An accurate O(N2) floating point algorithm for the Crum transform of the KdV equation

•New algorithm to compute the Crum transform of the Korteweg–de Vries equation.•Unlike repeated Darboux transforms, never introduces singularities.•Suitable for 3–7× as complicated cases compared to known algorithms.•Same computational complexity as the fastest known algorithm: O(N2). [Display omitt...

Full description

Saved in:
Bibliographic Details
Published inCommunications in nonlinear science & numerical simulation Vol. 102; p. 105782
Main Authors Prins, Peter J., Wahls, Sander
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.11.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN1007-5704
1878-7274
DOI10.1016/j.cnsns.2021.105782

Cover

Abstract •New algorithm to compute the Crum transform of the Korteweg–de Vries equation.•Unlike repeated Darboux transforms, never introduces singularities.•Suitable for 3–7× as complicated cases compared to known algorithms.•Same computational complexity as the fastest known algorithm: O(N2). [Display omitted] We present an algorithm to compute the N-fold Crum transform (also known as the dressing method) for the Korteweg–de Vries equation (KdV) accurately in floating point arithmetic. This transform can be used to generate solutions of the KdV equation, e.g. as a part of the inverse Non-linear Fourier Transform. Crum transform algorithms that sequentially add the N eigenvalues to the solution with a chain of N Darboux transforms have a computational complexity of O(N2), but suffer inevitably from singular intermediate results during the computation of certain regular Crum transforms. Algorithms that add all N eigenvalues at once do not have that flaw, but have a complexity of O(N3) and are often even less accurate for other reasons. Our algorithm has a complexity of O(N2). It makes use of a chain of 2-fold Crum transforms and, if N is odd, one Darboux transform. Hence, our algorithm adds two eigenvalues at a time instead of one whenever possible. We prove that with the right eigenvalue ordering, this avoids artificial singularities for all regular Crum transforms. Furthermore, we demonstrate that our algorithm is considerably more accurate in floating point arithmetic than benchmark algorithms found in the literature. At the same error tolerance, N can be three to seven times as high when using our algorithm instead of the best among the benchmark algorithms.
AbstractList We present an algorithm to compute the N-fold Crum transform (also known as the dressing method) for the Korteweg–de Vries equation (KdV) accurately in floating point arithmetic. This transform can be used to generate solutions of the KdV equation, e.g. as a part of the inverse Non-linear Fourier Transform. Crum transform algorithms that sequentially add the N eigenvalues to the solution with a chain of N Darboux transforms have a computational complexity of O(N2), but suffer inevitably from singular intermediate results during the computation of certain regular Crum transforms. Algorithms that add all N eigenvalues at once do not have that flaw, but have a complexity of O(N3) and are often even less accurate for other reasons. Our algorithm has a complexity of O(N2). It makes use of a chain of 2-fold Crum transforms and, if N is odd, one Darboux transform. Hence, our algorithm adds two eigenvalues at a time instead of one whenever possible. We prove that with the right eigenvalue ordering, this avoids artificial singularities for all regular Crum transforms. Furthermore, we demonstrate that our algorithm is considerably more accurate in floating point arithmetic than benchmark algorithms found in the literature. At the same error tolerance, N can be three to seven times as high when using our algorithm instead of the best among the benchmark algorithms.
•New algorithm to compute the Crum transform of the Korteweg–de Vries equation.•Unlike repeated Darboux transforms, never introduces singularities.•Suitable for 3–7× as complicated cases compared to known algorithms.•Same computational complexity as the fastest known algorithm: O(N2). [Display omitted] We present an algorithm to compute the N-fold Crum transform (also known as the dressing method) for the Korteweg–de Vries equation (KdV) accurately in floating point arithmetic. This transform can be used to generate solutions of the KdV equation, e.g. as a part of the inverse Non-linear Fourier Transform. Crum transform algorithms that sequentially add the N eigenvalues to the solution with a chain of N Darboux transforms have a computational complexity of O(N2), but suffer inevitably from singular intermediate results during the computation of certain regular Crum transforms. Algorithms that add all N eigenvalues at once do not have that flaw, but have a complexity of O(N3) and are often even less accurate for other reasons. Our algorithm has a complexity of O(N2). It makes use of a chain of 2-fold Crum transforms and, if N is odd, one Darboux transform. Hence, our algorithm adds two eigenvalues at a time instead of one whenever possible. We prove that with the right eigenvalue ordering, this avoids artificial singularities for all regular Crum transforms. Furthermore, we demonstrate that our algorithm is considerably more accurate in floating point arithmetic than benchmark algorithms found in the literature. At the same error tolerance, N can be three to seven times as high when using our algorithm instead of the best among the benchmark algorithms.
ArticleNumber 105782
Author Prins, Peter J.
Wahls, Sander
Author_xml – sequence: 1
  givenname: Peter J.
  orcidid: 0000-0003-4692-5538
  surname: Prins
  fullname: Prins, Peter J.
  email: p.j.prins@tudelft.nl
– sequence: 2
  givenname: Sander
  surname: Wahls
  fullname: Wahls, Sander
  email: s.wahls@tudelft.nl
BookMark eNqFkDtPwzAUhS1UJErhF7BYYoEhxY8kTgeGquIlKrpQVstx7NZRa7e2g8S_x22YGGC6V0fnu1fnnIOBdVYBcIXRGCNc3rVjaYMNY4IITkrBKnIChrhiVcYIywdpR4hlBUP5GTgPoUWJmhT5ECynFgopOy-igoubN3IL9caJaOwK7pyxEYrNynkT11uonYdxreDMd1sYvbAhKVvo9FF9bT6g2ncJdfYCnGqxCeryZ47A8vHhffaczRdPL7PpPJOU4phJTTRmlaBMKjYpZdnIGpMaN7LRBc1rgXUpiJgIxmhV53nVVI2qaqFqRJBimo7AdX93592-UyHy1nXeppecFIwiUpQFTS7au6R3IXil-c6brfBfHCN-6I-3_NgfP_TH-_4SNflFSROP6VJ0s_mHve9ZlcJ_GuV5kEZZqRrjlYy8ceZP_hvXXI8Z
CitedBy_id crossref_primary_10_1007_s00332_023_09940_y
crossref_primary_10_1098_rspa_2023_0529
crossref_primary_10_1103_PhysRevE_104_044213
crossref_primary_10_1016_j_wavemoti_2022_102905
crossref_primary_10_1103_PhysRevE_109_061001
crossref_primary_10_5194_nhess_23_2053_2023
crossref_primary_10_1016_j_wavemoti_2024_103480
Cites_doi 10.1002/sapm1982662159
10.1007/s11005-015-0751-4
10.1007/BF01035458
10.1109/ACCESS.2019.2932256
10.1142/S179343111840002X
10.1007/BF01086739
10.1103/PhysRevLett.19.1095
10.1016/j.physd.2012.02.016
10.1007/s10092-007-0129-9
10.1016/j.camwa.2006.12.025
10.1137/060659831
10.1080/14786449508620739
10.1002/sapm1974534249
10.1038/ncomms2480
10.21105/joss.00597
10.1002/cpa.3160210503
10.1016/j.cnsns.2021.105718
10.1093/qmath/6.1.121
10.1103/PhysRevLett.31.1386
10.1016/0021-9991(92)90370-E
10.1002/num.22469
10.1002/cpa.3160320202
10.1007/BF02723762
10.1109/JLT.2020.2994156
10.1016/j.wavemoti.2022.102905
10.1016/0021-9991(91)90223-8
10.1103/PhysRevE.98.042210
10.1016/j.matcom.2009.06.005
10.1016/0375-9601(84)90827-2
10.1016/S0375-9601(99)00736-7
10.1017/S002211207400139X
10.1007/BF02820446
10.1007/BF00994625
10.1109/ACCESS.2019.2945480
10.1088/1361-6544/ab6c7c
ContentType Journal Article
Copyright 2021 The Authors
Copyright Elsevier Science Ltd. Nov 2021
Copyright_xml – notice: 2021 The Authors
– notice: Copyright Elsevier Science Ltd. Nov 2021
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.cnsns.2021.105782
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1878-7274
ExternalDocumentID 10_1016_j_cnsns_2021_105782
S1007570421000939
GroupedDBID --K
--M
-01
-0A
-0I
-0Y
-SA
-S~
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VR
5VS
6I.
7-5
71M
8P~
92M
9D9
9DA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CS3
CUBFJ
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA0
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
JUIAU
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q--
Q-0
Q38
R-A
R-I
R2-
RIG
ROL
RPZ
RT1
RT9
S..
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SST
SSW
SSZ
T5K
T8Q
T8Y
U1F
U1G
U5A
U5I
U5K
UHS
~G-
~LA
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
SSH
ID FETCH-LOGICAL-c331t-cf2f178a37ce796c6dcb12b1dcdf534ba1f6a2a9a7738b448d8de8baeb020e7f3
IEDL.DBID .~1
ISSN 1007-5704
IngestDate Sun Jul 13 04:44:44 EDT 2025
Thu Apr 24 23:05:25 EDT 2025
Sat Oct 25 05:52:27 EDT 2025
Fri Feb 23 02:43:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Darboux transform
Dressing method
Non-linear Fourier transform (NFT)
Korteweg–de Vries equation (KdV)
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-cf2f178a37ce796c6dcb12b1dcdf534ba1f6a2a9a7738b448d8de8baeb020e7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4692-5538
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1007570421000939
PQID 2573025653
PQPubID 2047477
ParticipantIDs proquest_journals_2573025653
crossref_primary_10_1016_j_cnsns_2021_105782
crossref_citationtrail_10_1016_j_cnsns_2021_105782
elsevier_sciencedirect_doi_10_1016_j_cnsns_2021_105782
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Communications in nonlinear science & numerical simulation
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References García-Ferrero, Gómez-Ullate (bib0043) 2015; 105
Brühl, Becker (bib0003) 2018; 12
Sacks, Shin (bib0025) 2009; 207
Van Der Mee, Seatzu, Theis (bib0034) 2007; 44
Wahls, Chimmalgi, Prins (bib0014) 2018; 3
Ablowitz, Kodama (bib0019) 1982; 66
Trefethen (bib0052) 2008; 50
Gesztesy, Simon, Teschl (bib0044) 1996; 70
Gardner, Greene, Kruskal, Miura (bib0011) 1967; 19
Ablowitz (bib0029) 2020
Wahlquist, Estabrook (bib0045) 1973; 31
Trogdon, Olver, Deconinck (bib0035) 2012; 241
Samsonov (bib0047) 1999; 263
Ablowitz, Kaup, Newell, Segur (bib0013) 1974; 53
Korteweg, De Vries (bib0001) 1895; 39
Christov (bib0021) 2009; 80
Zettl (bib0042) 2005
Chimmalgi, Prins, Wahls (bib0015) 2019; 7
Gelash, Agafontsev (bib0027) 2018; 98
Ak, Saha, Dhawan, Kara (bib0005) 2020
Zakharov, Faddeev (bib0050) 1972; 5
Chimmalgi (bib0026) 2017
Levitan (bib0046) 1987
Crum (bib0038) 1955; 6
Lax (bib0012) 1968; 21
Ricketts, Ham (bib0010) 2011
Brühl M., Ujvary S., Barranco I., Prins P.J., Wahls S., Liu P.L.-F.. Comparative analysis of bore propagation using conventional linear and KdV-based nonlinear Fourier transform; 2021 In preparation.
Gu, Hu, Zhou (bib0037) 2005
Span, Aref, Bülow, ten Brink (bib0017) 2020
Levi, Ragnisco, Sym (bib0039) 1984; 83
Misra, Patra (bib0006) 2007; 54
Chekhovskoy, Medvedev, Vaseva, Sedov, Fedoruk (bib0018) 2021; 96
Hammack, Segur (bib0002) 1974; 65
Ablowitz, Segur (bib0031) 1981
Boffetta, Osborne (bib0051) 1992; 102
Prins, Wahls (bib0016) 2019; 7
Higham (bib0041) 2002; vol. 80
Chadan, Sabatier (bib0024) 1989
Crighton (bib0008) 1995; 39
Osborne (bib0020) 1991; 94
Temnov, Klieber, Nelson, Thomay, Knittel, Leitenstorfer (bib0009) 2013; 4
Pöschel, Trubowitz (bib0032) 1987
Kasman (bib0040) 2010; vol. 54
Matveev, Salle (bib0036) 1991
Lannes (bib0004) 2020; 33
Lamb (bib0033) 1980
Prins, Wahls (bib0030) 2018
Abdou, Hendi, Alanzi (bib0007) 2012; 3
Deift, Trubowitz (bib0023) 1979; 32
Karpman, Maslov (bib0049) 1977; 73
Neugebauer, Meinel (bib0028) 1984; 100
Adler (bib0048) 1994; 101
Deift (10.1016/j.cnsns.2021.105782_bib0023) 1979; 32
Trogdon (10.1016/j.cnsns.2021.105782_bib0035) 2012; 241
Hammack (10.1016/j.cnsns.2021.105782_bib0002) 1974; 65
Higham (10.1016/j.cnsns.2021.105782_sbref0041) 2002; vol. 80
Span (10.1016/j.cnsns.2021.105782_bib0017) 2020
Zakharov (10.1016/j.cnsns.2021.105782_bib0050) 1972; 5
Crum (10.1016/j.cnsns.2021.105782_bib0038) 1955; 6
Levitan (10.1016/j.cnsns.2021.105782_sbref0046) 1987
Trefethen (10.1016/j.cnsns.2021.105782_bib0052) 2008; 50
Korteweg (10.1016/j.cnsns.2021.105782_bib0001) 1895; 39
Prins (10.1016/j.cnsns.2021.105782_bib0030) 2018
Osborne (10.1016/j.cnsns.2021.105782_bib0020) 1991; 94
Pöschel (10.1016/j.cnsns.2021.105782_sbref0032) 1987
Boffetta (10.1016/j.cnsns.2021.105782_bib0051) 1992; 102
Kasman (10.1016/j.cnsns.2021.105782_bib0040) 2010; vol. 54
Ablowitz (10.1016/j.cnsns.2021.105782_bib0019) 1982; 66
Van Der Mee (10.1016/j.cnsns.2021.105782_bib0034) 2007; 44
Gesztesy (10.1016/j.cnsns.2021.105782_bib0044) 1996; 70
Gu (10.1016/j.cnsns.2021.105782_bib0037) 2005
Chimmalgi (10.1016/j.cnsns.2021.105782_sbref0026) 2017
Prins (10.1016/j.cnsns.2021.105782_bib0016) 2019; 7
Ablowitz (10.1016/j.cnsns.2021.105782_bib0029) 2020
Wahlquist (10.1016/j.cnsns.2021.105782_bib0045) 1973; 31
Samsonov (10.1016/j.cnsns.2021.105782_bib0047) 1999; 263
Brühl (10.1016/j.cnsns.2021.105782_bib0003) 2018; 12
Misra (10.1016/j.cnsns.2021.105782_bib0006) 2007; 54
Chadan (10.1016/j.cnsns.2021.105782_sbref0024) 1989
Ablowitz (10.1016/j.cnsns.2021.105782_bib0031) 1981
Karpman (10.1016/j.cnsns.2021.105782_bib0049) 1977; 73
Temnov (10.1016/j.cnsns.2021.105782_sbref0009) 2013; 4
Lax (10.1016/j.cnsns.2021.105782_bib0012) 1968; 21
Christov (10.1016/j.cnsns.2021.105782_bib0021) 2009; 80
Sacks (10.1016/j.cnsns.2021.105782_bib0025) 2009; 207
Gardner (10.1016/j.cnsns.2021.105782_bib0011) 1967; 19
Gelash (10.1016/j.cnsns.2021.105782_bib0027) 2018; 98
Matveev (10.1016/j.cnsns.2021.105782_sbref0036) 1991
Chimmalgi (10.1016/j.cnsns.2021.105782_bib0015) 2019; 7
10.1016/j.cnsns.2021.105782_bib0022
Abdou (10.1016/j.cnsns.2021.105782_sbref0007) 2012; 3
Zettl (10.1016/j.cnsns.2021.105782_sbref0042) 2005
Ak (10.1016/j.cnsns.2021.105782_bib0005) 2020
Adler (10.1016/j.cnsns.2021.105782_bib0048) 1994; 101
Crighton (10.1016/j.cnsns.2021.105782_bib0008) 1995; 39
Ricketts (10.1016/j.cnsns.2021.105782_sbref0010) 2011
Lamb (10.1016/j.cnsns.2021.105782_bib0033) 1980
Neugebauer (10.1016/j.cnsns.2021.105782_bib0028) 1984; 100
Wahls (10.1016/j.cnsns.2021.105782_bib0014) 2018; 3
Ablowitz (10.1016/j.cnsns.2021.105782_bib0013) 1974; 53
Levi (10.1016/j.cnsns.2021.105782_bib0039) 1984; 83
García-Ferrero (10.1016/j.cnsns.2021.105782_bib0043) 2015; 105
Lannes (10.1016/j.cnsns.2021.105782_bib0004) 2020; 33
Chekhovskoy (10.1016/j.cnsns.2021.105782_bib0018) 2021; 96
References_xml – year: 1989
  ident: bib0024
  article-title: Inverse problems in quantum scattering theory
– volume: 98
  year: 2018
  ident: bib0027
  article-title: Strongly interacting soliton gas and formation of rogue waves
  publication-title: Phys Rev E
– volume: 73
  start-page: 537
  year: 1977
  end-page: 559
  ident: bib0049
  article-title: Perturbation theory for solitons
  publication-title: JETP
– year: 2020
  ident: bib0017
  article-title: Successive eigenvalue removal for multi-soliton spectral amplitude estimation
  publication-title: J Lightwave Technol
– year: 1980
  ident: bib0033
  article-title: Elements of soliton theory
– volume: 96
  start-page: 105718
  year: 2021
  ident: bib0018
  article-title: Introducing phase jump tracking – a fast method for eigenvalue evaluation of the direct Zakharov-Shabat problem
  publication-title: Commun Nonlinear Sci Numer Simulat
– volume: 39
  start-page: 422
  year: 1895
  end-page: 443
  ident: bib0001
  article-title: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves
  publication-title: London Edinb Dublin Philos Mag J Sci Series 5
– volume: 7
  start-page: 122914
  year: 2019
  end-page: 122930
  ident: bib0016
  article-title: Soliton phase shift calculation for the Korteweg–de Vries equation
  publication-title: IEEE Access
– volume: 3
  start-page: 597
  year: 2018
  ident: bib0014
  article-title: FNFT: a software library for computing nonlinear Fourier transforms
  publication-title: J Open Source Softw
– year: 1987
  ident: bib0046
  article-title: Inverse Sturm-Liouville problems
– year: 2017
  ident: bib0026
  publication-title: Improved fast inverse nonlinear Fourier transform for multi-solitons: a discrete Darboux based approach
– year: 2011
  ident: bib0010
  article-title: Electrical Solitons
– volume: 19
  start-page: 1095
  year: 1967
  end-page: 1097
  ident: bib0011
  article-title: Method for solving the Korteweg-deVries equation
  publication-title: Phys Rev Lett
– year: 2020
  ident: bib0005
  article-title: Investigation of Coriolis effect on oceanic flows and its bifurcation via geophysical Korteweg–de Vries equation
  publication-title: Numer Methods Partial DifferEqu
– volume: 12
  start-page: 1840002
  year: 2018
  ident: bib0003
  article-title: Analysis of subaerial landslide data using nonlinear Fourier transform based on Korteweg-de Vries equation (KdV-NFT)
  publication-title: J Earthq Tsunami
– volume: 3
  start-page: 62
  year: 2012
  end-page: 68
  ident: bib0007
  article-title: New exact solutions of KdV equation in an elastic tube filled with a variable viscosity fluid
  publication-title: Stud Nonlinear Sci
– volume: 39
  start-page: 39
  year: 1995
  end-page: 67
  ident: bib0008
  article-title: Applications of KdV
  publication-title: Acta Appl Math
– volume: 263
  start-page: 274
  year: 1999
  end-page: 280
  ident: bib0047
  article-title: New possibilities for supersymmetry breakdown in quantum mechanics and second-order irreducible Darboux transformations
  publication-title: Phys Lett A
– year: 1981
  ident: bib0031
  article-title: Solitons and the inverse scattering transform
– year: 1987
  ident: bib0032
  article-title: Inverse spectral theory
  publication-title: Pure and applied mathematics
– volume: 83
  start-page: 34
  year: 1984
  end-page: 42
  ident: bib0039
  article-title: Dressing method vs. classical Darboux transformation
  publication-title: Il Nuovo Cimento B Series 11
– volume: 54
  start-page: 242
  year: 2007
  end-page: 254
  ident: bib0006
  article-title: A study of solitary waves in a tapered aorta by using the theory of solitons
  publication-title: Comput Math Appl
– volume: 94
  start-page: 284
  year: 1991
  end-page: 313
  ident: bib0020
  article-title: Non-linear Fourier analysis for the infinite-interval Korteweg–de Vries equation I: an algorithm for the direct scattering transform
  publication-title: J Comput Phys
– volume: 241
  start-page: 1003
  year: 2012
  end-page: 1025
  ident: bib0035
  article-title: Numerical inverse scattering for the Korteweg–de Vries and modified Korteweg–de Vries equations
  publication-title: Physica D
– volume: 32
  start-page: 121
  year: 1979
  end-page: 251
  ident: bib0023
  article-title: Inverse scattering on the line
  publication-title: Commun Pure Appl Math
– volume: 50
  start-page: 67
  year: 2008
  end-page: 87
  ident: bib0052
  article-title: Is Gauss quadrature better than Clenshaw–Curtis?
  publication-title: SIAM Rev
– volume: 70
  start-page: 267
  year: 1996
  end-page: 324
  ident: bib0044
  article-title: Spectral deformations of one-dimensional Schrödinger operators
  publication-title: J. d’Anal. Math.
– start-page: 4524
  year: 2018
  end-page: 4528
  ident: bib0030
  article-title: Higher order exponential splittings for the fast non-linear Fourier transform of the Korteweg-de Vries equation
  publication-title: 2018 IEEE International conference on acoustics, speech and signal processing (ICASSP)
– volume: 101
  start-page: 1381
  year: 1994
  end-page: 1386
  ident: bib0048
  article-title: A modification of Crum’s method
  publication-title: Theor Math Phys
– year: 2005
  ident: bib0042
  article-title: Sturm-Liouville theory
  publication-title: No. 121 in Mathematical surveys and monographs
– start-page: 161
  year: 2020
  end-page: 184
  ident: bib0029
  article-title: Integrability and nonlinear waves
  publication-title: Emerging Frontiers in nonlinear science
– volume: 4
  year: 2013
  ident: bib0009
  article-title: Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons
  publication-title: Nat Commun
– volume: 80
  start-page: 192
  year: 2009
  end-page: 201
  ident: bib0021
  article-title: Internal solitary waves in the ocean: analysis using the periodic, inverse scattering transform
  publication-title: Math Comput Simul
– volume: vol. 80
  year: 2002
  ident: bib0041
  article-title: Accuracy and stability of numerical algorithms
– volume: vol. 54
  year: 2010
  ident: bib0040
  article-title: Glimpses of soliton theory: the algebra and geometry of nonlinear PDEs
– volume: 44
  start-page: 59
  year: 2007
  end-page: 87
  ident: bib0034
  article-title: Structured matrix algorithms for inverse scattering on the line
  publication-title: Calcolo
– year: 1991
  ident: bib0036
  article-title: Darboux transformations and solitons
– volume: 100
  start-page: 467
  year: 1984
  end-page: 470
  ident: bib0028
  article-title: General
  publication-title: Phys Lett A
– volume: 33
  start-page: R1
  year: 2020
  end-page: R57
  ident: bib0004
  article-title: Modeling shallow water waves
  publication-title: Nonlinearity
– volume: 21
  start-page: 467
  year: 1968
  end-page: 490
  ident: bib0012
  article-title: Integrals of nonlinear equations of evolution and solitary waves
  publication-title: Commun Pure Appl Math
– year: 2005
  ident: bib0037
  article-title: Darboux transformations in integrable systems; vol. 26 of mathematical physics studies
– volume: 53
  start-page: 249
  year: 1974
  end-page: 315
  ident: bib0013
  article-title: The inverse scattering transform - Fourier analysis for nonlinear problems
  publication-title: Stud Appl Math
– reference: Brühl M., Ujvary S., Barranco I., Prins P.J., Wahls S., Liu P.L.-F.. Comparative analysis of bore propagation using conventional linear and KdV-based nonlinear Fourier transform; 2021 In preparation.
– volume: 65
  start-page: 289
  year: 1974
  end-page: 314
  ident: bib0002
  article-title: The Korteweg–de Vries equation and water waves. Part 2. Comparison with experiments
  publication-title: J Fluid Mech
– volume: 66
  start-page: 159
  year: 1982
  end-page: 170
  ident: bib0019
  article-title: Note on asymptotic solutions of the Korteweg-de Vries equation with solitons
  publication-title: Stud Appl Math
– volume: 31
  start-page: 1386
  year: 1973
  end-page: 1390
  ident: bib0045
  article-title: Bäcklund transformation for solutions of the Korteweg–de Vries equation
  publication-title: Phys Rev Lett
– volume: 5
  start-page: 280
  year: 1972
  end-page: 287
  ident: bib0050
  article-title: Korteweg-de Vries equation: a completely integrable Hamiltonian system
  publication-title: Funct Anal Appl
– volume: 7
  start-page: 145161
  year: 2019
  end-page: 145176
  ident: bib0015
  article-title: Fast nonlinear Fourier transform algorithms using higher order exponential integrators
  publication-title: IEEE Access
– volume: 102
  start-page: 252
  year: 1992
  end-page: 264
  ident: bib0051
  article-title: Computation of the direct scattering transform for the nonlinear Schroedinger equation
  publication-title: J Comput Phys
– volume: 207
  start-page: 111
  year: 2009
  end-page: 123
  ident: bib0025
  article-title: Computational methods for some inverse scattering problems
  publication-title: Appl. Math. Comput.
– volume: 6
  start-page: 121
  year: 1955
  end-page: 127
  ident: bib0038
  article-title: Associated Sturm–Liouville systems
  publication-title: Q J Math
– volume: 105
  start-page: 551
  year: 2015
  end-page: 573
  ident: bib0043
  article-title: Oscillation theorems for the Wronskian of an arbitrary sequence of eigenfunctions of Schrödinger’s equation
  publication-title: Lett. Math. Phys.
– year: 2005
  ident: 10.1016/j.cnsns.2021.105782_sbref0042
  article-title: Sturm-Liouville theory
– volume: 66
  start-page: 159
  issue: 2
  year: 1982
  ident: 10.1016/j.cnsns.2021.105782_bib0019
  article-title: Note on asymptotic solutions of the Korteweg-de Vries equation with solitons
  publication-title: Stud Appl Math
  doi: 10.1002/sapm1982662159
– year: 2005
  ident: 10.1016/j.cnsns.2021.105782_bib0037
– year: 2017
  ident: 10.1016/j.cnsns.2021.105782_sbref0026
– volume: 105
  start-page: 551
  issue: 4
  year: 2015
  ident: 10.1016/j.cnsns.2021.105782_bib0043
  article-title: Oscillation theorems for the Wronskian of an arbitrary sequence of eigenfunctions of Schrödinger’s equation
  publication-title: Lett. Math. Phys.
  doi: 10.1007/s11005-015-0751-4
– volume: 101
  start-page: 1381
  issue: 3
  year: 1994
  ident: 10.1016/j.cnsns.2021.105782_bib0048
  article-title: A modification of Crum’s method
  publication-title: Theor Math Phys
  doi: 10.1007/BF01035458
– volume: 7
  start-page: 122914
  year: 2019
  ident: 10.1016/j.cnsns.2021.105782_bib0016
  article-title: Soliton phase shift calculation for the Korteweg–de Vries equation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2932256
– volume: vol. 80
  year: 2002
  ident: 10.1016/j.cnsns.2021.105782_sbref0041
– volume: 12
  start-page: 1840002
  issue: 02
  year: 2018
  ident: 10.1016/j.cnsns.2021.105782_bib0003
  article-title: Analysis of subaerial landslide data using nonlinear Fourier transform based on Korteweg-de Vries equation (KdV-NFT)
  publication-title: J Earthq Tsunami
  doi: 10.1142/S179343111840002X
– year: 1981
  ident: 10.1016/j.cnsns.2021.105782_bib0031
– volume: 5
  start-page: 280
  issue: 4
  year: 1972
  ident: 10.1016/j.cnsns.2021.105782_bib0050
  article-title: Korteweg-de Vries equation: a completely integrable Hamiltonian system
  publication-title: Funct Anal Appl
  doi: 10.1007/BF01086739
– volume: 19
  start-page: 1095
  issue: 19
  year: 1967
  ident: 10.1016/j.cnsns.2021.105782_bib0011
  article-title: Method for solving the Korteweg-deVries equation
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.19.1095
– volume: 3
  start-page: 62
  issue: 2
  year: 2012
  ident: 10.1016/j.cnsns.2021.105782_sbref0007
  article-title: New exact solutions of KdV equation in an elastic tube filled with a variable viscosity fluid
  publication-title: Stud Nonlinear Sci
– volume: 241
  start-page: 1003
  issue: 11
  year: 2012
  ident: 10.1016/j.cnsns.2021.105782_bib0035
  article-title: Numerical inverse scattering for the Korteweg–de Vries and modified Korteweg–de Vries equations
  publication-title: Physica D
  doi: 10.1016/j.physd.2012.02.016
– year: 1989
  ident: 10.1016/j.cnsns.2021.105782_sbref0024
– start-page: 4524
  year: 2018
  ident: 10.1016/j.cnsns.2021.105782_bib0030
  article-title: Higher order exponential splittings for the fast non-linear Fourier transform of the Korteweg-de Vries equation
– volume: 44
  start-page: 59
  issue: 2
  year: 2007
  ident: 10.1016/j.cnsns.2021.105782_bib0034
  article-title: Structured matrix algorithms for inverse scattering on the line
  publication-title: Calcolo
  doi: 10.1007/s10092-007-0129-9
– year: 1987
  ident: 10.1016/j.cnsns.2021.105782_sbref0046
– volume: 54
  start-page: 242
  issue: 2
  year: 2007
  ident: 10.1016/j.cnsns.2021.105782_bib0006
  article-title: A study of solitary waves in a tapered aorta by using the theory of solitons
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2006.12.025
– volume: vol. 54
  year: 2010
  ident: 10.1016/j.cnsns.2021.105782_bib0040
– volume: 50
  start-page: 67
  issue: 1
  year: 2008
  ident: 10.1016/j.cnsns.2021.105782_bib0052
  article-title: Is Gauss quadrature better than Clenshaw–Curtis?
  publication-title: SIAM Rev
  doi: 10.1137/060659831
– start-page: 161
  year: 2020
  ident: 10.1016/j.cnsns.2021.105782_bib0029
  article-title: Integrability and nonlinear waves
– volume: 39
  start-page: 422
  issue: 240
  year: 1895
  ident: 10.1016/j.cnsns.2021.105782_bib0001
  article-title: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves
  publication-title: London Edinb Dublin Philos Mag J Sci Series 5
  doi: 10.1080/14786449508620739
– volume: 53
  start-page: 249
  issue: 4
  year: 1974
  ident: 10.1016/j.cnsns.2021.105782_bib0013
  article-title: The inverse scattering transform - Fourier analysis for nonlinear problems
  publication-title: Stud Appl Math
  doi: 10.1002/sapm1974534249
– volume: 4
  issue: 1
  year: 2013
  ident: 10.1016/j.cnsns.2021.105782_sbref0009
  article-title: Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons
  publication-title: Nat Commun
  doi: 10.1038/ncomms2480
– volume: 3
  start-page: 597
  issue: 23
  year: 2018
  ident: 10.1016/j.cnsns.2021.105782_bib0014
  article-title: FNFT: a software library for computing nonlinear Fourier transforms
  publication-title: J Open Source Softw
  doi: 10.21105/joss.00597
– volume: 21
  start-page: 467
  issue: 5
  year: 1968
  ident: 10.1016/j.cnsns.2021.105782_bib0012
  article-title: Integrals of nonlinear equations of evolution and solitary waves
  publication-title: Commun Pure Appl Math
  doi: 10.1002/cpa.3160210503
– volume: 96
  start-page: 105718
  year: 2021
  ident: 10.1016/j.cnsns.2021.105782_bib0018
  article-title: Introducing phase jump tracking – a fast method for eigenvalue evaluation of the direct Zakharov-Shabat problem
  publication-title: Commun Nonlinear Sci Numer Simulat
  doi: 10.1016/j.cnsns.2021.105718
– volume: 6
  start-page: 121
  issue: 1
  year: 1955
  ident: 10.1016/j.cnsns.2021.105782_bib0038
  article-title: Associated Sturm–Liouville systems
  publication-title: Q J Math
  doi: 10.1093/qmath/6.1.121
– volume: 31
  start-page: 1386
  issue: 23
  year: 1973
  ident: 10.1016/j.cnsns.2021.105782_bib0045
  article-title: Bäcklund transformation for solutions of the Korteweg–de Vries equation
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.31.1386
– volume: 102
  start-page: 252
  issue: 2
  year: 1992
  ident: 10.1016/j.cnsns.2021.105782_bib0051
  article-title: Computation of the direct scattering transform for the nonlinear Schroedinger equation
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(92)90370-E
– year: 2020
  ident: 10.1016/j.cnsns.2021.105782_bib0005
  article-title: Investigation of Coriolis effect on oceanic flows and its bifurcation via geophysical Korteweg–de Vries equation
  publication-title: Numer Methods Partial DifferEqu
  doi: 10.1002/num.22469
– volume: 32
  start-page: 121
  issue: 2
  year: 1979
  ident: 10.1016/j.cnsns.2021.105782_bib0023
  article-title: Inverse scattering on the line
  publication-title: Commun Pure Appl Math
  doi: 10.1002/cpa.3160320202
– volume: 83
  start-page: 34
  issue: 1
  year: 1984
  ident: 10.1016/j.cnsns.2021.105782_bib0039
  article-title: Dressing method vs. classical Darboux transformation
  publication-title: Il Nuovo Cimento B Series 11
  doi: 10.1007/BF02723762
– year: 2020
  ident: 10.1016/j.cnsns.2021.105782_bib0017
  article-title: Successive eigenvalue removal for multi-soliton spectral amplitude estimation
  publication-title: J Lightwave Technol
  doi: 10.1109/JLT.2020.2994156
– ident: 10.1016/j.cnsns.2021.105782_bib0022
  doi: 10.1016/j.wavemoti.2022.102905
– volume: 94
  start-page: 284
  year: 1991
  ident: 10.1016/j.cnsns.2021.105782_bib0020
  article-title: Non-linear Fourier analysis for the infinite-interval Korteweg–de Vries equation I: an algorithm for the direct scattering transform
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(91)90223-8
– year: 2011
  ident: 10.1016/j.cnsns.2021.105782_sbref0010
– volume: 98
  issue: 4
  year: 2018
  ident: 10.1016/j.cnsns.2021.105782_bib0027
  article-title: Strongly interacting soliton gas and formation of rogue waves
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.98.042210
– volume: 80
  start-page: 192
  issue: 1
  year: 2009
  ident: 10.1016/j.cnsns.2021.105782_bib0021
  article-title: Internal solitary waves in the ocean: analysis using the periodic, inverse scattering transform
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2009.06.005
– year: 1991
  ident: 10.1016/j.cnsns.2021.105782_sbref0036
– volume: 100
  start-page: 467
  issue: 9
  year: 1984
  ident: 10.1016/j.cnsns.2021.105782_bib0028
  article-title: General N-soliton solution of the AKNS class on arbitrary background
  publication-title: Phys Lett A
  doi: 10.1016/0375-9601(84)90827-2
– volume: 263
  start-page: 274
  issue: 4-6
  year: 1999
  ident: 10.1016/j.cnsns.2021.105782_bib0047
  article-title: New possibilities for supersymmetry breakdown in quantum mechanics and second-order irreducible Darboux transformations
  publication-title: Phys Lett A
  doi: 10.1016/S0375-9601(99)00736-7
– volume: 73
  start-page: 537
  year: 1977
  ident: 10.1016/j.cnsns.2021.105782_bib0049
  article-title: Perturbation theory for solitons
  publication-title: JETP
– volume: 65
  start-page: 289
  issue: 2
  year: 1974
  ident: 10.1016/j.cnsns.2021.105782_bib0002
  article-title: The Korteweg–de Vries equation and water waves. Part 2. Comparison with experiments
  publication-title: J Fluid Mech
  doi: 10.1017/S002211207400139X
– year: 1987
  ident: 10.1016/j.cnsns.2021.105782_sbref0032
  article-title: Inverse spectral theory
– year: 1980
  ident: 10.1016/j.cnsns.2021.105782_bib0033
– volume: 70
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.cnsns.2021.105782_bib0044
  article-title: Spectral deformations of one-dimensional Schrödinger operators
  publication-title: J. d’Anal. Math.
  doi: 10.1007/BF02820446
– volume: 39
  start-page: 39
  issue: 1-3
  year: 1995
  ident: 10.1016/j.cnsns.2021.105782_bib0008
  article-title: Applications of KdV
  publication-title: Acta Appl Math
  doi: 10.1007/BF00994625
– volume: 7
  start-page: 145161
  year: 2019
  ident: 10.1016/j.cnsns.2021.105782_bib0015
  article-title: Fast nonlinear Fourier transform algorithms using higher order exponential integrators
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2945480
– volume: 33
  start-page: R1
  issue: 5
  year: 2020
  ident: 10.1016/j.cnsns.2021.105782_bib0004
  article-title: Modeling shallow water waves
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/ab6c7c
– volume: 207
  start-page: 111
  issue: 1
  year: 2009
  ident: 10.1016/j.cnsns.2021.105782_bib0025
  article-title: Computational methods for some inverse scattering problems
  publication-title: Appl. Math. Comput.
SSID ssj0016954
Score 2.3895063
Snippet •New algorithm to compute the Crum transform of the Korteweg–de Vries equation.•Unlike repeated Darboux transforms, never introduces singularities.•Suitable...
We present an algorithm to compute the N-fold Crum transform (also known as the dressing method) for the Korteweg–de Vries equation (KdV) accurately in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105782
SubjectTerms Algorithms
Benchmarks
Chains
Complexity
Darboux transform
Dressing method
Eigenvalues
Floating point arithmetic
Fourier transforms
Korteweg-Devries equation
Korteweg–de Vries equation (KdV)
Non-linear Fourier transform (NFT)
Title An accurate O(N2) floating point algorithm for the Crum transform of the KdV equation
URI https://dx.doi.org/10.1016/j.cnsns.2021.105782
https://www.proquest.com/docview/2573025653
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1878-7274
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016954
  issn: 1007-5704
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1878-7274
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016954
  issn: 1007-5704
  databaseCode: ACRLP
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1878-7274
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016954
  issn: 1007-5704
  databaseCode: AIKHN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1878-7274
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016954
  issn: 1007-5704
  databaseCode: .~1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1878-7274
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016954
  issn: 1007-5704
  databaseCode: AKRWK
  dateStart: 19960101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRhRK5YEBJEJxEtvJWFVUhYoyQFG3yPEDitqktOnKb8d2nEog0YExzjmK7s5338n3AOBCSY3So0h5jCjihQJTj2HEPe3qwpjEsY7fTO3w45D0R-HDGI9roFvVwpi0Smf7S5turbVbaTtutueTSfvZ3O9jqpUO2bjcFPGFITVTDG6-1mkeiMR2Epoh9gx11XnI5njxbJmZnt0-svNuI_8v7_TLTlvn09sDOw41wk75Y_ugJrMDsOsQJHTnc3kIRp0MMs5Xpv8DfLoc-ldQTXNmUpvhPJ9kBWTTt3wxKd5nUKNVqNEf7C5WM1hU-BXmyq4OxCuUn2Uf8CMw6t29dPueG5zg8SBAhceVrxCNWEC5pDHhRPAU-SkSXCgchClDijCfxYzSIEq1rEQkZJQymWrwKKkKjkE9yzN5AiAVDOsIBGMqdKBGVCqUYFHMEecaWN3SBvArhiXcdRU3wy2mSZU-9pFYLieGy0nJ5Qa4Xm-al001NpOTShLJD91ItNnfvLFZyS1xR1O_x9qoaaCHg9P_fvcMbJunsiSxCerFYiXPNTYp0pZVvhbY6twP-sNvl_Li_Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DLDwRpSnBwaQCMVJbCcjqkCFljJAEZvl-AFFbVLadOW3YzsOEkgwsNpnK7o7332n3AOAY60MSk8SHXCiSRBLTAOOkQiMq4tTkqYmfrO1w3c90u7Ht8_4eQ606loYm1bpbX9l05219itNz83meDBoPtj_-5gapUMuLk_nwWKMQ2ojsPOPrzwPRFI3Cs1SB5a8bj3kkrxEPs1t0-4QuYG3Sfibe_phqJ33uV4DKx42wsvqy9bBnMo3wKqHkNA_0Okm6F_mkAsxsw0g4P1JLzyFelhwm9sMx8UgLyEfvhSTQfk6ggauQgP_YGsyG8GyBrCw0G61I5-geq8agW-B_vXVY6sd-MkJgYgiVAZChxrRhEdUKJoSQaTIUJghKaTGUZxxpAkPecopjZLMCEsmUiUZV5lBj4rqaBss5EWudgCkkmMTgmBMpYnUiM6kljxJBRLCIKsL2gBhzTAmfFtxO91iyOr8sTfmuMwsl1nF5QY4-zo0rrpq_E1Oakmwb8rBjN3_--B-LTfm36bZx8aqGaSHo93_3nsEltqPd13Wvel19sCy3anqE_fBQjmZqQMDVMrs0CniJ-_L5JI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+accurate+O%28N2%29+floating+point+algorithm+for+the+Crum+transform+of+the+KdV+equation&rft.jtitle=Communications+in+nonlinear+science+%26+numerical+simulation&rft.au=Prins%2C+Peter+J&rft.au=Wahls%2C+Sander&rft.date=2021-11-01&rft.pub=Elsevier+Science+Ltd&rft.issn=1007-5704&rft.eissn=1878-7274&rft.volume=102&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cnsns.2021.105782&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1007-5704&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1007-5704&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1007-5704&client=summon