An accurate O(N2) floating point algorithm for the Crum transform of the KdV equation
•New algorithm to compute the Crum transform of the Korteweg–de Vries equation.•Unlike repeated Darboux transforms, never introduces singularities.•Suitable for 3–7× as complicated cases compared to known algorithms.•Same computational complexity as the fastest known algorithm: O(N2). [Display omitt...
Saved in:
| Published in | Communications in nonlinear science & numerical simulation Vol. 102; p. 105782 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier B.V
01.11.2021
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1007-5704 1878-7274 |
| DOI | 10.1016/j.cnsns.2021.105782 |
Cover
| Abstract | •New algorithm to compute the Crum transform of the Korteweg–de Vries equation.•Unlike repeated Darboux transforms, never introduces singularities.•Suitable for 3–7× as complicated cases compared to known algorithms.•Same computational complexity as the fastest known algorithm: O(N2).
[Display omitted]
We present an algorithm to compute the N-fold Crum transform (also known as the dressing method) for the Korteweg–de Vries equation (KdV) accurately in floating point arithmetic. This transform can be used to generate solutions of the KdV equation, e.g. as a part of the inverse Non-linear Fourier Transform. Crum transform algorithms that sequentially add the N eigenvalues to the solution with a chain of N Darboux transforms have a computational complexity of O(N2), but suffer inevitably from singular intermediate results during the computation of certain regular Crum transforms. Algorithms that add all N eigenvalues at once do not have that flaw, but have a complexity of O(N3) and are often even less accurate for other reasons. Our algorithm has a complexity of O(N2). It makes use of a chain of 2-fold Crum transforms and, if N is odd, one Darboux transform. Hence, our algorithm adds two eigenvalues at a time instead of one whenever possible. We prove that with the right eigenvalue ordering, this avoids artificial singularities for all regular Crum transforms. Furthermore, we demonstrate that our algorithm is considerably more accurate in floating point arithmetic than benchmark algorithms found in the literature. At the same error tolerance, N can be three to seven times as high when using our algorithm instead of the best among the benchmark algorithms. |
|---|---|
| AbstractList | We present an algorithm to compute the N-fold Crum transform (also known as the dressing method) for the Korteweg–de Vries equation (KdV) accurately in floating point arithmetic. This transform can be used to generate solutions of the KdV equation, e.g. as a part of the inverse Non-linear Fourier Transform. Crum transform algorithms that sequentially add the N eigenvalues to the solution with a chain of N Darboux transforms have a computational complexity of O(N2), but suffer inevitably from singular intermediate results during the computation of certain regular Crum transforms. Algorithms that add all N eigenvalues at once do not have that flaw, but have a complexity of O(N3) and are often even less accurate for other reasons. Our algorithm has a complexity of O(N2). It makes use of a chain of 2-fold Crum transforms and, if N is odd, one Darboux transform. Hence, our algorithm adds two eigenvalues at a time instead of one whenever possible. We prove that with the right eigenvalue ordering, this avoids artificial singularities for all regular Crum transforms. Furthermore, we demonstrate that our algorithm is considerably more accurate in floating point arithmetic than benchmark algorithms found in the literature. At the same error tolerance, N can be three to seven times as high when using our algorithm instead of the best among the benchmark algorithms. •New algorithm to compute the Crum transform of the Korteweg–de Vries equation.•Unlike repeated Darboux transforms, never introduces singularities.•Suitable for 3–7× as complicated cases compared to known algorithms.•Same computational complexity as the fastest known algorithm: O(N2). [Display omitted] We present an algorithm to compute the N-fold Crum transform (also known as the dressing method) for the Korteweg–de Vries equation (KdV) accurately in floating point arithmetic. This transform can be used to generate solutions of the KdV equation, e.g. as a part of the inverse Non-linear Fourier Transform. Crum transform algorithms that sequentially add the N eigenvalues to the solution with a chain of N Darboux transforms have a computational complexity of O(N2), but suffer inevitably from singular intermediate results during the computation of certain regular Crum transforms. Algorithms that add all N eigenvalues at once do not have that flaw, but have a complexity of O(N3) and are often even less accurate for other reasons. Our algorithm has a complexity of O(N2). It makes use of a chain of 2-fold Crum transforms and, if N is odd, one Darboux transform. Hence, our algorithm adds two eigenvalues at a time instead of one whenever possible. We prove that with the right eigenvalue ordering, this avoids artificial singularities for all regular Crum transforms. Furthermore, we demonstrate that our algorithm is considerably more accurate in floating point arithmetic than benchmark algorithms found in the literature. At the same error tolerance, N can be three to seven times as high when using our algorithm instead of the best among the benchmark algorithms. |
| ArticleNumber | 105782 |
| Author | Prins, Peter J. Wahls, Sander |
| Author_xml | – sequence: 1 givenname: Peter J. orcidid: 0000-0003-4692-5538 surname: Prins fullname: Prins, Peter J. email: p.j.prins@tudelft.nl – sequence: 2 givenname: Sander surname: Wahls fullname: Wahls, Sander email: s.wahls@tudelft.nl |
| BookMark | eNqFkDtPwzAUhS1UJErhF7BYYoEhxY8kTgeGquIlKrpQVstx7NZRa7e2g8S_x22YGGC6V0fnu1fnnIOBdVYBcIXRGCNc3rVjaYMNY4IITkrBKnIChrhiVcYIywdpR4hlBUP5GTgPoUWJmhT5ECynFgopOy-igoubN3IL9caJaOwK7pyxEYrNynkT11uonYdxreDMd1sYvbAhKVvo9FF9bT6g2ncJdfYCnGqxCeryZ47A8vHhffaczRdPL7PpPJOU4phJTTRmlaBMKjYpZdnIGpMaN7LRBc1rgXUpiJgIxmhV53nVVI2qaqFqRJBimo7AdX93592-UyHy1nXeppecFIwiUpQFTS7au6R3IXil-c6brfBfHCN-6I-3_NgfP_TH-_4SNflFSROP6VJ0s_mHve9ZlcJ_GuV5kEZZqRrjlYy8ceZP_hvXXI8Z |
| CitedBy_id | crossref_primary_10_1007_s00332_023_09940_y crossref_primary_10_1098_rspa_2023_0529 crossref_primary_10_1103_PhysRevE_104_044213 crossref_primary_10_1016_j_wavemoti_2022_102905 crossref_primary_10_1103_PhysRevE_109_061001 crossref_primary_10_5194_nhess_23_2053_2023 crossref_primary_10_1016_j_wavemoti_2024_103480 |
| Cites_doi | 10.1002/sapm1982662159 10.1007/s11005-015-0751-4 10.1007/BF01035458 10.1109/ACCESS.2019.2932256 10.1142/S179343111840002X 10.1007/BF01086739 10.1103/PhysRevLett.19.1095 10.1016/j.physd.2012.02.016 10.1007/s10092-007-0129-9 10.1016/j.camwa.2006.12.025 10.1137/060659831 10.1080/14786449508620739 10.1002/sapm1974534249 10.1038/ncomms2480 10.21105/joss.00597 10.1002/cpa.3160210503 10.1016/j.cnsns.2021.105718 10.1093/qmath/6.1.121 10.1103/PhysRevLett.31.1386 10.1016/0021-9991(92)90370-E 10.1002/num.22469 10.1002/cpa.3160320202 10.1007/BF02723762 10.1109/JLT.2020.2994156 10.1016/j.wavemoti.2022.102905 10.1016/0021-9991(91)90223-8 10.1103/PhysRevE.98.042210 10.1016/j.matcom.2009.06.005 10.1016/0375-9601(84)90827-2 10.1016/S0375-9601(99)00736-7 10.1017/S002211207400139X 10.1007/BF02820446 10.1007/BF00994625 10.1109/ACCESS.2019.2945480 10.1088/1361-6544/ab6c7c |
| ContentType | Journal Article |
| Copyright | 2021 The Authors Copyright Elsevier Science Ltd. Nov 2021 |
| Copyright_xml | – notice: 2021 The Authors – notice: Copyright Elsevier Science Ltd. Nov 2021 |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.cnsns.2021.105782 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1878-7274 |
| ExternalDocumentID | 10_1016_j_cnsns_2021_105782 S1007570421000939 |
| GroupedDBID | --K --M -01 -0A -0I -0Y -SA -S~ .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VR 5VS 6I. 7-5 71M 8P~ 92M 9D9 9DA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABFNM ABJNI ABMAC ABNEU ABXDB ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFUIB AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGVJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAJEA CAJUS CCEZO CCVFK CHBEP CS3 CUBFJ DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA0 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA JUIAU KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q-- Q-0 Q38 R-A R-I R2- RIG ROL RPZ RT1 RT9 S.. SDF SDG SES SEW SPC SPCBC SPD SSQ SST SSW SSZ T5K T8Q T8Y U1F U1G U5A U5I U5K UHS ~G- ~LA AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV SSH |
| ID | FETCH-LOGICAL-c331t-cf2f178a37ce796c6dcb12b1dcdf534ba1f6a2a9a7738b448d8de8baeb020e7f3 |
| IEDL.DBID | .~1 |
| ISSN | 1007-5704 |
| IngestDate | Sun Jul 13 04:44:44 EDT 2025 Thu Apr 24 23:05:25 EDT 2025 Sat Oct 25 05:52:27 EDT 2025 Fri Feb 23 02:43:14 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Darboux transform Dressing method Non-linear Fourier transform (NFT) Korteweg–de Vries equation (KdV) |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c331t-cf2f178a37ce796c6dcb12b1dcdf534ba1f6a2a9a7738b448d8de8baeb020e7f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4692-5538 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1007570421000939 |
| PQID | 2573025653 |
| PQPubID | 2047477 |
| ParticipantIDs | proquest_journals_2573025653 crossref_primary_10_1016_j_cnsns_2021_105782 crossref_citationtrail_10_1016_j_cnsns_2021_105782 elsevier_sciencedirect_doi_10_1016_j_cnsns_2021_105782 |
| PublicationCentury | 2000 |
| PublicationDate | November 2021 2021-11-00 20211101 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Communications in nonlinear science & numerical simulation |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | García-Ferrero, Gómez-Ullate (bib0043) 2015; 105 Brühl, Becker (bib0003) 2018; 12 Sacks, Shin (bib0025) 2009; 207 Van Der Mee, Seatzu, Theis (bib0034) 2007; 44 Wahls, Chimmalgi, Prins (bib0014) 2018; 3 Ablowitz, Kodama (bib0019) 1982; 66 Trefethen (bib0052) 2008; 50 Gesztesy, Simon, Teschl (bib0044) 1996; 70 Gardner, Greene, Kruskal, Miura (bib0011) 1967; 19 Ablowitz (bib0029) 2020 Wahlquist, Estabrook (bib0045) 1973; 31 Trogdon, Olver, Deconinck (bib0035) 2012; 241 Samsonov (bib0047) 1999; 263 Ablowitz, Kaup, Newell, Segur (bib0013) 1974; 53 Korteweg, De Vries (bib0001) 1895; 39 Christov (bib0021) 2009; 80 Zettl (bib0042) 2005 Chimmalgi, Prins, Wahls (bib0015) 2019; 7 Gelash, Agafontsev (bib0027) 2018; 98 Ak, Saha, Dhawan, Kara (bib0005) 2020 Zakharov, Faddeev (bib0050) 1972; 5 Chimmalgi (bib0026) 2017 Levitan (bib0046) 1987 Crum (bib0038) 1955; 6 Lax (bib0012) 1968; 21 Ricketts, Ham (bib0010) 2011 Brühl M., Ujvary S., Barranco I., Prins P.J., Wahls S., Liu P.L.-F.. Comparative analysis of bore propagation using conventional linear and KdV-based nonlinear Fourier transform; 2021 In preparation. Gu, Hu, Zhou (bib0037) 2005 Span, Aref, Bülow, ten Brink (bib0017) 2020 Levi, Ragnisco, Sym (bib0039) 1984; 83 Misra, Patra (bib0006) 2007; 54 Chekhovskoy, Medvedev, Vaseva, Sedov, Fedoruk (bib0018) 2021; 96 Hammack, Segur (bib0002) 1974; 65 Ablowitz, Segur (bib0031) 1981 Boffetta, Osborne (bib0051) 1992; 102 Prins, Wahls (bib0016) 2019; 7 Higham (bib0041) 2002; vol. 80 Chadan, Sabatier (bib0024) 1989 Crighton (bib0008) 1995; 39 Osborne (bib0020) 1991; 94 Temnov, Klieber, Nelson, Thomay, Knittel, Leitenstorfer (bib0009) 2013; 4 Pöschel, Trubowitz (bib0032) 1987 Kasman (bib0040) 2010; vol. 54 Matveev, Salle (bib0036) 1991 Lannes (bib0004) 2020; 33 Lamb (bib0033) 1980 Prins, Wahls (bib0030) 2018 Abdou, Hendi, Alanzi (bib0007) 2012; 3 Deift, Trubowitz (bib0023) 1979; 32 Karpman, Maslov (bib0049) 1977; 73 Neugebauer, Meinel (bib0028) 1984; 100 Adler (bib0048) 1994; 101 Deift (10.1016/j.cnsns.2021.105782_bib0023) 1979; 32 Trogdon (10.1016/j.cnsns.2021.105782_bib0035) 2012; 241 Hammack (10.1016/j.cnsns.2021.105782_bib0002) 1974; 65 Higham (10.1016/j.cnsns.2021.105782_sbref0041) 2002; vol. 80 Span (10.1016/j.cnsns.2021.105782_bib0017) 2020 Zakharov (10.1016/j.cnsns.2021.105782_bib0050) 1972; 5 Crum (10.1016/j.cnsns.2021.105782_bib0038) 1955; 6 Levitan (10.1016/j.cnsns.2021.105782_sbref0046) 1987 Trefethen (10.1016/j.cnsns.2021.105782_bib0052) 2008; 50 Korteweg (10.1016/j.cnsns.2021.105782_bib0001) 1895; 39 Prins (10.1016/j.cnsns.2021.105782_bib0030) 2018 Osborne (10.1016/j.cnsns.2021.105782_bib0020) 1991; 94 Pöschel (10.1016/j.cnsns.2021.105782_sbref0032) 1987 Boffetta (10.1016/j.cnsns.2021.105782_bib0051) 1992; 102 Kasman (10.1016/j.cnsns.2021.105782_bib0040) 2010; vol. 54 Ablowitz (10.1016/j.cnsns.2021.105782_bib0019) 1982; 66 Van Der Mee (10.1016/j.cnsns.2021.105782_bib0034) 2007; 44 Gesztesy (10.1016/j.cnsns.2021.105782_bib0044) 1996; 70 Gu (10.1016/j.cnsns.2021.105782_bib0037) 2005 Chimmalgi (10.1016/j.cnsns.2021.105782_sbref0026) 2017 Prins (10.1016/j.cnsns.2021.105782_bib0016) 2019; 7 Ablowitz (10.1016/j.cnsns.2021.105782_bib0029) 2020 Wahlquist (10.1016/j.cnsns.2021.105782_bib0045) 1973; 31 Samsonov (10.1016/j.cnsns.2021.105782_bib0047) 1999; 263 Brühl (10.1016/j.cnsns.2021.105782_bib0003) 2018; 12 Misra (10.1016/j.cnsns.2021.105782_bib0006) 2007; 54 Chadan (10.1016/j.cnsns.2021.105782_sbref0024) 1989 Ablowitz (10.1016/j.cnsns.2021.105782_bib0031) 1981 Karpman (10.1016/j.cnsns.2021.105782_bib0049) 1977; 73 Temnov (10.1016/j.cnsns.2021.105782_sbref0009) 2013; 4 Lax (10.1016/j.cnsns.2021.105782_bib0012) 1968; 21 Christov (10.1016/j.cnsns.2021.105782_bib0021) 2009; 80 Sacks (10.1016/j.cnsns.2021.105782_bib0025) 2009; 207 Gardner (10.1016/j.cnsns.2021.105782_bib0011) 1967; 19 Gelash (10.1016/j.cnsns.2021.105782_bib0027) 2018; 98 Matveev (10.1016/j.cnsns.2021.105782_sbref0036) 1991 Chimmalgi (10.1016/j.cnsns.2021.105782_bib0015) 2019; 7 10.1016/j.cnsns.2021.105782_bib0022 Abdou (10.1016/j.cnsns.2021.105782_sbref0007) 2012; 3 Zettl (10.1016/j.cnsns.2021.105782_sbref0042) 2005 Ak (10.1016/j.cnsns.2021.105782_bib0005) 2020 Adler (10.1016/j.cnsns.2021.105782_bib0048) 1994; 101 Crighton (10.1016/j.cnsns.2021.105782_bib0008) 1995; 39 Ricketts (10.1016/j.cnsns.2021.105782_sbref0010) 2011 Lamb (10.1016/j.cnsns.2021.105782_bib0033) 1980 Neugebauer (10.1016/j.cnsns.2021.105782_bib0028) 1984; 100 Wahls (10.1016/j.cnsns.2021.105782_bib0014) 2018; 3 Ablowitz (10.1016/j.cnsns.2021.105782_bib0013) 1974; 53 Levi (10.1016/j.cnsns.2021.105782_bib0039) 1984; 83 García-Ferrero (10.1016/j.cnsns.2021.105782_bib0043) 2015; 105 Lannes (10.1016/j.cnsns.2021.105782_bib0004) 2020; 33 Chekhovskoy (10.1016/j.cnsns.2021.105782_bib0018) 2021; 96 |
| References_xml | – year: 1989 ident: bib0024 article-title: Inverse problems in quantum scattering theory – volume: 98 year: 2018 ident: bib0027 article-title: Strongly interacting soliton gas and formation of rogue waves publication-title: Phys Rev E – volume: 73 start-page: 537 year: 1977 end-page: 559 ident: bib0049 article-title: Perturbation theory for solitons publication-title: JETP – year: 2020 ident: bib0017 article-title: Successive eigenvalue removal for multi-soliton spectral amplitude estimation publication-title: J Lightwave Technol – year: 1980 ident: bib0033 article-title: Elements of soliton theory – volume: 96 start-page: 105718 year: 2021 ident: bib0018 article-title: Introducing phase jump tracking – a fast method for eigenvalue evaluation of the direct Zakharov-Shabat problem publication-title: Commun Nonlinear Sci Numer Simulat – volume: 39 start-page: 422 year: 1895 end-page: 443 ident: bib0001 article-title: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves publication-title: London Edinb Dublin Philos Mag J Sci Series 5 – volume: 7 start-page: 122914 year: 2019 end-page: 122930 ident: bib0016 article-title: Soliton phase shift calculation for the Korteweg–de Vries equation publication-title: IEEE Access – volume: 3 start-page: 597 year: 2018 ident: bib0014 article-title: FNFT: a software library for computing nonlinear Fourier transforms publication-title: J Open Source Softw – year: 1987 ident: bib0046 article-title: Inverse Sturm-Liouville problems – year: 2017 ident: bib0026 publication-title: Improved fast inverse nonlinear Fourier transform for multi-solitons: a discrete Darboux based approach – year: 2011 ident: bib0010 article-title: Electrical Solitons – volume: 19 start-page: 1095 year: 1967 end-page: 1097 ident: bib0011 article-title: Method for solving the Korteweg-deVries equation publication-title: Phys Rev Lett – year: 2020 ident: bib0005 article-title: Investigation of Coriolis effect on oceanic flows and its bifurcation via geophysical Korteweg–de Vries equation publication-title: Numer Methods Partial DifferEqu – volume: 12 start-page: 1840002 year: 2018 ident: bib0003 article-title: Analysis of subaerial landslide data using nonlinear Fourier transform based on Korteweg-de Vries equation (KdV-NFT) publication-title: J Earthq Tsunami – volume: 3 start-page: 62 year: 2012 end-page: 68 ident: bib0007 article-title: New exact solutions of KdV equation in an elastic tube filled with a variable viscosity fluid publication-title: Stud Nonlinear Sci – volume: 39 start-page: 39 year: 1995 end-page: 67 ident: bib0008 article-title: Applications of KdV publication-title: Acta Appl Math – volume: 263 start-page: 274 year: 1999 end-page: 280 ident: bib0047 article-title: New possibilities for supersymmetry breakdown in quantum mechanics and second-order irreducible Darboux transformations publication-title: Phys Lett A – year: 1981 ident: bib0031 article-title: Solitons and the inverse scattering transform – year: 1987 ident: bib0032 article-title: Inverse spectral theory publication-title: Pure and applied mathematics – volume: 83 start-page: 34 year: 1984 end-page: 42 ident: bib0039 article-title: Dressing method vs. classical Darboux transformation publication-title: Il Nuovo Cimento B Series 11 – volume: 54 start-page: 242 year: 2007 end-page: 254 ident: bib0006 article-title: A study of solitary waves in a tapered aorta by using the theory of solitons publication-title: Comput Math Appl – volume: 94 start-page: 284 year: 1991 end-page: 313 ident: bib0020 article-title: Non-linear Fourier analysis for the infinite-interval Korteweg–de Vries equation I: an algorithm for the direct scattering transform publication-title: J Comput Phys – volume: 241 start-page: 1003 year: 2012 end-page: 1025 ident: bib0035 article-title: Numerical inverse scattering for the Korteweg–de Vries and modified Korteweg–de Vries equations publication-title: Physica D – volume: 32 start-page: 121 year: 1979 end-page: 251 ident: bib0023 article-title: Inverse scattering on the line publication-title: Commun Pure Appl Math – volume: 50 start-page: 67 year: 2008 end-page: 87 ident: bib0052 article-title: Is Gauss quadrature better than Clenshaw–Curtis? publication-title: SIAM Rev – volume: 70 start-page: 267 year: 1996 end-page: 324 ident: bib0044 article-title: Spectral deformations of one-dimensional Schrödinger operators publication-title: J. d’Anal. Math. – start-page: 4524 year: 2018 end-page: 4528 ident: bib0030 article-title: Higher order exponential splittings for the fast non-linear Fourier transform of the Korteweg-de Vries equation publication-title: 2018 IEEE International conference on acoustics, speech and signal processing (ICASSP) – volume: 101 start-page: 1381 year: 1994 end-page: 1386 ident: bib0048 article-title: A modification of Crum’s method publication-title: Theor Math Phys – year: 2005 ident: bib0042 article-title: Sturm-Liouville theory publication-title: No. 121 in Mathematical surveys and monographs – start-page: 161 year: 2020 end-page: 184 ident: bib0029 article-title: Integrability and nonlinear waves publication-title: Emerging Frontiers in nonlinear science – volume: 4 year: 2013 ident: bib0009 article-title: Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons publication-title: Nat Commun – volume: 80 start-page: 192 year: 2009 end-page: 201 ident: bib0021 article-title: Internal solitary waves in the ocean: analysis using the periodic, inverse scattering transform publication-title: Math Comput Simul – volume: vol. 80 year: 2002 ident: bib0041 article-title: Accuracy and stability of numerical algorithms – volume: vol. 54 year: 2010 ident: bib0040 article-title: Glimpses of soliton theory: the algebra and geometry of nonlinear PDEs – volume: 44 start-page: 59 year: 2007 end-page: 87 ident: bib0034 article-title: Structured matrix algorithms for inverse scattering on the line publication-title: Calcolo – year: 1991 ident: bib0036 article-title: Darboux transformations and solitons – volume: 100 start-page: 467 year: 1984 end-page: 470 ident: bib0028 article-title: General publication-title: Phys Lett A – volume: 33 start-page: R1 year: 2020 end-page: R57 ident: bib0004 article-title: Modeling shallow water waves publication-title: Nonlinearity – volume: 21 start-page: 467 year: 1968 end-page: 490 ident: bib0012 article-title: Integrals of nonlinear equations of evolution and solitary waves publication-title: Commun Pure Appl Math – year: 2005 ident: bib0037 article-title: Darboux transformations in integrable systems; vol. 26 of mathematical physics studies – volume: 53 start-page: 249 year: 1974 end-page: 315 ident: bib0013 article-title: The inverse scattering transform - Fourier analysis for nonlinear problems publication-title: Stud Appl Math – reference: Brühl M., Ujvary S., Barranco I., Prins P.J., Wahls S., Liu P.L.-F.. Comparative analysis of bore propagation using conventional linear and KdV-based nonlinear Fourier transform; 2021 In preparation. – volume: 65 start-page: 289 year: 1974 end-page: 314 ident: bib0002 article-title: The Korteweg–de Vries equation and water waves. Part 2. Comparison with experiments publication-title: J Fluid Mech – volume: 66 start-page: 159 year: 1982 end-page: 170 ident: bib0019 article-title: Note on asymptotic solutions of the Korteweg-de Vries equation with solitons publication-title: Stud Appl Math – volume: 31 start-page: 1386 year: 1973 end-page: 1390 ident: bib0045 article-title: Bäcklund transformation for solutions of the Korteweg–de Vries equation publication-title: Phys Rev Lett – volume: 5 start-page: 280 year: 1972 end-page: 287 ident: bib0050 article-title: Korteweg-de Vries equation: a completely integrable Hamiltonian system publication-title: Funct Anal Appl – volume: 7 start-page: 145161 year: 2019 end-page: 145176 ident: bib0015 article-title: Fast nonlinear Fourier transform algorithms using higher order exponential integrators publication-title: IEEE Access – volume: 102 start-page: 252 year: 1992 end-page: 264 ident: bib0051 article-title: Computation of the direct scattering transform for the nonlinear Schroedinger equation publication-title: J Comput Phys – volume: 207 start-page: 111 year: 2009 end-page: 123 ident: bib0025 article-title: Computational methods for some inverse scattering problems publication-title: Appl. Math. Comput. – volume: 6 start-page: 121 year: 1955 end-page: 127 ident: bib0038 article-title: Associated Sturm–Liouville systems publication-title: Q J Math – volume: 105 start-page: 551 year: 2015 end-page: 573 ident: bib0043 article-title: Oscillation theorems for the Wronskian of an arbitrary sequence of eigenfunctions of Schrödinger’s equation publication-title: Lett. Math. Phys. – year: 2005 ident: 10.1016/j.cnsns.2021.105782_sbref0042 article-title: Sturm-Liouville theory – volume: 66 start-page: 159 issue: 2 year: 1982 ident: 10.1016/j.cnsns.2021.105782_bib0019 article-title: Note on asymptotic solutions of the Korteweg-de Vries equation with solitons publication-title: Stud Appl Math doi: 10.1002/sapm1982662159 – year: 2005 ident: 10.1016/j.cnsns.2021.105782_bib0037 – year: 2017 ident: 10.1016/j.cnsns.2021.105782_sbref0026 – volume: 105 start-page: 551 issue: 4 year: 2015 ident: 10.1016/j.cnsns.2021.105782_bib0043 article-title: Oscillation theorems for the Wronskian of an arbitrary sequence of eigenfunctions of Schrödinger’s equation publication-title: Lett. Math. Phys. doi: 10.1007/s11005-015-0751-4 – volume: 101 start-page: 1381 issue: 3 year: 1994 ident: 10.1016/j.cnsns.2021.105782_bib0048 article-title: A modification of Crum’s method publication-title: Theor Math Phys doi: 10.1007/BF01035458 – volume: 7 start-page: 122914 year: 2019 ident: 10.1016/j.cnsns.2021.105782_bib0016 article-title: Soliton phase shift calculation for the Korteweg–de Vries equation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2932256 – volume: vol. 80 year: 2002 ident: 10.1016/j.cnsns.2021.105782_sbref0041 – volume: 12 start-page: 1840002 issue: 02 year: 2018 ident: 10.1016/j.cnsns.2021.105782_bib0003 article-title: Analysis of subaerial landslide data using nonlinear Fourier transform based on Korteweg-de Vries equation (KdV-NFT) publication-title: J Earthq Tsunami doi: 10.1142/S179343111840002X – year: 1981 ident: 10.1016/j.cnsns.2021.105782_bib0031 – volume: 5 start-page: 280 issue: 4 year: 1972 ident: 10.1016/j.cnsns.2021.105782_bib0050 article-title: Korteweg-de Vries equation: a completely integrable Hamiltonian system publication-title: Funct Anal Appl doi: 10.1007/BF01086739 – volume: 19 start-page: 1095 issue: 19 year: 1967 ident: 10.1016/j.cnsns.2021.105782_bib0011 article-title: Method for solving the Korteweg-deVries equation publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.19.1095 – volume: 3 start-page: 62 issue: 2 year: 2012 ident: 10.1016/j.cnsns.2021.105782_sbref0007 article-title: New exact solutions of KdV equation in an elastic tube filled with a variable viscosity fluid publication-title: Stud Nonlinear Sci – volume: 241 start-page: 1003 issue: 11 year: 2012 ident: 10.1016/j.cnsns.2021.105782_bib0035 article-title: Numerical inverse scattering for the Korteweg–de Vries and modified Korteweg–de Vries equations publication-title: Physica D doi: 10.1016/j.physd.2012.02.016 – year: 1989 ident: 10.1016/j.cnsns.2021.105782_sbref0024 – start-page: 4524 year: 2018 ident: 10.1016/j.cnsns.2021.105782_bib0030 article-title: Higher order exponential splittings for the fast non-linear Fourier transform of the Korteweg-de Vries equation – volume: 44 start-page: 59 issue: 2 year: 2007 ident: 10.1016/j.cnsns.2021.105782_bib0034 article-title: Structured matrix algorithms for inverse scattering on the line publication-title: Calcolo doi: 10.1007/s10092-007-0129-9 – year: 1987 ident: 10.1016/j.cnsns.2021.105782_sbref0046 – volume: 54 start-page: 242 issue: 2 year: 2007 ident: 10.1016/j.cnsns.2021.105782_bib0006 article-title: A study of solitary waves in a tapered aorta by using the theory of solitons publication-title: Comput Math Appl doi: 10.1016/j.camwa.2006.12.025 – volume: vol. 54 year: 2010 ident: 10.1016/j.cnsns.2021.105782_bib0040 – volume: 50 start-page: 67 issue: 1 year: 2008 ident: 10.1016/j.cnsns.2021.105782_bib0052 article-title: Is Gauss quadrature better than Clenshaw–Curtis? publication-title: SIAM Rev doi: 10.1137/060659831 – start-page: 161 year: 2020 ident: 10.1016/j.cnsns.2021.105782_bib0029 article-title: Integrability and nonlinear waves – volume: 39 start-page: 422 issue: 240 year: 1895 ident: 10.1016/j.cnsns.2021.105782_bib0001 article-title: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves publication-title: London Edinb Dublin Philos Mag J Sci Series 5 doi: 10.1080/14786449508620739 – volume: 53 start-page: 249 issue: 4 year: 1974 ident: 10.1016/j.cnsns.2021.105782_bib0013 article-title: The inverse scattering transform - Fourier analysis for nonlinear problems publication-title: Stud Appl Math doi: 10.1002/sapm1974534249 – volume: 4 issue: 1 year: 2013 ident: 10.1016/j.cnsns.2021.105782_sbref0009 article-title: Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons publication-title: Nat Commun doi: 10.1038/ncomms2480 – volume: 3 start-page: 597 issue: 23 year: 2018 ident: 10.1016/j.cnsns.2021.105782_bib0014 article-title: FNFT: a software library for computing nonlinear Fourier transforms publication-title: J Open Source Softw doi: 10.21105/joss.00597 – volume: 21 start-page: 467 issue: 5 year: 1968 ident: 10.1016/j.cnsns.2021.105782_bib0012 article-title: Integrals of nonlinear equations of evolution and solitary waves publication-title: Commun Pure Appl Math doi: 10.1002/cpa.3160210503 – volume: 96 start-page: 105718 year: 2021 ident: 10.1016/j.cnsns.2021.105782_bib0018 article-title: Introducing phase jump tracking – a fast method for eigenvalue evaluation of the direct Zakharov-Shabat problem publication-title: Commun Nonlinear Sci Numer Simulat doi: 10.1016/j.cnsns.2021.105718 – volume: 6 start-page: 121 issue: 1 year: 1955 ident: 10.1016/j.cnsns.2021.105782_bib0038 article-title: Associated Sturm–Liouville systems publication-title: Q J Math doi: 10.1093/qmath/6.1.121 – volume: 31 start-page: 1386 issue: 23 year: 1973 ident: 10.1016/j.cnsns.2021.105782_bib0045 article-title: Bäcklund transformation for solutions of the Korteweg–de Vries equation publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.31.1386 – volume: 102 start-page: 252 issue: 2 year: 1992 ident: 10.1016/j.cnsns.2021.105782_bib0051 article-title: Computation of the direct scattering transform for the nonlinear Schroedinger equation publication-title: J Comput Phys doi: 10.1016/0021-9991(92)90370-E – year: 2020 ident: 10.1016/j.cnsns.2021.105782_bib0005 article-title: Investigation of Coriolis effect on oceanic flows and its bifurcation via geophysical Korteweg–de Vries equation publication-title: Numer Methods Partial DifferEqu doi: 10.1002/num.22469 – volume: 32 start-page: 121 issue: 2 year: 1979 ident: 10.1016/j.cnsns.2021.105782_bib0023 article-title: Inverse scattering on the line publication-title: Commun Pure Appl Math doi: 10.1002/cpa.3160320202 – volume: 83 start-page: 34 issue: 1 year: 1984 ident: 10.1016/j.cnsns.2021.105782_bib0039 article-title: Dressing method vs. classical Darboux transformation publication-title: Il Nuovo Cimento B Series 11 doi: 10.1007/BF02723762 – year: 2020 ident: 10.1016/j.cnsns.2021.105782_bib0017 article-title: Successive eigenvalue removal for multi-soliton spectral amplitude estimation publication-title: J Lightwave Technol doi: 10.1109/JLT.2020.2994156 – ident: 10.1016/j.cnsns.2021.105782_bib0022 doi: 10.1016/j.wavemoti.2022.102905 – volume: 94 start-page: 284 year: 1991 ident: 10.1016/j.cnsns.2021.105782_bib0020 article-title: Non-linear Fourier analysis for the infinite-interval Korteweg–de Vries equation I: an algorithm for the direct scattering transform publication-title: J Comput Phys doi: 10.1016/0021-9991(91)90223-8 – year: 2011 ident: 10.1016/j.cnsns.2021.105782_sbref0010 – volume: 98 issue: 4 year: 2018 ident: 10.1016/j.cnsns.2021.105782_bib0027 article-title: Strongly interacting soliton gas and formation of rogue waves publication-title: Phys Rev E doi: 10.1103/PhysRevE.98.042210 – volume: 80 start-page: 192 issue: 1 year: 2009 ident: 10.1016/j.cnsns.2021.105782_bib0021 article-title: Internal solitary waves in the ocean: analysis using the periodic, inverse scattering transform publication-title: Math Comput Simul doi: 10.1016/j.matcom.2009.06.005 – year: 1991 ident: 10.1016/j.cnsns.2021.105782_sbref0036 – volume: 100 start-page: 467 issue: 9 year: 1984 ident: 10.1016/j.cnsns.2021.105782_bib0028 article-title: General N-soliton solution of the AKNS class on arbitrary background publication-title: Phys Lett A doi: 10.1016/0375-9601(84)90827-2 – volume: 263 start-page: 274 issue: 4-6 year: 1999 ident: 10.1016/j.cnsns.2021.105782_bib0047 article-title: New possibilities for supersymmetry breakdown in quantum mechanics and second-order irreducible Darboux transformations publication-title: Phys Lett A doi: 10.1016/S0375-9601(99)00736-7 – volume: 73 start-page: 537 year: 1977 ident: 10.1016/j.cnsns.2021.105782_bib0049 article-title: Perturbation theory for solitons publication-title: JETP – volume: 65 start-page: 289 issue: 2 year: 1974 ident: 10.1016/j.cnsns.2021.105782_bib0002 article-title: The Korteweg–de Vries equation and water waves. Part 2. Comparison with experiments publication-title: J Fluid Mech doi: 10.1017/S002211207400139X – year: 1987 ident: 10.1016/j.cnsns.2021.105782_sbref0032 article-title: Inverse spectral theory – year: 1980 ident: 10.1016/j.cnsns.2021.105782_bib0033 – volume: 70 start-page: 267 issue: 1 year: 1996 ident: 10.1016/j.cnsns.2021.105782_bib0044 article-title: Spectral deformations of one-dimensional Schrödinger operators publication-title: J. d’Anal. Math. doi: 10.1007/BF02820446 – volume: 39 start-page: 39 issue: 1-3 year: 1995 ident: 10.1016/j.cnsns.2021.105782_bib0008 article-title: Applications of KdV publication-title: Acta Appl Math doi: 10.1007/BF00994625 – volume: 7 start-page: 145161 year: 2019 ident: 10.1016/j.cnsns.2021.105782_bib0015 article-title: Fast nonlinear Fourier transform algorithms using higher order exponential integrators publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2945480 – volume: 33 start-page: R1 issue: 5 year: 2020 ident: 10.1016/j.cnsns.2021.105782_bib0004 article-title: Modeling shallow water waves publication-title: Nonlinearity doi: 10.1088/1361-6544/ab6c7c – volume: 207 start-page: 111 issue: 1 year: 2009 ident: 10.1016/j.cnsns.2021.105782_bib0025 article-title: Computational methods for some inverse scattering problems publication-title: Appl. Math. Comput. |
| SSID | ssj0016954 |
| Score | 2.3895063 |
| Snippet | •New algorithm to compute the Crum transform of the Korteweg–de Vries equation.•Unlike repeated Darboux transforms, never introduces singularities.•Suitable... We present an algorithm to compute the N-fold Crum transform (also known as the dressing method) for the Korteweg–de Vries equation (KdV) accurately in... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 105782 |
| SubjectTerms | Algorithms Benchmarks Chains Complexity Darboux transform Dressing method Eigenvalues Floating point arithmetic Fourier transforms Korteweg-Devries equation Korteweg–de Vries equation (KdV) Non-linear Fourier transform (NFT) |
| Title | An accurate O(N2) floating point algorithm for the Crum transform of the KdV equation |
| URI | https://dx.doi.org/10.1016/j.cnsns.2021.105782 https://www.proquest.com/docview/2573025653 |
| Volume | 102 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1878-7274 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016954 issn: 1007-5704 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1878-7274 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016954 issn: 1007-5704 databaseCode: ACRLP dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1878-7274 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016954 issn: 1007-5704 databaseCode: AIKHN dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1878-7274 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016954 issn: 1007-5704 databaseCode: .~1 dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1878-7274 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016954 issn: 1007-5704 databaseCode: AKRWK dateStart: 19960101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRhRK5YEBJEJxEtvJWFVUhYoyQFG3yPEDitqktOnKb8d2nEog0YExzjmK7s5338n3AOBCSY3So0h5jCjihQJTj2HEPe3qwpjEsY7fTO3w45D0R-HDGI9roFvVwpi0Smf7S5turbVbaTtutueTSfvZ3O9jqpUO2bjcFPGFITVTDG6-1mkeiMR2Epoh9gx11XnI5njxbJmZnt0-svNuI_8v7_TLTlvn09sDOw41wk75Y_ugJrMDsOsQJHTnc3kIRp0MMs5Xpv8DfLoc-ldQTXNmUpvhPJ9kBWTTt3wxKd5nUKNVqNEf7C5WM1hU-BXmyq4OxCuUn2Uf8CMw6t29dPueG5zg8SBAhceVrxCNWEC5pDHhRPAU-SkSXCgchClDijCfxYzSIEq1rEQkZJQymWrwKKkKjkE9yzN5AiAVDOsIBGMqdKBGVCqUYFHMEecaWN3SBvArhiXcdRU3wy2mSZU-9pFYLieGy0nJ5Qa4Xm-al001NpOTShLJD91ItNnfvLFZyS1xR1O_x9qoaaCHg9P_fvcMbJunsiSxCerFYiXPNTYp0pZVvhbY6twP-sNvl_Li_Q |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DLDwRpSnBwaQCMVJbCcjqkCFljJAEZvl-AFFbVLadOW3YzsOEkgwsNpnK7o7332n3AOAY60MSk8SHXCiSRBLTAOOkQiMq4tTkqYmfrO1w3c90u7Ht8_4eQ606loYm1bpbX9l05219itNz83meDBoPtj_-5gapUMuLk_nwWKMQ2ojsPOPrzwPRFI3Cs1SB5a8bj3kkrxEPs1t0-4QuYG3Sfibe_phqJ33uV4DKx42wsvqy9bBnMo3wKqHkNA_0Okm6F_mkAsxsw0g4P1JLzyFelhwm9sMx8UgLyEfvhSTQfk6ggauQgP_YGsyG8GyBrCw0G61I5-geq8agW-B_vXVY6sd-MkJgYgiVAZChxrRhEdUKJoSQaTIUJghKaTGUZxxpAkPecopjZLMCEsmUiUZV5lBj4rqaBss5EWudgCkkmMTgmBMpYnUiM6kljxJBRLCIKsL2gBhzTAmfFtxO91iyOr8sTfmuMwsl1nF5QY4-zo0rrpq_E1Oakmwb8rBjN3_--B-LTfm36bZx8aqGaSHo93_3nsEltqPd13Wvel19sCy3anqE_fBQjmZqQMDVMrs0CniJ-_L5JI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+accurate+O%28N2%29+floating+point+algorithm+for+the+Crum+transform+of+the+KdV+equation&rft.jtitle=Communications+in+nonlinear+science+%26+numerical+simulation&rft.au=Prins%2C+Peter+J&rft.au=Wahls%2C+Sander&rft.date=2021-11-01&rft.pub=Elsevier+Science+Ltd&rft.issn=1007-5704&rft.eissn=1878-7274&rft.volume=102&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cnsns.2021.105782&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1007-5704&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1007-5704&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1007-5704&client=summon |