A general approach for designing the MWGS-based information-form Kalman filtering methods

•An unified approach for designing the MWGS-based information-form Kalman filter implementation methods is proposed.•The solution is based on the modified Cholesky factorization and the utilization of numerically stable Modified Weighted Gram-Schmidt (MWGS) orthogonal transformation for updating the...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of control Vol. 56; pp. 86 - 97
Main Authors Tsyganova, Julia V., Kulikova, Maria V., Tsyganov, Andrey V.
Format Journal Article
LanguageEnglish
Published Philadelphia Elsevier Ltd 01.11.2020
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0947-3580
1435-5671
DOI10.1016/j.ejcon.2020.02.001

Cover

Abstract •An unified approach for designing the MWGS-based information-form Kalman filter implementation methods is proposed.•The solution is based on the modified Cholesky factorization and the utilization of numerically stable Modified Weighted Gram-Schmidt (MWGS) orthogonal transformation for updating the MWGS factors of the filter information matrix involved.•The factorization based implementation strategies are recognized to enhance the numerical robustness with respect to roundoff errors and, hence, they are the preferred implementations when solving applications with high reliability requirements.•To illustrate the suggested general approach, two MWGS-based information-form methods are developed. Their theoretical properties, computational complexities are discussed and numerical comparison with the existing array information implementations is performed for determining the most reliable implementations.•The newly-suggested extended eMWGS-aIF method is found out to be the most reliable implementations in the class of square-root-free information-form Kalman filtering algorithms, which allows the ill-conditioned state estimation problems to be solved accurately. The paper addresses a general approach to MWGS (Modified Weighted Gram-Schmidt) orthogonalization based Kalman filtering (KF) implementation methods. We propose two new numerically favored and convenient array information formulations of the MWGS-based KF that are the MWGS-based array Information Filter (algorithm MWGS-aIF) and the extended MWGS-based array Information Filter (algorithm eMWGS-aIF). To confirm the correctness of our results, we have proved that the newly constructed MWGS-based array computational schemes are algebraically equivalent to the “straight” (conventional) information filter. Although all these information-type algorithms are theoretically equivalent, their computational properties are different. The newly proposed algorithms are numerically robust to machine roundoff errors due to the numerically stable orthogonal transformations applied on each iteration. The obtained numerical results confirm this statement. Additionally, algorithm eMWGS-aIF has the extended array form, i. e., it allows for updating all required filter quantities with the use of the numerically stable MWGS orthogonalization procedure, only. Thus, our results extend the existing class of numerically efficient KF implementation methods and can be used in practical applications.
AbstractList The paper addresses a general approach to MWGS (Modified Weighted Gram-Schmidt) orthogonalization based Kalman filtering (KF) implementation methods. We propose two new numerically favored and convenient array information formulations of the MWGS-based KF that are the MWGS-based array Information Filter (algorithm MWGS-aIF) and the extended MWGS-based array Information Filter (algorithm eMWGS-aIF). To confirm the correctness of our results, we have proved that the newly constructed MWGS-based array computational schemes are algebraically equivalent to the “straight” (conventional) information filter. Although all these information-type algorithms are theoretically equivalent, their computational properties are different. The newly proposed algorithms are numerically robust to machine roundoff errors due to the numerically stable orthogonal transformations applied on each iteration. The obtained numerical results confirm this statement. Additionally, algorithm eMWGS-aIF has the extended array form, i. e., it allows for updating all required filter quantities with the use of the numerically stable MWGS orthogonalization procedure, only. Thus, our results extend the existing class of numerically efficient KF implementation methods and can be used in practical applications.
•An unified approach for designing the MWGS-based information-form Kalman filter implementation methods is proposed.•The solution is based on the modified Cholesky factorization and the utilization of numerically stable Modified Weighted Gram-Schmidt (MWGS) orthogonal transformation for updating the MWGS factors of the filter information matrix involved.•The factorization based implementation strategies are recognized to enhance the numerical robustness with respect to roundoff errors and, hence, they are the preferred implementations when solving applications with high reliability requirements.•To illustrate the suggested general approach, two MWGS-based information-form methods are developed. Their theoretical properties, computational complexities are discussed and numerical comparison with the existing array information implementations is performed for determining the most reliable implementations.•The newly-suggested extended eMWGS-aIF method is found out to be the most reliable implementations in the class of square-root-free information-form Kalman filtering algorithms, which allows the ill-conditioned state estimation problems to be solved accurately. The paper addresses a general approach to MWGS (Modified Weighted Gram-Schmidt) orthogonalization based Kalman filtering (KF) implementation methods. We propose two new numerically favored and convenient array information formulations of the MWGS-based KF that are the MWGS-based array Information Filter (algorithm MWGS-aIF) and the extended MWGS-based array Information Filter (algorithm eMWGS-aIF). To confirm the correctness of our results, we have proved that the newly constructed MWGS-based array computational schemes are algebraically equivalent to the “straight” (conventional) information filter. Although all these information-type algorithms are theoretically equivalent, their computational properties are different. The newly proposed algorithms are numerically robust to machine roundoff errors due to the numerically stable orthogonal transformations applied on each iteration. The obtained numerical results confirm this statement. Additionally, algorithm eMWGS-aIF has the extended array form, i. e., it allows for updating all required filter quantities with the use of the numerically stable MWGS orthogonalization procedure, only. Thus, our results extend the existing class of numerically efficient KF implementation methods and can be used in practical applications.
Author Kulikova, Maria V.
Tsyganov, Andrey V.
Tsyganova, Julia V.
Author_xml – sequence: 1
  givenname: Julia V.
  surname: Tsyganova
  fullname: Tsyganova, Julia V.
  email: tsyganovajv@gmail.com
  organization: Department of Mathematics, Information and Aviation Technology, Ulyanovsk State University, Str. L. Tolstoy 42, Ulyanovsk 432017, Russian Federation
– sequence: 2
  givenname: Maria V.
  surname: Kulikova
  fullname: Kulikova, Maria V.
  email: maria.kulikova@ist.utl.pt
  organization: CEMAT (Center for Computational and Stochastic Mathematics), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa 1049-001, Portugal
– sequence: 3
  givenname: Andrey V.
  surname: Tsyganov
  fullname: Tsyganov, Andrey V.
  email: andrew.tsyganov@gmail.com
  organization: Department of Mathematics, Physics and Technology Education, Ulyanovsk State University of Education, Lenin square, 4/5, Ulyanovsk 432071, Russian Federation
BookMark eNqFkE1PAyEQhonRxFr7C7yQeN4V9puDh6bRaqzxoMZ4IizMtmy2UIGa-O-lrScPOhxmAvMM875n6NhYAwhdUJJSQqurPoVeWpNmJCMpyVJC6BEa0SIvk7Kq6TEaEVbUSV425BRNvO9JjDyn8YzQ-xQvwYATAxabjbNCrnBnHVbg9dJos8RhBfjxbf6ctMKDwtrE57UI2ppkV-EHMayFwZ0eArgdsIawssqfo5NODB4mP3mMXm9vXmZ3yeJpfj-bLhIZdwgJoy1UZVUWggjWADBWU1GoLC9FJlUBTdfVCpqGVqqVjJXxss0rgJqWbdUpkY_R5WFu3P5jCz7w3m6diV_yrI6aG9YUTexihy7prPcOOi512KsITuiBU8J3ZvKe783kOzM5yXg0M7L5L3bj9Fq4r3-o6wMFUfynBse91GAkKO1ABq6s_pP_Bjr7kZk
CitedBy_id crossref_primary_10_3390_math10010126
crossref_primary_10_1016_j_ejcon_2021_01_003
crossref_primary_10_1016_j_ejcon_2022_100617
crossref_primary_10_1016_j_ejcon_2021_09_004
Cites_doi 10.1016/j.ifacol.2018.11.483
10.1007/BF01934122
10.1109/TAES.2018.2850379
10.1109/TAC.2010.2042987
10.1109/TAC.1986.1104128
10.1016/j.proeng.2017.09.597
10.1007/BF00929358
10.1016/0005-1098(86)90104-4
10.1109/9.384225
10.1016/0167-8191(89)90056-2
10.1109/TAC.1971.1099816
10.1016/0005-1098(77)90006-1
10.1002/navi.283
ContentType Journal Article
Copyright 2020 European Control Association
2020. European Control Association
Copyright_xml – notice: 2020 European Control Association
– notice: 2020. European Control Association
DBID AAYXX
CITATION
3V.
7XB
88I
8AL
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1016/j.ejcon.2020.02.001
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Computing Database
Science Database
Engineering Database (subscription)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1435-5671
EndPage 97
ExternalDocumentID 10_1016_j_ejcon_2020_02_001
S0947358019303802
GroupedDBID --M
.~1
0R~
1~.
29G
3V.
4.4
457
4G.
5GY
7-5
88I
8FE
8FG
8P~
8R4
8R5
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQXK
AAXUO
ABFRF
ABJCF
ABJNI
ABMAC
ABUWG
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADFRT
ADMUD
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKRA
AFKWA
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BENPR
BGLVJ
BJAXD
BKOJK
BLXMC
BPHCQ
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
GNUQQ
HCIFZ
HVGLF
HZ~
JJJVA
K6V
K7-
KOM
L6V
M0N
M2P
M41
M7S
MO0
O9-
OAUVE
P-8
P-9
P2P
P62
PC.
PQQKQ
PROAC
PTHSS
Q2X
R2-
RIG
ROL
SDH
SPC
SPCBC
SST
SSZ
T5K
UNMZH
~4P
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
PHGZM
PHGZT
PQGLB
7XB
8AL
8FK
AGCQF
JQ2
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c331t-91be65654a0a98ee9971a4d235a2cd4e8ff7de8816dbc9952cdb36ee715b6fda3
IEDL.DBID .~1
ISSN 0947-3580
IngestDate Wed Aug 13 11:07:18 EDT 2025
Sat Oct 25 05:42:03 EDT 2025
Thu Apr 24 23:08:37 EDT 2025
Fri Feb 23 02:46:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Array algorithms
MWGS orthogonalization
Kalman filter
Information filter
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-91be65654a0a98ee9971a4d235a2cd4e8ff7de8816dbc9952cdb36ee715b6fda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2758089848
PQPubID 46798
PageCount 12
ParticipantIDs proquest_journals_2758089848
crossref_citationtrail_10_1016_j_ejcon_2020_02_001
crossref_primary_10_1016_j_ejcon_2020_02_001
elsevier_sciencedirect_doi_10_1016_j_ejcon_2020_02_001
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle European journal of control
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Grewal, Andrews (bib0012) 2001
Semushin, Tsyganova, Ugarov, Tsyganov (bib0021) 2018; 2258
Dyer, McReynolds (bib0009) 1969
Hotop (bib0013) 1989; 40
Itzkowitz, Baheti (bib0014) 1989
Tsyganova, Tsyganov (bib0024) 2018; 23
Grewal (bib0011) 2019; 66
Jover, Kailath (bib0015) 1986; 22
Bierman (bib0002) 1977
Chun (bib0007) 1991
Tsyganova, Kulikova, Tsyganov (bib0022) 2019
Verhaegen, Van Dooren (bib0025) 1986; AC-31
Cattivelli, H. (bib0006) 2010; 55
Bierman, Thornton (bib0004) 1978; AC-23
Bierman, Thornton (bib0003) 1977; 13
Park, Kailath (bib0018) 1995; 40
Kailath, Sayed, Hassibi (bib0016) 2000
Tsyganova (bib0023) 2013
Golub, Van Loan (bib0010) 1983
Semushin, Tsyganova, Tsyganov (bib0019) 2018; 51
Bierman (bib0001) 1975
D’Souza, Zanetti (bib0008) 2019; 55
Semushin, Tsyganova, Tsyganov, Prokhorova (bib0020) 2017; 201
Björck (bib0005) 1967; 7
Kaminski, Bryson, Schmidt (bib0017) 1971; AC-16
Bierman (10.1016/j.ejcon.2020.02.001_bib0003) 1977; 13
Jover (10.1016/j.ejcon.2020.02.001_bib0015) 1986; 22
Kailath (10.1016/j.ejcon.2020.02.001_sbref0016) 2000
Tsyganova (10.1016/j.ejcon.2020.02.001_sbref0023) 2013
Bierman (10.1016/j.ejcon.2020.02.001_bib0004) 1978; AC-23
Dyer (10.1016/j.ejcon.2020.02.001_bib0009) 1969
Grewal (10.1016/j.ejcon.2020.02.001_bib0011) 2019; 66
Semushin (10.1016/j.ejcon.2020.02.001_bib0019) 2018; 51
Tsyganova (10.1016/j.ejcon.2020.02.001_bib0022) 2019
Tsyganova (10.1016/j.ejcon.2020.02.001_sbref0024) 2018; 23
Park (10.1016/j.ejcon.2020.02.001_bib0018) 1995; 40
D’Souza (10.1016/j.ejcon.2020.02.001_bib0008) 2019; 55
Verhaegen (10.1016/j.ejcon.2020.02.001_bib0025) 1986; AC-31
Bierman (10.1016/j.ejcon.2020.02.001_sbref0002) 1977
Golub (10.1016/j.ejcon.2020.02.001_bib0010) 1983
Grewal (10.1016/j.ejcon.2020.02.001_bib0012) 2001
Hotop (10.1016/j.ejcon.2020.02.001_bib0013) 1989; 40
Chun (10.1016/j.ejcon.2020.02.001_bib0007) 1991
Kaminski (10.1016/j.ejcon.2020.02.001_bib0017) 1971; AC-16
Bierman (10.1016/j.ejcon.2020.02.001_bib0001) 1975
Cattivelli (10.1016/j.ejcon.2020.02.001_bib0006) 2010; 55
Itzkowitz (10.1016/j.ejcon.2020.02.001_bib0014) 1989
Björck (10.1016/j.ejcon.2020.02.001_bib0005) 1967; 7
Semushin (10.1016/j.ejcon.2020.02.001_bib0020) 2017; 201
Semushin (10.1016/j.ejcon.2020.02.001_bib0021) 2018; 2258
References_xml – volume: 66
  start-page: 239
  year: 2019
  end-page: 249
  ident: bib0011
  article-title: Practical design and implementation methods for Kalman filtering for mission critical applications
  publication-title: Navigation
– volume: 201
  start-page: 726
  year: 2017
  end-page: 735
  ident: bib0020
  article-title: Numerically efficient UD filter based channel estimation for OFDM wireless communication technology
  publication-title: Procedia Eng.
– start-page: 444
  year: 1969
  end-page: 459
  ident: bib0009
  article-title: Extension of square-root filtering to include process noise
  publication-title: J. Optim. Theory Appl.
– start-page: 1872
  year: 2019
  end-page: 1877
  ident: bib0022
  article-title: Some New Array Information Formulations of the UD-based Kalman Filter
  publication-title: Proceedings of the 18th European Control Conference (ECC). Napoli, Italy
– volume: 7
  start-page: 1
  year: 1967
  end-page: 21
  ident: bib0005
  article-title: Solving linear least squares problems by Gram-Schmidt orthogonalization
  publication-title: BIT Numer. Math.
– start-page: 84
  year: 2013
  end-page: 104
  ident: bib0023
  article-title: On the UD filter implementation methods
  publication-title: Univ. Proc. Volga Region (Phys. Math. Sci.)
– volume: AC-23
  start-page: 901
  year: 1978
  end-page: 907
  ident: bib0004
  article-title: Filtering and Error Analysis via the UDU’ Covariance Factorization
  publication-title: IEEE Trans. Autom. Control
– volume: 55
  start-page: 493
  year: 2019
  end-page: 498
  ident: bib0008
  article-title: Information formulation of the UDU Kalman filter
  publication-title: IEEE Trans. Aerosp. Electr. Syst.
– volume: AC-16
  start-page: 727
  year: 1971
  end-page: 735
  ident: bib0017
  article-title: Discrete square-root filtering: a survey of current techniques
  publication-title: IEEE Trans. Autom. Control
– volume: 2258
  start-page: 473
  year: 2018
  end-page: 482
  ident: bib0021
  article-title: New combined array information UD algorithm of the Kalman filter based channel estimation for OFDM data transmission
  publication-title: CEUR Workshop Proc.
– start-page: 521
  year: 1991
  end-page: 529
  ident: bib0007
  article-title: A single-chip QR decomposition processor for extended square-root Kalman filters
  publication-title: roceedings of the Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems & Computers. Pacific Grove, CA, USA
– year: 2000
  ident: bib0016
  article-title: Linear Estimation
– volume: 55
  start-page: 2069
  year: 2010
  end-page: 2084
  ident: bib0006
  article-title: Diffusion strategies for distributed Kalman filtering and smoothing
  publication-title: IEEE Trans. Autom. Control
– year: 1983
  ident: bib0010
  article-title: Matrix Computations
– volume: 51
  start-page: 568
  year: 2018
  end-page: 573
  ident: bib0019
  article-title: Numerically Efficient LD-computations for the Auxiliary Performance Index Based Control Optimization under Uncertainties
  publication-title: IFAC-PapersOnline
– volume: 22
  start-page: 43
  year: 1986
  end-page: 57
  ident: bib0015
  article-title: A Parallel Architecture for Kalman Filter Measurement Update and Parameter Estimation
  publication-title: Automatica
– volume: 40
  start-page: 895
  year: 1995
  end-page: 899
  ident: bib0018
  article-title: New square-root algorithms for Kalman filtering
  publication-title: IEEE Trans. Autom. Control
– start-page: 489
  year: 1975
  end-page: 498
  ident: bib0001
  article-title: Gram-Schmidt algorithms for covariance propagation
  publication-title: Proceedings of the IEEE Conference on Decision and Control Including the 14th Symposium on Adaptive Processes, Houston, TX, USA, 10-12 Dec. 1975
– year: 1977
  ident: bib0002
  article-title: Factorization Methods For Discrete Sequential Estimation
– volume: 40
  start-page: 233
  year: 1989
  end-page: 247
  ident: bib0013
  article-title: New Kalman filter algorithms based on orthogonal transformations for serial and vector computers
  publication-title: Parallel Comput.
– volume: 23
  start-page: 64
  year: 2018
  end-page: 79
  ident: bib0024
  article-title: On the computation of derivatives within LD factorization of parametrized matrices
  publication-title: Bull. Irkutsk State Univ. Ser. Math.
– volume: 13
  start-page: 23
  year: 1977
  end-page: 35
  ident: bib0003
  article-title: Numerical comparison of Kalman filter algorithms: Orbit determination case study
  publication-title: Automatica
– volume: AC-31
  start-page: 907
  year: 1986
  end-page: 917
  ident: bib0025
  article-title: Numerical aspects of different Kalman filter implementations
  publication-title: IEEE Trans. Autom. Control
– start-page: 1754
  year: 1989
  end-page: 1762
  ident: bib0014
  article-title: Demonstration of Square Root Kalman Filter on Warp Parallel Computer
  publication-title: Proceedings of the American Control Conference. Pittsburgh, PA, USA
– year: 2001
  ident: bib0012
  article-title: Kalman filtering: Theory and Practice Using MATLAB
– volume: 51
  start-page: 568
  issue: 32
  year: 2018
  ident: 10.1016/j.ejcon.2020.02.001_bib0019
  article-title: Numerically Efficient LD-computations for the Auxiliary Performance Index Based Control Optimization under Uncertainties
  publication-title: IFAC-PapersOnline
  doi: 10.1016/j.ifacol.2018.11.483
– volume: 2258
  start-page: 473
  year: 2018
  ident: 10.1016/j.ejcon.2020.02.001_bib0021
  article-title: New combined array information UD algorithm of the Kalman filter based channel estimation for OFDM data transmission
  publication-title: CEUR Workshop Proc.
– volume: 23
  start-page: 64
  year: 2018
  ident: 10.1016/j.ejcon.2020.02.001_sbref0024
  article-title: On the computation of derivatives within LD factorization of parametrized matrices
  publication-title: Bull. Irkutsk State Univ. Ser. Math.
– volume: 7
  start-page: 1
  issue: 1
  year: 1967
  ident: 10.1016/j.ejcon.2020.02.001_bib0005
  article-title: Solving linear least squares problems by Gram-Schmidt orthogonalization
  publication-title: BIT Numer. Math.
  doi: 10.1007/BF01934122
– volume: 55
  start-page: 493
  issue: 1
  year: 2019
  ident: 10.1016/j.ejcon.2020.02.001_bib0008
  article-title: Information formulation of the UDU Kalman filter
  publication-title: IEEE Trans. Aerosp. Electr. Syst.
  doi: 10.1109/TAES.2018.2850379
– volume: 55
  start-page: 2069
  issue: 9
  year: 2010
  ident: 10.1016/j.ejcon.2020.02.001_bib0006
  article-title: Diffusion strategies for distributed Kalman filtering and smoothing
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2010.2042987
– year: 1983
  ident: 10.1016/j.ejcon.2020.02.001_bib0010
– start-page: 1872
  year: 2019
  ident: 10.1016/j.ejcon.2020.02.001_bib0022
  article-title: Some New Array Information Formulations of the UD-based Kalman Filter
– volume: AC-31
  start-page: 907
  issue: 10
  year: 1986
  ident: 10.1016/j.ejcon.2020.02.001_bib0025
  article-title: Numerical aspects of different Kalman filter implementations
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1986.1104128
– volume: 201
  start-page: 726
  year: 2017
  ident: 10.1016/j.ejcon.2020.02.001_bib0020
  article-title: Numerically efficient UD filter based channel estimation for OFDM wireless communication technology
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.09.597
– start-page: 84
  issue: 3
  year: 2013
  ident: 10.1016/j.ejcon.2020.02.001_sbref0023
  article-title: On the UD filter implementation methods
  publication-title: Univ. Proc. Volga Region (Phys. Math. Sci.)
– volume: AC-23
  start-page: 901
  issue: 5
  year: 1978
  ident: 10.1016/j.ejcon.2020.02.001_bib0004
  article-title: Filtering and Error Analysis via the UDU’ Covariance Factorization
  publication-title: IEEE Trans. Autom. Control
– start-page: 444
  issue: 3
  year: 1969
  ident: 10.1016/j.ejcon.2020.02.001_bib0009
  article-title: Extension of square-root filtering to include process noise
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00929358
– start-page: 489
  year: 1975
  ident: 10.1016/j.ejcon.2020.02.001_bib0001
  article-title: Gram-Schmidt algorithms for covariance propagation
– start-page: 1754
  year: 1989
  ident: 10.1016/j.ejcon.2020.02.001_bib0014
  article-title: Demonstration of Square Root Kalman Filter on Warp Parallel Computer
– year: 1977
  ident: 10.1016/j.ejcon.2020.02.001_sbref0002
– start-page: 521
  year: 1991
  ident: 10.1016/j.ejcon.2020.02.001_bib0007
  article-title: A single-chip QR decomposition processor for extended square-root Kalman filters
– year: 2001
  ident: 10.1016/j.ejcon.2020.02.001_bib0012
– volume: 22
  start-page: 43
  issue: 1
  year: 1986
  ident: 10.1016/j.ejcon.2020.02.001_bib0015
  article-title: A Parallel Architecture for Kalman Filter Measurement Update and Parameter Estimation
  publication-title: Automatica
  doi: 10.1016/0005-1098(86)90104-4
– volume: 40
  start-page: 895
  issue: 5
  year: 1995
  ident: 10.1016/j.ejcon.2020.02.001_bib0018
  article-title: New square-root algorithms for Kalman filtering
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.384225
– volume: 40
  start-page: 233
  issue: 12
  year: 1989
  ident: 10.1016/j.ejcon.2020.02.001_bib0013
  article-title: New Kalman filter algorithms based on orthogonal transformations for serial and vector computers
  publication-title: Parallel Comput.
  doi: 10.1016/0167-8191(89)90056-2
– volume: AC-16
  start-page: 727
  issue: 6
  year: 1971
  ident: 10.1016/j.ejcon.2020.02.001_bib0017
  article-title: Discrete square-root filtering: a survey of current techniques
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1971.1099816
– volume: 13
  start-page: 23
  issue: 1
  year: 1977
  ident: 10.1016/j.ejcon.2020.02.001_bib0003
  article-title: Numerical comparison of Kalman filter algorithms: Orbit determination case study
  publication-title: Automatica
  doi: 10.1016/0005-1098(77)90006-1
– year: 2000
  ident: 10.1016/j.ejcon.2020.02.001_sbref0016
– volume: 66
  start-page: 239
  issue: 1
  year: 2019
  ident: 10.1016/j.ejcon.2020.02.001_bib0011
  article-title: Practical design and implementation methods for Kalman filtering for mission critical applications
  publication-title: Navigation
  doi: 10.1002/navi.283
SSID ssj0000331313
Score 2.281104
Snippet •An unified approach for designing the MWGS-based information-form Kalman filter implementation methods is proposed.•The solution is based on the modified...
The paper addresses a general approach to MWGS (Modified Weighted Gram-Schmidt) orthogonalization based Kalman filtering (KF) implementation methods. We...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 86
SubjectTerms Algorithms
Array algorithms
Arrays
Decomposition
Equivalence
Information filter
Iterative methods
Kalman filter
Kalman filters
MWGS orthogonalization
Random variables
Robustness (mathematics)
Roundoff error
Signal processing
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8QgECbretGD8RnXVzh4tLEFysLBGDXqRuPG-Ih6IlCocbOur_X_O9MWNSburWmBpAzMfMDwfYRsyxCcEJ7D2kSrREieJkpwl6BCZm6t9dJV2RZ92bsVZ_f5fYv0410YTKuMPrFy1P6lwD3yXQbANlVaCbX_-pagahSerkYJDdtIK_i9imJsikwzZMZqk-nD4_7l1feuS8p5xmvNZC1gdkGbkYqoSvoKA1yFMsBQNZNn9l-4-uO4q2h0Mk_mGhhJD2q7L5BWGC2S2V_kgkvk4YA-1pzSNBKHU0Co1Fc5G1CEAvajF3en1wmGMk8bDlW0VIJP9NwOn-2Ilk94oo4Varnpj2Vye3J8c9RLGiGFpID_HYNDcwFwWy5sarUKQetuZoVnPLes8CKosuz6oFQmvSu0zuGl42DFbpY7WXrLV0h79DIKq4RaznSupPZOApYplYP1ji6YyAtkdlNZh7DYX6ZoWMZR7GJoYjrZwFSdbLCTTcowqa5Ddr4rvdYkG5OLy2gI0-CEOv4bCAOTK25Es5lmqn6Yn4G1NvnzOpnBtuqLiBukPX7_DJuASMZuqxlmX6Pg3wM
  priority: 102
  providerName: ProQuest
Title A general approach for designing the MWGS-based information-form Kalman filtering methods
URI https://dx.doi.org/10.1016/j.ejcon.2020.02.001
https://www.proquest.com/docview/2758089848
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1435-5671
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331313
  issn: 0947-3580
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Freedom Collection
  customDbUrl:
  eissn: 1435-5671
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331313
  issn: 0947-3580
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1435-5671
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331313
  issn: 0947-3580
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1435-5671
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331313
  issn: 0947-3580
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1435-5671
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331313
  issn: 0947-3580
  databaseCode: AKRWK
  dateStart: 19950101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1435-5671
  dateEnd: 20221130
  omitProxy: true
  ssIdentifier: ssj0000331313
  issn: 0947-3580
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1435-5671
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331313
  issn: 0947-3580
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPMVbHhgJTWLHsceCaAsVFaIgYLLs2EFFUCpaVn47ZzupAIkOLHlYvii5S87fxefvEDpi1mpKDYHYRPCIMhJHnBIduQqZmVLKMO2zLfqse0cvH7KHBjqr18K4tMrK9wef7r111dKstNkcD4fNAQQmuZvEAwgSE-4JJSnNXRWDk89k9p8lJiQhoUoy9I-cQE0-5NO87LOLO1NATYG7M_lrgPrlqv34015FKxVwxK1wb2uoYUfraPkbneAGemzhp8AijWuqcAyYFBufpQFdMKA9fHXfGURu8DK4Yk11toncEe6pl1c1wuXQzaE7gVBgerKJ7trnt2fdqCqdEBXwvFNwYdoCUsuoipXg1gqRJ4qalGQqLQy1vCxzYzlPmNGFEBk0agJ2y5NMs9IosoUWRm8ju42wIqnIOBNGM0AvJdcQ4YgipVnhuNx4soPSWl-yqHjFXXmLF1knkD1Lr2TplCzj1KXR7aDjmdA40GrM785qQ8gfb4cExz9fcL82m6w-zolMIUaKueCU7_73untoyZ2FRYn7aGH6_mEPAJ1M9aF__WDL251DtNi66HX7sD8971_ffAFN1eWd
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQ9IGhB5VV8aG-NmtiO1z6gilLowsKqoiDgZOzYqYpgeexWiD_X38Y4sSmqxN64RYntyOOx5xt7_A3AB-G95dwx9E2UzLhgeSY5s1nIkFkaY5ywTbRFX3QP-c5xeTwBf9NdmBBWmdbEZqF2l1XYI_9MEdjmUkkuv1xdZyFrVDhdTSk0TEyt4NYairF4saPn727RhRuubX_D8f5I6dbmwUY3i1kGsoqxYoSz3XoENSU3uVHSe6U6heGOstLQynEv67rjvJSFcLZSqsSXlmEXO0VpRe0Mw3ZfwBRnXKHzN_V1s_9j_2GXJ8dfsDZHs-I4m7EPifqoCTLzZ8HrpYjZWubQ4inz-J-haKzf1gxMR9hK1ls9m4UJP3gDrx-RGb6Fk3Xyq-WwJomonCAiJq6JEcEiBLEm2Tv6_jMLptORyNkaNCMLT6Rnzi_MgNS_wwl-qNCmtx7OweGziHQeJgeXA_8OiGFUlVIoZwVip1pa9K9URXlZBSY5WSwATfLSVWQ1D8k1znUKXzvTjZB1ELLOaQjiW4BPD5WuWlKP8cVFGggdcUmLNzSanfEVl9Ow6bg0DPU_RV4c_3kVXnYP9nb17na_twSvQrvtJchlmBzd_PEriIZG9n1UOQKnz63l9xtvHX4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fTxQxEJ4gJkQfiIrGA9Q-6Bsbdttur30whojHj1NiAgR8qu22ayRwoHfG-K_51zmz3aIx4d542-y23d3ptPNNO_0G4KWK0UsZBPomRhdSibLQUviCMmTWzrmgfBdtcaB2j-X-aX26AL_zWRgKq8xzYjdRh8uG1sg3OQLbUhst9Wbbh0V83B69ufpWUAYp2mnN6TSSiozjr5_ovk1f721jX7_ifPTu6O1u0WcYKBohqhmOdB8R0NTSlc7oGI0ZVk4GLmrHmyCjbtthiFpXKvjGmBpveoG_N6xqr9rgBLZ7B-4OicWdTqmPdq7Xd0p8gUjZmY3EcYxfn0mPuvCyeEb-Lke0ljhDq5sM438morN7owew3ANWtpU07CEsxMkjuP8PjeEKfNpiXxJ7NcsU5QyxMAtddAgWYYgy2YeTncOCjGZgPVsr6URBV2zszi_chLVfae-eKqTE1tPHcHwrAn0Ci5PLSXwKzAluaq1M8ApRU6s9elam4bJuiENOVwPgWV626fnMKa3Guc2Ba2e2E7IlIduSU_jeADauK10lOo_5xVXuCNsjkoQ0LBqc-RXXc7fZflKY2r8qvDr_8QtYQt227_cOxmtwj5pNpx_XYXH2_Ud8hjBo5p93-sbg820r-B9RQxsY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+approach+for+designing+the+MWGS-based+information-form+Kalman+filtering+methods&rft.jtitle=European+journal+of+control&rft.au=Tsyganova%2C+Julia+V.&rft.au=Kulikova%2C+Maria+V.&rft.au=Tsyganov%2C+Andrey+V.&rft.date=2020-11-01&rft.pub=Elsevier+Ltd&rft.issn=0947-3580&rft.eissn=1435-5671&rft.volume=56&rft.spage=86&rft.epage=97&rft_id=info:doi/10.1016%2Fj.ejcon.2020.02.001&rft.externalDocID=S0947358019303802
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-3580&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-3580&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-3580&client=summon