Data-Driven Learning for Calibrating Galvanometric Laser Scanners

State-of-the-art calibration very often constructs models motivated by a real-world device. Recently, artificial neural networks (ANNs) have been proposed as a more universal, accurate, and practical black-box approach. For a galvanometric triangulation device based on two mirrors, we embrace this p...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 15; no. 10; pp. 5709 - 5717
Main Authors Wissel, Tobias, Wagner, Benjamin, Stuber, Patrick, Schweikard, Achim, Ernst, Floris
Format Journal Article
LanguageEnglish
Published IEEE 01.10.2015
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2015.2447835

Cover

Abstract State-of-the-art calibration very often constructs models motivated by a real-world device. Recently, artificial neural networks (ANNs) have been proposed as a more universal, accurate, and practical black-box approach. For a galvanometric triangulation device based on two mirrors, we embrace this proposal and set it into context with other supervised data-driven approaches: 1) ridge regression; 2) support vector regression; and 3) Gaussian processes. We show that they outperform available model-based approaches and yield similar performance compared with a memorizing lookup table calibration. The results demonstrate that an off-the-shelf usage of ANNs may run into generalization problems. Restricting the space of functions using kernel-based learning has proven to be advantageous. Finally, all approaches and distinct properties are discussed in a broader context, since each application entails differently relevant requirements for its calibration. This also holds for any calibration other than the considered triangulation device.
AbstractList State-of-the-art calibration very often constructs models motivated by a real-world device. Recently, artificial neural networks (ANNs) have been proposed as a more universal, accurate, and practical black-box approach. For a galvanometric triangulation device based on two mirrors, we embrace this proposal and set it into context with other supervised data-driven approaches: 1) ridge regression; 2) support vector regression; and 3) Gaussian processes. We show that they outperform available model-based approaches and yield similar performance compared with a memorizing lookup table calibration. The results demonstrate that an off-the-shelf usage of ANNs may run into generalization problems. Restricting the space of functions using kernel-based learning has proven to be advantageous. Finally, all approaches and distinct properties are discussed in a broader context, since each application entails differently relevant requirements for its calibration. This also holds for any calibration other than the considered triangulation device.
Author Wissel, Tobias
Schweikard, Achim
Ernst, Floris
Stuber, Patrick
Wagner, Benjamin
Author_xml – sequence: 1
  givenname: Tobias
  surname: Wissel
  fullname: Wissel, Tobias
  email: wissel@rob.uni-luebeck.de
  organization: Inst. for Robot. & Cognitive Syst., Univ. of Lubeck, Lubeck, Germany
– sequence: 2
  givenname: Benjamin
  surname: Wagner
  fullname: Wagner, Benjamin
  email: wagner@rob.uni-luebeck.de
  organization: Inst. for Robot. & Cognitive Syst., Univ. of Lubeck, Lubeck, Germany
– sequence: 3
  givenname: Patrick
  surname: Stuber
  fullname: Stuber, Patrick
  email: stueber@rob.uniluebeck.de
  organization: Inst. for Robot. & Cognitive Syst., Univ. of Lubeck, Lubeck, Germany
– sequence: 4
  givenname: Achim
  surname: Schweikard
  fullname: Schweikard, Achim
  email: schweikard@rob.uni-luebeck.de
  organization: Inst. for Robot. & Cognitive Syst., Univ. of Lubeck, Lubeck, Germany
– sequence: 5
  givenname: Floris
  surname: Ernst
  fullname: Ernst, Floris
  email: ernst@rob.uni-luebeck.de
  organization: Inst. for Robot. & Cognitive Syst., Univ. of Lubeck, Lubeck, Germany
BookMark eNp9kLFOwzAQhi1UJNrCAyCWvECCz45je6zaUkARDAWJLbqYCzJKHeRElXh7GrViYGC6u-G7X_83Y5PQBWLsGngGwO3t43b9lAkOKhN5ro1UZ2wKSpkUdG4m4y55mkv9dsFmff_JOVit9JQtVjhguop-TyEpCWPw4SNpupgssfV1xGG8N9juMXQ7GqJ3SYk9xWTrMASK_SU7b7Dt6eo05-z1bv2yvE_L583DclGmTkoYUgsN5MYYUVh4r-vGFEoUrtAkBKGyyqIlkLy2teFWYW2ssFYjVw3lwI2TcwbHvy52fR-pqb6i32H8roBXo4NqdFCNDqqTgwOj_zDOD4dKXRgi-vZf8uZIeiL6TdIgTGG5_AH_H2rQ
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_JIOT_2022_3144934
crossref_primary_10_1088_1361_6501_abd57a
crossref_primary_10_3390_s18051478
crossref_primary_10_3390_batteries9100508
crossref_primary_10_3390_s21248359
crossref_primary_10_1109_TII_2022_3215960
crossref_primary_10_1364_AO_520571
crossref_primary_10_1007_s41871_018_0020_0
crossref_primary_10_1109_TIM_2022_3170968
crossref_primary_10_3390_s23042142
crossref_primary_10_3390_s23136126
crossref_primary_10_1016_j_cja_2018_10_005
crossref_primary_10_1016_j_precisioneng_2025_03_013
crossref_primary_10_1109_TIM_2021_3128956
crossref_primary_10_3390_s19061353
crossref_primary_10_1364_OE_26_032608
crossref_primary_10_3390_s23041941
crossref_primary_10_1177_1687814018773670
crossref_primary_10_3390_s19030582
crossref_primary_10_1364_OE_408444
crossref_primary_10_1016_j_optlaseng_2023_107787
crossref_primary_10_1016_j_optlaseng_2023_107923
crossref_primary_10_3390_s18010197
crossref_primary_10_1088_1361_6501_ac7fde
crossref_primary_10_1007_s11044_020_09746_w
crossref_primary_10_3390_s17010164
Cites_doi 10.1007/11861898_72
10.7551/mitpress/7496.003.0011
10.1364/AO.51.000841
10.1093/oso/9780198538493.001.0001
10.1023/B:STCO.0000035301.49549.88
10.2478/v10178-011-0063-7
10.7551/mitpress/4175.001.0001
10.1007/11427469_44
10.1007/978-3-540-87921-3_25
10.1007/978-3-662-46224-9_80
10.1016/j.cviu.2009.05.006
10.1016/S0262-8856(02)00051-3
10.1177/027836498300200104
10.1145/1961189.1961199
10.1117/12.28040
10.1118/1.4890093
10.1364/AO.48.002632
10.1016/0003-2670(93)80441-M
10.1007/978-1-4612-1494-6
10.1016/j.imavis.2005.03.009
10.1007/s00138-008-0166-7
10.1109/ICCV.1999.791257
10.1117/12.2024851
10.1364/BOE.4.001176
10.1109/EMBC.2014.6944280
10.1109/VR.2007.352475
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JSEN.2015.2447835
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 5717
ExternalDocumentID 10_1109_JSEN_2015_2447835
7128690
Genre orig-research
GrantInformation_xml – fundername: Varian Medical Systems, Inc.
– fundername: Graduate School for Computing in Medicine and Life Science, German Excellence Initiative, University of Lübeck
  grantid: DFG GSC 235/1
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
ZY4
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c331t-91f148882691dbbf86526c67e22ea5959a9e130b9b8095ab892997a05fe4108c3
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Thu Apr 24 23:10:03 EDT 2025
Thu Jul 03 08:11:17 EDT 2025
Wed Aug 27 03:03:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords support vector regression
statistical learning
data-driven calibration
Galvanometric laser scanner
neural networks
Gaussian processes
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-91f148882691dbbf86526c67e22ea5959a9e130b9b8095ab892997a05fe4108c3
ORCID 0000-0002-8572-9938
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_JSEN_2015_2447835
crossref_primary_10_1109_JSEN_2015_2447835
ieee_primary_7128690
PublicationCentury 2000
PublicationDate 2015-Oct.
2015-10-00
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-Oct.
PublicationDecade 2010
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References rasmussen (ref36) 2006
ref34
ref12
weisz (ref21) 1991; 1454
ref14
ref31
ref11
ref10
chang (ref33) 2011; 11
ref1
ref17
stüber (ref22) 2013
ref16
johnson (ref6) 2007
manakov (ref13) 2011
ref19
ref18
stein (ref37) 1999
hastie (ref29) 2009
gelbart (ref8) 2003
ref24
ref23
ref26
ref25
ref20
hartley (ref27) 2003
quiñonero-candela (ref39) 2007
schölkopf (ref32) 2001
ref7
abdel-aziz (ref28) 1971
ref9
klette (ref15) 1998
ref4
(ref2) 2008
ref3
ref5
schwaighofer (ref38) 2002
platt (ref35) 1999
bishop (ref30) 1995
References_xml – ident: ref11
  doi: 10.1007/11861898_72
– start-page: 203
  year: 2007
  ident: ref39
  article-title: Approximation methods for Gaussian process regression
  publication-title: Large-Scale Kernel Machines
  doi: 10.7551/mitpress/7496.003.0011
– ident: ref20
  doi: 10.1364/AO.51.000841
– year: 2008
  ident: ref2
  publication-title: Instruction Manual scanCONTROL 29xx
– year: 1995
  ident: ref30
  publication-title: Neural Networks for Pattern Recognition
  doi: 10.1093/oso/9780198538493.001.0001
– ident: ref31
  doi: 10.1023/B:STCO.0000035301.49549.88
– ident: ref4
  doi: 10.2478/v10178-011-0063-7
– year: 2001
  ident: ref32
  publication-title: Learning With Kernels Support Vector Machines Regularization Optimization and Beyond
  doi: 10.7551/mitpress/4175.001.0001
– ident: ref19
  doi: 10.1007/11427469_44
– start-page: 953
  year: 2002
  ident: ref38
  article-title: Transductive and inductive methods for approximate Gaussian process regression
  publication-title: Advances in neural information processing systems
– ident: ref1
  doi: 10.1007/978-3-540-87921-3_25
– start-page: 179
  year: 2013
  ident: ref22
  article-title: An improvement for the scanning process in high accuracy head tracking
  publication-title: Proc Jahrestagung der Deutschen Gesellschaft fur Comput -und Roboterassistierte Chirurgie
– ident: ref26
  doi: 10.1007/978-3-662-46224-9_80
– year: 1999
  ident: ref35
  article-title: Fast training of support vector machines using sequential minimal optimization
  publication-title: Advances in Kernel Methods
– year: 2009
  ident: ref29
  publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction
– ident: ref10
  doi: 10.1016/j.cviu.2009.05.006
– year: 1998
  ident: ref15
  publication-title: Computer Vision Three-Dimensional Data from Images
– ident: ref18
  doi: 10.1016/S0262-8856(02)00051-3
– ident: ref3
  doi: 10.1177/027836498300200104
– ident: ref34
  doi: 10.1145/1961189.1961199
– volume: 1454
  start-page: 265
  year: 1991
  ident: ref21
  article-title: Software calibration of scan system distortions
  publication-title: Proc SPIE
  doi: 10.1117/12.28040
– ident: ref25
  doi: 10.1118/1.4890093
– volume: 11
  start-page: 1471
  year: 2011
  ident: ref33
  article-title: Training and testing low-degree polynomial data mappings via linear SVM
  publication-title: J Mach Learn Res
– ident: ref12
  doi: 10.1364/AO.48.002632
– ident: ref16
  doi: 10.1016/0003-2670(93)80441-M
– year: 2003
  ident: ref27
  publication-title: Multiple View Geometry in Computer Vision
– start-page: 1
  year: 1971
  ident: ref28
  article-title: Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry
  publication-title: Proc Symp Close-Range Photogramm
– year: 1999
  ident: ref37
  publication-title: Interpolation of Spatial Data Some Theory for Kriging
  doi: 10.1007/978-1-4612-1494-6
– ident: ref14
  doi: 10.1016/j.imavis.2005.03.009
– ident: ref9
  doi: 10.1007/s00138-008-0166-7
– year: 2006
  ident: ref36
  publication-title: Gaussian Processes for Machine Learning
– ident: ref17
  doi: 10.1109/ICCV.1999.791257
– start-page: 1
  year: 2007
  ident: ref6
  article-title: Real-time projector tracking on complex geometry using ordinary imagery
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref7
  doi: 10.1117/12.2024851
– ident: ref24
  doi: 10.1364/BOE.4.001176
– start-page: 207
  year: 2011
  ident: ref13
  article-title: A mathematical model and calibration procedure for galvanometric laser scanning systems
  publication-title: Vision Modeling and Visualization
– ident: ref23
  doi: 10.1109/EMBC.2014.6944280
– ident: ref5
  doi: 10.1109/VR.2007.352475
– year: 2003
  ident: ref8
  article-title: Method for imaging a continuously moving object
SSID ssj0019757
Score 2.2881203
Snippet State-of-the-art calibration very often constructs models motivated by a real-world device. Recently, artificial neural networks (ANNs) have been proposed as a...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 5709
SubjectTerms Calibration
Cameras
data-driven calibration
galvanometric laser scanner
Gaussian Processes
Kernel
Laser modes
Laser theory
Neural Networks
statistical learning
Support Vector regression
Table lookup
Three-dimensional displays
Title Data-Driven Learning for Calibrating Galvanometric Laser Scanners
URI https://ieeexplore.ieee.org/document/7128690
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61XYCBRwuivJSBCZE2Lzv2WFFKVdEupVK3yHYckCgpqtIBfj3nJI0KQogtjmzJ8p3vvrPP3wFcS-oJQqW0Y1MoLKCxtlmC211JolyquZY5b8F4QoezYDQn8xrcVm9htNZ58pnumM_8Lj9eqrU5KuuGaEwxmqtDHdWseKtV3RjwMGf1xA3s2IEfzssbTNfh3dH0fmKSuEgHfZk56fjmg7aKquQ-ZXAA481silSS1846kx31-YOo8b_TPYT9ElxavUIbjqCm0ybsbVEONmGnrHr-8tGCXl9kwu6vjMGzSqLVZwtRrGVebEmjG9h-EAtE28s3U3pLWY_o9VbWFAWSInA8htng_uluaJclFWzl-26Gpi3B-AdRNeVuLGXCKPGooqH2PC0IJ1xwjV5NcskQewnJED3xUDgk0YHrMOWfQCNdpvoUrIA7MVNSx1QhKkg4EyTwJBMeUUmcCL8NzmaRI1XyjZuyF4sojzscHhm5REYuUSmXNtxUQ94Lso2_OrfMklcdy9U--_33OeyawUUa3gU0stVaXyKcyORVrkdfGp3Fbg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADjwKiPDMwIdLmZcceK9pSoO3SInWLbMcBidKiKh3g13NO0ggQQmxJZEeW73z3nX3-DuBSUk8QKqUdm0JhAY21zRJc7koS5VLNtcx4CwZD2nsM7idkUoHr8i6M1jpLPtMN85id5cdztTRbZc0QjSlGc2uwTjCqYPltrfLMgIcZrycuYccO_HBSnGG6Dm_ejzpDk8ZFGujNzF7HNy_0paxK5lW6OzBYjSdPJnlpLFPZUB8_qBr_O-Bd2C7gpdXK9WEPKnpWg60vpIM12Cjqnj-_70OrLVJhtxfG5FkF1eqThTjWMne2pNEOfL8VU8Tb81dTfEtZffR7C2uEIpkhdDyAx25nfNOzi6IKtvJ9N0XjlmAEhLiacjeWMmGUeFTRUHueFoQTLrhGvya5ZIi-hGSIn3goHJLowHWY8g-hOpvP9BFYAXdipqSOqUJckHAmSOBJJjyikjgRfh2c1SRHqmAcN4UvplEWeTg8MnKJjFyiQi51uCq7vOV0G3813jdTXjYsZvv4988XsNEbD_pR_274cAKb5kd5Ut4pVNPFUp8huEjleaZTn67eyME
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Learning+for+Calibrating+Galvanometric+Laser+Scanners&rft.jtitle=IEEE+sensors+journal&rft.au=Wissel%2C+Tobias&rft.au=Wagner%2C+Benjamin&rft.au=Stuber%2C+Patrick&rft.au=Schweikard%2C+Achim&rft.date=2015-10-01&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=15&rft.issue=10&rft.spage=5709&rft.epage=5717&rft_id=info:doi/10.1109%2FJSEN.2015.2447835&rft.externalDocID=7128690
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon