Flexible thermoelectric generator with polydimethyl siloxane in thermoelectric material and substrate
In this paper, the fabrication and characterization of a flexible thermoelectric generator (TEG) is presented. Bismuth telluride powder (Bi/Te) is utilized as p- and n-type thermoelectric materials, and carbon nanotubes (CNTs) are used to enhance electrical conductivity. Both the CNTs and bismuth te...
Saved in:
Published in | Current applied physics Vol. 16; no. 10; pp. 1442 - 1448 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2016
한국물리학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1567-1739 1878-1675 |
DOI | 10.1016/j.cap.2016.08.010 |
Cover
Abstract | In this paper, the fabrication and characterization of a flexible thermoelectric generator (TEG) is presented. Bismuth telluride powder (Bi/Te) is utilized as p- and n-type thermoelectric materials, and carbon nanotubes (CNTs) are used to enhance electrical conductivity. Both the CNTs and bismuth telluride (Bi/Te) powder are mixed with a solution of polydimethyl siloxane (PDMS) as a precursor. The same PDMS used for the hybrid thermoelectric materials is also used as the substrate, making the TEG flexible and increasing its stability. The Seebeck coefficients of the fabricated p- and n-type thermoelectric materials are 143 and -174 μV/K, respectively. The output voltage of the fabricated device is 920 mV and the generated power is 570 μW/cm2 with a temperature difference of 60 °C. The fabricated TEG maintains its performance level during bending reliability tests on a curvature with a radius as small as 5 mm, and after more than 1000 repetitions of bending on a curvature with a radius of 20 mm.
•CNTs and Bi/Te powder were mixed in polydimethyl siloxane (PDMS) to develop a flexible thermoelectric material.•The PDMS used for the hybrid thermoelectric material was also used as the substrate.•Carbon nanotubes were used to enhance electrical conductivity.•The flexible thermoelectric generator maintained its performance during 1000 bending reliability tests. |
---|---|
AbstractList | In this paper, the fabrication and characterization of a flexible thermoelectric generator (TEG) is presented. Bismuth telluride powder (Bi/Te) is utilized as p- and n-type thermoelectric materials, and carbon nanotubes (CNTs) are used to enhance electrical conductivity. Both the CNTs and bismuth telluride (Bi/Te) powder are mixed with a solution of polydimethyl siloxane (PDMS) as a precursor. The same PDMS used for the hybrid thermoelectric materials is also used as the substrate, making the TEG flexible and increasing its stability. The Seebeck coefficients of the fabricated p- and n-type thermoelectric materials are 143 and -174 μV/K, respectively. The output voltage of the fabricated device is 920 mV and the generated power is 570 μW/cm2 with a temperature difference of 60 °C. The fabricated TEG maintains its performance level during bending reliability tests on a curvature with a radius as small as 5 mm, and after more than 1000 repetitions of bending on a curvature with a radius of 20 mm.
•CNTs and Bi/Te powder were mixed in polydimethyl siloxane (PDMS) to develop a flexible thermoelectric material.•The PDMS used for the hybrid thermoelectric material was also used as the substrate.•Carbon nanotubes were used to enhance electrical conductivity.•The flexible thermoelectric generator maintained its performance during 1000 bending reliability tests. In this paper, the fabrication and characterization of a flexible thermoelectric generator (TEG) is presented. Bismuth telluride powder (Bi/Te) is utilized as p- and n-type thermoelectric materials, and carbon nanotubes (CNTs) are used to enhance electrical conductivity. Both the CNTs and bismuth telluride (Bi/Te) powder are mixed with a solution of polydimethyl siloxane (PDMS) as a precursor. The same PDMS used for the hybrid thermoelectric materials is also used as the substrate, making the TEG flexible and increasing its stability. The Seebeck coefficients of the fabricated p- and n-type thermoelectric materials are 143 and -174 mV/K, respectively. The output voltage of the fabricated device is 920 mV and the generated power is 570 mW/cm2 with a temperature difference of 60 C. The fabricated TEG maintains its performance level during bending reliability tests on a curvature with a radius as small as 5 mm, and after more than 1000 repetitions of bending on a curvature with a radius of 20 mm. KCI Citation Count: 15 |
Author | Jung, Kyung Kuk Jung, Young Ko, Jong Soo Lee, Jae Min Choi, Chang Jun |
Author_xml | – sequence: 1 givenname: Kyung Kuk surname: Jung fullname: Jung, Kyung Kuk – sequence: 2 givenname: Young surname: Jung fullname: Jung, Young – sequence: 3 givenname: Chang Jun surname: Choi fullname: Choi, Chang Jun – sequence: 4 givenname: Jae Min surname: Lee fullname: Lee, Jae Min – sequence: 5 givenname: Jong Soo surname: Ko fullname: Ko, Jong Soo email: mems@pusan.ac.kr |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002160587$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kD9PwzAUxC1UJNrCB2DLypBgJ2niiKmqKCAhISGYLcd-oa-4dmWbP_32uJSpA9O94X5PdzchI-ssEHLJaMEoa67XhZLbokxnQXlBGT0hY8ZbnrOmnY3SPWvanLVVd0YmIaxpMta0HhNYGvjG3kAWV-A3Dgyo6FFlb2DBy-h89oVxlW2d2WncQFztTBbQuG9pIUN7jG1kBI_SZNLqLHz0IaYncE5OB2kCXPzplLwub18W9_nj093DYv6Yq6piMe-boU2h2aA7xru6rXVfDv2-VF1z0ENddj3XTcd5PzSlZIxrULUqG2iqagZdNSVXh7_WD-JdoXASf_XNiXcv5s8vD4KVbVVWPHnbg1d5F4KHQSiMMqKzKTIawajYLyvWIi0r9iEE5SItm0h2RG49bqTf_cvcHBhI9T8RvAgKwSrQ6NN0Qjv8h_4BnQaVRA |
CitedBy_id | crossref_primary_10_2139_ssrn_4191081 crossref_primary_10_1016_j_energy_2023_128290 crossref_primary_10_1039_D1DT01568K crossref_primary_10_1016_j_apmt_2019_04_007 crossref_primary_10_1016_j_cej_2022_138794 crossref_primary_10_1002_aenm_202200256 crossref_primary_10_1038_s41467_019_13461_2 crossref_primary_10_1016_j_seta_2019_100604 crossref_primary_10_1016_j_cej_2022_135268 crossref_primary_10_1016_j_ceramint_2019_05_090 crossref_primary_10_54227_mlab_20230032 crossref_primary_10_3390_designs3020022 crossref_primary_10_1007_s11664_018_06854_4 crossref_primary_10_1002_er_4206 crossref_primary_10_1016_j_nanoen_2021_106494 crossref_primary_10_1002_adma_202303035 crossref_primary_10_1038_s41598_020_77442_y crossref_primary_10_1039_D0MA01030H crossref_primary_10_1088_2515_7655_ab2f1e crossref_primary_10_1016_j_compscitech_2022_109291 crossref_primary_10_1021_acsaem_3c01422 crossref_primary_10_1039_D1SE00653C crossref_primary_10_1088_1361_6439_aa8f16 crossref_primary_10_1007_s10853_017_1284_2 crossref_primary_10_1002_smll_201805241 crossref_primary_10_1016_j_coco_2021_100914 crossref_primary_10_1016_j_apenergy_2017_05_005 crossref_primary_10_1016_j_rser_2024_114579 crossref_primary_10_1021_acs_nanolett_0c01225 crossref_primary_10_1016_j_apenergy_2017_08_231 crossref_primary_10_1021_acsaelm_4c02247 crossref_primary_10_3390_ma14092173 crossref_primary_10_1016_j_nanoen_2021_106325 crossref_primary_10_1039_D0MA01018A crossref_primary_10_1155_2022_1236270 crossref_primary_10_1016_j_tsep_2025_103444 crossref_primary_10_1039_C9NR06197E crossref_primary_10_1016_j_apenergy_2018_02_062 crossref_primary_10_1016_j_energy_2024_134096 crossref_primary_10_1021_acsami_2c12798 crossref_primary_10_1007_s00339_020_03902_x crossref_primary_10_1002_smll_202304599 crossref_primary_10_14233_ajchem_2022_23730 crossref_primary_10_1016_j_jpowsour_2020_229044 crossref_primary_10_1021_acs_nanolett_2c00696 crossref_primary_10_1016_j_nanoen_2023_109213 |
Cites_doi | 10.1021/am401222p 10.1021/am301759a 10.1063/1.4824648 10.1063/1.1723445 10.1126/science.1228061 10.1039/c4ee00242c 10.1088/1742-6596/557/1/012016 10.1016/j.energy.2013.01.040 10.1016/j.energy.2014.06.047 10.1039/C1JM13769G 10.1007/s12274-012-0272-8 10.1039/c3ee23729j 10.1039/c2ee22777k 10.1063/1.4788817 10.1088/0960-1317/19/4/047002 10.1021/am403568t |
ContentType | Journal Article |
Copyright | 2016 |
Copyright_xml | – notice: 2016 |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1016/j.cap.2016.08.010 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1878-1675 |
EndPage | 1448 |
ExternalDocumentID | oai_kci_go_kr_ARTI_1273238 10_1016_j_cap_2016_08_010 S1567173916302115 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9ZL AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSQ SSZ T5K UHS ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD ABPIF ABPTK ACYCR |
ID | FETCH-LOGICAL-c331t-b6f71871fd9189474db2fb2016448edf429b8d6988bf62a118dec4c26e6335e93 |
IEDL.DBID | .~1 |
ISSN | 1567-1739 |
IngestDate | Fri Nov 17 19:18:03 EST 2023 Wed Oct 01 01:55:08 EDT 2025 Thu Apr 24 23:05:19 EDT 2025 Fri Feb 23 02:29:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Carbon nanotubes (CNTs) Bismuth telluride (Bi/Te) powder Polydimethyl siloxane (PMDS) PDMS etching Flexible thermoelectric generator |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-b6f71871fd9189474db2fb2016448edf429b8d6988bf62a118dec4c26e6335e93 |
Notes | G704-001115.2016.16.10.030 |
PageCount | 7 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_1273238 crossref_citationtrail_10_1016_j_cap_2016_08_010 crossref_primary_10_1016_j_cap_2016_08_010 elsevier_sciencedirect_doi_10_1016_j_cap_2016_08_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2016 2016-10-00 2016-10 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: October 2016 |
PublicationDecade | 2010 |
PublicationTitle | Current applied physics |
PublicationYear | 2016 |
Publisher | Elsevier B.V 한국물리학회 |
Publisher_xml | – name: Elsevier B.V – name: 한국물리학회 |
References | Thermal Conductivity of some common Materials and Gases. Available Balakrisnan, Patil, Smela (bib17) 2009; 19 [accessed 14 June 2016]. Madan, Wang, Chen, Juang, Keist, Wright, Evans (bib18) 2012; 4 Kim, We, Cho (bib1) 2014; 7 Gou, Yang, Xiao, Ou (bib4) 2013; 52 Yang, Lin, Hou, Zhang, Wang (bib10) 2012; 5 Bubnova, Crispin (bib2) 2012; 5 We, Kim, Cho (bib8) 2014; 73 Park, Park, Kim, Shin, Kim, Park (bib11) 2013; 6 Francioso, De Pascali, Farella, Martucci, Cret, Siciliano, Perrone (bib3) 2010; 196 Harman (bib16) 1958; 29 Kim, Kim, Lee, Kim, Kim (bib6) 2014; 23 Suemori, Hoshino, Kamata (bib7) 2013; 103 Madan, Wang, Chen, Wright, Evans (bib19) 2013; 5 Cao, Koukharenko, Torah, Tudor, Beeby (bib12) 2014; 557 Guo, Liu, Sun, Yang, Kia, Peng (bib14) 2012; 22 Behabtu, Young, Tsentalovich, Kleinerman, Wang, Ma, Bengio, ter Waarbeek, de Jong, Hoogerwerf, Fairchild, Ferguson, Maruyama, Kono, Talmon, Cohen, Otto, Pasquali (bib13) 2013; 339 Fan, Zheng, Cai, Chen, Liu, Cai, Zhang, Liang, Luo (bib5) 2013; 102 Francioso, De Pascali, Bartali, Morganti, Lorenzelli, Siciliano, Laidani (bib9) 2013; 5 Gou (10.1016/j.cap.2016.08.010_bib4) 2013; 52 Park (10.1016/j.cap.2016.08.010_bib11) 2013; 6 Francioso (10.1016/j.cap.2016.08.010_bib3) 2010; 196 We (10.1016/j.cap.2016.08.010_bib8) 2014; 73 Fan (10.1016/j.cap.2016.08.010_bib5) 2013; 102 Kim (10.1016/j.cap.2016.08.010_bib6) 2014; 23 Francioso (10.1016/j.cap.2016.08.010_bib9) 2013; 5 Balakrisnan (10.1016/j.cap.2016.08.010_bib17) 2009; 19 Madan (10.1016/j.cap.2016.08.010_bib19) 2013; 5 Guo (10.1016/j.cap.2016.08.010_bib14) 2012; 22 Kim (10.1016/j.cap.2016.08.010_bib1) 2014; 7 Behabtu (10.1016/j.cap.2016.08.010_bib13) 2013; 339 Harman (10.1016/j.cap.2016.08.010_bib16) 1958; 29 10.1016/j.cap.2016.08.010_bib15 Bubnova (10.1016/j.cap.2016.08.010_bib2) 2012; 5 Madan (10.1016/j.cap.2016.08.010_bib18) 2012; 4 Yang (10.1016/j.cap.2016.08.010_bib10) 2012; 5 Cao (10.1016/j.cap.2016.08.010_bib12) 2014; 557 Suemori (10.1016/j.cap.2016.08.010_bib7) 2013; 103 |
References_xml | – volume: 196 start-page: 747 year: 2010 end-page: 750 ident: bib3 article-title: Flexible thermoelectric generator for wearable biometric sensors publication-title: Proc. IEEE Sensors – volume: 5 start-page: 9345 year: 2012 ident: bib2 article-title: Towards polymer-based organic thermoelectric generators publication-title: Energy Environ. Sci. – volume: 29 start-page: 1373 year: 1958 end-page: 1374 ident: bib16 article-title: Special techniques for measurement of thermoelectric properties publication-title: J. Appl. Phys. – volume: 102 start-page: 0 year: 2013 end-page: 3 ident: bib5 article-title: The high performance of a thin film thermoelectric generator with heat flow running parallel to film surface publication-title: Appl. Phys. Lett. – volume: 557 start-page: 012016 year: 2014 ident: bib12 article-title: Flexible screen printed thick film thermoelectric generator with reduced material resistivity publication-title: J. Phys. Conf. Ser. – volume: 6 start-page: 788 year: 2013 ident: bib11 article-title: Flexible PEDOT electrodes with large thermoelectric power factors to generate electricity by the touch of fingertips publication-title: Energy Environ. Sci. – volume: 23 start-page: 105002 year: 2014 ident: bib6 article-title: Wearable thermoelectric generator for harvesting human body heat energy, Smart Mater publication-title: Struct – volume: 339 start-page: 182 year: 2013 end-page: 186 ident: bib13 article-title: Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity publication-title: Science – volume: 52 start-page: 201 year: 2013 end-page: 209 ident: bib4 article-title: A dynamic model for thermoelectric generator applied in waste heat recovery publication-title: Energy – volume: 5 start-page: 888 year: 2012 end-page: 895 ident: bib10 article-title: Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors publication-title: Nano Res. – reference: [accessed 14 June 2016]. – volume: 5 start-page: 11872 year: 2013 end-page: 11876 ident: bib19 article-title: High-performance dispenser printed MA p-type Bi0.5Sb 1.5Te3 flexible thermoelectric generators for powering wireless sensor networks publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 1959 year: 2014 ident: bib1 article-title: A wearable thermoelectric generator fabricated on a glass fabric publication-title: Energy Environ. Sci. – volume: 4 start-page: 6117 year: 2012 end-page: 6124 ident: bib18 article-title: Enhanced performance of dispenser printed MA n-type Bi2Te 3 composite thermoelectric generators publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 6586 year: 2013 end-page: 6590 ident: bib9 article-title: PDMS/kapton interface plasma treatment effects on the polymeric package for a wearable thermoelectric generator publication-title: ACS Appl. Mater. Interfaces – volume: 19 start-page: 047002 year: 2009 ident: bib17 article-title: Patterning PDMS using a combination of wet and dry etching publication-title: J. Micromechanics Microengineering – volume: 73 start-page: 506 year: 2014 end-page: 512 ident: bib8 article-title: Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator publication-title: Energy – volume: 103 start-page: 0 year: 2013 end-page: 4 ident: bib7 article-title: Flexible and lightweight thermoelectric generators composed of carbon nanotube-polystyrene composites printed on film substrate publication-title: Appl. Phys. Lett. – volume: 22 start-page: 903 year: 2012 end-page: 908 ident: bib14 article-title: Aligned carbon nanotube/polymer composite fibers with improved mechanical strength and electrical conductivity publication-title: J. Mater. Chem. – reference: Thermal Conductivity of some common Materials and Gases. Available: – volume: 5 start-page: 6586 year: 2013 ident: 10.1016/j.cap.2016.08.010_bib9 article-title: PDMS/kapton interface plasma treatment effects on the polymeric package for a wearable thermoelectric generator publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am401222p – volume: 4 start-page: 6117 year: 2012 ident: 10.1016/j.cap.2016.08.010_bib18 article-title: Enhanced performance of dispenser printed MA n-type Bi2Te 3 composite thermoelectric generators publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am301759a – volume: 103 start-page: 0 year: 2013 ident: 10.1016/j.cap.2016.08.010_bib7 article-title: Flexible and lightweight thermoelectric generators composed of carbon nanotube-polystyrene composites printed on film substrate publication-title: Appl. Phys. Lett. doi: 10.1063/1.4824648 – volume: 29 start-page: 1373 year: 1958 ident: 10.1016/j.cap.2016.08.010_bib16 article-title: Special techniques for measurement of thermoelectric properties publication-title: J. Appl. Phys. doi: 10.1063/1.1723445 – volume: 339 start-page: 182 year: 2013 ident: 10.1016/j.cap.2016.08.010_bib13 article-title: Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity publication-title: Science doi: 10.1126/science.1228061 – volume: 7 start-page: 1959 year: 2014 ident: 10.1016/j.cap.2016.08.010_bib1 article-title: A wearable thermoelectric generator fabricated on a glass fabric publication-title: Energy Environ. Sci. doi: 10.1039/c4ee00242c – volume: 557 start-page: 012016 year: 2014 ident: 10.1016/j.cap.2016.08.010_bib12 article-title: Flexible screen printed thick film thermoelectric generator with reduced material resistivity publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/557/1/012016 – ident: 10.1016/j.cap.2016.08.010_bib15 – volume: 52 start-page: 201 year: 2013 ident: 10.1016/j.cap.2016.08.010_bib4 article-title: A dynamic model for thermoelectric generator applied in waste heat recovery publication-title: Energy doi: 10.1016/j.energy.2013.01.040 – volume: 73 start-page: 506 year: 2014 ident: 10.1016/j.cap.2016.08.010_bib8 article-title: Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator publication-title: Energy doi: 10.1016/j.energy.2014.06.047 – volume: 196 start-page: 747 year: 2010 ident: 10.1016/j.cap.2016.08.010_bib3 article-title: Flexible thermoelectric generator for wearable biometric sensors publication-title: Proc. IEEE Sensors – volume: 22 start-page: 903 year: 2012 ident: 10.1016/j.cap.2016.08.010_bib14 article-title: Aligned carbon nanotube/polymer composite fibers with improved mechanical strength and electrical conductivity publication-title: J. Mater. Chem. doi: 10.1039/C1JM13769G – volume: 5 start-page: 888 year: 2012 ident: 10.1016/j.cap.2016.08.010_bib10 article-title: Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors publication-title: Nano Res. doi: 10.1007/s12274-012-0272-8 – volume: 6 start-page: 788 year: 2013 ident: 10.1016/j.cap.2016.08.010_bib11 article-title: Flexible PEDOT electrodes with large thermoelectric power factors to generate electricity by the touch of fingertips publication-title: Energy Environ. Sci. doi: 10.1039/c3ee23729j – volume: 5 start-page: 9345 year: 2012 ident: 10.1016/j.cap.2016.08.010_bib2 article-title: Towards polymer-based organic thermoelectric generators publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22777k – volume: 102 start-page: 0 year: 2013 ident: 10.1016/j.cap.2016.08.010_bib5 article-title: The high performance of a thin film thermoelectric generator with heat flow running parallel to film surface publication-title: Appl. Phys. Lett. doi: 10.1063/1.4788817 – volume: 23 start-page: 105002 year: 2014 ident: 10.1016/j.cap.2016.08.010_bib6 article-title: Wearable thermoelectric generator for harvesting human body heat energy, Smart Mater publication-title: Struct – volume: 19 start-page: 047002 year: 2009 ident: 10.1016/j.cap.2016.08.010_bib17 article-title: Patterning PDMS using a combination of wet and dry etching publication-title: J. Micromechanics Microengineering doi: 10.1088/0960-1317/19/4/047002 – volume: 5 start-page: 11872 year: 2013 ident: 10.1016/j.cap.2016.08.010_bib19 article-title: High-performance dispenser printed MA p-type Bi0.5Sb 1.5Te3 flexible thermoelectric generators for powering wireless sensor networks publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am403568t |
SSID | ssj0016404 |
Score | 2.339346 |
Snippet | In this paper, the fabrication and characterization of a flexible thermoelectric generator (TEG) is presented. Bismuth telluride powder (Bi/Te) is utilized as... In this paper, the fabrication and characterization of a flexible thermoelectric generator (TEG) is presented. Bismuth telluride powder (Bi/Te) is utilized as... |
SourceID | nrf crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1442 |
SubjectTerms | Bismuth telluride (Bi/Te) powder Carbon nanotubes (CNTs) Flexible thermoelectric generator PDMS etching Polydimethyl siloxane (PMDS) 물리학 |
Title | Flexible thermoelectric generator with polydimethyl siloxane in thermoelectric material and substrate |
URI | https://dx.doi.org/10.1016/j.cap.2016.08.010 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002160587 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Current Applied Physics, 2016, 16(10), , pp.1442-1448 |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1878-1675 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016404 issn: 1567-1739 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1878-1675 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016404 issn: 1567-1739 databaseCode: .~1 dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1878-1675 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016404 issn: 1567-1739 databaseCode: AIKHN dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2025 customDbUrl: eissn: 1878-1675 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016404 issn: 1567-1739 databaseCode: ACRLP dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1878-1675 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016404 issn: 1567-1739 databaseCode: AKRWK dateStart: 20010101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66IngRn_gmiCehbrOp2fYoi8uq4EUFbyFPqdZ22V1BL_52Z9JWVMSDp9KS6SMJM9_XTL4h5MhxcHLemsh7AQSFJS7KFHdRHCvhjAAzFbItrsXoLrm8P72fI4N2LwymVTa-v_bpwVs3V7pNb3bHed69AeaBS8iAbzgEqrDRHNW_YE6fvH-meQAbCCUEsXGErduVzZDjZRRKVjIRVDxxE-3vsWm-nPgvUWe4QpYbuEjP6jdaJXOuXCOLIW3TTNeJG6KepS4cRRz3XNVFbXJDH4KaNPBpij9a6bgq3myO1aLfCjrNi-pVlY7m5U8zgK9hRlJVWjoFnxK0azfI3fD8djCKmsIJkeGczSItPIScPvM2Y2mW9BOre17jhwIZc9bD8OjUiixNtRc9BRzDOpOYnnCC81OX8U3SKavSbRGaOgB8TOF6H1CxfqwZBD2LMnCe963S2yRuu0yaRlUci1sUsk0fe5TQyxIfLrHgJYu3yfGnybiW1PircdKOg_w2LyS4_L_MDmHM5JPJJepn4_Ghkk8TCSzhQjLAbABVdv53712yhGd1Rt8e6cwmL24fkMlMH4Spd0AWzi6uRtcfws3izA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF7RRFW5oEJb8WpZVZyQrHizzsY-oogoKTSXEim31T6RwdhREiT498ysbVRQxaEnS_aOH7urmW88M98Qcuo4KDlvTeS9AAeFJS7KFHdRHCvhjAAxFbItZmIyT34tBostMmprYTCtstH9tU4P2ro502tms7fM894f8DwwhAz4hoOhwkLzbjIAndwh3fPp5WT2EkwQSegiiOMjFGiDmyHNyyhkrWQiEHliHe2_zdOHcuX_Mjzjz2SnQYz0vH6pXbLlyj3yMWRumvUX4sZIaakLRxHK3Vd1X5vc0JtAKA0uNcV_rXRZFU82x4bRTwVd50X1qEpH8_KtGCDYsCmpKi1dg1oJ9LVfyXx8cT2aRE3vhMhwzjaRFh6szpB5m7E0S4aJ1X2v8UPBH3PWwwrp1IosTbUXfQVuhnUmMX3hBOcDl_FvpFNWpdsnNHWA-ZjCkB94Y8NYM7B7FpngPB9apQ9I3E6ZNA2xOPa3KGSbQXYrYZYlPlxiz0sWH5CzF5Flzarx3uCkXQf5amtI0Prvif2ENZN3JpdIoY3Hm0rerSQ4ClPJALYBWjn8v3ufkE-T699X8mo6uzwi23ilTvA7Jp3N6sF9B6Cy0T-ajfgMg6fldw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+thermoelectric+generator+with+polydimethyl+siloxane+in+thermoelectric+material+and+substrate&rft.jtitle=Current+applied+physics&rft.au=Kyung+Kuk+Jung&rft.au=%EC%A0%95%EC%98%81&rft.au=Chang+Jun+Choi&rft.au=Jae+Min+Lee&rft.date=2016-10-01&rft.pub=%ED%95%9C%EA%B5%AD%EB%AC%BC%EB%A6%AC%ED%95%99%ED%9A%8C&rft.issn=1567-1739&rft.eissn=1878-1675&rft.spage=1442&rft.epage=1448&rft_id=info:doi/10.1016%2Fj.cap.2016.08.010&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_1273238 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1739&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1739&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1739&client=summon |