Learning gene regulatory networks using the bees algorithm

Learning gene regulatory networks under the threshold Boolean network model is presented. To accomplish this, the swarm intelligence technique called the bees algorithm is formulated to learn networks with predefined attractors. The resulting technique is compared with simulated annealing through si...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 22; no. 1; pp. 63 - 70
Main Authors Ruz, Gonzalo A., Goles, Eric
Format Journal Article
LanguageEnglish
Published London Springer-Verlag 01.01.2013
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
1433-3058
DOI10.1007/s00521-011-0750-z

Cover

Abstract Learning gene regulatory networks under the threshold Boolean network model is presented. To accomplish this, the swarm intelligence technique called the bees algorithm is formulated to learn networks with predefined attractors. The resulting technique is compared with simulated annealing through simulations. The ability of the networks to preserve the attractors when the updating schemes is changed from parallel to sequential is analyzed as well. Results show that Boolean networks are not very robust when the updating scheme is changed. Robust networks were found only for limit cycle length equal to two and specific network topologies. Throughout the simulations, the bees algorithm outperformed simulated annealing, showing the effectiveness of this swarm intelligence technique for this particular application.
AbstractList Learning gene regulatory networks under the threshold Boolean network model is presented. To accomplish this, the swarm intelligence technique called the bees algorithm is formulated to learn networks with predefined attractors. The resulting technique is compared with simulated annealing through simulations. The ability of the networks to preserve the attractors when the updating schemes is changed from parallel to sequential is analyzed as well. Results show that Boolean networks are not very robust when the updating scheme is changed. Robust networks were found only for limit cycle length equal to two and specific network topologies. Throughout the simulations, the bees algorithm outperformed simulated annealing, showing the effectiveness of this swarm intelligence technique for this particular application.
Author Ruz, Gonzalo A.
Goles, Eric
Author_xml – sequence: 1
  givenname: Gonzalo A.
  surname: Ruz
  fullname: Ruz, Gonzalo A.
  email: gonzalo.ruz@uai.cl
  organization: Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez
– sequence: 2
  givenname: Eric
  surname: Goles
  fullname: Goles, Eric
  organization: Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez
BookMark eNqNkMtOwzAQRS1UJNrCB7DLDwTGcZwHO1TxkiqxgbU18SNNSZ3KdlS1X4-rdsWiYjGaxdWZmTMzMrGD1YTcU3igAOWjB-AZTYHGKjmkhysypTljKQNeTcgU6jwmRc5uyMz7NQDkRcWn5Gmp0dnOtkmrrU6cbscew-D2idVhN7gfn4z-GIeVThqtfYJ9O7gurDa35Npg7_Xduc_J9-vL1-I9XX6-fSyel6lkjIZUZoWEElCi4sZkqqwUopLK1HXOsWgyqfIGVC25qSqaS86MUVhgpBqqgLI5yU5zR7vF_Q77Xmxdt0G3FxTE0V6c7EW0F0d7cYgQPUHSDd47bf7FlH8Y2QUM3WCDw66_SJ5P9HGLbbUT62F0Nn7lAvQLUeSCoQ
CitedBy_id crossref_primary_10_1007_s00500_018_3010_7
crossref_primary_10_1007_s00500_022_07043_6
crossref_primary_10_1007_s00521_013_1528_2
crossref_primary_10_1016_j_biosystems_2013_10_007
crossref_primary_10_1007_s00521_019_04229_2
crossref_primary_10_1007_s12559_015_9349_5
crossref_primary_10_1016_j_amc_2014_09_079
crossref_primary_10_1007_s11047_019_09730_0
crossref_primary_10_4018_IJALR_2018010101
crossref_primary_10_3390_a14020061
crossref_primary_10_1186_0717_6287_47_64
crossref_primary_10_1186_s12859_020_3472_3
crossref_primary_10_1016_j_neucom_2015_10_095
crossref_primary_10_1093_bioinformatics_btv628
crossref_primary_10_1080_10798587_2016_1196880
crossref_primary_10_1080_23311916_2015_1091540
Cites_doi 10.1109/ICMLA.2010.139
10.1016/S1672-0229(08)60026-1
10.1093/bioinformatics/bth448
10.1504/EJIE.2009.027035
10.1126/science.220.4598.671
10.1016/S1672-6529(08)60103-1
10.1016/j.jtbi.2010.04.012
10.1016/j.neunet.2007.07.002
10.1016/j.artmed.2009.11.001
10.1016/j.biosystems.2009.03.006
10.1186/1471-2164-10-S1-S15
10.1016/S0303-2647(02)00019-9
10.1016/j.aam.2010.03.002
10.1243/09544062JMES1494
10.1529/biophysj.106.083485
10.1007/978-3-540-85190-5_28
10.1016/B978-008045157-2/50081-X
10.1371/journal.pone.0011793
10.1007/11885191_9
10.1007/978-3-540-35866-4_29
10.1006/jtbi.1998.0701
10.1109/INDIN.2009.5195852
10.1016/0022-5193(69)90015-0
10.1186/1471-2105-11-59
10.1007/978-3-540-87527-7_33
10.1243/09544062JMES838
10.1016/j.tcs.2007.09.008
ContentType Journal Article
Copyright Springer-Verlag London Limited 2011
Copyright_xml – notice: Springer-Verlag London Limited 2011
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1007/s00521-011-0750-z
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 70
ExternalDocumentID oai:americanae.aecid.es:3272663
10_1007_s00521_011_0750_z
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ADTOC
UNPAY
ID FETCH-LOGICAL-c331t-c26c070acad5ff2d78daadcdf9945a6b2cd4b0d9c5f8814c53ffda6a6c0b1d013
IEDL.DBID U2A
ISSN 0941-0643
1433-3058
IngestDate Sun Oct 26 04:14:16 EDT 2025
Wed Oct 01 02:25:36 EDT 2025
Thu Apr 24 23:01:44 EDT 2025
Fri Feb 21 02:34:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Attractors
Swarm intelligence
The bees algorithm
Boolean networks
Simulated annealing
Language English
License http://www.springer.com/tdm
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-c26c070acad5ff2d78daadcdf9945a6b2cd4b0d9c5f8814c53ffda6a6c0b1d013
OpenAccessLink https://proxy.k.utb.cz/login?url=http://americanae.aecid.es/americanae/es/registros/registro.do?tipoRegistro=MTD&idBib=3272663
PageCount 8
ParticipantIDs unpaywall_primary_10_1007_s00521_011_0750_z
crossref_primary_10_1007_s00521_011_0750_z
crossref_citationtrail_10_1007_s00521_011_0750_z
springer_journals_10_1007_s00521_011_0750_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130100
2013-1-00
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 1
  year: 2013
  text: 20130100
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2013
Publisher Springer-Verlag
Publisher_xml – name: Springer-Verlag
References Ruz GA, Goles E (2010b) Learning gene regulatory networks with predefined attractors for sequential updating schemes using simulated annealing. In: Proceeding of IEEE the Ninth International Conference on Machine Learning and Applications (ICMLA 2010), pp 889–894
PhamDTCastellaniMThe bees algorithm: modelling foraging behaviour to solve continuous optimization problemsProc IMechE Part C: J Mech Eng Sci20092232919293810.1243/09544062JMES1494
XuRVenayagamoorthyGWunschDModeling of gene regulatory networks with hybrid differential evolution and particle swarm optimizationNeural Netw200720917927
YuJSmithVAWangPPHarteminkAJJarvisEDAdvances to Bayesian network inference for generating causal networks from observational biological dataBioinformatics2004203594360310.1093/bioinformatics/bth448
LeeWYangKApplying intelligent computing techniques to modeling biological networks from expression dataGenom Proteom Bioinform2008611112010.1016/S1672-0229(08)60026-1
ZhangYXuanJde los ReyesBClarkeRRessomHReverse engineering module networks by pso-rnn hybrid modelingBMC Genom200910S1510.1186/1471-2164-10-S1-S15
BaykasogluAOzbakirLTapkanPThe bees algorithm for workload balancing in examination job assignmentEu J Ind Eng2009342443510.1504/EJIE.2009.027035
PhamDTGhanbarzadehAOtriSKoEOptimal design of mechanical components using the bees algorithmProc Inst Mech Eng Part C: J Mech Eng Sci20092231051105610.1243/09544062JMES838
Liang S, Fuhrman S, Somogyi R (1998) Reveal, a general reverse engineering algorithm for inference of genetic network architectures. In: Pac Symp Biocomput, pp 18–29
Ang MC, Pham DT, Ng KW (2009) Minimum-time motion planning for a robot arm using the bees algorithm. In: 7th IEEE International Conference on Industrial Informatics, 2009. INDIN, pp 487–492
LiuGFengWWangHLiuLZhouCReconstruction of gene regulatory networks based on two-stage Bayesian network structure learning algorithmJ Bionic Eng20096869210.1016/S1672-6529(08)60103-1
GolesESalinasLComparison between parallel and serial dynamics of Boolean networksTheor Comput Sci200839624725324122581145.6803510.1016/j.tcs.2007.09.008
