A Basic Tutorial on Novelty and Activation Functions for Music Signal Processing

In Music Information Retrieval (MIR), a general goal is to recognize times of novelty within music recordings. This includes estimating structural boundaries through the detection of changes in harmony, tempo, or instrumentation and identifying onsets of note and sound events by capturing changes in...

Full description

Saved in:
Bibliographic Details
Published inTransactions of the International Society for Music Information Retrieval Vol. 7; no. 1; pp. 179 - 194
Main Authors Müller, Meinard, Chiu, Ching-Yu
Format Journal Article
LanguageEnglish
Published Ubiquity Press 19.09.2024
Subjects
Online AccessGet full text
ISSN2514-3298
2514-3298
DOI10.5334/tismir.202

Cover

Abstract In Music Information Retrieval (MIR), a general goal is to recognize times of novelty within music recordings. This includes estimating structural boundaries through the detection of changes in harmony, tempo, or instrumentation and identifying onsets of note and sound events by capturing changes in the music signal’s energy or spectral content. These tasks leverage novelty functions, which are one-dimensional, time-dependent functions characterized by sharp local maxima that indicate significant musical and acoustical changes. From a given music recording, novelty functions can be derived using a variety of methods, ranging from traditional signal-processing techniques to modern data-driven approaches, where they are often termed “activation functions.” In this tutorial, we explore the concept of novelty functions and some of their essential properties. We discuss methods to enhance these functions and improve their distinctive peak-like structures. These improvements are crucial for simplifying the identification of specific musical events using post-processing methods, from basic peak picking to more sophisticated approaches like periodicity analysis. We also assess novelty functions through commonly used metrics such as precision, recall, and F-measure but with an emphasis on error tolerance. Aimed at Bachelor’s degree and beginning Master’s degree students with basic knowledge of signal processing and mathematics, this tutorial uses illustrative figures to clarify key concepts, thereby broadening its accessibility to a wider MIR audience and enriching their comprehension of this significant subject. Furthermore, Jupyter notebooks, including Python source code for the core algorithms and audio examples that allow for reproducing the tutorial’s figures, are provided at https://github.com/groupmm/edu_novfct.
AbstractList In Music Information Retrieval (MIR), a general goal is to recognize times of novelty within music recordings. This includes estimating structural boundaries through the detection of changes in harmony, tempo, or instrumentation and identifying onsets of note and sound events by capturing changes in the music signal’s energy or spectral content. These tasks leverage novelty functions, which are one-dimensional, time-dependent functions characterized by sharp local maxima that indicate significant musical and acoustical changes. From a given music recording, novelty functions can be derived using a variety of methods, ranging from traditional signal-processing techniques to modern data-driven approaches, where they are often termed “activation functions.” In this tutorial, we explore the concept of novelty functions and some of their essential properties. We discuss methods to enhance these functions and improve their distinctive peak-like structures. These improvements are crucial for simplifying the identification of specific musical events using post-processing methods, from basic peak picking to more sophisticated approaches like periodicity analysis. We also assess novelty functions through commonly used metrics such as precision, recall, and F-measure but with an emphasis on error tolerance. Aimed at Bachelor’s degree and beginning Master’s degree students with basic knowledge of signal processing and mathematics, this tutorial uses illustrative figures to clarify key concepts, thereby broadening its accessibility to a wider MIR audience and enriching their comprehension of this significant subject. Furthermore, Jupyter notebooks, including Python source code for the core algorithms and audio examples that allow for reproducing the tutorial’s figures, are provided at https://github.com/groupmm/edu_novfct.
Author Chiu, Ching-Yu
Müller, Meinard
Author_xml – sequence: 1
  givenname: Meinard
  orcidid: 0000-0001-6062-7524
  surname: Müller
  fullname: Müller, Meinard
– sequence: 2
  givenname: Ching-Yu
  orcidid: 0000-0002-3671-8474
  surname: Chiu
  fullname: Chiu, Ching-Yu
BookMark eNp9kF9LwzAUxYMoOOde_AR9VjrTJm2axzmcDqYOnM_hNn9GRpeMpJvs29tZEZ98uofDOT-45wqdO-80QjcZHheE0PvWxq0N4xznZ2iQFxlNSc6r8z_6Eo1i3GCM86ooK0IHaDlJHiBamaz2rQ8WmsS75NUfdNMeE3AqmcjWHqC1nT3bO3kSMTE-JC_7U-3drl1XWgYvdYzWra_RhYEm6tHPHaKP2eNq-pwu3p7m08kilYRkbaqo0hwYxSUuVFaAJpJVnBktS8pUnTPKca01yRiVGVG8NBkoUlUF1jXwvCZDNO-5ysNG7ILdQjgKD1Z8Gz6sBYTWykYLprvfDecly4ECh7rk2DCDASptCCcd665n7d0Ojp_QNL_ADIvTtqLfVnTbdunbPi2DjzFo81_4C_rvfgo
Cites_doi 10.1109/MSP.2018.2869928
10.1250/ast.29.247
10.1109/TSA.2005.858509
10.1109/TSA.2005.851998
10.1038/s41592-019-0686-2
10.1080/09298210701653344
10.1109/TASL.2010.2096216
10.1109/TSA.2005.854090
10.5334/tismir.131
10.1007/BF00058655
10.1109/TSA.2002.800560
10.1109/MSP.2021.3052181
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.5334/tismir.202
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Music
EISSN 2514-3298
EndPage 194
ExternalDocumentID oai_doaj_org_article_7e329f99672a4a9ab690f7f0aa8ef393
10.5334/tismir.202
10_5334_tismir_202
GroupedDBID .0O
AAFWJ
AAPRH
AAYXX
ACCQO
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
FRA
GROUPED_DOAJ
IAO
ITC
M~E
OK1
ADTOC
H13
UNPAY
ID FETCH-LOGICAL-c331t-d4de9a740605d15ae3c7897fec647db27490bee3174c13d96f1ad38850eba92b3
IEDL.DBID DOA
ISSN 2514-3298
IngestDate Fri Oct 03 12:31:19 EDT 2025
Mon Sep 15 08:24:44 EDT 2025
Wed Oct 29 21:25:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-d4de9a740605d15ae3c7897fec647db27490bee3174c13d96f1ad38850eba92b3
ORCID 0000-0002-3671-8474
0000-0001-6062-7524
OpenAccessLink https://doaj.org/article/7e329f99672a4a9ab690f7f0aa8ef393
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_7e329f99672a4a9ab690f7f0aa8ef393
unpaywall_primary_10_5334_tismir_202
crossref_primary_10_5334_tismir_202
PublicationCentury 2000
PublicationDate 2024-09-19
PublicationDateYYYYMMDD 2024-09-19
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-19
  day: 19
PublicationDecade 2020
PublicationTitle Transactions of the International Society for Music Information Retrieval
PublicationYear 2024
Publisher Ubiquity Press
Publisher_xml – name: Ubiquity Press
References (key20240924060607_r4) 2019
(key20240924060607_r13) 2000
(key20240924060607_r9) 2008; 29
(key20240924060607_r32) 2014
(key20240924060607_r1) 2022; 5
(key20240924060607_r27) 2021; 38
(key20240924060607_r29) 2010
(key20240924060607_r16) 2011; 19
(key20240924060607_r3) 2019; 36
(key20240924060607_r20) 2015
(key20240924060607_r21) 2019
(key20240924060607_r28) 2016
(key20240924060607_r36) 2014
(key20240924060607_r24) 2021
(key20240924060607_r37) 2020; 17
(key20240924060607_r2) 2005; 13
(key20240924060607_r22) 2008
(key20240924060607_r6) 2016
(key20240924060607_r15) 2006; 14
(key20240924060607_r33) 2014
(key20240924060607_r23) 2015
(key20240924060607_r25) 2019
(key20240924060607_r14) 2002
(key20240924060607_r31) 2014
(key20240924060607_r5) 2013
(key20240924060607_r10) 2007; 36
(key20240924060607_r30) 2019
(key20240924060607_r26) 2021; 6
(key20240924060607_r11) 2010
(key20240924060607_r19) 2006; 14
(key20240924060607_r17) 2010
(key20240924060607_r18) 2005
(key20240924060607_r7) 2012
(key20240924060607_r12) 2014
(key20240924060607_r34) 2011
(key20240924060607_r8) 1996; 24
(key20240924060607_r35) 2002; 10
References_xml – start-page: 72
  volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)
  year: 2015
  ident: key20240924060607_r20
  article-title: An efficient state-space model for joint tempo and meter tracking
– start-page: 625
  volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)
  year: 2010
  ident: key20240924060607_r29
  article-title: Audiobased music structure analysis
– volume: 36
  start-page: 20
  issue: 1
  year: 2019
  ident: key20240924060607_r3
  article-title: Automatic music transcription: An overview
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2018.2869928
– volume: 6
  start-page: 1
  issue: (63)
  year: 2021
  ident: key20240924060607_r26
  article-title: libfmp: A Python package for fundamentals of music processing
  publication-title: Journal of Open Source Software (JOSS)
– start-page: 452
  volume-title: Proceedings of the IEEE International Conference on Multimedia and Expo (ICME)
  year: 2000
  ident: key20240924060607_r13
  article-title: Automatic audio segmentation using a measure of audio novelty
– start-page: 649
  volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)
  year: 2010
  ident: key20240924060607_r17
  article-title: What makes beat tracking difficult? A case study on Chopin Mazurkas
– start-page: 417
  volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)
  year: 2014
  ident: key20240924060607_r36
  article-title: Boundary detection in music structure analysis using convolutional neural networks
– volume: 29
  start-page: 247
  issue: 4
  year: 2008
  ident: key20240924060607_r9
  article-title: The music information retrieval evaluation exchange (2005–2007): A window into music information retrieval research
  publication-title: Acoustical Science and Technology
  doi: 10.1250/ast.29.247
– start-page: 367
  volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)
  year: 2014
  ident: key20240924060607_r31
  article-title: mir_eval: A transparent implementation of common MIR metrics
– volume: 14
  start-page: 1832
  issue: 5
  year: 2006
  ident: key20240924060607_r15
  article-title: An experimental comparison of audio tempo induction algorithms
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TSA.2005.858509
– start-page: 589
  volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)
  year: 2010
  ident: key20240924060607_r11
  article-title: Universal onset detection with bidirectional long short-term memory neural networks
– start-page: 573
  volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)
  year: 2019
  ident: key20240924060607_r25
  article-title: FMP Notebooks: Educational material for teaching and learning fundamentals of music processing
– volume: 13
  start-page: 1035
  issue: 5
  year: 2005
  ident: key20240924060607_r2
  article-title: A tutorial on onset detection in music signals
  publication-title: IEEE Transactions on Speech and Audio Processing
  doi: 10.1109/TSA.2005.851998
– start-page: 245
  volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)
  year: 2014
  ident: key20240924060607_r12
  article-title: On inter-rater agreement in audio music similarity
– start-page: 6979
  volume-title: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
  year: 2014
  ident: key20240924060607_r32
  article-title: Improved musical onset detection with convolutional neural networks
– volume: 17
  start-page: 261
  year: 2020
  ident: key20240924060607_r37
  article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python
  publication-title: Nature Methods
  doi: 10.1038/s41592-019-0686-2
– start-page: 49
  volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)
  year: 2012
  ident: key20240924060607_r7
  article-title: Evaluating the online capabilities of onset detection methods
– volume: 36
  start-page: 51
  issue: 1
  year: 2007
  ident: key20240924060607_r10
  article-title: Beat tracking by dynamic programming
  publication-title: Journal of New Music Research
  doi: 10.1080/09298210701653344
– volume: 19
  start-page: 1688
  issue: 6
  year: 2011
  ident: key20240924060607_r16
  article-title: Extracting predominant local pulse information from music recordings
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASL.2010.2096216
– start-page: 1174
  volume-title: Proceedings of the ACM International Conference on Multimedia (ACM-MM)
  year: 2016
  ident: key20240924060607_r6
  article-title: madmom: A new Python audio & music signal processing library
– volume: 14
  start-page: 342
  issue: 1
  year: 2006
  ident: key20240924060607_r19
  article-title: Analysis of the meter of acoustic musical signals
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TSA.2005.854090
– volume-title: Fundamentals of music processing using Python and Jupyter Notebooks
  year: 2021
  ident: key20240924060607_r24
– volume-title: Proceedings of the International Confenference on Digital Audio Effects (DAFx)
  year: 2013
  ident: key20240924060607_r5
  article-title: Maximum filter vibrato suppression for onset detections
– start-page: 547
  volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)
  year: 2016
  ident: key20240924060607_r28
  article-title: Systematic exploration of computational music structure research
– volume: 5
  start-page: 156
  issue: 1
  year: 2022
  ident: key20240924060607_r1
  article-title: JSD: A dataset for structure analysis in jazz music
  publication-title: Transactions of the International Society for Music Information Retrieval (TISMIR)
  doi: 10.5334/tismir.131
– start-page: 555
  volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)
  year: 2011
  ident: key20240924060607_r34
  article-title: Design and creation of a large-scale database of structural annotations
– volume-title: Proceedings of the AES International Conference on Semantic Audio
  year: 2014
  ident: key20240924060607_r33
  article-title: Creating research corpora for the computational study of music: The case of the CompMusic project
– start-page: 375
  volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)
  year: 2008
  ident: key20240924060607_r22
  article-title: Towards quantitative measures of evaluating song segmentation
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: key20240924060607_r8
  article-title: Bagging predictors
  publication-title: Machine Learning
  doi: 10.1007/BF00058655
– start-page: 18
  volume-title: Proceedings of the Python Science Conference
  year: 2015
  ident: key20240924060607_r23
  article-title: Librosa: Audio and music signal analysis in Python
– start-page: 144
  volume-title: Proceedings of the Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE)
  year: 2019
  ident: key20240924060607_r21
  article-title: Long-distance detection of bioacoustic events with per-channel energy normalization
– start-page: 54
  volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)
  year: 2019
  ident: key20240924060607_r30
  article-title: 20 years of automatic chord recognition from audio
– start-page: 99
  volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)
  year: 2019
  ident: key20240924060607_r4
  article-title: mirdata: Software for reproducible usage of datasets
– volume: 10
  start-page: 293
  issue: 5
  year: 2002
  ident: key20240924060607_r35
  article-title: Musical genre classification of audio signals
  publication-title: IEEE Transactions on Speech and Audio Processing
  doi: 10.1109/TSA.2002.800560
– volume: 38
  start-page: 73
  issue: 3
  year: 2021
  ident: key20240924060607_r27
  article-title: Interactive learning of signal processing through music: Making Fourier analysis concrete for students
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2021.3052181
– start-page: 66
  volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)
  year: 2005
  ident: key20240924060607_r18
  article-title: Symbolic representation of musical chords: A proposed syntax for text annotations
– start-page: 287
  volume-title: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)
  year: 2002
  ident: key20240924060607_r14
  article-title: RWC music database: Popular, classical and jazz music databases
SSID ssj0002856834
Score 2.2784705
Snippet In Music Information Retrieval (MIR), a general goal is to recognize times of novelty within music recordings. This includes estimating structural boundaries...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 179
SubjectTerms activation function
audio
beat
downbeat
music
novelty function
onset
structure
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA0yH9QHP1BxfhFwr9W2SZrkcRPHEByCG-hTSZpEhrMb2in6671ZuzkVxZc-lPSDc9Pce2juOQg1KDeKJCIJHItdQB3jgdaUBSYUFPizNTTx3chX3aTTp5e37HYJzfwJF37f-x7Rs2Lw_Djwsp2wyi4nDMrtGlrud6-bd940DpJ9QGIpStnRbxd8STRTPf41tDLJx-rtVQ2HC0mkvfHZilPuHXk4nRT6NHv_qcz4-_ttovWqhMTNMuZbaMnm2-i6iVsKEMc9L0oAkwqPctwdvdhh8YZVbnAzmxmZ4Tbksul0w1Cx4qnTM74Z3PubVn0DkM92UL990TvvBJVbQpAREhWBocZKxSFBh8xETFmScSG5s1kCAdHAPmWorYV6gWYRMTJxkTJECBZarWSsyS6q5aPc7iFsmeAydoJ4FyMBBC7KgK8KGoVCxrAs1dHJDNp0XIpipEAmPCJpiUgKiNRRy6M-H-GFrKcnAMC0-i5SbiGADkgXjxVVUmlg6467UClhHZGkjhrzmP3xrP3_DTtAq3Ckfr9HJA9RrXia2CMoKgp9XE2rDxuby9w
  priority: 102
  providerName: Unpaywall
Title A Basic Tutorial on Novelty and Activation Functions for Music Signal Processing
URI http://doi.org/10.5334/tismir.202
https://doaj.org/article/7e329f99672a4a9ab690f7f0aa8ef393
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2514-3298
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002856834
  issn: 2514-3298
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2514-3298
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002856834
  issn: 2514-3298
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVHFC
  databaseName: Ubiquity Partner Network - Journals
  customDbUrl:
  eissn: 2514-3298
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002856834
  issn: 2514-3298
  databaseCode: .0O
  dateStart: 20180904
  isFulltext: true
  titleUrlDefault: https://www.ubiquitypress.com/
  providerName: Ubiquity Press Ltd.
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEB20HtSD-In1owT0unZ3k2ySYxVLEayCFuppyW4SqdSt6Kr03zvZbaVe9OJtCcskvBmYeSHzBuCUCaNpIpPA8dgFzHERZBnjgQklQ_5sDUt8N_J1P-kN2NWQDxdGffk3YbU8cA1cW1gaK4dVuYg100pnSOeccKHW0jqqKp3PUKoFMvVUXRnxRFJW65H6btN2OXp7HnkB0PhHBqqE-tdh9b140dNPPR4vZJfuJmzMykLSqY-zBUu22IaVagjzDtx2yLnGL3LvBQcwYMikIP3Jhx2XU6ILQzr5fEgZ6WKeqkKJYDVKKgPkbvTojc96AjBX7cKge3l_0QtmkxCCnNKoDAwzVmmByTfkJuLa0lxIJZzNEwQ7Q2apwsxarAVYHlGjEhdpQ6Xkoc20ijO6B41iUth9IJZLoWInqZ9QJJGcRTlyUckiBBGBlE04maOTvtSCFykSBY9hWmOYIoZNOPfAff_hRaqrBXRdOnNd-pfrmnD6Dfsvex38x16HsIammH_pEakjaJSv7_YYy4kya8HyWXjTquKnBSuD_m3n4QujT8tK
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA0yH9QHP1BxfhFwr9W2SZrkcRPHEByCG-hTSZpEhrMb2in6671ZuzkVxZc-lPSDc9Pce2juOQg1KDeKJCIJHItdQB3jgdaUBSYUFPizNTTx3chX3aTTp5e37HYJzfwJF37f-x7Rs2Lw_Djwsp2wyi4nDMrtGlrud6-bd940DpJ9QGIpStnRbxd8STRTPf41tDLJx-rtVQ2HC0mkvfHZilPuHXk4nRT6NHv_qcz4-_ttovWqhMTNMuZbaMnm2-i6iVsKEMc9L0oAkwqPctwdvdhh8YZVbnAzmxmZ4Tbksul0w1Cx4qnTM74Z3PubVn0DkM92UL990TvvBJVbQpAREhWBocZKxSFBh8xETFmScSG5s1kCAdHAPmWorYV6gWYRMTJxkTJECBZarWSsyS6q5aPc7iFsmeAydoJ4FyMBBC7KgK8KGoVCxrAs1dHJDNp0XIpipEAmPCJpiUgKiNRRy6M-H-GFrKcnAMC0-i5SbiGADkgXjxVVUmlg6467UClhHZGkjhrzmP3xrP3_DTtAq3Ckfr9HJA9RrXia2CMoKgp9XE2rDxuby9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Basic+Tutorial+on+Novelty+and+Activation+Functions+for+Music+Signal+Processing&rft.jtitle=Transactions+of+the+International+Society+for+Music+Information+Retrieval&rft.au=Meinard+M%C3%BCller&rft.au=Ching-Yu+Chiu&rft.date=2024-09-19&rft.pub=Ubiquity+Press&rft.eissn=2514-3298&rft.volume=7&rft.issue=1&rft.spage=179%E2%80%93194&rft.epage=179%E2%80%93194&rft_id=info:doi/10.5334%2Ftismir.202&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7e329f99672a4a9ab690f7f0aa8ef393
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2514-3298&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2514-3298&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2514-3298&client=summon