Data-Driven Learning for Calibrating Galvanometric Laser Scanners
State-of-the-art calibration very often constructs models motivated by a real-world device. Recently, artificial neural networks (ANNs) have been proposed as a more universal, accurate, and practical black-box approach. For a galvanometric triangulation device based on two mirrors, we embrace this p...
Saved in:
Published in | IEEE sensors journal Vol. 15; no. 10; pp. 5709 - 5717 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.10.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1530-437X 1558-1748 |
DOI | 10.1109/JSEN.2015.2447835 |
Cover
Abstract | State-of-the-art calibration very often constructs models motivated by a real-world device. Recently, artificial neural networks (ANNs) have been proposed as a more universal, accurate, and practical black-box approach. For a galvanometric triangulation device based on two mirrors, we embrace this proposal and set it into context with other supervised data-driven approaches: 1) ridge regression; 2) support vector regression; and 3) Gaussian processes. We show that they outperform available model-based approaches and yield similar performance compared with a memorizing lookup table calibration. The results demonstrate that an off-the-shelf usage of ANNs may run into generalization problems. Restricting the space of functions using kernel-based learning has proven to be advantageous. Finally, all approaches and distinct properties are discussed in a broader context, since each application entails differently relevant requirements for its calibration. This also holds for any calibration other than the considered triangulation device. |
---|---|
AbstractList | State-of-the-art calibration very often constructs models motivated by a real-world device. Recently, artificial neural networks (ANNs) have been proposed as a more universal, accurate, and practical black-box approach. For a galvanometric triangulation device based on two mirrors, we embrace this proposal and set it into context with other supervised data-driven approaches: 1) ridge regression; 2) support vector regression; and 3) Gaussian processes. We show that they outperform available model-based approaches and yield similar performance compared with a memorizing lookup table calibration. The results demonstrate that an off-the-shelf usage of ANNs may run into generalization problems. Restricting the space of functions using kernel-based learning has proven to be advantageous. Finally, all approaches and distinct properties are discussed in a broader context, since each application entails differently relevant requirements for its calibration. This also holds for any calibration other than the considered triangulation device. |
Author | Wissel, Tobias Schweikard, Achim Ernst, Floris Stuber, Patrick Wagner, Benjamin |
Author_xml | – sequence: 1 givenname: Tobias surname: Wissel fullname: Wissel, Tobias email: wissel@rob.uni-luebeck.de organization: Inst. for Robot. & Cognitive Syst., Univ. of Lubeck, Lubeck, Germany – sequence: 2 givenname: Benjamin surname: Wagner fullname: Wagner, Benjamin email: wagner@rob.uni-luebeck.de organization: Inst. for Robot. & Cognitive Syst., Univ. of Lubeck, Lubeck, Germany – sequence: 3 givenname: Patrick surname: Stuber fullname: Stuber, Patrick email: stueber@rob.uniluebeck.de organization: Inst. for Robot. & Cognitive Syst., Univ. of Lubeck, Lubeck, Germany – sequence: 4 givenname: Achim surname: Schweikard fullname: Schweikard, Achim email: schweikard@rob.uni-luebeck.de organization: Inst. for Robot. & Cognitive Syst., Univ. of Lubeck, Lubeck, Germany – sequence: 5 givenname: Floris surname: Ernst fullname: Ernst, Floris email: ernst@rob.uni-luebeck.de organization: Inst. for Robot. & Cognitive Syst., Univ. of Lubeck, Lubeck, Germany |
BookMark | eNp9kLFOwzAQhi1UJNrCAyCWvECCz45je6zaUkARDAWJLbqYCzJKHeRElXh7GrViYGC6u-G7X_83Y5PQBWLsGngGwO3t43b9lAkOKhN5ro1UZ2wKSpkUdG4m4y55mkv9dsFmff_JOVit9JQtVjhguop-TyEpCWPw4SNpupgssfV1xGG8N9juMXQ7GqJ3SYk9xWTrMASK_SU7b7Dt6eo05-z1bv2yvE_L583DclGmTkoYUgsN5MYYUVh4r-vGFEoUrtAkBKGyyqIlkLy2teFWYW2ssFYjVw3lwI2TcwbHvy52fR-pqb6i32H8roBXo4NqdFCNDqqTgwOj_zDOD4dKXRgi-vZf8uZIeiL6TdIgTGG5_AH_H2rQ |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1109_JIOT_2022_3144934 crossref_primary_10_1088_1361_6501_abd57a crossref_primary_10_3390_s18051478 crossref_primary_10_3390_batteries9100508 crossref_primary_10_3390_s21248359 crossref_primary_10_1109_TII_2022_3215960 crossref_primary_10_1364_AO_520571 crossref_primary_10_1007_s41871_018_0020_0 crossref_primary_10_1109_TIM_2022_3170968 crossref_primary_10_3390_s23042142 crossref_primary_10_3390_s23136126 crossref_primary_10_1016_j_cja_2018_10_005 crossref_primary_10_1016_j_precisioneng_2025_03_013 crossref_primary_10_1109_TIM_2021_3128956 crossref_primary_10_3390_s19061353 crossref_primary_10_1364_OE_26_032608 crossref_primary_10_3390_s23041941 crossref_primary_10_1177_1687814018773670 crossref_primary_10_3390_s19030582 crossref_primary_10_1364_OE_408444 crossref_primary_10_1016_j_optlaseng_2023_107787 crossref_primary_10_1016_j_optlaseng_2023_107923 crossref_primary_10_3390_s18010197 crossref_primary_10_1088_1361_6501_ac7fde crossref_primary_10_1007_s11044_020_09746_w crossref_primary_10_3390_s17010164 |
Cites_doi | 10.1007/11861898_72 10.7551/mitpress/7496.003.0011 10.1364/AO.51.000841 10.1093/oso/9780198538493.001.0001 10.1023/B:STCO.0000035301.49549.88 10.2478/v10178-011-0063-7 10.7551/mitpress/4175.001.0001 10.1007/11427469_44 10.1007/978-3-540-87921-3_25 10.1007/978-3-662-46224-9_80 10.1016/j.cviu.2009.05.006 10.1016/S0262-8856(02)00051-3 10.1177/027836498300200104 10.1145/1961189.1961199 10.1117/12.28040 10.1118/1.4890093 10.1364/AO.48.002632 10.1016/0003-2670(93)80441-M 10.1007/978-1-4612-1494-6 10.1016/j.imavis.2005.03.009 10.1007/s00138-008-0166-7 10.1109/ICCV.1999.791257 10.1117/12.2024851 10.1364/BOE.4.001176 10.1109/EMBC.2014.6944280 10.1109/VR.2007.352475 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/JSEN.2015.2447835 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 5717 |
ExternalDocumentID | 10_1109_JSEN_2015_2447835 7128690 |
Genre | orig-research |
GrantInformation_xml | – fundername: Varian Medical Systems, Inc. – fundername: Graduate School for Computing in Medicine and Life Science, German Excellence Initiative, University of Lübeck grantid: DFG GSC 235/1 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ ZY4 AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c331t-91f148882691dbbf86526c67e22ea5959a9e130b9b8095ab892997a05fe4108c3 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Thu Apr 24 23:10:03 EDT 2025 Thu Jul 03 08:11:17 EDT 2025 Wed Aug 27 03:03:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | support vector regression statistical learning data-driven calibration Galvanometric laser scanner neural networks Gaussian processes |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-91f148882691dbbf86526c67e22ea5959a9e130b9b8095ab892997a05fe4108c3 |
ORCID | 0000-0002-8572-9938 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1109_JSEN_2015_2447835 crossref_primary_10_1109_JSEN_2015_2447835 ieee_primary_7128690 |
PublicationCentury | 2000 |
PublicationDate | 2015-Oct. 2015-10-00 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-Oct. |
PublicationDecade | 2010 |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | rasmussen (ref36) 2006 ref34 ref12 weisz (ref21) 1991; 1454 ref14 ref31 ref11 ref10 chang (ref33) 2011; 11 ref1 ref17 stüber (ref22) 2013 ref16 johnson (ref6) 2007 manakov (ref13) 2011 ref19 ref18 stein (ref37) 1999 hastie (ref29) 2009 gelbart (ref8) 2003 ref24 ref23 ref26 ref25 ref20 hartley (ref27) 2003 quiñonero-candela (ref39) 2007 schölkopf (ref32) 2001 ref7 abdel-aziz (ref28) 1971 ref9 klette (ref15) 1998 ref4 (ref2) 2008 ref3 ref5 schwaighofer (ref38) 2002 platt (ref35) 1999 bishop (ref30) 1995 |
References_xml | – ident: ref11 doi: 10.1007/11861898_72 – start-page: 203 year: 2007 ident: ref39 article-title: Approximation methods for Gaussian process regression publication-title: Large-Scale Kernel Machines doi: 10.7551/mitpress/7496.003.0011 – ident: ref20 doi: 10.1364/AO.51.000841 – year: 2008 ident: ref2 publication-title: Instruction Manual scanCONTROL 29xx – year: 1995 ident: ref30 publication-title: Neural Networks for Pattern Recognition doi: 10.1093/oso/9780198538493.001.0001 – ident: ref31 doi: 10.1023/B:STCO.0000035301.49549.88 – ident: ref4 doi: 10.2478/v10178-011-0063-7 – year: 2001 ident: ref32 publication-title: Learning With Kernels Support Vector Machines Regularization Optimization and Beyond doi: 10.7551/mitpress/4175.001.0001 – ident: ref19 doi: 10.1007/11427469_44 – start-page: 953 year: 2002 ident: ref38 article-title: Transductive and inductive methods for approximate Gaussian process regression publication-title: Advances in neural information processing systems – ident: ref1 doi: 10.1007/978-3-540-87921-3_25 – start-page: 179 year: 2013 ident: ref22 article-title: An improvement for the scanning process in high accuracy head tracking publication-title: Proc Jahrestagung der Deutschen Gesellschaft fur Comput -und Roboterassistierte Chirurgie – ident: ref26 doi: 10.1007/978-3-662-46224-9_80 – year: 1999 ident: ref35 article-title: Fast training of support vector machines using sequential minimal optimization publication-title: Advances in Kernel Methods – year: 2009 ident: ref29 publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction – ident: ref10 doi: 10.1016/j.cviu.2009.05.006 – year: 1998 ident: ref15 publication-title: Computer Vision Three-Dimensional Data from Images – ident: ref18 doi: 10.1016/S0262-8856(02)00051-3 – ident: ref3 doi: 10.1177/027836498300200104 – ident: ref34 doi: 10.1145/1961189.1961199 – volume: 1454 start-page: 265 year: 1991 ident: ref21 article-title: Software calibration of scan system distortions publication-title: Proc SPIE doi: 10.1117/12.28040 – ident: ref25 doi: 10.1118/1.4890093 – volume: 11 start-page: 1471 year: 2011 ident: ref33 article-title: Training and testing low-degree polynomial data mappings via linear SVM publication-title: J Mach Learn Res – ident: ref12 doi: 10.1364/AO.48.002632 – ident: ref16 doi: 10.1016/0003-2670(93)80441-M – year: 2003 ident: ref27 publication-title: Multiple View Geometry in Computer Vision – start-page: 1 year: 1971 ident: ref28 article-title: Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry publication-title: Proc Symp Close-Range Photogramm – year: 1999 ident: ref37 publication-title: Interpolation of Spatial Data Some Theory for Kriging doi: 10.1007/978-1-4612-1494-6 – ident: ref14 doi: 10.1016/j.imavis.2005.03.009 – ident: ref9 doi: 10.1007/s00138-008-0166-7 – year: 2006 ident: ref36 publication-title: Gaussian Processes for Machine Learning – ident: ref17 doi: 10.1109/ICCV.1999.791257 – start-page: 1 year: 2007 ident: ref6 article-title: Real-time projector tracking on complex geometry using ordinary imagery publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) – ident: ref7 doi: 10.1117/12.2024851 – ident: ref24 doi: 10.1364/BOE.4.001176 – start-page: 207 year: 2011 ident: ref13 article-title: A mathematical model and calibration procedure for galvanometric laser scanning systems publication-title: Vision Modeling and Visualization – ident: ref23 doi: 10.1109/EMBC.2014.6944280 – ident: ref5 doi: 10.1109/VR.2007.352475 – year: 2003 ident: ref8 article-title: Method for imaging a continuously moving object |
SSID | ssj0019757 |
Score | 2.2881203 |
Snippet | State-of-the-art calibration very often constructs models motivated by a real-world device. Recently, artificial neural networks (ANNs) have been proposed as a... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 5709 |
SubjectTerms | Calibration Cameras data-driven calibration galvanometric laser scanner Gaussian Processes Kernel Laser modes Laser theory Neural Networks statistical learning Support Vector regression Table lookup Three-dimensional displays |
Title | Data-Driven Learning for Calibrating Galvanometric Laser Scanners |
URI | https://ieeexplore.ieee.org/document/7128690 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61XYCBRwuivJSBCZE2Lzv2WFFKVdEupVK3yHYckCgpqtIBfj3nJI0KQogtjmzJ8p3vvrPP3wFcS-oJQqW0Y1MoLKCxtlmC211JolyquZY5b8F4QoezYDQn8xrcVm9htNZ58pnumM_8Lj9eqrU5KuuGaEwxmqtDHdWseKtV3RjwMGf1xA3s2IEfzssbTNfh3dH0fmKSuEgHfZk56fjmg7aKquQ-ZXAA481silSS1846kx31-YOo8b_TPYT9ElxavUIbjqCm0ybsbVEONmGnrHr-8tGCXl9kwu6vjMGzSqLVZwtRrGVebEmjG9h-EAtE28s3U3pLWY_o9VbWFAWSInA8htng_uluaJclFWzl-26Gpi3B-AdRNeVuLGXCKPGooqH2PC0IJ1xwjV5NcskQewnJED3xUDgk0YHrMOWfQCNdpvoUrIA7MVNSx1QhKkg4EyTwJBMeUUmcCL8NzmaRI1XyjZuyF4sojzscHhm5REYuUSmXNtxUQ94Lso2_OrfMklcdy9U--_33OeyawUUa3gU0stVaXyKcyORVrkdfGp3Fbg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADjwKiPDMwIdLmZcceK9pSoO3SInWLbMcBidKiKh3g13NO0ggQQmxJZEeW73z3nX3-DuBSUk8QKqUdm0JhAY21zRJc7koS5VLNtcx4CwZD2nsM7idkUoHr8i6M1jpLPtMN85id5cdztTRbZc0QjSlGc2uwTjCqYPltrfLMgIcZrycuYccO_HBSnGG6Dm_ejzpDk8ZFGujNzF7HNy_0paxK5lW6OzBYjSdPJnlpLFPZUB8_qBr_O-Bd2C7gpdXK9WEPKnpWg60vpIM12Cjqnj-_70OrLVJhtxfG5FkF1eqThTjWMne2pNEOfL8VU8Tb81dTfEtZffR7C2uEIpkhdDyAx25nfNOzi6IKtvJ9N0XjlmAEhLiacjeWMmGUeFTRUHueFoQTLrhGvya5ZIi-hGSIn3goHJLowHWY8g-hOpvP9BFYAXdipqSOqUJckHAmSOBJJjyikjgRfh2c1SRHqmAcN4UvplEWeTg8MnKJjFyiQi51uCq7vOV0G3813jdTXjYsZvv4988XsNEbD_pR_274cAKb5kd5Ut4pVNPFUp8huEjleaZTn67eyME |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Learning+for+Calibrating+Galvanometric+Laser+Scanners&rft.jtitle=IEEE+sensors+journal&rft.au=Wissel%2C+Tobias&rft.au=Wagner%2C+Benjamin&rft.au=Stuber%2C+Patrick&rft.au=Schweikard%2C+Achim&rft.date=2015-10-01&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=15&rft.issue=10&rft.spage=5709&rft.epage=5717&rft_id=info:doi/10.1109%2FJSEN.2015.2447835&rft.externalDocID=7128690 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |