A general approach for designing the MWGS-based information-form Kalman filtering methods
•An unified approach for designing the MWGS-based information-form Kalman filter implementation methods is proposed.•The solution is based on the modified Cholesky factorization and the utilization of numerically stable Modified Weighted Gram-Schmidt (MWGS) orthogonal transformation for updating the...
Saved in:
| Published in | European journal of control Vol. 56; pp. 86 - 97 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Philadelphia
Elsevier Ltd
01.11.2020
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0947-3580 1435-5671 |
| DOI | 10.1016/j.ejcon.2020.02.001 |
Cover
| Abstract | •An unified approach for designing the MWGS-based information-form Kalman filter implementation methods is proposed.•The solution is based on the modified Cholesky factorization and the utilization of numerically stable Modified Weighted Gram-Schmidt (MWGS) orthogonal transformation for updating the MWGS factors of the filter information matrix involved.•The factorization based implementation strategies are recognized to enhance the numerical robustness with respect to roundoff errors and, hence, they are the preferred implementations when solving applications with high reliability requirements.•To illustrate the suggested general approach, two MWGS-based information-form methods are developed. Their theoretical properties, computational complexities are discussed and numerical comparison with the existing array information implementations is performed for determining the most reliable implementations.•The newly-suggested extended eMWGS-aIF method is found out to be the most reliable implementations in the class of square-root-free information-form Kalman filtering algorithms, which allows the ill-conditioned state estimation problems to be solved accurately.
The paper addresses a general approach to MWGS (Modified Weighted Gram-Schmidt) orthogonalization based Kalman filtering (KF) implementation methods. We propose two new numerically favored and convenient array information formulations of the MWGS-based KF that are the MWGS-based array Information Filter (algorithm MWGS-aIF) and the extended MWGS-based array Information Filter (algorithm eMWGS-aIF). To confirm the correctness of our results, we have proved that the newly constructed MWGS-based array computational schemes are algebraically equivalent to the “straight” (conventional) information filter. Although all these information-type algorithms are theoretically equivalent, their computational properties are different. The newly proposed algorithms are numerically robust to machine roundoff errors due to the numerically stable orthogonal transformations applied on each iteration. The obtained numerical results confirm this statement. Additionally, algorithm eMWGS-aIF has the extended array form, i. e., it allows for updating all required filter quantities with the use of the numerically stable MWGS orthogonalization procedure, only. Thus, our results extend the existing class of numerically efficient KF implementation methods and can be used in practical applications. |
|---|---|
| AbstractList | The paper addresses a general approach to MWGS (Modified Weighted Gram-Schmidt) orthogonalization based Kalman filtering (KF) implementation methods. We propose two new numerically favored and convenient array information formulations of the MWGS-based KF that are the MWGS-based array Information Filter (algorithm MWGS-aIF) and the extended MWGS-based array Information Filter (algorithm eMWGS-aIF). To confirm the correctness of our results, we have proved that the newly constructed MWGS-based array computational schemes are algebraically equivalent to the “straight” (conventional) information filter. Although all these information-type algorithms are theoretically equivalent, their computational properties are different. The newly proposed algorithms are numerically robust to machine roundoff errors due to the numerically stable orthogonal transformations applied on each iteration. The obtained numerical results confirm this statement. Additionally, algorithm eMWGS-aIF has the extended array form, i. e., it allows for updating all required filter quantities with the use of the numerically stable MWGS orthogonalization procedure, only. Thus, our results extend the existing class of numerically efficient KF implementation methods and can be used in practical applications. •An unified approach for designing the MWGS-based information-form Kalman filter implementation methods is proposed.•The solution is based on the modified Cholesky factorization and the utilization of numerically stable Modified Weighted Gram-Schmidt (MWGS) orthogonal transformation for updating the MWGS factors of the filter information matrix involved.•The factorization based implementation strategies are recognized to enhance the numerical robustness with respect to roundoff errors and, hence, they are the preferred implementations when solving applications with high reliability requirements.•To illustrate the suggested general approach, two MWGS-based information-form methods are developed. Their theoretical properties, computational complexities are discussed and numerical comparison with the existing array information implementations is performed for determining the most reliable implementations.•The newly-suggested extended eMWGS-aIF method is found out to be the most reliable implementations in the class of square-root-free information-form Kalman filtering algorithms, which allows the ill-conditioned state estimation problems to be solved accurately. The paper addresses a general approach to MWGS (Modified Weighted Gram-Schmidt) orthogonalization based Kalman filtering (KF) implementation methods. We propose two new numerically favored and convenient array information formulations of the MWGS-based KF that are the MWGS-based array Information Filter (algorithm MWGS-aIF) and the extended MWGS-based array Information Filter (algorithm eMWGS-aIF). To confirm the correctness of our results, we have proved that the newly constructed MWGS-based array computational schemes are algebraically equivalent to the “straight” (conventional) information filter. Although all these information-type algorithms are theoretically equivalent, their computational properties are different. The newly proposed algorithms are numerically robust to machine roundoff errors due to the numerically stable orthogonal transformations applied on each iteration. The obtained numerical results confirm this statement. Additionally, algorithm eMWGS-aIF has the extended array form, i. e., it allows for updating all required filter quantities with the use of the numerically stable MWGS orthogonalization procedure, only. Thus, our results extend the existing class of numerically efficient KF implementation methods and can be used in practical applications. |
| Author | Kulikova, Maria V. Tsyganov, Andrey V. Tsyganova, Julia V. |
| Author_xml | – sequence: 1 givenname: Julia V. surname: Tsyganova fullname: Tsyganova, Julia V. email: tsyganovajv@gmail.com organization: Department of Mathematics, Information and Aviation Technology, Ulyanovsk State University, Str. L. Tolstoy 42, Ulyanovsk 432017, Russian Federation – sequence: 2 givenname: Maria V. surname: Kulikova fullname: Kulikova, Maria V. email: maria.kulikova@ist.utl.pt organization: CEMAT (Center for Computational and Stochastic Mathematics), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa 1049-001, Portugal – sequence: 3 givenname: Andrey V. surname: Tsyganov fullname: Tsyganov, Andrey V. email: andrew.tsyganov@gmail.com organization: Department of Mathematics, Physics and Technology Education, Ulyanovsk State University of Education, Lenin square, 4/5, Ulyanovsk 432071, Russian Federation |
| BookMark | eNqFkE1PAyEQhonRxFr7C7yQeN4V9puDh6bRaqzxoMZ4IizMtmy2UIGa-O-lrScPOhxmAvMM875n6NhYAwhdUJJSQqurPoVeWpNmJCMpyVJC6BEa0SIvk7Kq6TEaEVbUSV425BRNvO9JjDyn8YzQ-xQvwYATAxabjbNCrnBnHVbg9dJos8RhBfjxbf6ctMKDwtrE57UI2ppkV-EHMayFwZ0eArgdsIawssqfo5NODB4mP3mMXm9vXmZ3yeJpfj-bLhIZdwgJoy1UZVUWggjWADBWU1GoLC9FJlUBTdfVCpqGVqqVjJXxss0rgJqWbdUpkY_R5WFu3P5jCz7w3m6diV_yrI6aG9YUTexihy7prPcOOi512KsITuiBU8J3ZvKe783kOzM5yXg0M7L5L3bj9Fq4r3-o6wMFUfynBse91GAkKO1ABq6s_pP_Bjr7kZk |
| CitedBy_id | crossref_primary_10_3390_math10010126 crossref_primary_10_1016_j_ejcon_2021_01_003 crossref_primary_10_1016_j_ejcon_2022_100617 crossref_primary_10_1016_j_ejcon_2021_09_004 |
| Cites_doi | 10.1016/j.ifacol.2018.11.483 10.1007/BF01934122 10.1109/TAES.2018.2850379 10.1109/TAC.2010.2042987 10.1109/TAC.1986.1104128 10.1016/j.proeng.2017.09.597 10.1007/BF00929358 10.1016/0005-1098(86)90104-4 10.1109/9.384225 10.1016/0167-8191(89)90056-2 10.1109/TAC.1971.1099816 10.1016/0005-1098(77)90006-1 10.1002/navi.283 |
| ContentType | Journal Article |
| Copyright | 2020 European Control Association 2020. European Control Association |
| Copyright_xml | – notice: 2020 European Control Association – notice: 2020. European Control Association |
| DBID | AAYXX CITATION 3V. 7XB 88I 8AL 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1016/j.ejcon.2020.02.001 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Computing Database Science Database Engineering Database (subscription) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1435-5671 |
| EndPage | 97 |
| ExternalDocumentID | 10_1016_j_ejcon_2020_02_001 S0947358019303802 |
| GroupedDBID | --M .~1 0R~ 1~. 29G 3V. 4.4 457 4G. 5GY 7-5 88I 8FE 8FG 8P~ 8R4 8R5 AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQXK AAXUO ABFRF ABJCF ABJNI ABMAC ABUWG ABXDB ABYKQ ACDAQ ACGFO ACGFS ACGOD ACIWK ACNNM ACRLP ADBBV ADEZE ADFRT ADMUD AEBSH AECPX AEFWE AEKER AENEX AFKRA AFKWA AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BENPR BGLVJ BJAXD BKOJK BLXMC BPHCQ CCPQU CS3 DU5 DWQXO EBS EFJIC EFLBG EJD FDB FEDTE FGOYB FIRID FNPLU FYGXN GBLVA GNUQQ HCIFZ HVGLF HZ~ JJJVA K6V K7- KOM L6V M0N M2P M41 M7S MO0 O9- OAUVE P-8 P-9 P2P P62 PC. PQQKQ PROAC PTHSS Q2X R2- RIG ROL SDH SPC SPCBC SST SSZ T5K UNMZH ~4P ~G- AAQFI AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS PHGZM PHGZT PQGLB 7XB 8AL 8FK AGCQF JQ2 PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c331t-91be65654a0a98ee9971a4d235a2cd4e8ff7de8816dbc9952cdb36ee715b6fda3 |
| IEDL.DBID | .~1 |
| ISSN | 0947-3580 |
| IngestDate | Wed Aug 13 11:07:18 EDT 2025 Sat Oct 25 05:42:03 EDT 2025 Thu Apr 24 23:08:37 EDT 2025 Fri Feb 23 02:46:20 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Array algorithms MWGS orthogonalization Kalman filter Information filter |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c331t-91be65654a0a98ee9971a4d235a2cd4e8ff7de8816dbc9952cdb36ee715b6fda3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2758089848 |
| PQPubID | 46798 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2758089848 crossref_citationtrail_10_1016_j_ejcon_2020_02_001 crossref_primary_10_1016_j_ejcon_2020_02_001 elsevier_sciencedirect_doi_10_1016_j_ejcon_2020_02_001 |
| PublicationCentury | 2000 |
| PublicationDate | November 2020 2020-11-00 20201101 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Philadelphia |
| PublicationPlace_xml | – name: Philadelphia |
| PublicationTitle | European journal of control |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Grewal, Andrews (bib0012) 2001 Semushin, Tsyganova, Ugarov, Tsyganov (bib0021) 2018; 2258 Dyer, McReynolds (bib0009) 1969 Hotop (bib0013) 1989; 40 Itzkowitz, Baheti (bib0014) 1989 Tsyganova, Tsyganov (bib0024) 2018; 23 Grewal (bib0011) 2019; 66 Jover, Kailath (bib0015) 1986; 22 Bierman (bib0002) 1977 Chun (bib0007) 1991 Tsyganova, Kulikova, Tsyganov (bib0022) 2019 Verhaegen, Van Dooren (bib0025) 1986; AC-31 Cattivelli, H. (bib0006) 2010; 55 Bierman, Thornton (bib0004) 1978; AC-23 Bierman, Thornton (bib0003) 1977; 13 Park, Kailath (bib0018) 1995; 40 Kailath, Sayed, Hassibi (bib0016) 2000 Tsyganova (bib0023) 2013 Golub, Van Loan (bib0010) 1983 Semushin, Tsyganova, Tsyganov (bib0019) 2018; 51 Bierman (bib0001) 1975 D’Souza, Zanetti (bib0008) 2019; 55 Semushin, Tsyganova, Tsyganov, Prokhorova (bib0020) 2017; 201 Björck (bib0005) 1967; 7 Kaminski, Bryson, Schmidt (bib0017) 1971; AC-16 Bierman (10.1016/j.ejcon.2020.02.001_bib0003) 1977; 13 Jover (10.1016/j.ejcon.2020.02.001_bib0015) 1986; 22 Kailath (10.1016/j.ejcon.2020.02.001_sbref0016) 2000 Tsyganova (10.1016/j.ejcon.2020.02.001_sbref0023) 2013 Bierman (10.1016/j.ejcon.2020.02.001_bib0004) 1978; AC-23 Dyer (10.1016/j.ejcon.2020.02.001_bib0009) 1969 Grewal (10.1016/j.ejcon.2020.02.001_bib0011) 2019; 66 Semushin (10.1016/j.ejcon.2020.02.001_bib0019) 2018; 51 Tsyganova (10.1016/j.ejcon.2020.02.001_bib0022) 2019 Tsyganova (10.1016/j.ejcon.2020.02.001_sbref0024) 2018; 23 Park (10.1016/j.ejcon.2020.02.001_bib0018) 1995; 40 D’Souza (10.1016/j.ejcon.2020.02.001_bib0008) 2019; 55 Verhaegen (10.1016/j.ejcon.2020.02.001_bib0025) 1986; AC-31 Bierman (10.1016/j.ejcon.2020.02.001_sbref0002) 1977 Golub (10.1016/j.ejcon.2020.02.001_bib0010) 1983 Grewal (10.1016/j.ejcon.2020.02.001_bib0012) 2001 Hotop (10.1016/j.ejcon.2020.02.001_bib0013) 1989; 40 Chun (10.1016/j.ejcon.2020.02.001_bib0007) 1991 Kaminski (10.1016/j.ejcon.2020.02.001_bib0017) 1971; AC-16 Bierman (10.1016/j.ejcon.2020.02.001_bib0001) 1975 Cattivelli (10.1016/j.ejcon.2020.02.001_bib0006) 2010; 55 Itzkowitz (10.1016/j.ejcon.2020.02.001_bib0014) 1989 Björck (10.1016/j.ejcon.2020.02.001_bib0005) 1967; 7 Semushin (10.1016/j.ejcon.2020.02.001_bib0020) 2017; 201 Semushin (10.1016/j.ejcon.2020.02.001_bib0021) 2018; 2258 |
| References_xml | – volume: 66 start-page: 239 year: 2019 end-page: 249 ident: bib0011 article-title: Practical design and implementation methods for Kalman filtering for mission critical applications publication-title: Navigation – volume: 201 start-page: 726 year: 2017 end-page: 735 ident: bib0020 article-title: Numerically efficient UD filter based channel estimation for OFDM wireless communication technology publication-title: Procedia Eng. – start-page: 444 year: 1969 end-page: 459 ident: bib0009 article-title: Extension of square-root filtering to include process noise publication-title: J. Optim. Theory Appl. – start-page: 1872 year: 2019 end-page: 1877 ident: bib0022 article-title: Some New Array Information Formulations of the UD-based Kalman Filter publication-title: Proceedings of the 18th European Control Conference (ECC). Napoli, Italy – volume: 7 start-page: 1 year: 1967 end-page: 21 ident: bib0005 article-title: Solving linear least squares problems by Gram-Schmidt orthogonalization publication-title: BIT Numer. Math. – start-page: 84 year: 2013 end-page: 104 ident: bib0023 article-title: On the UD filter implementation methods publication-title: Univ. Proc. Volga Region (Phys. Math. Sci.) – volume: AC-23 start-page: 901 year: 1978 end-page: 907 ident: bib0004 article-title: Filtering and Error Analysis via the UDU’ Covariance Factorization publication-title: IEEE Trans. Autom. Control – volume: 55 start-page: 493 year: 2019 end-page: 498 ident: bib0008 article-title: Information formulation of the UDU Kalman filter publication-title: IEEE Trans. Aerosp. Electr. Syst. – volume: AC-16 start-page: 727 year: 1971 end-page: 735 ident: bib0017 article-title: Discrete square-root filtering: a survey of current techniques publication-title: IEEE Trans. Autom. Control – volume: 2258 start-page: 473 year: 2018 end-page: 482 ident: bib0021 article-title: New combined array information UD algorithm of the Kalman filter based channel estimation for OFDM data transmission publication-title: CEUR Workshop Proc. – start-page: 521 year: 1991 end-page: 529 ident: bib0007 article-title: A single-chip QR decomposition processor for extended square-root Kalman filters publication-title: roceedings of the Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems & Computers. Pacific Grove, CA, USA – year: 2000 ident: bib0016 article-title: Linear Estimation – volume: 55 start-page: 2069 year: 2010 end-page: 2084 ident: bib0006 article-title: Diffusion strategies for distributed Kalman filtering and smoothing publication-title: IEEE Trans. Autom. Control – year: 1983 ident: bib0010 article-title: Matrix Computations – volume: 51 start-page: 568 year: 2018 end-page: 573 ident: bib0019 article-title: Numerically Efficient LD-computations for the Auxiliary Performance Index Based Control Optimization under Uncertainties publication-title: IFAC-PapersOnline – volume: 22 start-page: 43 year: 1986 end-page: 57 ident: bib0015 article-title: A Parallel Architecture for Kalman Filter Measurement Update and Parameter Estimation publication-title: Automatica – volume: 40 start-page: 895 year: 1995 end-page: 899 ident: bib0018 article-title: New square-root algorithms for Kalman filtering publication-title: IEEE Trans. Autom. Control – start-page: 489 year: 1975 end-page: 498 ident: bib0001 article-title: Gram-Schmidt algorithms for covariance propagation publication-title: Proceedings of the IEEE Conference on Decision and Control Including the 14th Symposium on Adaptive Processes, Houston, TX, USA, 10-12 Dec. 1975 – year: 1977 ident: bib0002 article-title: Factorization Methods For Discrete Sequential Estimation – volume: 40 start-page: 233 year: 1989 end-page: 247 ident: bib0013 article-title: New Kalman filter algorithms based on orthogonal transformations for serial and vector computers publication-title: Parallel Comput. – volume: 23 start-page: 64 year: 2018 end-page: 79 ident: bib0024 article-title: On the computation of derivatives within LD factorization of parametrized matrices publication-title: Bull. Irkutsk State Univ. Ser. Math. – volume: 13 start-page: 23 year: 1977 end-page: 35 ident: bib0003 article-title: Numerical comparison of Kalman filter algorithms: Orbit determination case study publication-title: Automatica – volume: AC-31 start-page: 907 year: 1986 end-page: 917 ident: bib0025 article-title: Numerical aspects of different Kalman filter implementations publication-title: IEEE Trans. Autom. Control – start-page: 1754 year: 1989 end-page: 1762 ident: bib0014 article-title: Demonstration of Square Root Kalman Filter on Warp Parallel Computer publication-title: Proceedings of the American Control Conference. Pittsburgh, PA, USA – year: 2001 ident: bib0012 article-title: Kalman filtering: Theory and Practice Using MATLAB – volume: 51 start-page: 568 issue: 32 year: 2018 ident: 10.1016/j.ejcon.2020.02.001_bib0019 article-title: Numerically Efficient LD-computations for the Auxiliary Performance Index Based Control Optimization under Uncertainties publication-title: IFAC-PapersOnline doi: 10.1016/j.ifacol.2018.11.483 – volume: 2258 start-page: 473 year: 2018 ident: 10.1016/j.ejcon.2020.02.001_bib0021 article-title: New combined array information UD algorithm of the Kalman filter based channel estimation for OFDM data transmission publication-title: CEUR Workshop Proc. – volume: 23 start-page: 64 year: 2018 ident: 10.1016/j.ejcon.2020.02.001_sbref0024 article-title: On the computation of derivatives within LD factorization of parametrized matrices publication-title: Bull. Irkutsk State Univ. Ser. Math. – volume: 7 start-page: 1 issue: 1 year: 1967 ident: 10.1016/j.ejcon.2020.02.001_bib0005 article-title: Solving linear least squares problems by Gram-Schmidt orthogonalization publication-title: BIT Numer. Math. doi: 10.1007/BF01934122 – volume: 55 start-page: 493 issue: 1 year: 2019 ident: 10.1016/j.ejcon.2020.02.001_bib0008 article-title: Information formulation of the UDU Kalman filter publication-title: IEEE Trans. Aerosp. Electr. Syst. doi: 10.1109/TAES.2018.2850379 – volume: 55 start-page: 2069 issue: 9 year: 2010 ident: 10.1016/j.ejcon.2020.02.001_bib0006 article-title: Diffusion strategies for distributed Kalman filtering and smoothing publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2010.2042987 – year: 1983 ident: 10.1016/j.ejcon.2020.02.001_bib0010 – start-page: 1872 year: 2019 ident: 10.1016/j.ejcon.2020.02.001_bib0022 article-title: Some New Array Information Formulations of the UD-based Kalman Filter – volume: AC-31 start-page: 907 issue: 10 year: 1986 ident: 10.1016/j.ejcon.2020.02.001_bib0025 article-title: Numerical aspects of different Kalman filter implementations publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1986.1104128 – volume: 201 start-page: 726 year: 2017 ident: 10.1016/j.ejcon.2020.02.001_bib0020 article-title: Numerically efficient UD filter based channel estimation for OFDM wireless communication technology publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.09.597 – start-page: 84 issue: 3 year: 2013 ident: 10.1016/j.ejcon.2020.02.001_sbref0023 article-title: On the UD filter implementation methods publication-title: Univ. Proc. Volga Region (Phys. Math. Sci.) – volume: AC-23 start-page: 901 issue: 5 year: 1978 ident: 10.1016/j.ejcon.2020.02.001_bib0004 article-title: Filtering and Error Analysis via the UDU’ Covariance Factorization publication-title: IEEE Trans. Autom. Control – start-page: 444 issue: 3 year: 1969 ident: 10.1016/j.ejcon.2020.02.001_bib0009 article-title: Extension of square-root filtering to include process noise publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00929358 – start-page: 489 year: 1975 ident: 10.1016/j.ejcon.2020.02.001_bib0001 article-title: Gram-Schmidt algorithms for covariance propagation – start-page: 1754 year: 1989 ident: 10.1016/j.ejcon.2020.02.001_bib0014 article-title: Demonstration of Square Root Kalman Filter on Warp Parallel Computer – year: 1977 ident: 10.1016/j.ejcon.2020.02.001_sbref0002 – start-page: 521 year: 1991 ident: 10.1016/j.ejcon.2020.02.001_bib0007 article-title: A single-chip QR decomposition processor for extended square-root Kalman filters – year: 2001 ident: 10.1016/j.ejcon.2020.02.001_bib0012 – volume: 22 start-page: 43 issue: 1 year: 1986 ident: 10.1016/j.ejcon.2020.02.001_bib0015 article-title: A Parallel Architecture for Kalman Filter Measurement Update and Parameter Estimation publication-title: Automatica doi: 10.1016/0005-1098(86)90104-4 – volume: 40 start-page: 895 issue: 5 year: 1995 ident: 10.1016/j.ejcon.2020.02.001_bib0018 article-title: New square-root algorithms for Kalman filtering publication-title: IEEE Trans. Autom. Control doi: 10.1109/9.384225 – volume: 40 start-page: 233 issue: 12 year: 1989 ident: 10.1016/j.ejcon.2020.02.001_bib0013 article-title: New Kalman filter algorithms based on orthogonal transformations for serial and vector computers publication-title: Parallel Comput. doi: 10.1016/0167-8191(89)90056-2 – volume: AC-16 start-page: 727 issue: 6 year: 1971 ident: 10.1016/j.ejcon.2020.02.001_bib0017 article-title: Discrete square-root filtering: a survey of current techniques publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1971.1099816 – volume: 13 start-page: 23 issue: 1 year: 1977 ident: 10.1016/j.ejcon.2020.02.001_bib0003 article-title: Numerical comparison of Kalman filter algorithms: Orbit determination case study publication-title: Automatica doi: 10.1016/0005-1098(77)90006-1 – year: 2000 ident: 10.1016/j.ejcon.2020.02.001_sbref0016 – volume: 66 start-page: 239 issue: 1 year: 2019 ident: 10.1016/j.ejcon.2020.02.001_bib0011 article-title: Practical design and implementation methods for Kalman filtering for mission critical applications publication-title: Navigation doi: 10.1002/navi.283 |
| SSID | ssj0000331313 |
| Score | 2.281104 |
| Snippet | •An unified approach for designing the MWGS-based information-form Kalman filter implementation methods is proposed.•The solution is based on the modified... The paper addresses a general approach to MWGS (Modified Weighted Gram-Schmidt) orthogonalization based Kalman filtering (KF) implementation methods. We... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 86 |
| SubjectTerms | Algorithms Array algorithms Arrays Decomposition Equivalence Information filter Iterative methods Kalman filter Kalman filters MWGS orthogonalization Random variables Robustness (mathematics) Roundoff error Signal processing |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8QgECbretGD8RnXVzh4tLEFysLBGDXqRuPG-Ih6IlCocbOur_X_O9MWNSburWmBpAzMfMDwfYRsyxCcEJ7D2kSrREieJkpwl6BCZm6t9dJV2RZ92bsVZ_f5fYv0410YTKuMPrFy1P6lwD3yXQbANlVaCbX_-pagahSerkYJDdtIK_i9imJsikwzZMZqk-nD4_7l1feuS8p5xmvNZC1gdkGbkYqoSvoKA1yFMsBQNZNn9l-4-uO4q2h0Mk_mGhhJD2q7L5BWGC2S2V_kgkvk4YA-1pzSNBKHU0Co1Fc5G1CEAvajF3en1wmGMk8bDlW0VIJP9NwOn-2Ilk94oo4Varnpj2Vye3J8c9RLGiGFpID_HYNDcwFwWy5sarUKQetuZoVnPLes8CKosuz6oFQmvSu0zuGl42DFbpY7WXrLV0h79DIKq4RaznSupPZOApYplYP1ji6YyAtkdlNZh7DYX6ZoWMZR7GJoYjrZwFSdbLCTTcowqa5Ddr4rvdYkG5OLy2gI0-CEOv4bCAOTK25Es5lmqn6Yn4G1NvnzOpnBtuqLiBukPX7_DJuASMZuqxlmX6Pg3wM priority: 102 providerName: ProQuest |
| Title | A general approach for designing the MWGS-based information-form Kalman filtering methods |
| URI | https://dx.doi.org/10.1016/j.ejcon.2020.02.001 https://www.proquest.com/docview/2758089848 |
| Volume | 56 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1435-5671 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331313 issn: 0947-3580 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Freedom Collection customDbUrl: eissn: 1435-5671 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331313 issn: 0947-3580 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1435-5671 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331313 issn: 0947-3580 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1435-5671 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331313 issn: 0947-3580 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1435-5671 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331313 issn: 0947-3580 databaseCode: AKRWK dateStart: 19950101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1435-5671 dateEnd: 20221130 omitProxy: true ssIdentifier: ssj0000331313 issn: 0947-3580 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1435-5671 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331313 issn: 0947-3580 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPMVbHhgJTWLHsceCaAsVFaIgYLLs2EFFUCpaVn47ZzupAIkOLHlYvii5S87fxefvEDpi1mpKDYHYRPCIMhJHnBIduQqZmVLKMO2zLfqse0cvH7KHBjqr18K4tMrK9wef7r111dKstNkcD4fNAQQmuZvEAwgSE-4JJSnNXRWDk89k9p8lJiQhoUoy9I-cQE0-5NO87LOLO1NATYG7M_lrgPrlqv34015FKxVwxK1wb2uoYUfraPkbneAGemzhp8AijWuqcAyYFBufpQFdMKA9fHXfGURu8DK4Yk11toncEe6pl1c1wuXQzaE7gVBgerKJ7trnt2fdqCqdEBXwvFNwYdoCUsuoipXg1gqRJ4qalGQqLQy1vCxzYzlPmNGFEBk0agJ2y5NMs9IosoUWRm8ju42wIqnIOBNGM0AvJdcQ4YgipVnhuNx4soPSWl-yqHjFXXmLF1knkD1Lr2TplCzj1KXR7aDjmdA40GrM785qQ8gfb4cExz9fcL82m6w-zolMIUaKueCU7_73untoyZ2FRYn7aGH6_mEPAJ1M9aF__WDL251DtNi66HX7sD8971_ffAFN1eWd |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQ9IGhB5VV8aG-NmtiO1z6gilLowsKqoiDgZOzYqYpgeexWiD_X38Y4sSmqxN64RYntyOOx5xt7_A3AB-G95dwx9E2UzLhgeSY5s1nIkFkaY5ywTbRFX3QP-c5xeTwBf9NdmBBWmdbEZqF2l1XYI_9MEdjmUkkuv1xdZyFrVDhdTSk0TEyt4NYairF4saPn727RhRuubX_D8f5I6dbmwUY3i1kGsoqxYoSz3XoENSU3uVHSe6U6heGOstLQynEv67rjvJSFcLZSqsSXlmEXO0VpRe0Mw3ZfwBRnXKHzN_V1s_9j_2GXJ8dfsDZHs-I4m7EPifqoCTLzZ8HrpYjZWubQ4inz-J-haKzf1gxMR9hK1ls9m4UJP3gDrx-RGb6Fk3Xyq-WwJomonCAiJq6JEcEiBLEm2Tv6_jMLptORyNkaNCMLT6Rnzi_MgNS_wwl-qNCmtx7OweGziHQeJgeXA_8OiGFUlVIoZwVip1pa9K9URXlZBSY5WSwATfLSVWQ1D8k1znUKXzvTjZB1ELLOaQjiW4BPD5WuWlKP8cVFGggdcUmLNzSanfEVl9Ow6bg0DPU_RV4c_3kVXnYP9nb17na_twSvQrvtJchlmBzd_PEriIZG9n1UOQKnz63l9xtvHX4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fTxQxEJ4gJkQfiIrGA9Q-6Bsbdttur30whojHj1NiAgR8qu22ayRwoHfG-K_51zmz3aIx4d542-y23d3ptPNNO_0G4KWK0UsZBPomRhdSibLQUviCMmTWzrmgfBdtcaB2j-X-aX26AL_zWRgKq8xzYjdRh8uG1sg3OQLbUhst9Wbbh0V83B69ufpWUAYp2mnN6TSSiozjr5_ovk1f721jX7_ifPTu6O1u0WcYKBohqhmOdB8R0NTSlc7oGI0ZVk4GLmrHmyCjbtthiFpXKvjGmBpveoG_N6xqr9rgBLZ7B-4OicWdTqmPdq7Xd0p8gUjZmY3EcYxfn0mPuvCyeEb-Lke0ljhDq5sM438morN7owew3ANWtpU07CEsxMkjuP8PjeEKfNpiXxJ7NcsU5QyxMAtddAgWYYgy2YeTncOCjGZgPVsr6URBV2zszi_chLVfae-eKqTE1tPHcHwrAn0Ci5PLSXwKzAluaq1M8ApRU6s9elam4bJuiENOVwPgWV626fnMKa3Guc2Ba2e2E7IlIduSU_jeADauK10lOo_5xVXuCNsjkoQ0LBqc-RXXc7fZflKY2r8qvDr_8QtYQt227_cOxmtwj5pNpx_XYXH2_Ud8hjBo5p93-sbg820r-B9RQxsY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+approach+for+designing+the+MWGS-based+information-form+Kalman+filtering+methods&rft.jtitle=European+journal+of+control&rft.au=Tsyganova%2C+Julia+V.&rft.au=Kulikova%2C+Maria+V.&rft.au=Tsyganov%2C+Andrey+V.&rft.date=2020-11-01&rft.pub=Elsevier+Ltd&rft.issn=0947-3580&rft.eissn=1435-5671&rft.volume=56&rft.spage=86&rft.epage=97&rft_id=info:doi/10.1016%2Fj.ejcon.2020.02.001&rft.externalDocID=S0947358019303802 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-3580&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-3580&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-3580&client=summon |