KauffmanSAMetabolic stability and epigenesis in randomly constructed genetic netsJ Theor Biol19692243746724616010.1016/0022-5193(69)90015-0
Akutsu T, Miyano S, Kuhara S (1999) Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. In: Pac Symp Biocomput pp 17–28
ShinAIbaHConstruction of genetic network using evolutionary algorithm and combined fitness functionGenome Inform20031494103
KirkpatrickSGelattCDVecchiMPOptimization by simulated annealingScience19832206716807024851225.9016210.1126/science.220.4598.671
MendozaLAlvarez-BuyllaERDynamics of the genetic regulatory network for arabidopsis thaliana flower morphogenesisJ Theor Biol199819330731910.1006/jtbi.1998.0701
TomshineJKaznessisYNOptimization of a stochastically simulated gene network model via simulated annealingBiophys J2006913196320510.1529/biophysj.106.083485
XuRVenayagamoorthyGWunschDWangJYiZZuradaJLuBLYinHA study of particle swarm optimization in gene regulatory networks inferenceAdvances in neural networks—ISNN 2006, lecture notes in computer science, vol 3973.2006BerlinSpringer648653
GolesESalinasLSequential operator for filtering cycles in Boolean networksAdv Appl Math20104534635826690721205.6817810.1016/j.aam.2010.03.002
RepsilberDLiljenstromHAnderssonSGEReverse engineering of regulatory networks: simulation studies on a genetic algorithm approach for ranking hypothesesBiosystems200266314110.1016/S0303-2647(02)00019-9
SerraRVillaniMBarbieriAKauffmanSAColacciAOn the dynamics of random Boolean networks subject to noise: attractors, ergodic sets and cell typesJ Theor Biol201026518519310.1016/j.jtbi.2010.04.012
Ruz GA, Goles E (2010a) Cycle attractors for different deterministic updating schemes in Boolean regulation networks. In: Proc. of the IASTED International Conference on Computational Bioscience (Comp-Bio 2010), pp 620–625
HuangSMinaiAABar-YamYCell state dynamics and tumorigenesis in Boolean regulatory networksUnifying themes in complex systems2006BerlinSpringer29330510.1007/978-3-540-35866-4_29
KentzoglanakisKPooleMAdamsCDorigoMBirattariMBlumCClercMSttzleTWinfieldAIncorporating heuristics in a swarm intelligence framework for inferring gene regulatory networks from gene expression time seriesAnt colony optimization and swarm intelligence, lecture notes in computer science, vol 52172008HeidelbergSpringer Berlin32333010.1007/978-3-540-87527-7_33
Hoon MD, Imoto S, Miyano S (2003) Inferring gene regulatory networks from time-ordered gene expression data of bacillus subtilis using differential equations. In: Pac Symp Biocomput pp 17–28
AracenaJGolesEMoreiraASalinasLOn the robustness of update schedules in Boolean networksBiosystems2009971810.1016/j.biosystems.2009.03.006
LeeJYDarwishAHYooSDMulti-objective environmental/economic dispatch using the bees algorithm with weighted sumEKC2008 Proceedings of the EU-Korea conference on science and technology, Springer proceedings in physics, vol 124.2008HeidelbergSpringer Berlin26727410.1007/978-3-540-85190-5_28
Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2006) The bees algorithm, a novel tool for complex optimisation problems. In: Proceedings of the Second International Virtual Conference on Intelligent production machines and systems (IPROMS 2006), pp 454–459
SirbuARuskinHCraneMComparison of evolutionary algorithms in gene regulatory network model inferenceBMC Bioinform2010115910.1186/1471-2105-11-59
DemongeotJGolesEMorvanMNoualMSenéSAttraction basins as gauges of robustness against boundary conditions in biological complex systemsPLoS ONE201058e11,79310.1371/journal.pone.0011793
StegglesLJBanksRWipatAModelling and analysing genetic networks: from Boolean networks to petri netsComput Methods Syst Biol20064210127141228834710.1007/11885191_9
ShmulevichIDoughertyERProbabilistic Boolean networks: the modeling and control of gene regulatory networks2009PhiladelphiaSIAM-Society for Industrial and Applied Mathematics
ZhangSChingWTsingNLeungHGuoDA new multiple regression approach for the construction of genetic regulatory networksArtif Intell Med20104815316010.1016/j.artmed.2009.11.001
I Shmulevich (750_CR26) 2009
JY Lee (750_CR13) 2008
R Serra (750_CR24) 2010; 265
A Baykasoglu (750_CR4) 2009; 3
750_CR8
S Huang (750_CR9) 2006
LJ Steggles (750_CR28) 2006; 4210
J Yu (750_CR32) 2004; 20
750_CR1
J Aracena (750_CR3) 2009; 97
A Shin (750_CR25) 2003; 14
J Tomshine (750_CR29) 2006; 91
750_CR2
K Kentzoglanakis (750_CR11) 2008
J Demongeot (750_CR5) 2010; 5
750_CR31
A Sirbu (750_CR27) 2010; 11
S Kirkpatrick (750_CR12) 1983; 220
G Liu (750_CR16) 2009; 6
L Mendoza (750_CR17) 1998; 193
SA Kauffman (750_CR10) 1969; 22
DT Pham (750_CR20) 2009; 223
750_CR19
S Zhang (750_CR33) 2010; 48
750_CR15
DT Pham (750_CR18) 2009; 223
750_CR23
E Goles (750_CR7) 2010; 45
750_CR22
W Lee (750_CR14) 2008; 6
Y Zhang (750_CR34) 2009; 10
R Xu (750_CR30) 2006
D Repsilber (750_CR21) 2002; 66
E Goles (750_CR6) 2008; 396
References_xml – reference: SirbuARuskinHCraneMComparison of evolutionary algorithms in gene regulatory network model inferenceBMC Bioinform2010115910.1186/1471-2105-11-59
– reference: ZhangYXuanJde los ReyesBClarkeRRessomHReverse engineering module networks by pso-rnn hybrid modelingBMC Genom200910S1510.1186/1471-2164-10-S1-S15
– reference: Ang MC, Pham DT, Ng KW (2009) Minimum-time motion planning for a robot arm using the bees algorithm. In: 7th IEEE International Conference on Industrial Informatics, 2009. INDIN, pp 487–492
– reference: StegglesLJBanksRWipatAModelling and analysing genetic networks: from Boolean networks to petri netsComput Methods Syst Biol20064210127141228834710.1007/11885191_9
– reference: TomshineJKaznessisYNOptimization of a stochastically simulated gene network model via simulated annealingBiophys J2006913196320510.1529/biophysj.106.083485
– reference: Ruz GA, Goles E (2010b) Learning gene regulatory networks with predefined attractors for sequential updating schemes using simulated annealing. In: Proceeding of IEEE the Ninth International Conference on Machine Learning and Applications (ICMLA 2010), pp 889–894
– reference: Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2006) The bees algorithm, a novel tool for complex optimisation problems. In: Proceedings of the Second International Virtual Conference on Intelligent production machines and systems (IPROMS 2006), pp 454–459
– reference: KauffmanSAMetabolic stability and epigenesis in randomly constructed genetic netsJ Theor Biol19692243746724616010.1016/0022-5193(69)90015-0
– reference: ShinAIbaHConstruction of genetic network using evolutionary algorithm and combined fitness functionGenome Inform20031494103
– reference: AracenaJGolesEMoreiraASalinasLOn the robustness of update schedules in Boolean networksBiosystems2009971810.1016/j.biosystems.2009.03.006
– reference: MendozaLAlvarez-BuyllaERDynamics of the genetic regulatory network for arabidopsis thaliana flower morphogenesisJ Theor Biol199819330731910.1006/jtbi.1998.0701
– reference: LiuGFengWWangHLiuLZhouCReconstruction of gene regulatory networks based on two-stage Bayesian network structure learning algorithmJ Bionic Eng20096869210.1016/S1672-6529(08)60103-1
– reference: YuJSmithVAWangPPHarteminkAJJarvisEDAdvances to Bayesian network inference for generating causal networks from observational biological dataBioinformatics2004203594360310.1093/bioinformatics/bth448
– reference: HuangSMinaiAABar-YamYCell state dynamics and tumorigenesis in Boolean regulatory networksUnifying themes in complex systems2006BerlinSpringer29330510.1007/978-3-540-35866-4_29
– reference: BaykasogluAOzbakirLTapkanPThe bees algorithm for workload balancing in examination job assignmentEu J Ind Eng2009342443510.1504/EJIE.2009.027035
– reference: Ruz GA, Goles E (2010a) Cycle attractors for different deterministic updating schemes in Boolean regulation networks. In: Proc. of the IASTED International Conference on Computational Bioscience (Comp-Bio 2010), pp 620–625
– reference: Liang S, Fuhrman S, Somogyi R (1998) Reveal, a general reverse engineering algorithm for inference of genetic network architectures. In: Pac Symp Biocomput, pp 18–29
– reference: SerraRVillaniMBarbieriAKauffmanSAColacciAOn the dynamics of random Boolean networks subject to noise: attractors, ergodic sets and cell typesJ Theor Biol201026518519310.1016/j.jtbi.2010.04.012
– reference: XuRVenayagamoorthyGWunschDModeling of gene regulatory networks with hybrid differential evolution and particle swarm optimizationNeural Netw200720917927
– reference: DemongeotJGolesEMorvanMNoualMSenéSAttraction basins as gauges of robustness against boundary conditions in biological complex systemsPLoS ONE201058e11,79310.1371/journal.pone.0011793
– reference: GolesESalinasLComparison between parallel and serial dynamics of Boolean networksTheor Comput Sci200839624725324122581145.6803510.1016/j.tcs.2007.09.008
– reference: ShmulevichIDoughertyERProbabilistic Boolean networks: the modeling and control of gene regulatory networks2009PhiladelphiaSIAM-Society for Industrial and Applied Mathematics
– reference: XuRVenayagamoorthyGWunschDWangJYiZZuradaJLuBLYinHA study of particle swarm optimization in gene regulatory networks inferenceAdvances in neural networks—ISNN 2006, lecture notes in computer science, vol 3973.2006BerlinSpringer648653
– reference: PhamDTGhanbarzadehAOtriSKoEOptimal design of mechanical components using the bees algorithmProc Inst Mech Eng Part C: J Mech Eng Sci20092231051105610.1243/09544062JMES838
– reference: Akutsu T, Miyano S, Kuhara S (1999) Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. In: Pac Symp Biocomput pp 17–28
– reference: KentzoglanakisKPooleMAdamsCDorigoMBirattariMBlumCClercMSttzleTWinfieldAIncorporating heuristics in a swarm intelligence framework for inferring gene regulatory networks from gene expression time seriesAnt colony optimization and swarm intelligence, lecture notes in computer science, vol 52172008HeidelbergSpringer Berlin32333010.1007/978-3-540-87527-7_33
– reference: GolesESalinasLSequential operator for filtering cycles in Boolean networksAdv Appl Math20104534635826690721205.6817810.1016/j.aam.2010.03.002
– reference: KirkpatrickSGelattCDVecchiMPOptimization by simulated annealingScience19832206716807024851225.9016210.1126/science.220.4598.671
– reference: PhamDTCastellaniMThe bees algorithm: modelling foraging behaviour to solve continuous optimization problemsProc IMechE Part C: J Mech Eng Sci20092232919293810.1243/09544062JMES1494
– reference: LeeWYangKApplying intelligent computing techniques to modeling biological networks from expression dataGenom Proteom Bioinform2008611112010.1016/S1672-0229(08)60026-1
– reference: RepsilberDLiljenstromHAnderssonSGEReverse engineering of regulatory networks: simulation studies on a genetic algorithm approach for ranking hypothesesBiosystems200266314110.1016/S0303-2647(02)00019-9
– reference: LeeJYDarwishAHYooSDMulti-objective environmental/economic dispatch using the bees algorithm with weighted sumEKC2008 Proceedings of the EU-Korea conference on science and technology, Springer proceedings in physics, vol 124.2008HeidelbergSpringer Berlin26727410.1007/978-3-540-85190-5_28
– reference: ZhangSChingWTsingNLeungHGuoDA new multiple regression approach for the construction of genetic regulatory networksArtif Intell Med20104815316010.1016/j.artmed.2009.11.001
– reference: Hoon MD, Imoto S, Miyano S (2003) Inferring gene regulatory networks from time-ordered gene expression data of bacillus subtilis using differential equations. In: Pac Symp Biocomput pp 17–28
– ident: 750_CR23
  doi: 10.1109/ICMLA.2010.139
– volume: 6
  start-page: 111
  year: 2008
  ident: 750_CR14
  publication-title: Genom Proteom Bioinform
  doi: 10.1016/S1672-0229(08)60026-1
– ident: 750_CR8
– volume: 20
  start-page: 3594
  year: 2004
  ident: 750_CR32
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth448
– ident: 750_CR1
– volume: 3
  start-page: 424
  year: 2009
  ident: 750_CR4
  publication-title: Eu J Ind Eng
  doi: 10.1504/EJIE.2009.027035
– volume: 220
  start-page: 671
  year: 1983
  ident: 750_CR12
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 6
  start-page: 86
  year: 2009
  ident: 750_CR16
  publication-title: J Bionic Eng
  doi: 10.1016/S1672-6529(08)60103-1
– start-page: 648
  volume-title: Advances in neural networks—ISNN 2006, lecture notes in computer science, vol 3973.
  year: 2006
  ident: 750_CR30
– volume: 265
  start-page: 185
  year: 2010
  ident: 750_CR24
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2010.04.012
– ident: 750_CR31
  doi: 10.1016/j.neunet.2007.07.002
– volume: 48
  start-page: 153
  year: 2010
  ident: 750_CR33
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2009.11.001
– volume: 97
  start-page: 1
  year: 2009
  ident: 750_CR3
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2009.03.006
– volume: 10
  start-page: S15
  year: 2009
  ident: 750_CR34
  publication-title: BMC Genom
  doi: 10.1186/1471-2164-10-S1-S15
– volume: 66
  start-page: 31
  year: 2002
  ident: 750_CR21
  publication-title: Biosystems
  doi: 10.1016/S0303-2647(02)00019-9
– volume: 45
  start-page: 346
  year: 2010
  ident: 750_CR7
  publication-title: Adv Appl Math
  doi: 10.1016/j.aam.2010.03.002
– volume: 223
  start-page: 2919
  year: 2009
  ident: 750_CR18
  publication-title: Proc IMechE Part C: J Mech Eng Sci
  doi: 10.1243/09544062JMES1494
– volume: 91
  start-page: 3196
  year: 2006
  ident: 750_CR29
  publication-title: Biophys J
  doi: 10.1529/biophysj.106.083485
– start-page: 267
  volume-title: EKC2008 Proceedings of the EU-Korea conference on science and technology, Springer proceedings in physics, vol 124.
  year: 2008
  ident: 750_CR13
  doi: 10.1007/978-3-540-85190-5_28
– ident: 750_CR19
  doi: 10.1016/B978-008045157-2/50081-X
– volume-title: Probabilistic Boolean networks: the modeling and control of gene regulatory networks
  year: 2009
  ident: 750_CR26
– volume: 5
  start-page: e11,793
  issue: 8
  year: 2010
  ident: 750_CR5
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0011793
– volume: 4210
  start-page: 127
  year: 2006
  ident: 750_CR28
  publication-title: Comput Methods Syst Biol
  doi: 10.1007/11885191_9
– start-page: 293
  volume-title: Unifying themes in complex systems
  year: 2006
  ident: 750_CR9
  doi: 10.1007/978-3-540-35866-4_29
– ident: 750_CR15
– volume: 193
  start-page: 307
  year: 1998
  ident: 750_CR17
  publication-title: J Theor Biol
  doi: 10.1006/jtbi.1998.0701
– ident: 750_CR2
  doi: 10.1109/INDIN.2009.5195852
– volume: 14
  start-page: 94
  year: 2003
  ident: 750_CR25
  publication-title: Genome Inform
– volume: 22
  start-page: 437
  year: 1969
  ident: 750_CR10
  publication-title: J Theor Biol
  doi: 10.1016/0022-5193(69)90015-0
– volume: 11
  start-page: 59
  year: 2010
  ident: 750_CR27
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-11-59
– start-page: 323
  volume-title: Ant colony optimization and swarm intelligence, lecture notes in computer science, vol 5217
  year: 2008
  ident: 750_CR11
  doi: 10.1007/978-3-540-87527-7_33
– volume: 223
  start-page: 1051
  year: 2009
  ident: 750_CR20
  publication-title: Proc Inst Mech Eng Part C: J Mech Eng Sci
  doi: 10.1243/09544062JMES838
– ident: 750_CR22
– volume: 396
  start-page: 247
  year: 2008
  ident: 750_CR6
  publication-title: Theor Comput Sci
  doi: 10.1016/j.tcs.2007.09.008
SSID ssj0004685
Score 2.0916402
Snippet Learning gene regulatory networks under the threshold Boolean network model is presented. To accomplish this, the swarm intelligence technique called the bees...
SourceID unpaywall
crossref
springer
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 63
SubjectTerms Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Cont. Dev. of Neural Compt. & Appln
Data Mining and Knowledge Discovery
Image Processing and Computer Vision
Probability and Statistics in Computer Science
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7SzSH00PSRkpS26FB6aJDjh-y1C6GkjxAKCaFkITmZ0WtjsrWXtZeSPfS3d2zLS0ohpYfeLDGyETPSN3hmvgF4Y8gHUIpOmiYw40JKwzPpGy4szRqtkqwrFD49S04m4utlfLkBQyovujAFGg-NKrRn6jtzBzRq-xXUDSHI-snT1YemmFff3Pjw9OLz20J_LORhFI4JgKIHsJnE5KqPYHNydn501fHviTbjp0_AF1HEye7TIerpdySjBGy8-4FIoMpXv-PWEDR9CFvLco63P3A2u4NLx9vwc6ju6dNRbrxlIz21-pPs8f9s-TE8ch4tO-pN8AlsmPIpbA_dIpi7PJ7Be0flOmVks4bRR9rOYdXilpV9KnrN2iT8KSOXlEljaoazabUomuvvOzA5_nLx6YS7zg1cRVHQcBUmiu4SVKhja0M9TjWiVtpmmYgxkaHSQvo6U7FN00CoOLJWY4K0SgaavNLnMCqr0uwCMymq1AYqMFaKcYhZW9OiY-lnGKUo5R74g15y5WjN2-4as3xNyNypMidV5q0q89UevFsvmfecHvcJ7w_Kzt3xru-VXtvD39_94p-kX8KoWSzNK3KCGvnamfIv4akKZA
  priority: 102
  providerName: Unpaywall
Title Learning gene regulatory networks using the bees algorithm
URI https://link.springer.com/article/10.1007/s00521-011-0750-z
http://americanae.aecid.es/americanae/es/registros/registro.do?tipoRegistro=MTD&idBib=3272663
UnpaywallVersion submittedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241028
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241028
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241028
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60PagH32J9sQdPSiDvJt5SbS2KxYOB9hT2WYWYljRF2l_vbl5UkIqHsCTsTmB2Zmd2d2Y-gGsufQBKpaYxacw0mxCu-UTnmi3kV86o6-eJwi8Dtx_aT0NnWOZxz6po9-pKMl-p62Q3dYKptr7ykWZOW25C01HVvKQQh2awkgyZ43DKbYsK6bGt6irzNxI_jVH12x3YmidTvPjCcbxibHr7sFt6iSgopvUANnhyCHsVAgMqFfII7sryqGMk5YCjtACWn6QLlBTh3TOkAtvHSLp5iHA-QzgeT9KP7P3zGMJe9-2-r5VoCBq1LCPTqOlSqZ-YYuYIYbK2xzBmlAnftx3sEpMym-jMp47wPMOmjiUEwy6Wo4jBpKd3Ao1kkvBTQNzD1BMGNbggdtvEvsoTYQ7RfWx5mJAW6BVbIlqWCleIFXFUFznOORlJTkaKk9GyBTf1kGlRJ2Nd59uK11GpMrO1vevp-Jv22b9on8O2meNbKKm4gEaWzvml9DIycgXNoPPQ6an2cfTcvcqlTL6Fg9dg9A0I7s9S
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHNCD-Iz43IMnTQ1tt6X1RgyI8jhBgqdmn2jEQkqJgV_v9hk0BsOhl2Z32s7OdGZ2Z-YDuBHKB2BMaRpXxkzDlArNpVWhYanuCs5sNy4U7vbs1gC_DK1hWsc9y7LdsyPJ-E-dF7tFO5hR6KsuZea05TYUsYpPjAIU60-v7cZKOWSMxKkClyipB5vZYeZfRH6ao-zBu1Ca-1Oy-CLj8Yq5aZahn71okmXycT8P6T1b_urhuOGX7MNe6n6ieiIvB7Al_EMoZ9AOKNX0I3hI-66OkBIwgYIEsX4SLJCf5I3PUJQxP0LKf0RUiBki49EkeA_fPo9h0Gz0H1taCrOgMdPUQ40ZNlOKTxjhlpQGrzmcEM64dF1sEZsajGNa5S6zpOPomFmmlJzYRM2iOlcu5AkU_IkvTgEJhzBH6kwXkuKaQdyoAIVbtOoS0yGUVqCacdtjaQ_yCApj7OXdk2PeeIo3XsQbb1mB23zKNGnAsW7wXcZxL9XF2drR-Sr_T_tsI9rXUGr1ux2v89xrn8OOEYNoRGt-AYUwmItL5cqE9CoV3W9Qdep_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60go-Db7E-9-BJCeaxSRNvRS31VTxY6C3sswoxLUmKtL_e3byoIBUPewm7Q5idYWZ3Z74P4EKoHIAx5WlcBTMDUyqMgJrCwFJ9FZx5Qd4o_NLzun38OHAHJc9pWlW7V0-SRU-DRmmKs-sxl9d145u-zdTHYDVUyDNmy7CCNU6CMui-3Z5rjMw5OdURRpf3YKd61vxNxM_AVP3CBqxN4jGZfpEomgs8nW3YLDNG1C62eAeWRLwLWxUbAyqdcw9uSqjUIVI2IVBSkMyPkimKi1LvFOki9yFSKR-iQqSIRMNR8pG9f-5Dv3P_dts1SmYEgzmOlRnM9pjyVcIId6W0ecvnhHDGZRBgl3jUZhxTkwfMlb5vYeY6UnLiEbWKWlxlfQfQiEexOAQkfMJ8aTFLSIpbNgl0zwh3qRkQxyeUNsGs1BKyEjZcs1dEYQ14nGsyVJoMtSbDWRMu6yXjAjNj0eSrStdh6T7pwtn1dvwt--hfss9h9fWuEz4_9J6OYd3OaS-0gZxAI0sm4lQlHxk9yw3sG33b0cQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7SzSH00PSRkpS26FB6aJDjh-y1C6GkjxAKCaFkITmZ0WtjsrWXtZeSPfS3d2zLS0ohpYfeLDGyETPSN3hmvgF4Y8gHUIpOmiYw40JKwzPpGy4szRqtkqwrFD49S04m4utlfLkBQyovujAFGg-NKrRn6jtzBzRq-xXUDSHI-snT1YemmFff3Pjw9OLz20J_LORhFI4JgKIHsJnE5KqPYHNydn501fHviTbjp0_AF1HEye7TIerpdySjBGy8-4FIoMpXv-PWEDR9CFvLco63P3A2u4NLx9vwc6ju6dNRbrxlIz21-pPs8f9s-TE8ch4tO-pN8AlsmPIpbA_dIpi7PJ7Be0flOmVks4bRR9rOYdXilpV9KnrN2iT8KSOXlEljaoazabUomuvvOzA5_nLx6YS7zg1cRVHQcBUmiu4SVKhja0M9TjWiVtpmmYgxkaHSQvo6U7FN00CoOLJWY4K0SgaavNLnMCqr0uwCMymq1AYqMFaKcYhZW9OiY-lnGKUo5R74g15y5WjN2-4as3xNyNypMidV5q0q89UevFsvmfecHvcJ7w_Kzt3xru-VXtvD39_94p-kX8KoWSzNK3KCGvnamfIv4akKZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+gene+regulatory+networks+using+the+bees+algorithm&rft.jtitle=Neural+computing+%26+applications&rft.au=Ruz%2C+Gonzalo+A.&rft.au=Goles%2C+Eric&rft.date=2013-01-01&rft.pub=Springer-Verlag&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=22&rft.issue=1&rft.spage=63&rft.epage=70&rft_id=info:doi/10.1007%2Fs00521-011-0750-z&rft.externalDocID=10_1007_s00521_011_0750_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon