013_02_008
crossref_primary_10_3390_info15020083
ContentType Journal Article
Copyright 2007 Elsevier Ltd
Copyright_xml – notice: 2007 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2007.07.021
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 475
ExternalDocumentID 10_1016_j_eswa_2007_07_021
S0957417407002667
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c331t-db333259d8a31818c15927bc0ebc8c829b5f7aa6670d0d7e6afe014a804166ed3
IEDL.DBID AIKHN
ISSN 0957-4174
IngestDate Sun Sep 28 00:09:25 EDT 2025
Wed Oct 01 03:51:15 EDT 2025
Thu Apr 24 22:54:44 EDT 2025
Fri Feb 23 02:27:36 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords General regression neural networks
Sonar target classification
Receiver operating characteristic
Principal component analysis
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-db333259d8a31818c15927bc0ebc8c829b5f7aa6670d0d7e6afe014a804166ed3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 33564739
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_33564739
crossref_citationtrail_10_1016_j_eswa_2007_07_021
crossref_primary_10_1016_j_eswa_2007_07_021
elsevier_sciencedirect_doi_10_1016_j_eswa_2007_07_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-07-01
PublicationDateYYYYMMDD 2008-07-01
PublicationDate_xml – month: 07
  year: 2008
  text: 2008-07-01
  day: 01
PublicationDecade 2000
PublicationTitle Expert systems with applications
PublicationYear 2008
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gorman, Sejnowski (bib4) 1988; 1
(pp. 57–68).
Chen, C. H. (1992). Neural networks for active sonar classification. Pattern recognition, vol. II. conference B: Pattern recognition methodology and systems.
Woods, K. S., & Bowyer, K. W. (1994). Generating ROC curves for artificial neural networks. Computer-based medical systems.
(pp. 316–320). Istanbul, Turkey
Yegnanarayana, Chouhan, Chandra Sekhar (bib15) 1992; 1
Gorman, Sejnowski (bib3) 1988; 36
(Vol. 3) (pp. 592–595).
(pp. 223–225). North Cyprus, Nicosia.
Kusy, M., & Zajdel, R. (2005). Comparison of two radial function based models: support vector machine and neural network in classification of ovarian cancer data.
Larkin, M. J. (1997). Optimal feature extraction techniques to improve classification performance, with application to sonar signals. Neural networks for signal processing VII.
Song, W., & Shaowei, X. (1997). Robust PCA based on neural networks.
Shazeer, D. J., & Bello, M. G. (1991). Minehunting with multi-layer perceptrons. Neural networks for ocean engineering, 1991
2 (pp.785–788).
.
Jing, Y., & El-Hawary, F. (1994). A multilayered ANN architecture for underwater target tracking.
Kapanoğlu, B., & Yıldırım T., (2004). Generalized regression neural networks for underwater target classification.
Specht (bib13) 1991; 6
(pp. 438 – 440).
(pp.503–508). San Diego, California USA.
(pp. 201–206).
Soares-Filho, W., Manoel de Seixas, J.,& Pereira Caloba, L. (2001). Principal component analysis for classifying passive sonar signals. Circuits and systems, ISCAS 2001.
Erkmen, Yıldırım (bib2) 2006; vol. 345
Polat, O., & Yildirim, T. (2006). Hand geometry identification without feature extraction by general regression neural network. Expert systems with applications. Article in press. Available online
(pp. 64–71).
References_xml – reference: Polat, O., & Yildirim, T. (2006). Hand geometry identification without feature extraction by general regression neural network. Expert systems with applications. Article in press. Available online (
– reference: (pp. 316–320). Istanbul, Turkey,
– volume: 1
  start-page: 75
  year: 1988
  end-page: 89
  ident: bib4
  article-title: Analysis of hidden units in a layered network trained to classify sonar targets
  publication-title: Neural Networks
– reference: Kusy, M., & Zajdel, R. (2005). Comparison of two radial function based models: support vector machine and neural network in classification of ovarian cancer data.
– reference: 2 (pp.785–788).
– reference: Chen, C. H. (1992). Neural networks for active sonar classification. Pattern recognition, vol. II. conference B: Pattern recognition methodology and systems.
– reference: (pp. 201–206).
– reference: (Vol. 3) (pp. 592–595).
– reference: Song, W., & Shaowei, X. (1997). Robust PCA based on neural networks.
– reference: Jing, Y., & El-Hawary, F. (1994). A multilayered ANN architecture for underwater target tracking.
– reference: , (pp. 438 – 440).
– volume: 6
  start-page: 568
  year: 1991
  end-page: 576
  ident: bib13
  article-title: A general regression neural network
  publication-title: IEEE Transactions on Neural Networks
– volume: 36
  start-page: 1135
  year: 1988
  end-page: 1140
  ident: bib3
  article-title: Learned classification of sonar targets using a massively parallel network
  publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing
– reference: (pp. 57–68).
– reference: Soares-Filho, W., Manoel de Seixas, J.,& Pereira Caloba, L. (2001). Principal component analysis for classifying passive sonar signals. Circuits and systems, ISCAS 2001.
– reference: Larkin, M. J. (1997). Optimal feature extraction techniques to improve classification performance, with application to sonar signals. Neural networks for signal processing VII.
– reference: (pp.503–508). San Diego, California USA.
– volume: vol. 345
  start-page: 779
  year: 2006
  end-page: 784
  ident: bib2
  article-title: Conic section function neural networks for sonar target classification and performance evaluation using ROC analysis
  publication-title: Lecture notes in control and information sciences
– reference: &
– reference: Woods, K. S., & Bowyer, K. W. (1994). Generating ROC curves for artificial neural networks. Computer-based medical systems.
– reference: (pp. 223–225). North Cyprus, Nicosia.
– reference: Kapanoğlu, B., & Yıldırım T., (2004). Generalized regression neural networks for underwater target classification.
– reference: (pp. 64–71).
– reference: Shazeer, D. J., & Bello, M. G. (1991). Minehunting with multi-layer perceptrons. Neural networks for ocean engineering, 1991,
– volume: 1
  start-page: 395
  year: 1992
  end-page: 399
  ident: bib15
  article-title: Sonar target recognition using radial basis function networks. Singapore ICCS/ISITA ’92
  publication-title: Communications on the Move
– reference: ).
SSID ssj0017007
Score 2.2002032
Snippet The remote detection of undersea mines in shallow waters using active sonar is a crucial subject required to maintain the security of important harbors and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 472
SubjectTerms General regression neural networks
Principal component analysis
Receiver operating characteristic
Sonar target classification
Title Improving classification performance of sonar targets by applying general regression neural network with PCA
URI https://dx.doi.org/10.1016/j.eswa.2007.07.021
https://www.proquest.com/docview/33564739
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_M7eLFb_HbHLxJ3dK0TXccQ5mKIuhgt5Kk6ZhIN7aJePFv970lnSjoQegpzSvlJXkfye_9AnCm8yIpIh4GiguNCUohAmWECXLJQ4v5gYoV1Tvf3Se9fnQziAc16Fa1MASr9Lbf2fSFtfYtTa_N5mQ0aj5icIDuUGJGQolEIleggf4nTevQ6Fzf9u6Xhwn4XjrKPRmQgK-dcTAvO3tTnskQn5D_5p9-WOqF-7nagDUfN7KO-7VNqNlyC9arOxmYX6Lb8LLcJWCGAmNCAi2UzyZfJQJsXDAKwafMAcFnTL8zOsqmmic2dEzUbGqHDiRbMmK9xJbSYcYZbd6yh25nB_pXl0_dXuBvVAiMEHwe5FoIgQlPnipcyzw1GMyEUpuW1SY1adjWcSGVQmW28lYubaIKizmUIpKiJLG52IV6OS7tHrCIIo0Qu-uwHaGYxhHOBdoDSSRsvL0PvNJjZjzdON168ZJVuLLnjHRP92DKjJ6Q78P5UmbiyDb-7B1Xw5N9mzIZeoM_5U6rscxwLdEBiSrt-HWWCREnkRTtg39--RBWHZyE0LxHUJ9PX-0xxixzfQIrFx_8xM_MTzhb7RU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aD3rxLdZnDt5kbZPsbtpjKUp9FcEK3kKSzUqlbEsfiBd_uzNNtqKgByGnkCzLJJlH8s03hJyZLE_zmPFIM2EgQMlFpK2wUSYZdxAf6ERjvvN9N-08xTfPyfMSaZe5MAirDLrf6_S5tg49tSDN2qjfrz2CcwDmUEJEgoFEKpfJSpxwiRHYxccC54H8c9IT7skIh4fMGQ_ycpM3HXgMoXH2m3X6oafnxudqk6wHr5G2_I9tkSVXbJONsiIDDQd0hwwWdwTUoluMOKC56OnoK0GADnOKDviYehj4hJp3ig_ZmPFEXzwPNR27Fw-RLShyXkJP4RHjFK9u6UO7tUueri577U4U6ilEVgg2jTIjhIBwJ2toOMmsYcGV4dLYujO2YRu8aZJcag2irGf1TLpU5w4iKI0URWnqMrFHKsWwcPuExuhncBhueDOGaQbWNxOgDSRSsLFmlbBSjsoGsnGseTFQJarsVaHssQqmVNg4q5LzxZyRp9r4c3RSLo_6tmEU2II_552Wa6ngJOHziC7ccDZRQiRpLEXz4J9fPiWrnd79nbq77t4ekjUPLEFc7xGpTMczdwzey9SczHfnJzKl7d0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+classification+performance+of+sonar+targets+by+applying+general+regression+neural+network+with+PCA&rft.jtitle=Expert+systems+with+applications&rft.au=Erkmen%2C+Burcu&rft.au=Yildirim%2C+Tulay&rft.date=2008-07-01&rft.issn=0957-4174&rft.volume=35&rft.issue=1-2&rft.spage=472&rft.epage=475&rft_id=info:doi/10.1016%2Fj.eswa.2007.07.021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon