Design of a compact omnidirectional sound camera using the three-dimensional acoustic intensimetry

[Display omitted] •A compact omnidirectional sound camera using the 3D acoustic intensimetry.•A truncated stellated octahedral array compensating the spatial bias error.•Estimation of 3D acoustic intensity vector using the combined microphone array.•Performance comparison between 3D acoustic intensi...

Full description

Saved in:
Bibliographic Details
Published inMechanical systems and signal processing Vol. 172; p. 108970
Main Authors Jung, In-Jee, Ih, Jeong-Guon
Format Journal Article
LanguageEnglish
Published Berlin Elsevier Ltd 01.06.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN0888-3270
1096-1216
DOI10.1016/j.ymssp.2022.108970

Cover

Abstract [Display omitted] •A compact omnidirectional sound camera using the 3D acoustic intensimetry.•A truncated stellated octahedral array compensating the spatial bias error.•Estimation of 3D acoustic intensity vector using the combined microphone array.•Performance comparison between 3D acoustic intensimetry and TDOA method.•Real-time source localization test in a reverberant room with T30 = 0.66 s. By using the 3D intensimetry algorithm, a sensor probe has a significant advantage at low frequencies, allowing for a compact array cluster that is far smaller than a wavelength. A super-compact 3D sound camera is designed to estimate the direction of arrival by calculating the three-dimensional intensity vectors based on the measured pressure data. An array of flush-mounted MEMS microphones is configured over the spherical surface of a commercial omnidirectional camera with a diameter of 38 mm. Implementing the operation over a wide frequency range requires the scattering caused by the microphone holder and the irregularity of the array’s directional response to be minimized. Although the spherical scattering reduces the effective upper-bound frequency by two thirds, a truncated stellated-octahedral array using five microphones can significantly reduce the spatial bias error at high frequencies. The test results in an anechoic chamber show an average localization error of 3.2° for human voices. The results in a reverberant room with T30 = 0.66 s reveal an average bearing angle error of 6.5° when a source is positioned within two times the critical distance in the interior space. In such a live room, it is demonstrated that the speakers wearing the face masks can be localized in real-time.
AbstractList By using the 3D intensimetry algorithm, a sensor probe has a significant advantage at low frequencies, allowing for a compact array cluster that is far smaller than a wavelength. A super-compact 3D sound camera is designed to estimate the direction of arrival by calculating the three-dimensional intensity vectors based on the measured pressure data. An array of flush-mounted MEMS microphones is configured over the spherical surface of a commercial omnidirectional camera with a diameter of 38 mm. Implementing the operation over a wide frequency range requires the scattering caused by the microphone holder and the irregularity of the array's directional response to be minimized. Although the spherical scattering reduces the effective upper-bound frequency by two thirds, a truncated stellated-octahedral array using five microphones can significantly reduce the spatial bias error at high frequencies. The test results in an anechoic chamber show an average localization error of 3.2° for human voices. The results in a reverberant room with T30 = 0.66 s reveal an average bearing angle error of 6.5° when a source is positioned within two times the critical distance in the interior space. In such a live room, it is demonstrated that the speakers wearing the face masks can be localized in real-time.
[Display omitted] •A compact omnidirectional sound camera using the 3D acoustic intensimetry.•A truncated stellated octahedral array compensating the spatial bias error.•Estimation of 3D acoustic intensity vector using the combined microphone array.•Performance comparison between 3D acoustic intensimetry and TDOA method.•Real-time source localization test in a reverberant room with T30 = 0.66 s. By using the 3D intensimetry algorithm, a sensor probe has a significant advantage at low frequencies, allowing for a compact array cluster that is far smaller than a wavelength. A super-compact 3D sound camera is designed to estimate the direction of arrival by calculating the three-dimensional intensity vectors based on the measured pressure data. An array of flush-mounted MEMS microphones is configured over the spherical surface of a commercial omnidirectional camera with a diameter of 38 mm. Implementing the operation over a wide frequency range requires the scattering caused by the microphone holder and the irregularity of the array’s directional response to be minimized. Although the spherical scattering reduces the effective upper-bound frequency by two thirds, a truncated stellated-octahedral array using five microphones can significantly reduce the spatial bias error at high frequencies. The test results in an anechoic chamber show an average localization error of 3.2° for human voices. The results in a reverberant room with T30 = 0.66 s reveal an average bearing angle error of 6.5° when a source is positioned within two times the critical distance in the interior space. In such a live room, it is demonstrated that the speakers wearing the face masks can be localized in real-time.
ArticleNumber 108970
Author Ih, Jeong-Guon
Jung, In-Jee
Author_xml – sequence: 1
  givenname: In-Jee
  surname: Jung
  fullname: Jung, In-Jee
  organization: Center for Noise and Vibration Control, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
– sequence: 2
  givenname: Jeong-Guon
  surname: Ih
  fullname: Ih, Jeong-Guon
  email: J.G.Ih@kaist.ac.kr
  organization: Center for Noise and Vibration Control, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
BookMark eNqFkD1PwzAQhi1UJNrCL2CxxJxiO4ljDwyofEqVWGC2XOdSHDV2sR2k_nsSwsQAw-mk0_uc7p4FmjnvAKFLSlaUUH7dro5djIcVI4wNEyErcoLmlEieUUb5DM2JECLLWUXO0CLGlhAiC8LnaHsH0e4c9g3W2PjuoE3CvnO2tgFMst7pPY6-dzU2uoOgcR-t2-H0DkMFgKy2Hbg4BbXxfUzWYOvSOOwgheM5Om30PsLFT1-it4f71_VTtnl5fF7fbjKT5zRlmtacGwL5lhd0y2ptykI0UnLJaEFFWVVG85zyGiQ0FXBSc1MZIgpGoaKM5Et0Ne09BP_RQ0yq9X0YzoqK8TIvBZOiGlL5lDLBxxigUYdgOx2OihI1ylSt-papRplqkjlQ8hdlbNKjnhS03f_D3kwsDM9_WggqGgvOwKRY1d7-yX8B90mUsA
CitedBy_id crossref_primary_10_1016_j_ymssp_2023_110977
crossref_primary_10_1007_s10921_024_01110_8
crossref_primary_10_1016_j_ndteint_2024_103233
crossref_primary_10_1016_j_ymssp_2025_112400
crossref_primary_10_1016_j_apacoust_2024_110116
Cites_doi 10.1121/1.381403
10.1109/ACCESS.2020.3041445
10.1121/1.1792643
10.1016/j.ymssp.2021.107959
10.1109/TVT.2020.2964110
10.1016/j.ymssp.2019.106332
10.1121/1.4914996
10.1121/1.2933754
10.1121/1.4871180
10.1016/j.ymssp.2018.09.019
10.1121/10.0001639
10.1016/j.ymssp.2021.107820
10.1016/j.apacoust.2019.03.009
10.1016/j.jsv.2019.114918
10.1121/1.429458
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Jun 1, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 1, 2022
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ymssp.2022.108970
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
ExternalDocumentID 10_1016_j_ymssp_2022_108970
S0888327022001492
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
XPP
ZMT
ZU3
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
~HD
7SC
7SP
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c331t-a1d66c0e3b641b2dac548f996921418577ca6316de9ef7e60d6c7c08421e71203
IEDL.DBID .~1
ISSN 0888-3270
IngestDate Fri Jul 25 06:08:24 EDT 2025
Thu Oct 16 04:25:06 EDT 2025
Thu Apr 24 23:01:02 EDT 2025
Fri Feb 23 02:41:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Microphone array
Source localization
Acoustic intensimetry
Omnidirectional compact probe
Sound camera
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-a1d66c0e3b641b2dac548f996921418577ca6316de9ef7e60d6c7c08421e71203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2653582987
PQPubID 2045429
ParticipantIDs proquest_journals_2653582987
crossref_primary_10_1016_j_ymssp_2022_108970
crossref_citationtrail_10_1016_j_ymssp_2022_108970
elsevier_sciencedirect_doi_10_1016_j_ymssp_2022_108970
PublicationCentury 2000
PublicationDate 2022-06-01
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Mechanical systems and signal processing
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Rafaely (b0070) 2004; 116
Beranek (b0125) 1954
Williams (b0065) 1999
Woo, Jung, Cho, Ih (b0075) 2019; 151
Jung, Ih (b0130) 2020; 148
Google cloud, text-to-speech, Ko-KR-Standard-A/C
Bai, Ih, Benesty (b0045) 2013
Shi, Chang, Yang, Wu, Wu (b0020) 2020; 69
Li, Lian, Fu, Zhu, Hu, Guo (b0035) 2020; 8
Chiariotti, Martarelli, Castellini (b0005) 2019; 120
Lee, Chang, Lee (b0050) 2021; 161
Wiederhold, Gee, Blotter, Sommerfeldt (b0100) 2014; 135
2021 (accessed 6 August 2021).
Brandstein, Ward (b0040) 2001
Jung, Ih (b0090) 2021; 160
Kassab, Michel, Maxit (b0010) 2019; 134
Jung, Ih (b0080) 2019; 461
Sun, Yang, Zu, Xu (b0025) 2011
Nakadai, Kumon, Okuno, Hoshiba, Wakabayashi, Washizaki, Ishiki, Gabriel, Bando, Morito, Kojima, Sugiyama (b0030) 2017
Parkins, Sommerfeldt, Tichy (b0095) 2000; 108
Scaramuzza, Martinelli, Siegwart (b0115) 2006
Morse, Ingard (b0105) 1968
I.-J. Jung, J.-G. Ih, Acoustic localization and tracking of the multiple drones, Proc. INTER-NOISE and NOISE-CON Congress(Internoise2019) 259, Madrid (2019) 1373–1377. Online Proceedings. (Accessed 3 March 2022).
Thomas, Christensen, Gee (b0085) 2015; 137
Moore, Evers, Naylor, Alon, Rafaely (b0060) 2015
Seybert, Ross (b0110) 1977; 61
Haddad, Hald (b0055) 2008; 123
Bai (10.1016/j.ymssp.2022.108970_b0045) 2013
10.1016/j.ymssp.2022.108970_b0015
Shi (10.1016/j.ymssp.2022.108970_b0020) 2020; 69
Moore (10.1016/j.ymssp.2022.108970_b0060) 2015
Woo (10.1016/j.ymssp.2022.108970_b0075) 2019; 151
Nakadai (10.1016/j.ymssp.2022.108970_b0030) 2017
Wiederhold (10.1016/j.ymssp.2022.108970_b0100) 2014; 135
Williams (10.1016/j.ymssp.2022.108970_b0065) 1999
Jung (10.1016/j.ymssp.2022.108970_b0130) 2020; 148
Haddad (10.1016/j.ymssp.2022.108970_b0055) 2008; 123
Kassab (10.1016/j.ymssp.2022.108970_b0010) 2019; 134
Beranek (10.1016/j.ymssp.2022.108970_b0125) 1954
Thomas (10.1016/j.ymssp.2022.108970_b0085) 2015; 137
Seybert (10.1016/j.ymssp.2022.108970_b0110) 1977; 61
10.1016/j.ymssp.2022.108970_b0120
Chiariotti (10.1016/j.ymssp.2022.108970_b0005) 2019; 120
Scaramuzza (10.1016/j.ymssp.2022.108970_b0115) 2006
Jung (10.1016/j.ymssp.2022.108970_b0080) 2019; 461
Li (10.1016/j.ymssp.2022.108970_b0035) 2020; 8
Lee (10.1016/j.ymssp.2022.108970_b0050) 2021; 161
Morse (10.1016/j.ymssp.2022.108970_b0105) 1968
Sun (10.1016/j.ymssp.2022.108970_b0025) 2011
Rafaely (10.1016/j.ymssp.2022.108970_b0070) 2004; 116
Parkins (10.1016/j.ymssp.2022.108970_b0095) 2000; 108
Jung (10.1016/j.ymssp.2022.108970_b0090) 2021; 160
Brandstein (10.1016/j.ymssp.2022.108970_b0040) 2001
References_xml – volume: 61
  start-page: 1362
  year: 1977
  end-page: 1370
  ident: b0110
  article-title: Experimental determination of acoustic properties using a two-microphone random-excitation technique
  publication-title: J. Acoust. Soc. Am.
– volume: 148
  start-page: EL105-111
  year: 2020
  ident: b0130
  article-title: Distance estimation of a sound source using the multiple intensity vectors
  publication-title: J. Acoust. Soc. Am.
– volume: 160
  year: 2021
  ident: b0090
  article-title: Combined microphone array for precise localization of sound source using the acoustic intensimetry
  publication-title: Mech. Syst. Signal Process.
– start-page: 2296
  year: 2015
  end-page: 2300
  ident: b0060
  article-title: Direction of arrival estimation using pseudo-intensity vectors with direct-path dominance test
  publication-title: Proc. the 23rd European Signal Processing Conference(EUSIPCO), Nice
– volume: 8
  start-page: 215827
  year: 2020
  end-page: 215839
  ident: b0035
  article-title: Acoustic enhanced camera tracking system based on small-aperture MEMS microphone array
  publication-title: IEEE Access
– reference: , 2021 (accessed 6 August 2021).
– volume: 134
  year: 2019
  ident: b0010
  article-title: Water experiment for assessing vibroacoustic beamforming gain for acoustic leak detection in a sodium-heated steam generator
  publication-title: Mech. Syst. Signal Process.
– volume: 108
  start-page: 211
  year: 2000
  end-page: 222
  ident: b0095
  article-title: Error analysis of a practical energy density sensor
  publication-title: J. Acoust. Soc. Am.
– start-page: 5985
  year: 2017
  end-page: 5990
  ident: b0030
  article-title: Development of microphone-array-embedded UAV for search and rescue task
  publication-title: Proc. IEEE/RSJ Intelligent Robots and Systems, Vancouver
– volume: 123
  start-page: 1585
  year: 2008
  end-page: 1590
  ident: b0055
  article-title: 3D localization of acoustic sources with a spherical array
  publication-title: J. Acoust. Soc. Am.
– year: 1999
  ident: b0065
  article-title: Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography
– volume: 461
  year: 2019
  ident: b0080
  article-title: Compensation of inherent bias errors in using the three-dimensional acoustic intensimetry for sound source localization
  publication-title: J. Sound Vib.
– start-page: 7
  year: 2006
  end-page: 15
  ident: b0115
  article-title: A Toolbox for Easy Calibrating Omnidirectional Cameras
  publication-title: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), Beijing
– reference: I.-J. Jung, J.-G. Ih, Acoustic localization and tracking of the multiple drones, Proc. INTER-NOISE and NOISE-CON Congress(Internoise2019) 259, Madrid (2019) 1373–1377. Online Proceedings. (Accessed 3 March 2022).
– reference: Google cloud, text-to-speech, Ko-KR-Standard-A/C,
– volume: 161
  year: 2021
  ident: b0050
  article-title: Deep learning-based method for multiple sound source localization with high resolution and accuracy
  publication-title: Mech. Syst. Sig. Process.
– year: 2013
  ident: b0045
  article-title: Acoustic Array Systems
– volume: 116
  start-page: 2149
  year: 2004
  end-page: 2157
  ident: b0070
  article-title: Plane-wave decomposition of the sound field on a sphere by spherical convolution
  publication-title: J. Acoust. Soc. Am.
– volume: 120
  start-page: 422
  year: 2019
  end-page: 448
  ident: b0005
  article-title: Acoustic beamforming for noise source localization – reviews, methodology and applications
  publication-title: Mech. Syst. Sig. Process.
– start-page: 418
  year: 1968
  end-page: 422
  ident: b0105
  article-title: Theoretical Acoustics
– volume: 137
  start-page: 3366
  year: 2015
  end-page: 3376
  ident: b0085
  article-title: Phase and amplitude gradient method for the estimation of acoustic vector quantities
  publication-title: J. Acoust. Soc. Am.
– start-page: 1
  year: 2011
  end-page: 4
  ident: b0025
  article-title: A far field sound source localization system for rescue robot
  publication-title: Proc. International Conference on Control, Automation and Systems Engineering, Singapore
– year: 2001
  ident: b0040
  article-title: Microphone Arrays
– volume: 135
  start-page: 2797
  year: 2014
  end-page: 2807
  ident: b0100
  article-title: Comparison of multimicrophone probe design and processing methods in measuring acoustic intensity
  publication-title: J. Acoust. Soc. Am.
– start-page: 285
  year: 1954
  end-page: 331
  ident: b0125
  article-title: Acoustics
– volume: 69
  start-page: 2731
  year: 2020
  end-page: 2739
  ident: b0020
  article-title: An acoustic-based surveillance system for amateur drones detection and localization
  publication-title: IEEE Trans. Vehicular Technol.
– volume: 151
  start-page: 63
  year: 2019
  end-page: 72
  ident: b0075
  article-title: Precision enhancement in source localization using a double module, three-dimensional acoustic intensity probe
  publication-title: Appl. Acoust.
– volume: 61
  start-page: 1362
  year: 1977
  ident: 10.1016/j.ymssp.2022.108970_b0110
  article-title: Experimental determination of acoustic properties using a two-microphone random-excitation technique
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.381403
– ident: 10.1016/j.ymssp.2022.108970_b0015
– year: 1999
  ident: 10.1016/j.ymssp.2022.108970_b0065
– ident: 10.1016/j.ymssp.2022.108970_b0120
– volume: 8
  start-page: 215827
  year: 2020
  ident: 10.1016/j.ymssp.2022.108970_b0035
  article-title: Acoustic enhanced camera tracking system based on small-aperture MEMS microphone array
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3041445
– year: 2001
  ident: 10.1016/j.ymssp.2022.108970_b0040
– start-page: 2296
  year: 2015
  ident: 10.1016/j.ymssp.2022.108970_b0060
  article-title: Direction of arrival estimation using pseudo-intensity vectors with direct-path dominance test
– year: 2013
  ident: 10.1016/j.ymssp.2022.108970_b0045
– volume: 116
  start-page: 2149
  year: 2004
  ident: 10.1016/j.ymssp.2022.108970_b0070
  article-title: Plane-wave decomposition of the sound field on a sphere by spherical convolution
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1792643
– volume: 161
  year: 2021
  ident: 10.1016/j.ymssp.2022.108970_b0050
  article-title: Deep learning-based method for multiple sound source localization with high resolution and accuracy
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2021.107959
– volume: 69
  start-page: 2731
  year: 2020
  ident: 10.1016/j.ymssp.2022.108970_b0020
  article-title: An acoustic-based surveillance system for amateur drones detection and localization
  publication-title: IEEE Trans. Vehicular Technol.
  doi: 10.1109/TVT.2020.2964110
– start-page: 285
  year: 1954
  ident: 10.1016/j.ymssp.2022.108970_b0125
– volume: 134
  year: 2019
  ident: 10.1016/j.ymssp.2022.108970_b0010
  article-title: Water experiment for assessing vibroacoustic beamforming gain for acoustic leak detection in a sodium-heated steam generator
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.106332
– start-page: 5985
  year: 2017
  ident: 10.1016/j.ymssp.2022.108970_b0030
  article-title: Development of microphone-array-embedded UAV for search and rescue task
– start-page: 1
  year: 2011
  ident: 10.1016/j.ymssp.2022.108970_b0025
  article-title: A far field sound source localization system for rescue robot
– volume: 137
  start-page: 3366
  year: 2015
  ident: 10.1016/j.ymssp.2022.108970_b0085
  article-title: Phase and amplitude gradient method for the estimation of acoustic vector quantities
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4914996
– start-page: 7
  year: 2006
  ident: 10.1016/j.ymssp.2022.108970_b0115
  article-title: A Toolbox for Easy Calibrating Omnidirectional Cameras
– volume: 123
  start-page: 1585
  year: 2008
  ident: 10.1016/j.ymssp.2022.108970_b0055
  article-title: 3D localization of acoustic sources with a spherical array
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2933754
– volume: 135
  start-page: 2797
  year: 2014
  ident: 10.1016/j.ymssp.2022.108970_b0100
  article-title: Comparison of multimicrophone probe design and processing methods in measuring acoustic intensity
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4871180
– volume: 120
  start-page: 422
  year: 2019
  ident: 10.1016/j.ymssp.2022.108970_b0005
  article-title: Acoustic beamforming for noise source localization – reviews, methodology and applications
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2018.09.019
– volume: 148
  start-page: EL105-111
  year: 2020
  ident: 10.1016/j.ymssp.2022.108970_b0130
  article-title: Distance estimation of a sound source using the multiple intensity vectors
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/10.0001639
– volume: 160
  year: 2021
  ident: 10.1016/j.ymssp.2022.108970_b0090
  article-title: Combined microphone array for precise localization of sound source using the acoustic intensimetry
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.107820
– volume: 151
  start-page: 63
  year: 2019
  ident: 10.1016/j.ymssp.2022.108970_b0075
  article-title: Precision enhancement in source localization using a double module, three-dimensional acoustic intensity probe
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2019.03.009
– volume: 461
  year: 2019
  ident: 10.1016/j.ymssp.2022.108970_b0080
  article-title: Compensation of inherent bias errors in using the three-dimensional acoustic intensimetry for sound source localization
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2019.114918
– volume: 108
  start-page: 211
  year: 2000
  ident: 10.1016/j.ymssp.2022.108970_b0095
  article-title: Error analysis of a practical energy density sensor
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.429458
– start-page: 418
  year: 1968
  ident: 10.1016/j.ymssp.2022.108970_b0105
SSID ssj0009406
Score 2.3971543
Snippet [Display omitted] •A compact omnidirectional sound camera using the 3D acoustic intensimetry.•A truncated stellated octahedral array compensating the spatial...
By using the 3D intensimetry algorithm, a sensor probe has a significant advantage at low frequencies, allowing for a compact array cluster that is far smaller...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108970
SubjectTerms Acoustic intensimetry
Algorithms
Anechoic chambers
Arrays
Cameras
Diameters
Direction of arrival
Frequency ranges
Mathematical analysis
Microphone array
Microphones
Omnidirectional compact probe
Scattering
Sound
Sound camera
Source localization
Upper bounds
Title Design of a compact omnidirectional sound camera using the three-dimensional acoustic intensimetry
URI https://dx.doi.org/10.1016/j.ymssp.2022.108970
https://www.proquest.com/docview/2653582987
Volume 172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: AKRWK
  dateStart: 19870101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTwwYho7idOMVaEqILpApW6WYzuoiKZVE4Yu_HZ8TsJLqANDhkR2FJ_Pd2fnu-8QupDWyyhlUpIyFZKAK_i_SzVJpJQGfCKTkJz8MOajSXA3DacNNKhzYQBWWdn-0qY7a1096VbS7C5ns-6jXR9WHSNIFYU4H-xwEERQxeDq_QvmEQeuviY0JtC6Zh5yGK_1PM-BtJIxwNrFULH4b-_0y0475zPcQ7tV1Ij75Yfto4bJDtDONy7BQ5RcOywGXqRYYocsVwVezLNZOUB34odzKKKElYSTKAyQ92dsA0B7rYwhGoj-S5IObO2kK_OFZyXEfW6K1foITYY3T4MRqQooEOX7tCCSas6VZ_yEBzRhWiq7P0ntDidmFEhrokhJ7lOuTWzSyHBPcxUprxcwaiLKPP8YNbNFZk4Q1jau46qnlPV6QeybOA6lTFMtE82o1YMWYrXghKrYxaHIxauoYWQvwklbgLRFKe0WuvzstCzJNTY35_WMiB86Iqz539yxXc-fqJZoLhgPIUs47kWn_33vGdqGuxI51kbNYvVmzm2MUiQdp4QdtNW_vR-NPwAfzOiP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4ikKBTwwEho7idOMqFAVaLvQSt0sx3ZQEU2rJgxd-O34nISXUAeGLIkdxefz3dn57juELoXxMlLqxEmoDByfSfi_S5QTCyE0-EQqIDl5MGS9sf8wCSY11KlyYQBWWdr-wqZba13eaZXSbC2m09aTWR9GHUNIFYU439jhDT-gIezArt-_cB6RbwtsQmsHmlfUQxbktZplGbBWUgpguwhKFv_tnn4Zaut9urtopwwb8U3xZXuoptN9tP2NTPAAxbcWjIHnCRbYQstljuezdFqM0B754QyqKGEp4CgKA-b9GZsI0FxLrR0FTP8FSwc2htLW-cLTAuM-0_lydYjG3btRp-eUFRQc6XkkdwRRjElXezHzSUyVkGaDkpgtTkQJsNaEoRTMI0zpSCehZq5iMpRu26dEh4S63hGqp_NUHyOsTGDHZFtK4_b8yNNRFAiRJErEihKjCA1EK8FxWdKLQ5WLV17hyF64lTYHafNC2g109dlpUbBrrG_OqhnhP5SEG_u_vmOzmj9ertGMUxZAmnDUDk_--94LtNkbDfq8fz98PEVb8KSAkTVRPV--6TMTsOTxuVXID5BA6iQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+a+compact+omnidirectional+sound+camera+using+the+three-dimensional+acoustic+intensimetry&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Jung%2C+In-Jee&rft.au=Ih%2C+Jeong-Guon&rft.date=2022-06-01&rft.pub=Elsevier+BV&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=172&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ymssp.2022.108970&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon