Climate Change Sentiment Analysis Using Domain Specific Bidirectional Encoder Representations From Transformers
Climate change's impact on human health poses unprecedented and diverse challenges. Unless proactive measures based on solid evidence are implemented, these threats will likely escalate and continue to endanger human well-being. The escalating advancements in information and communication techn...
Saved in:
Published in | IEEE access Vol. 12; pp. 114912 - 114922 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2024.3441310 |
Cover
Abstract | Climate change's impact on human health poses unprecedented and diverse challenges. Unless proactive measures based on solid evidence are implemented, these threats will likely escalate and continue to endanger human well-being. The escalating advancements in information and communication technologies have facilitated the widespread availability and utilization of social media platforms. Individuals utilize platforms such as Twitter and Facebook to express their opinions, thoughts, and critiques on diverse subjects, encompassing the pressing issue of climate change. The proliferation of climate change-related content on social media necessitates comprehensive analysis to glean meaningful insights. This paper employs natural language processing (NLP) techniques to analyze climate change discourse and quantify the sentiment of climate change-related tweets. We collected a total number of 5506 tweets for the period of January 2022 and February 2023 and manually labeled them to make the dataset for this experiment. ClimateBERT, a pre-trained model fine-tuned specifically on the climate change domain was used to generate the context vectors. Several machine learning algorithms with different feature encoding techniques, such as TF-IDF and BERT, have been implemented to classify user sentiments. When comparing the performance of the classifiers using different evaluation metrics such as precision, recall, accuracy, and f-measure, the ClimateBERT + Random Forest model is found to be outperforming all the other baselines with an accuracy of 90.22%, recall of 85.22%, and an f-measure of 85.47%. The findings from this experiment unearth valuable insights into public sentiment and the entities associated with climate change discourse. Policymakers, researchers, and organizations can leverage such analyses to understand public perceptions, identify influential actors, and devise informed strategies to address climate change challenges. |
---|---|
AbstractList | Climate change's impact on human health poses unprecedented and diverse challenges. Unless proactive measures based on solid evidence are implemented, these threats will likely escalate and continue to endanger human well-being. The escalating advancements in information and communication technologies have facilitated the widespread availability and utilization of social media platforms. Individuals utilize platforms such as Twitter and Facebook to express their opinions, thoughts, and critiques on diverse subjects, encompassing the pressing issue of climate change. The proliferation of climate change-related content on social media necessitates comprehensive analysis to glean meaningful insights. This paper employs natural language processing (NLP) techniques to analyze climate change discourse and quantify the sentiment of climate change-related tweets. We collected a total number of 5506 tweets for the period of January 2022 and February 2023 and manually labeled them to make the dataset for this experiment. ClimateBERT, a pre-trained model fine-tuned specifically on the climate change domain was used to generate the context vectors. Several machine learning algorithms with different feature encoding techniques, such as TF-IDF and BERT, have been implemented to classify user sentiments. When comparing the performance of the classifiers using different evaluation metrics such as precision, recall, accuracy, and f-measure, the ClimateBERT + Random Forest model is found to be outperforming all the other baselines with an accuracy of 90.22%, recall of 85.22%, and an f-measure of 85.47%. The findings from this experiment unearth valuable insights into public sentiment and the entities associated with climate change discourse. Policymakers, researchers, and organizations can leverage such analyses to understand public perceptions, identify influential actors, and devise informed strategies to address climate change challenges. |
Author | Anoop, V. S. Krishnan, T. K. Ajay Bukhari, Amal Daud, Ali Banjar, Ameen |
Author_xml | – sequence: 1 givenname: V. S. orcidid: 0000-0001-6673-6932 surname: Anoop fullname: Anoop, V. S. organization: NLP for Social Good Laboratory, School of Digital Sciences, Kerala University of Digital Sciences, Innovation and Technology, Thiruvananthapuram, India – sequence: 2 givenname: T. K. Ajay surname: Krishnan fullname: Krishnan, T. K. Ajay organization: NLP for Social Good Laboratory, School of Digital Sciences, Kerala University of Digital Sciences, Innovation and Technology, Thiruvananthapuram, India – sequence: 3 givenname: Ali orcidid: 0000-0002-8284-6354 surname: Daud fullname: Daud, Ali email: alimsdb@gmail.com organization: Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates – sequence: 4 givenname: Ameen orcidid: 0000-0002-0871-5153 surname: Banjar fullname: Banjar, Ameen organization: Department of Information Systems and Technology, College of Computer Science and Engineering (CCSE), University of Jeddah, Jeddah, Saudi Arabia – sequence: 5 givenname: Amal orcidid: 0000-0003-4888-6253 surname: Bukhari fullname: Bukhari, Amal organization: Department of Information Systems and Technology, College of Computer Science and Engineering (CCSE), University of Jeddah, Jeddah, Saudi Arabia |
BookMark | eNpNUctqIzEQFCELyTr5gs1BP2CvXqPRHL2zzgMCgTg5ix6px1HwSEaaS_5-5Tgs6UN3U91VUNRPch5TREJ-cbbinHW_132_2W5Xggm1kkpxydkZuRRcd0vZSH3-bb8g16W8s1qmQk17SVK_DxPMSPs3iDukW4xzmGqj6wj7jxIKfS0h7ujfNEGIdHtAF8bg6J_gQ0Y3h1T_6Ca65DHTZzxkLJUOx0OhtzlN9CVDLGPKE-ZyRX6MsC94_TUX5PV289LfLx-f7h769ePSScnnpVeG80FzZQZtQAjNHW8BOyUa7Y1jXGsvXGdgBC-E1Ew1OHglzOgaqO7kgjycdH2Cd3vI1WT-sAmC_QRS3lnIc3B7tKY1AuTolOZatU6B7JiXreR6FIPHoWrJk5bLqZSM4389zuwxAnuKwB4jsF8RVNbNiRUQ8RtDS8GVkP8AnKCFHA |
CODEN | IAECCG |
Cites_doi | 10.1007/978-981-19-0105-8_54 10.1007/s10439-023-03171-8 10.1016/j.puhe.2023.02.018 10.1007/s13369-021-06227-w 10.1007/978-3-031-36402-0_13 10.1007/978-3-030-91010-5_10 10.32604/cmc.2021.014226 10.1038/s41558-022-01377-7 10.1007/978-3-030-36841-8_5 10.14569/IJACSA.2022.0131189 10.1007/978-981-19-9331-2_15 10.1007/978-981-16-7618-5_20 10.1515/jisys-2017-0225 10.1016/j.nlp.2023.100026 10.1016/j.ipm.2023.103538 10.1007/978-981-19-9331-2_17 10.1007/s11356-023-25138-x 10.1007/s10462-023-10583-4 10.1145/3548772 10.1007/s13278-022-01014-3 10.1016/j.eswa.2023.122162 10.1007/978-3-031-37940-6_17 10.1177/19401612221106405 10.3390/a16050221 10.1080/0144929X.2022.2156387 10.1177/01650254231186332 10.1109/TCE.2023.3326953 10.3390/su14084723 10.1109/ACCESS.2019.2905101 10.1609/icwsm.v17i1.22194 10.1016/j.jenvp.2024.102287 10.1007/s10462-023-10651-9 10.1609/aaai.v38i21.30356 10.1038/s41558-023-01686-5 10.1007/s13280-021-01577-z 10.2307/270787 10.4018/IJSWIS.2017040106 10.1007/s10584-023-03578-1 10.1109/IC3SIS54991.2022.9885494 10.1016/j.aci.2019.11.003 10.1145/3543873.3587324 10.1016/j.joclim.2022.100201 10.1007/s11042-022-13428-4 |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
DOI | 10.1109/ACCESS.2024.3441310 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 114922 |
ExternalDocumentID | oai_doaj_org_article_8782a3fc461647c4a390d37316f2bdeb 10_1109_ACCESS_2024_3441310 10632142 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c331t-d4811b6148b68a2261c17ae94256d8c0166d2c98afad2236045ebd428fc5a0083 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:21:29 EDT 2025 Tue Jul 01 03:02:45 EDT 2025 Wed Aug 27 02:03:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-d4811b6148b68a2261c17ae94256d8c0166d2c98afad2236045ebd428fc5a0083 |
ORCID | 0000-0003-4888-6253 0000-0002-8284-6354 0000-0001-6673-6932 0000-0002-0871-5153 |
OpenAccessLink | https://doaj.org/article/8782a3fc461647c4a390d37316f2bdeb |
PageCount | 11 |
ParticipantIDs | ieee_primary_10632142 crossref_primary_10_1109_ACCESS_2024_3441310 doaj_primary_oai_doaj_org_article_8782a3fc461647c4a390d37316f2bdeb |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref35 ref12 ref34 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 Varini (ref46) 2020 Fard (ref18) 2022 ref24 ref23 ref45 ref26 ref48 ref25 ref20 ref42 ref41 ref22 ref21 ref43 Webersinke (ref47) 2021 ref28 Vaghefi (ref44) ref27 ref29 ref8 ref7 ref9 ref4 Ceylan (ref15) 2022 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref32 doi: 10.1007/978-981-19-0105-8_54 – year: 2022 ident: ref18 article-title: CliMedBERT: A pre-trained language model for climate and health-related text publication-title: arXiv:2212.00689 – ident: ref13 doi: 10.1007/s10439-023-03171-8 – ident: ref8 doi: 10.1016/j.puhe.2023.02.018 – year: 2021 ident: ref47 article-title: ClimateBert: A pretrained language model for climate-related text publication-title: arXiv:2110.12010 – ident: ref4 doi: 10.1007/s13369-021-06227-w – year: 2020 ident: ref46 article-title: ClimaText: A dataset for climate change topic detection publication-title: arXiv:2012.00483 – ident: ref9 doi: 10.1007/978-3-031-36402-0_13 – ident: ref40 doi: 10.1007/978-3-030-91010-5_10 – ident: ref11 doi: 10.32604/cmc.2021.014226 – ident: ref24 doi: 10.1038/s41558-022-01377-7 – ident: ref10 doi: 10.1007/978-3-030-36841-8_5 – ident: ref41 doi: 10.14569/IJACSA.2022.0131189 – year: 2022 ident: ref15 article-title: Application of natural language processing to unstructured data: A case study of climate change – ident: ref23 doi: 10.1007/978-981-19-9331-2_15 – ident: ref45 doi: 10.1007/978-981-16-7618-5_20 – ident: ref7 doi: 10.1515/jisys-2017-0225 – ident: ref27 doi: 10.1016/j.nlp.2023.100026 – ident: ref33 doi: 10.1016/j.ipm.2023.103538 – ident: ref22 doi: 10.1007/978-981-19-9331-2_17 – ident: ref2 doi: 10.1007/s11356-023-25138-x – ident: ref26 doi: 10.1007/s10462-023-10583-4 – ident: ref1 doi: 10.1145/3548772 – ident: ref34 doi: 10.1007/s13278-022-01014-3 – ident: ref48 doi: 10.1016/j.eswa.2023.122162 – ident: ref6 doi: 10.1007/978-3-031-37940-6_17 – ident: ref16 doi: 10.1177/19401612221106405 – ident: ref14 doi: 10.3390/a16050221 – ident: ref5 doi: 10.1080/0144929X.2022.2156387 – ident: ref38 doi: 10.1177/01650254231186332 – ident: ref30 doi: 10.1109/TCE.2023.3326953 – ident: ref39 doi: 10.3390/su14084723 – start-page: 1 volume-title: Proc. NeurIPS Workshop Tackling Climate Change With Mach. Learn. ident: ref44 article-title: Deep climate change: A dataset and adaptive domain pre-trained language models for climate change related tasks – ident: ref19 doi: 10.1109/ACCESS.2019.2905101 – ident: ref43 doi: 10.1609/icwsm.v17i1.22194 – ident: ref37 doi: 10.1016/j.jenvp.2024.102287 – ident: ref20 doi: 10.1007/s10462-023-10651-9 – ident: ref25 doi: 10.1609/aaai.v38i21.30356 – ident: ref31 doi: 10.1038/s41558-023-01686-5 – ident: ref35 doi: 10.1007/s13280-021-01577-z – ident: ref29 doi: 10.2307/270787 – ident: ref21 doi: 10.4018/IJSWIS.2017040106 – ident: ref36 doi: 10.1007/s10584-023-03578-1 – ident: ref42 doi: 10.1109/IC3SIS54991.2022.9885494 – ident: ref3 doi: 10.1016/j.aci.2019.11.003 – ident: ref17 doi: 10.1145/3543873.3587324 – ident: ref12 doi: 10.1016/j.joclim.2022.100201 – ident: ref28 doi: 10.1007/s11042-022-13428-4 |
SSID | ssj0000816957 |
Score | 2.3480504 |
Snippet | Climate change's impact on human health poses unprecedented and diverse challenges. Unless proactive measures based on solid evidence are implemented, these... |
SourceID | doaj crossref ieee |
SourceType | Open Website Index Database Publisher |
StartPage | 114912 |
SubjectTerms | Bidirectional control Climate change climateBERT Encoders Human factors Natural language processing public discourse Sentiment analysis Social networking (online) User experience |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDBa6nrrDunUdlm4ddOhxzqJHZPnYpg2KAeuhD6A3Q6IkINhqF1ly2a8fKTlFOmBAb4Zg2LJJmh9p8iNjJ7VUPkRZV1EJwABFu8qmVFdgjU_WeiEzieuPK3N5p7_fT--HZvXcCxNjzMVncUyH-V9-6GFNqTK0cENzdfCL-wr1rDRrPSVUaIJEM60HZiExab6dzmb4EBgDSj1W6PYVtclueZ9M0v9sqkp2KvN9drXZTqkl-Tler_wY_vzD1Pji_b5lbwZ4yU-LPrxjO7E7YK-3SAffs372a4EwNfLSWMBvqF6ILsQ3BCU81xHw8_7BLTqeJ9SnBfCzRfF_OXnILzrqhl_y61xKO3Qwdb_5fNk_8NsNHEZwecju5he3s8tqGLtQgVJiVQVthfBEEOqNdQjPBIjaxQat2wQLiBFNkNBYl1xAcGEQFEYfMIxJMHUE6T6w3a7v4kfGoTExJGOSBNAgA4ZLTgudkpXg6yhH7OtGHO1jYddoc1QyadoivZak1w7SG7EzEtnTqUSNnRfwrbeDpbUWMY9TCbQhqjTQTjWToGhAV5Koln7EDklSW_crQjr6z_ontkd7KGmXz2x3tVzHYwQiK_8lK-BfU2jb6A priority: 102 providerName: IEEE |
Title | Climate Change Sentiment Analysis Using Domain Specific Bidirectional Encoder Representations From Transformers |
URI | https://ieeexplore.ieee.org/document/10632142 https://doaj.org/article/8782a3fc461647c4a390d37316f2bdeb |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQjyLKo_LASGjtuI4ztqFVhQQDtFK3yE-pEk1QKf-fs52iMLGwRlHs3CW-7zvdfYfQXUZTZSzNEpsSDQSFyUQ4lyVacOWEUIQGEdfnFz5fsqfVaNUa9eVrwqI8cDTcQEAIk6nTjHvlK80kkHST-nlLjsIqyp--w3zYIlPhDBaE56OskRkiw3wwLgp4IyCElD2kgAFS3zPbCkVBsf_XiJUQYWYn6LiBhngct3SKDmx1ho5agoHnqC7e1wAxLY5NAfjN1_r4_B7ei4vgUAOAH-sNUH4cpsu7tcaTdYxdIfGHp5XvZN_i11AG23QfVZ94tq03eLGHsgAMu2g5my6KedKMTEh0mpJdYpggRHlxT8WFBGhFNMmkzeHP5EZowHfcUJ0L6aQBYMAB0FllgII4PZIejl2gTlVX9hJhnXNrHAcza800NUB1JCPMOUG1yiztofu99cqPqIxRBkYxzMto7NIbu2yM3UMTb-GfW72sdbgAzi4bZ5d_ObuHut4_rfW4H7REr_7j4dfo0G845lduUGe3_bK3gDh2qh8-rn5oDvwGne7SuA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELbQcgAOPBdRnj5wJKV-1HGOu2WrArs9QFfaW2SPbamCTVBpL_x6Zux0VZCQuEVWlDgZO_PNZL5vGHtbS-VDlHUVlQAMULSrbEp1Bdb4ZK0XMou4XizN4lJ_uppeDWT1zIWJMebiszimw_wvP_Swo1QZ7nBDfXXwi3t7imGFLXStm5QK9ZBopvWgLSQmzfuT2QwfA6NAqccKHb8iouyB_8ky_X_0VcluZf6ALfcTKtUk38a7rR_Dr7-0Gv97xg_Z_QFg8pOyIh6xW7F7zO4dyA4-Yf3s-xqBauSFWsC_UsUQXYjvJUp4riTgH_prt-547lGf1sBP18UD5vQhP-uID7_hX3Ix7cBh6n7y-aa_5qs9IEZ4ecwu52er2aIaGi9UoJTYVkFbITxJhHpjHQI0AaJ2scH9bYIFRIkmSGisSy4gvDAIC6MPGMgkmDoCdU_ZUdd38Rnj0JgYkjFJAmiQAQMmp4VOyUrwdZQj9m5vjvZH0ddoc1wyadpivZas1w7WG7FTMtnNqSSOnQfwrbfDXmstoh6nEmhDYmmgnWomQVGLriRxYfoROyZLHdyvGOn5P8bfsDuL1cV5e_5x-fkFu0vzKUmYl-xou9nFVwhLtv51Xoy_AQyA3zs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climate+Change+Sentiment+Analysis+Using+Domain+Specific+Bidirectional+Encoder+Representations+From+Transformers&rft.jtitle=IEEE+access&rft.au=Anoop%2C+V.+S.&rft.au=Krishnan%2C+T.+K.+Ajay&rft.au=Daud%2C+Ali&rft.au=Banjar%2C+Ameen&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=114912&rft.epage=114922&rft_id=info:doi/10.1109%2FACCESS.2024.3441310&rft.externalDocID=10632142 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |