A Basic Tutorial on Novelty and Activation Functions for Music Signal Processing
In Music Information Retrieval (MIR), a general goal is to recognize times of novelty within music recordings. This includes estimating structural boundaries through the detection of changes in harmony, tempo, or instrumentation and identifying onsets of note and sound events by capturing changes in...
        Saved in:
      
    
          | Published in | Transactions of the International Society for Music Information Retrieval Vol. 7; no. 1; pp. 179 - 194 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Ubiquity Press
    
        19.09.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2514-3298 2514-3298  | 
| DOI | 10.5334/tismir.202 | 
Cover
| Abstract | In Music Information Retrieval (MIR), a general goal is to recognize times of novelty within music recordings. This includes estimating structural boundaries through the detection of changes in harmony, tempo, or instrumentation and identifying onsets of note and sound events by capturing changes in the music signal’s energy or spectral content. These tasks leverage novelty functions, which are one-dimensional, time-dependent functions characterized by sharp local maxima that indicate significant musical and acoustical changes. From a given music recording, novelty functions can be derived using a variety of methods, ranging from traditional signal-processing techniques to modern data-driven approaches, where they are often termed “activation functions.” In this tutorial, we explore the concept of novelty functions and some of their essential properties. We discuss methods to enhance these functions and improve their distinctive peak-like structures. These improvements are crucial for simplifying the identification of specific musical events using post-processing methods, from basic peak picking to more sophisticated approaches like periodicity analysis. We also assess novelty functions through commonly used metrics such as precision, recall, and F-measure but with an emphasis on error tolerance. Aimed at Bachelor’s degree and beginning Master’s degree students with basic knowledge of signal processing and mathematics, this tutorial uses illustrative figures to clarify key concepts, thereby broadening its accessibility to a wider MIR audience and enriching their comprehension of this significant subject. Furthermore, Jupyter notebooks, including Python source code for the core algorithms and audio examples that allow for reproducing the tutorial’s figures, are provided at https://github.com/groupmm/edu_novfct. | 
    
|---|---|
| AbstractList | In Music Information Retrieval (MIR), a general goal is to recognize times of novelty within music recordings. This includes estimating structural boundaries through the detection of changes in harmony, tempo, or instrumentation and identifying onsets of note and sound events by capturing changes in the music signal’s energy or spectral content. These tasks leverage novelty functions, which are one-dimensional, time-dependent functions characterized by sharp local maxima that indicate significant musical and acoustical changes. From a given music recording, novelty functions can be derived using a variety of methods, ranging from traditional signal-processing techniques to modern data-driven approaches, where they are often termed “activation functions.” In this tutorial, we explore the concept of novelty functions and some of their essential properties. We discuss methods to enhance these functions and improve their distinctive peak-like structures. These improvements are crucial for simplifying the identification of specific musical events using post-processing methods, from basic peak picking to more sophisticated approaches like periodicity analysis. We also assess novelty functions through commonly used metrics such as precision, recall, and F-measure but with an emphasis on error tolerance. Aimed at Bachelor’s degree and beginning Master’s degree students with basic knowledge of signal processing and mathematics, this tutorial uses illustrative figures to clarify key concepts, thereby broadening its accessibility to a wider MIR audience and enriching their comprehension of this significant subject. Furthermore, Jupyter notebooks, including Python source code for the core algorithms and audio examples that allow for reproducing the tutorial’s figures, are provided at https://github.com/groupmm/edu_novfct. | 
    
| Author | Chiu, Ching-Yu Müller, Meinard  | 
    
| Author_xml | – sequence: 1 givenname: Meinard orcidid: 0000-0001-6062-7524 surname: Müller fullname: Müller, Meinard – sequence: 2 givenname: Ching-Yu orcidid: 0000-0002-3671-8474 surname: Chiu fullname: Chiu, Ching-Yu  | 
    
| BookMark | eNp9kF9LwzAUxYMoOOde_AR9VjrTJm2axzmcDqYOnM_hNn9GRpeMpJvs29tZEZ98uofDOT-45wqdO-80QjcZHheE0PvWxq0N4xznZ2iQFxlNSc6r8z_6Eo1i3GCM86ooK0IHaDlJHiBamaz2rQ8WmsS75NUfdNMeE3AqmcjWHqC1nT3bO3kSMTE-JC_7U-3drl1XWgYvdYzWra_RhYEm6tHPHaKP2eNq-pwu3p7m08kilYRkbaqo0hwYxSUuVFaAJpJVnBktS8pUnTPKca01yRiVGVG8NBkoUlUF1jXwvCZDNO-5ysNG7ILdQjgKD1Z8Gz6sBYTWykYLprvfDecly4ECh7rk2DCDASptCCcd665n7d0Ojp_QNL_ADIvTtqLfVnTbdunbPi2DjzFo81_4C_rvfgo | 
    
| Cites_doi | 10.1109/MSP.2018.2869928 10.1250/ast.29.247 10.1109/TSA.2005.858509 10.1109/TSA.2005.851998 10.1038/s41592-019-0686-2 10.1080/09298210701653344 10.1109/TASL.2010.2096216 10.1109/TSA.2005.854090 10.5334/tismir.131 10.1007/BF00058655 10.1109/TSA.2002.800560 10.1109/MSP.2021.3052181  | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION ADTOC UNPAY DOA  | 
    
| DOI | 10.5334/tismir.202 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Music | 
    
| EISSN | 2514-3298 | 
    
| EndPage | 194 | 
    
| ExternalDocumentID | oai_doaj_org_article_7e329f99672a4a9ab690f7f0aa8ef393 10.5334/tismir.202 10_5334_tismir_202  | 
    
| GroupedDBID | .0O AAFWJ AAPRH AAYXX ACCQO ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION FRA GROUPED_DOAJ IAO ITC M~E OK1 ADTOC H13 UNPAY  | 
    
| ID | FETCH-LOGICAL-c331t-d4de9a740605d15ae3c7897fec647db27490bee3174c13d96f1ad38850eba92b3 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2514-3298 | 
    
| IngestDate | Fri Oct 03 12:31:19 EDT 2025 Mon Sep 15 08:24:44 EDT 2025 Wed Oct 29 21:25:23 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c331t-d4de9a740605d15ae3c7897fec647db27490bee3174c13d96f1ad38850eba92b3 | 
    
| ORCID | 0000-0002-3671-8474 0000-0001-6062-7524  | 
    
| OpenAccessLink | https://doaj.org/article/7e329f99672a4a9ab690f7f0aa8ef393 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7e329f99672a4a9ab690f7f0aa8ef393 unpaywall_primary_10_5334_tismir_202 crossref_primary_10_5334_tismir_202  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-09-19 | 
    
| PublicationDateYYYYMMDD | 2024-09-19 | 
    
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-19 day: 19  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Transactions of the International Society for Music Information Retrieval | 
    
| PublicationYear | 2024 | 
    
| Publisher | Ubiquity Press | 
    
| Publisher_xml | – name: Ubiquity Press | 
    
| References | (key20240924060607_r4) 2019 (key20240924060607_r13) 2000 (key20240924060607_r9) 2008; 29 (key20240924060607_r32) 2014 (key20240924060607_r1) 2022; 5 (key20240924060607_r27) 2021; 38 (key20240924060607_r29) 2010 (key20240924060607_r16) 2011; 19 (key20240924060607_r3) 2019; 36 (key20240924060607_r20) 2015 (key20240924060607_r21) 2019 (key20240924060607_r28) 2016 (key20240924060607_r36) 2014 (key20240924060607_r24) 2021 (key20240924060607_r37) 2020; 17 (key20240924060607_r2) 2005; 13 (key20240924060607_r22) 2008 (key20240924060607_r6) 2016 (key20240924060607_r15) 2006; 14 (key20240924060607_r33) 2014 (key20240924060607_r23) 2015 (key20240924060607_r25) 2019 (key20240924060607_r14) 2002 (key20240924060607_r31) 2014 (key20240924060607_r5) 2013 (key20240924060607_r10) 2007; 36 (key20240924060607_r30) 2019 (key20240924060607_r26) 2021; 6 (key20240924060607_r11) 2010 (key20240924060607_r19) 2006; 14 (key20240924060607_r17) 2010 (key20240924060607_r18) 2005 (key20240924060607_r7) 2012 (key20240924060607_r12) 2014 (key20240924060607_r34) 2011 (key20240924060607_r8) 1996; 24 (key20240924060607_r35) 2002; 10  | 
    
| References_xml | – start-page: 72 volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) year: 2015 ident: key20240924060607_r20 article-title: An efficient state-space model for joint tempo and meter tracking – start-page: 625 volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) year: 2010 ident: key20240924060607_r29 article-title: Audiobased music structure analysis – volume: 36 start-page: 20 issue: 1 year: 2019 ident: key20240924060607_r3 article-title: Automatic music transcription: An overview publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2018.2869928 – volume: 6 start-page: 1 issue: (63) year: 2021 ident: key20240924060607_r26 article-title: libfmp: A Python package for fundamentals of music processing publication-title: Journal of Open Source Software (JOSS) – start-page: 452 volume-title: Proceedings of the IEEE International Conference on Multimedia and Expo (ICME) year: 2000 ident: key20240924060607_r13 article-title: Automatic audio segmentation using a measure of audio novelty – start-page: 649 volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) year: 2010 ident: key20240924060607_r17 article-title: What makes beat tracking difficult? A case study on Chopin Mazurkas – start-page: 417 volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) year: 2014 ident: key20240924060607_r36 article-title: Boundary detection in music structure analysis using convolutional neural networks – volume: 29 start-page: 247 issue: 4 year: 2008 ident: key20240924060607_r9 article-title: The music information retrieval evaluation exchange (2005–2007): A window into music information retrieval research publication-title: Acoustical Science and Technology doi: 10.1250/ast.29.247 – start-page: 367 volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) year: 2014 ident: key20240924060607_r31 article-title: mir_eval: A transparent implementation of common MIR metrics – volume: 14 start-page: 1832 issue: 5 year: 2006 ident: key20240924060607_r15 article-title: An experimental comparison of audio tempo induction algorithms publication-title: IEEE Transactions on Audio, Speech, and Language Processing doi: 10.1109/TSA.2005.858509 – start-page: 589 volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) year: 2010 ident: key20240924060607_r11 article-title: Universal onset detection with bidirectional long short-term memory neural networks – start-page: 573 volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) year: 2019 ident: key20240924060607_r25 article-title: FMP Notebooks: Educational material for teaching and learning fundamentals of music processing – volume: 13 start-page: 1035 issue: 5 year: 2005 ident: key20240924060607_r2 article-title: A tutorial on onset detection in music signals publication-title: IEEE Transactions on Speech and Audio Processing doi: 10.1109/TSA.2005.851998 – start-page: 245 volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) year: 2014 ident: key20240924060607_r12 article-title: On inter-rater agreement in audio music similarity – start-page: 6979 volume-title: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) year: 2014 ident: key20240924060607_r32 article-title: Improved musical onset detection with convolutional neural networks – volume: 17 start-page: 261 year: 2020 ident: key20240924060607_r37 article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python publication-title: Nature Methods doi: 10.1038/s41592-019-0686-2 – start-page: 49 volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) year: 2012 ident: key20240924060607_r7 article-title: Evaluating the online capabilities of onset detection methods – volume: 36 start-page: 51 issue: 1 year: 2007 ident: key20240924060607_r10 article-title: Beat tracking by dynamic programming publication-title: Journal of New Music Research doi: 10.1080/09298210701653344 – volume: 19 start-page: 1688 issue: 6 year: 2011 ident: key20240924060607_r16 article-title: Extracting predominant local pulse information from music recordings publication-title: IEEE Transactions on Audio, Speech, and Language Processing doi: 10.1109/TASL.2010.2096216 – start-page: 1174 volume-title: Proceedings of the ACM International Conference on Multimedia (ACM-MM) year: 2016 ident: key20240924060607_r6 article-title: madmom: A new Python audio & music signal processing library – volume: 14 start-page: 342 issue: 1 year: 2006 ident: key20240924060607_r19 article-title: Analysis of the meter of acoustic musical signals publication-title: IEEE Transactions on Audio, Speech, and Language Processing doi: 10.1109/TSA.2005.854090 – volume-title: Fundamentals of music processing using Python and Jupyter Notebooks year: 2021 ident: key20240924060607_r24 – volume-title: Proceedings of the International Confenference on Digital Audio Effects (DAFx) year: 2013 ident: key20240924060607_r5 article-title: Maximum filter vibrato suppression for onset detections – start-page: 547 volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) year: 2016 ident: key20240924060607_r28 article-title: Systematic exploration of computational music structure research – volume: 5 start-page: 156 issue: 1 year: 2022 ident: key20240924060607_r1 article-title: JSD: A dataset for structure analysis in jazz music publication-title: Transactions of the International Society for Music Information Retrieval (TISMIR) doi: 10.5334/tismir.131 – start-page: 555 volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) year: 2011 ident: key20240924060607_r34 article-title: Design and creation of a large-scale database of structural annotations – volume-title: Proceedings of the AES International Conference on Semantic Audio year: 2014 ident: key20240924060607_r33 article-title: Creating research corpora for the computational study of music: The case of the CompMusic project – start-page: 375 volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) year: 2008 ident: key20240924060607_r22 article-title: Towards quantitative measures of evaluating song segmentation – volume: 24 start-page: 123 issue: 2 year: 1996 ident: key20240924060607_r8 article-title: Bagging predictors publication-title: Machine Learning doi: 10.1007/BF00058655 – start-page: 18 volume-title: Proceedings of the Python Science Conference year: 2015 ident: key20240924060607_r23 article-title: Librosa: Audio and music signal analysis in Python – start-page: 144 volume-title: Proceedings of the Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE) year: 2019 ident: key20240924060607_r21 article-title: Long-distance detection of bioacoustic events with per-channel energy normalization – start-page: 54 volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) year: 2019 ident: key20240924060607_r30 article-title: 20 years of automatic chord recognition from audio – start-page: 99 volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) year: 2019 ident: key20240924060607_r4 article-title: mirdata: Software for reproducible usage of datasets – volume: 10 start-page: 293 issue: 5 year: 2002 ident: key20240924060607_r35 article-title: Musical genre classification of audio signals publication-title: IEEE Transactions on Speech and Audio Processing doi: 10.1109/TSA.2002.800560 – volume: 38 start-page: 73 issue: 3 year: 2021 ident: key20240924060607_r27 article-title: Interactive learning of signal processing through music: Making Fourier analysis concrete for students publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2021.3052181 – start-page: 66 volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) year: 2005 ident: key20240924060607_r18 article-title: Symbolic representation of musical chords: A proposed syntax for text annotations – start-page: 287 volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) year: 2002 ident: key20240924060607_r14 article-title: RWC music database: Popular, classical and jazz music databases  | 
    
| SSID | ssj0002856834 | 
    
| Score | 2.2784705 | 
    
| Snippet | In Music Information Retrieval (MIR), a general goal is to recognize times of novelty within music recordings. This includes estimating structural boundaries... | 
    
| SourceID | doaj unpaywall crossref  | 
    
| SourceType | Open Website Open Access Repository Index Database  | 
    
| StartPage | 179 | 
    
| SubjectTerms | activation function audio beat downbeat music novelty function onset structure  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA0yH9QHP1BxfhFwr9W2SZrkcRPHEByCG-hTSZpEhrMb2in6671ZuzkVxZc-lPSDc9Pce2juOQg1KDeKJCIJHItdQB3jgdaUBSYUFPizNTTx3chX3aTTp5e37HYJzfwJF37f-x7Rs2Lw_Djwsp2wyi4nDMrtGlrud6-bd940DpJ9QGIpStnRbxd8STRTPf41tDLJx-rtVQ2HC0mkvfHZilPuHXk4nRT6NHv_qcz4-_ttovWqhMTNMuZbaMnm2-i6iVsKEMc9L0oAkwqPctwdvdhh8YZVbnAzmxmZ4Tbksul0w1Cx4qnTM74Z3PubVn0DkM92UL990TvvBJVbQpAREhWBocZKxSFBh8xETFmScSG5s1kCAdHAPmWorYV6gWYRMTJxkTJECBZarWSsyS6q5aPc7iFsmeAydoJ4FyMBBC7KgK8KGoVCxrAs1dHJDNp0XIpipEAmPCJpiUgKiNRRy6M-H-GFrKcnAMC0-i5SbiGADkgXjxVVUmlg6467UClhHZGkjhrzmP3xrP3_DTtAq3Ckfr9HJA9RrXia2CMoKgp9XE2rDxuby9w priority: 102 providerName: Unpaywall  | 
    
| Title | A Basic Tutorial on Novelty and Activation Functions for Music Signal Processing | 
    
| URI | http://doi.org/10.5334/tismir.202 https://doaj.org/article/7e329f99672a4a9ab690f7f0aa8ef393  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 7 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2514-3298 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002856834 issn: 2514-3298 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2514-3298 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002856834 issn: 2514-3298 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVHFC databaseName: Ubiquity Partner Network - Journals customDbUrl: eissn: 2514-3298 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002856834 issn: 2514-3298 databaseCode: .0O dateStart: 20180904 isFulltext: true titleUrlDefault: https://www.ubiquitypress.com/ providerName: Ubiquity Press Ltd.  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEB20HtSD-In1owT0unZ3k2ySYxVLEayCFuppyW4SqdSt6Kr03zvZbaVe9OJtCcskvBmYeSHzBuCUCaNpIpPA8dgFzHERZBnjgQklQ_5sDUt8N_J1P-kN2NWQDxdGffk3YbU8cA1cW1gaK4dVuYg100pnSOeccKHW0jqqKp3PUKoFMvVUXRnxRFJW65H6btN2OXp7HnkB0PhHBqqE-tdh9b140dNPPR4vZJfuJmzMykLSqY-zBUu22IaVagjzDtx2yLnGL3LvBQcwYMikIP3Jhx2XU6ILQzr5fEgZ6WKeqkKJYDVKKgPkbvTojc96AjBX7cKge3l_0QtmkxCCnNKoDAwzVmmByTfkJuLa0lxIJZzNEwQ7Q2apwsxarAVYHlGjEhdpQ6Xkoc20ijO6B41iUth9IJZLoWInqZ9QJJGcRTlyUckiBBGBlE04maOTvtSCFykSBY9hWmOYIoZNOPfAff_hRaqrBXRdOnNd-pfrmnD6Dfsvex38x16HsIammH_pEakjaJSv7_YYy4kya8HyWXjTquKnBSuD_m3n4QujT8tK | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA0yH9QHP1BxfhFwr9W2SZrkcRPHEByCG-hTSZpEhrMb2in6671ZuzkVxZc-lPSDc9Pce2juOQg1KDeKJCIJHItdQB3jgdaUBSYUFPizNTTx3chX3aTTp5e37HYJzfwJF37f-x7Rs2Lw_Djwsp2wyi4nDMrtGlrud6-bd940DpJ9QGIpStnRbxd8STRTPf41tDLJx-rtVQ2HC0mkvfHZilPuHXk4nRT6NHv_qcz4-_ttovWqhMTNMuZbaMnm2-i6iVsKEMc9L0oAkwqPctwdvdhh8YZVbnAzmxmZ4Tbksul0w1Cx4qnTM74Z3PubVn0DkM92UL990TvvBJVbQpAREhWBocZKxSFBh8xETFmScSG5s1kCAdHAPmWorYV6gWYRMTJxkTJECBZarWSsyS6q5aPc7iFsmeAydoJ4FyMBBC7KgK8KGoVCxrAs1dHJDNp0XIpipEAmPCJpiUgKiNRRy6M-H-GFrKcnAMC0-i5SbiGADkgXjxVVUmlg6467UClhHZGkjhrzmP3xrP3_DTtAq3Ckfr9HJA9RrXia2CMoKgp9XE2rDxuby9w | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Basic+Tutorial+on+Novelty+and+Activation+Functions+for+Music+Signal+Processing&rft.jtitle=Transactions+of+the+International+Society+for+Music+Information+Retrieval&rft.au=Meinard+M%C3%BCller&rft.au=Ching-Yu+Chiu&rft.date=2024-09-19&rft.pub=Ubiquity+Press&rft.eissn=2514-3298&rft.volume=7&rft.issue=1&rft.spage=179%E2%80%93194&rft.epage=179%E2%80%93194&rft_id=info:doi/10.5334%2Ftismir.202&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7e329f99672a4a9ab690f7f0aa8ef393 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2514-3298&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2514-3298&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2514-3298&client=summon |