Design of a compact omnidirectional sound camera using the three-dimensional acoustic intensimetry
[Display omitted] •A compact omnidirectional sound camera using the 3D acoustic intensimetry.•A truncated stellated octahedral array compensating the spatial bias error.•Estimation of 3D acoustic intensity vector using the combined microphone array.•Performance comparison between 3D acoustic intensi...
Saved in:
| Published in | Mechanical systems and signal processing Vol. 172; p. 108970 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin
Elsevier Ltd
01.06.2022
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0888-3270 1096-1216 |
| DOI | 10.1016/j.ymssp.2022.108970 |
Cover
| Abstract | [Display omitted]
•A compact omnidirectional sound camera using the 3D acoustic intensimetry.•A truncated stellated octahedral array compensating the spatial bias error.•Estimation of 3D acoustic intensity vector using the combined microphone array.•Performance comparison between 3D acoustic intensimetry and TDOA method.•Real-time source localization test in a reverberant room with T30 = 0.66 s.
By using the 3D intensimetry algorithm, a sensor probe has a significant advantage at low frequencies, allowing for a compact array cluster that is far smaller than a wavelength. A super-compact 3D sound camera is designed to estimate the direction of arrival by calculating the three-dimensional intensity vectors based on the measured pressure data. An array of flush-mounted MEMS microphones is configured over the spherical surface of a commercial omnidirectional camera with a diameter of 38 mm. Implementing the operation over a wide frequency range requires the scattering caused by the microphone holder and the irregularity of the array’s directional response to be minimized. Although the spherical scattering reduces the effective upper-bound frequency by two thirds, a truncated stellated-octahedral array using five microphones can significantly reduce the spatial bias error at high frequencies. The test results in an anechoic chamber show an average localization error of 3.2° for human voices. The results in a reverberant room with T30 = 0.66 s reveal an average bearing angle error of 6.5° when a source is positioned within two times the critical distance in the interior space. In such a live room, it is demonstrated that the speakers wearing the face masks can be localized in real-time. |
|---|---|
| AbstractList | By using the 3D intensimetry algorithm, a sensor probe has a significant advantage at low frequencies, allowing for a compact array cluster that is far smaller than a wavelength. A super-compact 3D sound camera is designed to estimate the direction of arrival by calculating the three-dimensional intensity vectors based on the measured pressure data. An array of flush-mounted MEMS microphones is configured over the spherical surface of a commercial omnidirectional camera with a diameter of 38 mm. Implementing the operation over a wide frequency range requires the scattering caused by the microphone holder and the irregularity of the array's directional response to be minimized. Although the spherical scattering reduces the effective upper-bound frequency by two thirds, a truncated stellated-octahedral array using five microphones can significantly reduce the spatial bias error at high frequencies. The test results in an anechoic chamber show an average localization error of 3.2° for human voices. The results in a reverberant room with T30 = 0.66 s reveal an average bearing angle error of 6.5° when a source is positioned within two times the critical distance in the interior space. In such a live room, it is demonstrated that the speakers wearing the face masks can be localized in real-time. [Display omitted] •A compact omnidirectional sound camera using the 3D acoustic intensimetry.•A truncated stellated octahedral array compensating the spatial bias error.•Estimation of 3D acoustic intensity vector using the combined microphone array.•Performance comparison between 3D acoustic intensimetry and TDOA method.•Real-time source localization test in a reverberant room with T30 = 0.66 s. By using the 3D intensimetry algorithm, a sensor probe has a significant advantage at low frequencies, allowing for a compact array cluster that is far smaller than a wavelength. A super-compact 3D sound camera is designed to estimate the direction of arrival by calculating the three-dimensional intensity vectors based on the measured pressure data. An array of flush-mounted MEMS microphones is configured over the spherical surface of a commercial omnidirectional camera with a diameter of 38 mm. Implementing the operation over a wide frequency range requires the scattering caused by the microphone holder and the irregularity of the array’s directional response to be minimized. Although the spherical scattering reduces the effective upper-bound frequency by two thirds, a truncated stellated-octahedral array using five microphones can significantly reduce the spatial bias error at high frequencies. The test results in an anechoic chamber show an average localization error of 3.2° for human voices. The results in a reverberant room with T30 = 0.66 s reveal an average bearing angle error of 6.5° when a source is positioned within two times the critical distance in the interior space. In such a live room, it is demonstrated that the speakers wearing the face masks can be localized in real-time. |
| ArticleNumber | 108970 |
| Author | Ih, Jeong-Guon Jung, In-Jee |
| Author_xml | – sequence: 1 givenname: In-Jee surname: Jung fullname: Jung, In-Jee organization: Center for Noise and Vibration Control, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea – sequence: 2 givenname: Jeong-Guon surname: Ih fullname: Ih, Jeong-Guon email: J.G.Ih@kaist.ac.kr organization: Center for Noise and Vibration Control, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea |
| BookMark | eNqFkD1PwzAQhi1UJNrCL2CxxJxiO4ljDwyofEqVWGC2XOdSHDV2sR2k_nsSwsQAw-mk0_uc7p4FmjnvAKFLSlaUUH7dro5djIcVI4wNEyErcoLmlEieUUb5DM2JECLLWUXO0CLGlhAiC8LnaHsH0e4c9g3W2PjuoE3CvnO2tgFMst7pPY6-dzU2uoOgcR-t2-H0DkMFgKy2Hbg4BbXxfUzWYOvSOOwgheM5Om30PsLFT1-it4f71_VTtnl5fF7fbjKT5zRlmtacGwL5lhd0y2ptykI0UnLJaEFFWVVG85zyGiQ0FXBSc1MZIgpGoaKM5Et0Ne09BP_RQ0yq9X0YzoqK8TIvBZOiGlL5lDLBxxigUYdgOx2OihI1ylSt-papRplqkjlQ8hdlbNKjnhS03f_D3kwsDM9_WggqGgvOwKRY1d7-yX8B90mUsA |
| CitedBy_id | crossref_primary_10_1016_j_ymssp_2023_110977 crossref_primary_10_1007_s10921_024_01110_8 crossref_primary_10_1016_j_ndteint_2024_103233 crossref_primary_10_1016_j_ymssp_2025_112400 crossref_primary_10_1016_j_apacoust_2024_110116 |
| Cites_doi | 10.1121/1.381403 10.1109/ACCESS.2020.3041445 10.1121/1.1792643 10.1016/j.ymssp.2021.107959 10.1109/TVT.2020.2964110 10.1016/j.ymssp.2019.106332 10.1121/1.4914996 10.1121/1.2933754 10.1121/1.4871180 10.1016/j.ymssp.2018.09.019 10.1121/10.0001639 10.1016/j.ymssp.2021.107820 10.1016/j.apacoust.2019.03.009 10.1016/j.jsv.2019.114918 10.1121/1.429458 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Jun 1, 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Jun 1, 2022 |
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.ymssp.2022.108970 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1096-1216 |
| ExternalDocumentID | 10_1016_j_ymssp_2022_108970 S0888327022001492 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SST SSV SSZ T5K XPP ZMT ZU3 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ ~HD 7SC 7SP 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c331t-a1d66c0e3b641b2dac548f996921418577ca6316de9ef7e60d6c7c08421e71203 |
| IEDL.DBID | .~1 |
| ISSN | 0888-3270 |
| IngestDate | Fri Jul 25 06:08:24 EDT 2025 Thu Oct 16 04:25:06 EDT 2025 Thu Apr 24 23:01:02 EDT 2025 Fri Feb 23 02:41:05 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Microphone array Source localization Acoustic intensimetry Omnidirectional compact probe Sound camera |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c331t-a1d66c0e3b641b2dac548f996921418577ca6316de9ef7e60d6c7c08421e71203 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2653582987 |
| PQPubID | 2045429 |
| ParticipantIDs | proquest_journals_2653582987 crossref_primary_10_1016_j_ymssp_2022_108970 crossref_citationtrail_10_1016_j_ymssp_2022_108970 elsevier_sciencedirect_doi_10_1016_j_ymssp_2022_108970 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 2022-06-00 20220601 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin |
| PublicationPlace_xml | – name: Berlin |
| PublicationTitle | Mechanical systems and signal processing |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Rafaely (b0070) 2004; 116 Beranek (b0125) 1954 Williams (b0065) 1999 Woo, Jung, Cho, Ih (b0075) 2019; 151 Jung, Ih (b0130) 2020; 148 Google cloud, text-to-speech, Ko-KR-Standard-A/C Bai, Ih, Benesty (b0045) 2013 Shi, Chang, Yang, Wu, Wu (b0020) 2020; 69 Li, Lian, Fu, Zhu, Hu, Guo (b0035) 2020; 8 Chiariotti, Martarelli, Castellini (b0005) 2019; 120 Lee, Chang, Lee (b0050) 2021; 161 Wiederhold, Gee, Blotter, Sommerfeldt (b0100) 2014; 135 2021 (accessed 6 August 2021). Brandstein, Ward (b0040) 2001 Jung, Ih (b0090) 2021; 160 Kassab, Michel, Maxit (b0010) 2019; 134 Jung, Ih (b0080) 2019; 461 Sun, Yang, Zu, Xu (b0025) 2011 Nakadai, Kumon, Okuno, Hoshiba, Wakabayashi, Washizaki, Ishiki, Gabriel, Bando, Morito, Kojima, Sugiyama (b0030) 2017 Parkins, Sommerfeldt, Tichy (b0095) 2000; 108 Scaramuzza, Martinelli, Siegwart (b0115) 2006 Morse, Ingard (b0105) 1968 I.-J. Jung, J.-G. Ih, Acoustic localization and tracking of the multiple drones, Proc. INTER-NOISE and NOISE-CON Congress(Internoise2019) 259, Madrid (2019) 1373–1377. Online Proceedings. (Accessed 3 March 2022). Thomas, Christensen, Gee (b0085) 2015; 137 Moore, Evers, Naylor, Alon, Rafaely (b0060) 2015 Seybert, Ross (b0110) 1977; 61 Haddad, Hald (b0055) 2008; 123 Bai (10.1016/j.ymssp.2022.108970_b0045) 2013 10.1016/j.ymssp.2022.108970_b0015 Shi (10.1016/j.ymssp.2022.108970_b0020) 2020; 69 Moore (10.1016/j.ymssp.2022.108970_b0060) 2015 Woo (10.1016/j.ymssp.2022.108970_b0075) 2019; 151 Nakadai (10.1016/j.ymssp.2022.108970_b0030) 2017 Wiederhold (10.1016/j.ymssp.2022.108970_b0100) 2014; 135 Williams (10.1016/j.ymssp.2022.108970_b0065) 1999 Jung (10.1016/j.ymssp.2022.108970_b0130) 2020; 148 Haddad (10.1016/j.ymssp.2022.108970_b0055) 2008; 123 Kassab (10.1016/j.ymssp.2022.108970_b0010) 2019; 134 Beranek (10.1016/j.ymssp.2022.108970_b0125) 1954 Thomas (10.1016/j.ymssp.2022.108970_b0085) 2015; 137 Seybert (10.1016/j.ymssp.2022.108970_b0110) 1977; 61 10.1016/j.ymssp.2022.108970_b0120 Chiariotti (10.1016/j.ymssp.2022.108970_b0005) 2019; 120 Scaramuzza (10.1016/j.ymssp.2022.108970_b0115) 2006 Jung (10.1016/j.ymssp.2022.108970_b0080) 2019; 461 Li (10.1016/j.ymssp.2022.108970_b0035) 2020; 8 Lee (10.1016/j.ymssp.2022.108970_b0050) 2021; 161 Morse (10.1016/j.ymssp.2022.108970_b0105) 1968 Sun (10.1016/j.ymssp.2022.108970_b0025) 2011 Rafaely (10.1016/j.ymssp.2022.108970_b0070) 2004; 116 Parkins (10.1016/j.ymssp.2022.108970_b0095) 2000; 108 Jung (10.1016/j.ymssp.2022.108970_b0090) 2021; 160 Brandstein (10.1016/j.ymssp.2022.108970_b0040) 2001 |
| References_xml | – volume: 61 start-page: 1362 year: 1977 end-page: 1370 ident: b0110 article-title: Experimental determination of acoustic properties using a two-microphone random-excitation technique publication-title: J. Acoust. Soc. Am. – volume: 148 start-page: EL105-111 year: 2020 ident: b0130 article-title: Distance estimation of a sound source using the multiple intensity vectors publication-title: J. Acoust. Soc. Am. – volume: 160 year: 2021 ident: b0090 article-title: Combined microphone array for precise localization of sound source using the acoustic intensimetry publication-title: Mech. Syst. Signal Process. – start-page: 2296 year: 2015 end-page: 2300 ident: b0060 article-title: Direction of arrival estimation using pseudo-intensity vectors with direct-path dominance test publication-title: Proc. the 23rd European Signal Processing Conference(EUSIPCO), Nice – volume: 8 start-page: 215827 year: 2020 end-page: 215839 ident: b0035 article-title: Acoustic enhanced camera tracking system based on small-aperture MEMS microphone array publication-title: IEEE Access – reference: , 2021 (accessed 6 August 2021). – volume: 134 year: 2019 ident: b0010 article-title: Water experiment for assessing vibroacoustic beamforming gain for acoustic leak detection in a sodium-heated steam generator publication-title: Mech. Syst. Signal Process. – volume: 108 start-page: 211 year: 2000 end-page: 222 ident: b0095 article-title: Error analysis of a practical energy density sensor publication-title: J. Acoust. Soc. Am. – start-page: 5985 year: 2017 end-page: 5990 ident: b0030 article-title: Development of microphone-array-embedded UAV for search and rescue task publication-title: Proc. IEEE/RSJ Intelligent Robots and Systems, Vancouver – volume: 123 start-page: 1585 year: 2008 end-page: 1590 ident: b0055 article-title: 3D localization of acoustic sources with a spherical array publication-title: J. Acoust. Soc. Am. – year: 1999 ident: b0065 article-title: Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography – volume: 461 year: 2019 ident: b0080 article-title: Compensation of inherent bias errors in using the three-dimensional acoustic intensimetry for sound source localization publication-title: J. Sound Vib. – start-page: 7 year: 2006 end-page: 15 ident: b0115 article-title: A Toolbox for Easy Calibrating Omnidirectional Cameras publication-title: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), Beijing – reference: I.-J. Jung, J.-G. Ih, Acoustic localization and tracking of the multiple drones, Proc. INTER-NOISE and NOISE-CON Congress(Internoise2019) 259, Madrid (2019) 1373–1377. Online Proceedings. (Accessed 3 March 2022). – reference: Google cloud, text-to-speech, Ko-KR-Standard-A/C, – volume: 161 year: 2021 ident: b0050 article-title: Deep learning-based method for multiple sound source localization with high resolution and accuracy publication-title: Mech. Syst. Sig. Process. – year: 2013 ident: b0045 article-title: Acoustic Array Systems – volume: 116 start-page: 2149 year: 2004 end-page: 2157 ident: b0070 article-title: Plane-wave decomposition of the sound field on a sphere by spherical convolution publication-title: J. Acoust. Soc. Am. – volume: 120 start-page: 422 year: 2019 end-page: 448 ident: b0005 article-title: Acoustic beamforming for noise source localization – reviews, methodology and applications publication-title: Mech. Syst. Sig. Process. – start-page: 418 year: 1968 end-page: 422 ident: b0105 article-title: Theoretical Acoustics – volume: 137 start-page: 3366 year: 2015 end-page: 3376 ident: b0085 article-title: Phase and amplitude gradient method for the estimation of acoustic vector quantities publication-title: J. Acoust. Soc. Am. – start-page: 1 year: 2011 end-page: 4 ident: b0025 article-title: A far field sound source localization system for rescue robot publication-title: Proc. International Conference on Control, Automation and Systems Engineering, Singapore – year: 2001 ident: b0040 article-title: Microphone Arrays – volume: 135 start-page: 2797 year: 2014 end-page: 2807 ident: b0100 article-title: Comparison of multimicrophone probe design and processing methods in measuring acoustic intensity publication-title: J. Acoust. Soc. Am. – start-page: 285 year: 1954 end-page: 331 ident: b0125 article-title: Acoustics – volume: 69 start-page: 2731 year: 2020 end-page: 2739 ident: b0020 article-title: An acoustic-based surveillance system for amateur drones detection and localization publication-title: IEEE Trans. Vehicular Technol. – volume: 151 start-page: 63 year: 2019 end-page: 72 ident: b0075 article-title: Precision enhancement in source localization using a double module, three-dimensional acoustic intensity probe publication-title: Appl. Acoust. – volume: 61 start-page: 1362 year: 1977 ident: 10.1016/j.ymssp.2022.108970_b0110 article-title: Experimental determination of acoustic properties using a two-microphone random-excitation technique publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.381403 – ident: 10.1016/j.ymssp.2022.108970_b0015 – year: 1999 ident: 10.1016/j.ymssp.2022.108970_b0065 – ident: 10.1016/j.ymssp.2022.108970_b0120 – volume: 8 start-page: 215827 year: 2020 ident: 10.1016/j.ymssp.2022.108970_b0035 article-title: Acoustic enhanced camera tracking system based on small-aperture MEMS microphone array publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3041445 – year: 2001 ident: 10.1016/j.ymssp.2022.108970_b0040 – start-page: 2296 year: 2015 ident: 10.1016/j.ymssp.2022.108970_b0060 article-title: Direction of arrival estimation using pseudo-intensity vectors with direct-path dominance test – year: 2013 ident: 10.1016/j.ymssp.2022.108970_b0045 – volume: 116 start-page: 2149 year: 2004 ident: 10.1016/j.ymssp.2022.108970_b0070 article-title: Plane-wave decomposition of the sound field on a sphere by spherical convolution publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1792643 – volume: 161 year: 2021 ident: 10.1016/j.ymssp.2022.108970_b0050 article-title: Deep learning-based method for multiple sound source localization with high resolution and accuracy publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2021.107959 – volume: 69 start-page: 2731 year: 2020 ident: 10.1016/j.ymssp.2022.108970_b0020 article-title: An acoustic-based surveillance system for amateur drones detection and localization publication-title: IEEE Trans. Vehicular Technol. doi: 10.1109/TVT.2020.2964110 – start-page: 285 year: 1954 ident: 10.1016/j.ymssp.2022.108970_b0125 – volume: 134 year: 2019 ident: 10.1016/j.ymssp.2022.108970_b0010 article-title: Water experiment for assessing vibroacoustic beamforming gain for acoustic leak detection in a sodium-heated steam generator publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.106332 – start-page: 5985 year: 2017 ident: 10.1016/j.ymssp.2022.108970_b0030 article-title: Development of microphone-array-embedded UAV for search and rescue task – start-page: 1 year: 2011 ident: 10.1016/j.ymssp.2022.108970_b0025 article-title: A far field sound source localization system for rescue robot – volume: 137 start-page: 3366 year: 2015 ident: 10.1016/j.ymssp.2022.108970_b0085 article-title: Phase and amplitude gradient method for the estimation of acoustic vector quantities publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4914996 – start-page: 7 year: 2006 ident: 10.1016/j.ymssp.2022.108970_b0115 article-title: A Toolbox for Easy Calibrating Omnidirectional Cameras – volume: 123 start-page: 1585 year: 2008 ident: 10.1016/j.ymssp.2022.108970_b0055 article-title: 3D localization of acoustic sources with a spherical array publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2933754 – volume: 135 start-page: 2797 year: 2014 ident: 10.1016/j.ymssp.2022.108970_b0100 article-title: Comparison of multimicrophone probe design and processing methods in measuring acoustic intensity publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4871180 – volume: 120 start-page: 422 year: 2019 ident: 10.1016/j.ymssp.2022.108970_b0005 article-title: Acoustic beamforming for noise source localization – reviews, methodology and applications publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2018.09.019 – volume: 148 start-page: EL105-111 year: 2020 ident: 10.1016/j.ymssp.2022.108970_b0130 article-title: Distance estimation of a sound source using the multiple intensity vectors publication-title: J. Acoust. Soc. Am. doi: 10.1121/10.0001639 – volume: 160 year: 2021 ident: 10.1016/j.ymssp.2022.108970_b0090 article-title: Combined microphone array for precise localization of sound source using the acoustic intensimetry publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.107820 – volume: 151 start-page: 63 year: 2019 ident: 10.1016/j.ymssp.2022.108970_b0075 article-title: Precision enhancement in source localization using a double module, three-dimensional acoustic intensity probe publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2019.03.009 – volume: 461 year: 2019 ident: 10.1016/j.ymssp.2022.108970_b0080 article-title: Compensation of inherent bias errors in using the three-dimensional acoustic intensimetry for sound source localization publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2019.114918 – volume: 108 start-page: 211 year: 2000 ident: 10.1016/j.ymssp.2022.108970_b0095 article-title: Error analysis of a practical energy density sensor publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.429458 – start-page: 418 year: 1968 ident: 10.1016/j.ymssp.2022.108970_b0105 |
| SSID | ssj0009406 |
| Score | 2.3971543 |
| Snippet | [Display omitted]
•A compact omnidirectional sound camera using the 3D acoustic intensimetry.•A truncated stellated octahedral array compensating the spatial... By using the 3D intensimetry algorithm, a sensor probe has a significant advantage at low frequencies, allowing for a compact array cluster that is far smaller... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 108970 |
| SubjectTerms | Acoustic intensimetry Algorithms Anechoic chambers Arrays Cameras Diameters Direction of arrival Frequency ranges Mathematical analysis Microphone array Microphones Omnidirectional compact probe Scattering Sound Sound camera Source localization Upper bounds |
| Title | Design of a compact omnidirectional sound camera using the three-dimensional acoustic intensimetry |
| URI | https://dx.doi.org/10.1016/j.ymssp.2022.108970 https://www.proquest.com/docview/2653582987 |
| Volume | 172 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: AKRWK dateStart: 19870101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTwwYho7idOMVaEqILpApW6WYzuoiKZVE4Yu_HZ8TsJLqANDhkR2FJ_Pd2fnu-8QupDWyyhlUpIyFZKAK_i_SzVJpJQGfCKTkJz8MOajSXA3DacNNKhzYQBWWdn-0qY7a1096VbS7C5ns-6jXR9WHSNIFYU4H-xwEERQxeDq_QvmEQeuviY0JtC6Zh5yGK_1PM-BtJIxwNrFULH4b-_0y0475zPcQ7tV1Ij75Yfto4bJDtDONy7BQ5RcOywGXqRYYocsVwVezLNZOUB34odzKKKElYSTKAyQ92dsA0B7rYwhGoj-S5IObO2kK_OFZyXEfW6K1foITYY3T4MRqQooEOX7tCCSas6VZ_yEBzRhWiq7P0ntDidmFEhrokhJ7lOuTWzSyHBPcxUprxcwaiLKPP8YNbNFZk4Q1jau46qnlPV6QeybOA6lTFMtE82o1YMWYrXghKrYxaHIxauoYWQvwklbgLRFKe0WuvzstCzJNTY35_WMiB86Iqz539yxXc-fqJZoLhgPIUs47kWn_33vGdqGuxI51kbNYvVmzm2MUiQdp4QdtNW_vR-NPwAfzOiP |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4ikKBTwwEho7idOMqFAVaLvQSt0sx3ZQEU2rJgxd-O34nISXUAeGLIkdxefz3dn57juELoXxMlLqxEmoDByfSfi_S5QTCyE0-EQqIDl5MGS9sf8wCSY11KlyYQBWWdr-wqZba13eaZXSbC2m09aTWR9GHUNIFYU439jhDT-gIezArt-_cB6RbwtsQmsHmlfUQxbktZplGbBWUgpguwhKFv_tnn4Zaut9urtopwwb8U3xZXuoptN9tP2NTPAAxbcWjIHnCRbYQstljuezdFqM0B754QyqKGEp4CgKA-b9GZsI0FxLrR0FTP8FSwc2htLW-cLTAuM-0_lydYjG3btRp-eUFRQc6XkkdwRRjElXezHzSUyVkGaDkpgtTkQJsNaEoRTMI0zpSCehZq5iMpRu26dEh4S63hGqp_NUHyOsTGDHZFtK4_b8yNNRFAiRJErEihKjCA1EK8FxWdKLQ5WLV17hyF64lTYHafNC2g109dlpUbBrrG_OqhnhP5SEG_u_vmOzmj9ertGMUxZAmnDUDk_--94LtNkbDfq8fz98PEVb8KSAkTVRPV--6TMTsOTxuVXID5BA6iQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+a+compact+omnidirectional+sound+camera+using+the+three-dimensional+acoustic+intensimetry&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Jung%2C+In-Jee&rft.au=Ih%2C+Jeong-Guon&rft.date=2022-06-01&rft.pub=Elsevier+BV&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=172&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ymssp.2022.108970&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |