Climate Change Sentiment Analysis Using Domain Specific Bidirectional Encoder Representations From Transformers

Climate change's impact on human health poses unprecedented and diverse challenges. Unless proactive measures based on solid evidence are implemented, these threats will likely escalate and continue to endanger human well-being. The escalating advancements in information and communication techn...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 114912 - 114922
Main Authors Anoop, V. S., Krishnan, T. K. Ajay, Daud, Ali, Banjar, Ameen, Bukhari, Amal
Format Journal Article
LanguageEnglish
Published IEEE 2024
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2024.3441310

Cover

Abstract Climate change's impact on human health poses unprecedented and diverse challenges. Unless proactive measures based on solid evidence are implemented, these threats will likely escalate and continue to endanger human well-being. The escalating advancements in information and communication technologies have facilitated the widespread availability and utilization of social media platforms. Individuals utilize platforms such as Twitter and Facebook to express their opinions, thoughts, and critiques on diverse subjects, encompassing the pressing issue of climate change. The proliferation of climate change-related content on social media necessitates comprehensive analysis to glean meaningful insights. This paper employs natural language processing (NLP) techniques to analyze climate change discourse and quantify the sentiment of climate change-related tweets. We collected a total number of 5506 tweets for the period of January 2022 and February 2023 and manually labeled them to make the dataset for this experiment. ClimateBERT, a pre-trained model fine-tuned specifically on the climate change domain was used to generate the context vectors. Several machine learning algorithms with different feature encoding techniques, such as TF-IDF and BERT, have been implemented to classify user sentiments. When comparing the performance of the classifiers using different evaluation metrics such as precision, recall, accuracy, and f-measure, the ClimateBERT + Random Forest model is found to be outperforming all the other baselines with an accuracy of 90.22%, recall of 85.22%, and an f-measure of 85.47%. The findings from this experiment unearth valuable insights into public sentiment and the entities associated with climate change discourse. Policymakers, researchers, and organizations can leverage such analyses to understand public perceptions, identify influential actors, and devise informed strategies to address climate change challenges.
AbstractList Climate change's impact on human health poses unprecedented and diverse challenges. Unless proactive measures based on solid evidence are implemented, these threats will likely escalate and continue to endanger human well-being. The escalating advancements in information and communication technologies have facilitated the widespread availability and utilization of social media platforms. Individuals utilize platforms such as Twitter and Facebook to express their opinions, thoughts, and critiques on diverse subjects, encompassing the pressing issue of climate change. The proliferation of climate change-related content on social media necessitates comprehensive analysis to glean meaningful insights. This paper employs natural language processing (NLP) techniques to analyze climate change discourse and quantify the sentiment of climate change-related tweets. We collected a total number of 5506 tweets for the period of January 2022 and February 2023 and manually labeled them to make the dataset for this experiment. ClimateBERT, a pre-trained model fine-tuned specifically on the climate change domain was used to generate the context vectors. Several machine learning algorithms with different feature encoding techniques, such as TF-IDF and BERT, have been implemented to classify user sentiments. When comparing the performance of the classifiers using different evaluation metrics such as precision, recall, accuracy, and f-measure, the ClimateBERT + Random Forest model is found to be outperforming all the other baselines with an accuracy of 90.22%, recall of 85.22%, and an f-measure of 85.47%. The findings from this experiment unearth valuable insights into public sentiment and the entities associated with climate change discourse. Policymakers, researchers, and organizations can leverage such analyses to understand public perceptions, identify influential actors, and devise informed strategies to address climate change challenges.
Author Anoop, V. S.
Krishnan, T. K. Ajay
Bukhari, Amal
Daud, Ali
Banjar, Ameen
Author_xml – sequence: 1
  givenname: V. S.
  orcidid: 0000-0001-6673-6932
  surname: Anoop
  fullname: Anoop, V. S.
  organization: NLP for Social Good Laboratory, School of Digital Sciences, Kerala University of Digital Sciences, Innovation and Technology, Thiruvananthapuram, India
– sequence: 2
  givenname: T. K. Ajay
  surname: Krishnan
  fullname: Krishnan, T. K. Ajay
  organization: NLP for Social Good Laboratory, School of Digital Sciences, Kerala University of Digital Sciences, Innovation and Technology, Thiruvananthapuram, India
– sequence: 3
  givenname: Ali
  orcidid: 0000-0002-8284-6354
  surname: Daud
  fullname: Daud, Ali
  email: alimsdb@gmail.com
  organization: Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
– sequence: 4
  givenname: Ameen
  orcidid: 0000-0002-0871-5153
  surname: Banjar
  fullname: Banjar, Ameen
  organization: Department of Information Systems and Technology, College of Computer Science and Engineering (CCSE), University of Jeddah, Jeddah, Saudi Arabia
– sequence: 5
  givenname: Amal
  orcidid: 0000-0003-4888-6253
  surname: Bukhari
  fullname: Bukhari, Amal
  organization: Department of Information Systems and Technology, College of Computer Science and Engineering (CCSE), University of Jeddah, Jeddah, Saudi Arabia
BookMark eNpNUctqIzEQFCELyTr5gs1BP2CvXqPRHL2zzgMCgTg5ix6px1HwSEaaS_5-5Tgs6UN3U91VUNRPch5TREJ-cbbinHW_132_2W5Xggm1kkpxydkZuRRcd0vZSH3-bb8g16W8s1qmQk17SVK_DxPMSPs3iDukW4xzmGqj6wj7jxIKfS0h7ujfNEGIdHtAF8bg6J_gQ0Y3h1T_6Ca65DHTZzxkLJUOx0OhtzlN9CVDLGPKE-ZyRX6MsC94_TUX5PV289LfLx-f7h769ePSScnnpVeG80FzZQZtQAjNHW8BOyUa7Y1jXGsvXGdgBC-E1Ew1OHglzOgaqO7kgjycdH2Cd3vI1WT-sAmC_QRS3lnIc3B7tKY1AuTolOZatU6B7JiXreR6FIPHoWrJk5bLqZSM4389zuwxAnuKwB4jsF8RVNbNiRUQ8RtDS8GVkP8AnKCFHA
CODEN IAECCG
Cites_doi 10.1007/978-981-19-0105-8_54
10.1007/s10439-023-03171-8
10.1016/j.puhe.2023.02.018
10.1007/s13369-021-06227-w
10.1007/978-3-031-36402-0_13
10.1007/978-3-030-91010-5_10
10.32604/cmc.2021.014226
10.1038/s41558-022-01377-7
10.1007/978-3-030-36841-8_5
10.14569/IJACSA.2022.0131189
10.1007/978-981-19-9331-2_15
10.1007/978-981-16-7618-5_20
10.1515/jisys-2017-0225
10.1016/j.nlp.2023.100026
10.1016/j.ipm.2023.103538
10.1007/978-981-19-9331-2_17
10.1007/s11356-023-25138-x
10.1007/s10462-023-10583-4
10.1145/3548772
10.1007/s13278-022-01014-3
10.1016/j.eswa.2023.122162
10.1007/978-3-031-37940-6_17
10.1177/19401612221106405
10.3390/a16050221
10.1080/0144929X.2022.2156387
10.1177/01650254231186332
10.1109/TCE.2023.3326953
10.3390/su14084723
10.1109/ACCESS.2019.2905101
10.1609/icwsm.v17i1.22194
10.1016/j.jenvp.2024.102287
10.1007/s10462-023-10651-9
10.1609/aaai.v38i21.30356
10.1038/s41558-023-01686-5
10.1007/s13280-021-01577-z
10.2307/270787
10.4018/IJSWIS.2017040106
10.1007/s10584-023-03578-1
10.1109/IC3SIS54991.2022.9885494
10.1016/j.aci.2019.11.003
10.1145/3543873.3587324
10.1016/j.joclim.2022.100201
10.1007/s11042-022-13428-4
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOA
DOI 10.1109/ACCESS.2024.3441310
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 114922
ExternalDocumentID oai_doaj_org_article_8782a3fc461647c4a390d37316f2bdeb
10_1109_ACCESS_2024_3441310
10632142
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c331t-d4811b6148b68a2261c17ae94256d8c0166d2c98afad2236045ebd428fc5a0083
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:21:29 EDT 2025
Tue Jul 01 03:02:45 EDT 2025
Wed Aug 27 02:03:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-d4811b6148b68a2261c17ae94256d8c0166d2c98afad2236045ebd428fc5a0083
ORCID 0000-0003-4888-6253
0000-0002-8284-6354
0000-0001-6673-6932
0000-0002-0871-5153
OpenAccessLink https://doaj.org/article/8782a3fc461647c4a390d37316f2bdeb
PageCount 11
ParticipantIDs ieee_primary_10632142
crossref_primary_10_1109_ACCESS_2024_3441310
doaj_primary_oai_doaj_org_article_8782a3fc461647c4a390d37316f2bdeb
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
Varini (ref46) 2020
Fard (ref18) 2022
ref24
ref23
ref45
ref26
ref48
ref25
ref20
ref42
ref41
ref22
ref21
ref43
Webersinke (ref47) 2021
ref28
Vaghefi (ref44)
ref27
ref29
ref8
ref7
ref9
ref4
Ceylan (ref15) 2022
ref3
ref6
ref5
ref40
References_xml – ident: ref32
  doi: 10.1007/978-981-19-0105-8_54
– year: 2022
  ident: ref18
  article-title: CliMedBERT: A pre-trained language model for climate and health-related text
  publication-title: arXiv:2212.00689
– ident: ref13
  doi: 10.1007/s10439-023-03171-8
– ident: ref8
  doi: 10.1016/j.puhe.2023.02.018
– year: 2021
  ident: ref47
  article-title: ClimateBert: A pretrained language model for climate-related text
  publication-title: arXiv:2110.12010
– ident: ref4
  doi: 10.1007/s13369-021-06227-w
– year: 2020
  ident: ref46
  article-title: ClimaText: A dataset for climate change topic detection
  publication-title: arXiv:2012.00483
– ident: ref9
  doi: 10.1007/978-3-031-36402-0_13
– ident: ref40
  doi: 10.1007/978-3-030-91010-5_10
– ident: ref11
  doi: 10.32604/cmc.2021.014226
– ident: ref24
  doi: 10.1038/s41558-022-01377-7
– ident: ref10
  doi: 10.1007/978-3-030-36841-8_5
– ident: ref41
  doi: 10.14569/IJACSA.2022.0131189
– year: 2022
  ident: ref15
  article-title: Application of natural language processing to unstructured data: A case study of climate change
– ident: ref23
  doi: 10.1007/978-981-19-9331-2_15
– ident: ref45
  doi: 10.1007/978-981-16-7618-5_20
– ident: ref7
  doi: 10.1515/jisys-2017-0225
– ident: ref27
  doi: 10.1016/j.nlp.2023.100026
– ident: ref33
  doi: 10.1016/j.ipm.2023.103538
– ident: ref22
  doi: 10.1007/978-981-19-9331-2_17
– ident: ref2
  doi: 10.1007/s11356-023-25138-x
– ident: ref26
  doi: 10.1007/s10462-023-10583-4
– ident: ref1
  doi: 10.1145/3548772
– ident: ref34
  doi: 10.1007/s13278-022-01014-3
– ident: ref48
  doi: 10.1016/j.eswa.2023.122162
– ident: ref6
  doi: 10.1007/978-3-031-37940-6_17
– ident: ref16
  doi: 10.1177/19401612221106405
– ident: ref14
  doi: 10.3390/a16050221
– ident: ref5
  doi: 10.1080/0144929X.2022.2156387
– ident: ref38
  doi: 10.1177/01650254231186332
– ident: ref30
  doi: 10.1109/TCE.2023.3326953
– ident: ref39
  doi: 10.3390/su14084723
– start-page: 1
  volume-title: Proc. NeurIPS Workshop Tackling Climate Change With Mach. Learn.
  ident: ref44
  article-title: Deep climate change: A dataset and adaptive domain pre-trained language models for climate change related tasks
– ident: ref19
  doi: 10.1109/ACCESS.2019.2905101
– ident: ref43
  doi: 10.1609/icwsm.v17i1.22194
– ident: ref37
  doi: 10.1016/j.jenvp.2024.102287
– ident: ref20
  doi: 10.1007/s10462-023-10651-9
– ident: ref25
  doi: 10.1609/aaai.v38i21.30356
– ident: ref31
  doi: 10.1038/s41558-023-01686-5
– ident: ref35
  doi: 10.1007/s13280-021-01577-z
– ident: ref29
  doi: 10.2307/270787
– ident: ref21
  doi: 10.4018/IJSWIS.2017040106
– ident: ref36
  doi: 10.1007/s10584-023-03578-1
– ident: ref42
  doi: 10.1109/IC3SIS54991.2022.9885494
– ident: ref3
  doi: 10.1016/j.aci.2019.11.003
– ident: ref17
  doi: 10.1145/3543873.3587324
– ident: ref12
  doi: 10.1016/j.joclim.2022.100201
– ident: ref28
  doi: 10.1007/s11042-022-13428-4
SSID ssj0000816957
Score 2.3480504
Snippet Climate change's impact on human health poses unprecedented and diverse challenges. Unless proactive measures based on solid evidence are implemented, these...
SourceID doaj
crossref
ieee
SourceType Open Website
Index Database
Publisher
StartPage 114912
SubjectTerms Bidirectional control
Climate change
climateBERT
Encoders
Human factors
Natural language processing
public discourse
Sentiment analysis
Social networking (online)
User experience
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDBa6nrrDunUdlm4ddOhxzqJHZPnYpg2KAeuhD6A3Q6IkINhqF1ly2a8fKTlFOmBAb4Zg2LJJmh9p8iNjJ7VUPkRZV1EJwABFu8qmVFdgjU_WeiEzieuPK3N5p7_fT--HZvXcCxNjzMVncUyH-V9-6GFNqTK0cENzdfCL-wr1rDRrPSVUaIJEM60HZiExab6dzmb4EBgDSj1W6PYVtclueZ9M0v9sqkp2KvN9drXZTqkl-Tler_wY_vzD1Pji_b5lbwZ4yU-LPrxjO7E7YK-3SAffs372a4EwNfLSWMBvqF6ILsQ3BCU81xHw8_7BLTqeJ9SnBfCzRfF_OXnILzrqhl_y61xKO3Qwdb_5fNk_8NsNHEZwecju5he3s8tqGLtQgVJiVQVthfBEEOqNdQjPBIjaxQat2wQLiBFNkNBYl1xAcGEQFEYfMIxJMHUE6T6w3a7v4kfGoTExJGOSBNAgA4ZLTgudkpXg6yhH7OtGHO1jYddoc1QyadoivZak1w7SG7EzEtnTqUSNnRfwrbeDpbUWMY9TCbQhqjTQTjWToGhAV5Koln7EDklSW_crQjr6z_ontkd7KGmXz2x3tVzHYwQiK_8lK-BfU2jb6A
  priority: 102
  providerName: IEEE
Title Climate Change Sentiment Analysis Using Domain Specific Bidirectional Encoder Representations From Transformers
URI https://ieeexplore.ieee.org/document/10632142
https://doaj.org/article/8782a3fc461647c4a390d37316f2bdeb
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQjyLKo_LASGjtuI4ztqFVhQQDtFK3yE-pEk1QKf-fs52iMLGwRlHs3CW-7zvdfYfQXUZTZSzNEpsSDQSFyUQ4lyVacOWEUIQGEdfnFz5fsqfVaNUa9eVrwqI8cDTcQEAIk6nTjHvlK80kkHST-nlLjsIqyp--w3zYIlPhDBaE56OskRkiw3wwLgp4IyCElD2kgAFS3zPbCkVBsf_XiJUQYWYn6LiBhngct3SKDmx1ho5agoHnqC7e1wAxLY5NAfjN1_r4_B7ei4vgUAOAH-sNUH4cpsu7tcaTdYxdIfGHp5XvZN_i11AG23QfVZ94tq03eLGHsgAMu2g5my6KedKMTEh0mpJdYpggRHlxT8WFBGhFNMmkzeHP5EZowHfcUJ0L6aQBYMAB0FllgII4PZIejl2gTlVX9hJhnXNrHAcza800NUB1JCPMOUG1yiztofu99cqPqIxRBkYxzMto7NIbu2yM3UMTb-GfW72sdbgAzi4bZ5d_ObuHut4_rfW4H7REr_7j4dfo0G845lduUGe3_bK3gDh2qh8-rn5oDvwGne7SuA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELbQcgAOPBdRnj5wJKV-1HGOu2WrArs9QFfaW2SPbamCTVBpL_x6Zux0VZCQuEVWlDgZO_PNZL5vGHtbS-VDlHUVlQAMULSrbEp1Bdb4ZK0XMou4XizN4lJ_uppeDWT1zIWJMebiszimw_wvP_Swo1QZ7nBDfXXwi3t7imGFLXStm5QK9ZBopvWgLSQmzfuT2QwfA6NAqccKHb8iouyB_8ky_X_0VcluZf6ALfcTKtUk38a7rR_Dr7-0Gv97xg_Z_QFg8pOyIh6xW7F7zO4dyA4-Yf3s-xqBauSFWsC_UsUQXYjvJUp4riTgH_prt-547lGf1sBP18UD5vQhP-uID7_hX3Ix7cBh6n7y-aa_5qs9IEZ4ecwu52er2aIaGi9UoJTYVkFbITxJhHpjHQI0AaJ2scH9bYIFRIkmSGisSy4gvDAIC6MPGMgkmDoCdU_ZUdd38Rnj0JgYkjFJAmiQAQMmp4VOyUrwdZQj9m5vjvZH0ddoc1wyadpivZas1w7WG7FTMtnNqSSOnQfwrbfDXmstoh6nEmhDYmmgnWomQVGLriRxYfoROyZLHdyvGOn5P8bfsDuL1cV5e_5x-fkFu0vzKUmYl-xou9nFVwhLtv51Xoy_AQyA3zs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climate+Change+Sentiment+Analysis+Using+Domain+Specific+Bidirectional+Encoder+Representations+From+Transformers&rft.jtitle=IEEE+access&rft.au=Anoop%2C+V.+S.&rft.au=Krishnan%2C+T.+K.+Ajay&rft.au=Daud%2C+Ali&rft.au=Banjar%2C+Ameen&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=114912&rft.epage=114922&rft_id=info:doi/10.1109%2FACCESS.2024.3441310&rft.externalDocID=10632142
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon