Vibration and acoustic frequency spectra for industrial process modeling using selective fusion multi-condition samples and multi-source features
•A multi-layer selective ensemble (MLSEN) method for modeling mechanical signals is proposed.•The objective of MLSEN is to simulate domain experts’ cognitive process in industrial practice.•Selective information fusion based multi-condition samples and multi-source features is realized. Frequency sp...
Saved in:
| Published in | Mechanical systems and signal processing Vol. 99; pp. 142 - 168 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin
Elsevier Ltd
15.01.2018
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0888-3270 1096-1216 |
| DOI | 10.1016/j.ymssp.2017.06.008 |
Cover
| Abstract | •A multi-layer selective ensemble (MLSEN) method for modeling mechanical signals is proposed.•The objective of MLSEN is to simulate domain experts’ cognitive process in industrial practice.•Selective information fusion based multi-condition samples and multi-source features is realized.
Frequency spectral data of mechanical vibration and acoustic signals relate to difficult-to-measure production quality and quantity parameters of complex industrial processes. A selective ensemble (SEN) algorithm can be used to build a soft sensor model of these process parameters by fusing valued information selectively from different perspectives. However, a combination of several optimized ensemble sub-models with SEN cannot guarantee the best prediction model. In this study, we use several techniques to construct mechanical vibration and acoustic frequency spectra of a data-driven industrial process parameter model based on selective fusion multi-condition samples and multi-source features. Multi-layer SEN (MLSEN) strategy is used to simulate the domain expert cognitive process. Genetic algorithm and kernel partial least squares are used to construct the inside-layer SEN sub-model based on each mechanical vibration and acoustic frequency spectral feature subset. Branch-and-bound and adaptive weighted fusion algorithms are integrated to select and combine outputs of the inside-layer SEN sub-models. Then, the outside-layer SEN is constructed. Thus, “sub-sampling training examples”-based and “manipulating input features”-based ensemble construction methods are integrated, thereby realizing the selective information fusion process based on multi-condition history samples and multi-source input features. This novel approach is applied to a laboratory-scale ball mill grinding process. A comparison with other methods indicates that the proposed MLSEN approach effectively models mechanical vibration and acoustic signals. |
|---|---|
| AbstractList | •A multi-layer selective ensemble (MLSEN) method for modeling mechanical signals is proposed.•The objective of MLSEN is to simulate domain experts’ cognitive process in industrial practice.•Selective information fusion based multi-condition samples and multi-source features is realized.
Frequency spectral data of mechanical vibration and acoustic signals relate to difficult-to-measure production quality and quantity parameters of complex industrial processes. A selective ensemble (SEN) algorithm can be used to build a soft sensor model of these process parameters by fusing valued information selectively from different perspectives. However, a combination of several optimized ensemble sub-models with SEN cannot guarantee the best prediction model. In this study, we use several techniques to construct mechanical vibration and acoustic frequency spectra of a data-driven industrial process parameter model based on selective fusion multi-condition samples and multi-source features. Multi-layer SEN (MLSEN) strategy is used to simulate the domain expert cognitive process. Genetic algorithm and kernel partial least squares are used to construct the inside-layer SEN sub-model based on each mechanical vibration and acoustic frequency spectral feature subset. Branch-and-bound and adaptive weighted fusion algorithms are integrated to select and combine outputs of the inside-layer SEN sub-models. Then, the outside-layer SEN is constructed. Thus, “sub-sampling training examples”-based and “manipulating input features”-based ensemble construction methods are integrated, thereby realizing the selective information fusion process based on multi-condition history samples and multi-source input features. This novel approach is applied to a laboratory-scale ball mill grinding process. A comparison with other methods indicates that the proposed MLSEN approach effectively models mechanical vibration and acoustic signals. Frequency spectral data of mechanical vibration and acoustic signals relate to difficult-to-measure production quality and quantity parameters of complex industrial processes. A selective ensemble (SEN) algorithm can be used to build a soft sensor model of these process parameters by fusing valued information selectively from different perspectives. However, a combination of several optimized ensemble sub-models with SEN cannot guarantee the best prediction model. In this study, we use several techniques to construct mechanical vibration and acoustic frequency spectra of a data-driven industrial process parameter model based on selective fusion multi-condition samples and multi-source features. Multi-layer SEN (MLSEN) strategy is used to simulate the domain expert cognitive process. Genetic algorithm and kernel partial least squares are used to construct the inside-layer SEN sub-model based on each mechanical vibration and acoustic frequency spectral feature subset. Branch-and-bound and adaptive weighted fusion algorithms are integrated to select and combine outputs of the inside-layer SEN sub-models. Then, the outside-layer SEN is constructed. Thus, "sub-sampling training examples"-based and "manipulating input features"-based ensemble construction methods are integrated, thereby realizing the selective information fusion process based on multi-condition history samples and multi-source input features. This novel approach is applied to a laboratory-scale ball mill grinding process. A comparison with other methods indicates that the proposed MLSEN approach effectively models mechanical vibration and acoustic signals. |
| Author | Qiao, Junfei Tang, Jian Wu, ZhiWei Chai, Tianyou Zhang, Jian Yu, Wen |
| Author_xml | – sequence: 1 givenname: Jian orcidid: 0000-0001-9851-8462 surname: Tang fullname: Tang, Jian email: freeflytang@bjut.edu.cn organization: Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China – sequence: 2 givenname: Junfei surname: Qiao fullname: Qiao, Junfei organization: Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China – sequence: 3 givenname: ZhiWei surname: Wu fullname: Wu, ZhiWei email: wuzhiwei_2017@126.com organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110189, China – sequence: 4 givenname: Tianyou surname: Chai fullname: Chai, Tianyou organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110189, China – sequence: 5 givenname: Jian surname: Zhang fullname: Zhang, Jian email: jianzhang_neu@163.com organization: School of Computer and Software, Nanjing University of Information Science & Technology, 210044, China – sequence: 6 givenname: Wen surname: Yu fullname: Yu, Wen email: yuw@ctrl.cinvestav.mx organization: Departamento de Control Automatico, CINVESTAV-IPN, Av.IPN 2508, México D.F. 07360, Mexico |
| BookMark | eNqFkb-O1DAQxi10SOwdPAGNJeqE8SbrOAUFOsGBdBIN0Fr-M0ZeJXbwJCftY_DGeHepKKCxJc_3zTfz8y27STkhY68FtAKEfHtsTzPR0u5BDC3IFkA9YzsBo2zEXsgbtgOlVNPtB3jBbomOADD2IHfs1_doi1ljTtwkz43LG63R8VDw54bJnTgt6NZieMiFx-RruUQz8aVkh0R8zh6nmH7wjc4n4VTl8Ql5qA-167xNa2xcTj5eUsjMy4R0SbvWKG_FVT2adStIL9nzYCbCV3_uO_bt44ev95-axy8Pn-_fPzau68TaKHMAp5R1fUCvDvveSCN6O3o1SuusG13oYTjYUXbB9lVrvVNDD96KYJQI3R17c-1bN6mr0qqPdZBUI7UYpYShH4ZDVXVXlSuZqGDQS4mzKSctQJ_Z66O-sNdn9hqkruyra_zL5eJ6oVxJxuk_3ndXL9blnyIWTS7Wn0AfS0WrfY7_9P8GeZCpQA |
| CitedBy_id | crossref_primary_10_1016_j_ymssp_2019_106371 crossref_primary_10_1109_ACCESS_2020_3015875 crossref_primary_10_1007_s11771_021_4629_6 crossref_primary_10_1016_j_ymssp_2024_111194 crossref_primary_10_1051_epjconf_202124914019 crossref_primary_10_3390_e21060540 crossref_primary_10_1016_j_jmapro_2023_11_038 crossref_primary_10_3390_min10110958 crossref_primary_10_1016_j_powtec_2022_117409 crossref_primary_10_1177_00202940221098048 crossref_primary_10_1016_j_mineng_2018_09_006 crossref_primary_10_1016_j_ymssp_2022_109012 crossref_primary_10_3390_e19100541 crossref_primary_10_1007_s00034_020_01410_0 crossref_primary_10_1016_j_ymssp_2019_01_011 crossref_primary_10_1016_j_ifacol_2018_09_392 crossref_primary_10_1109_TMECH_2019_2928967 crossref_primary_10_1016_j_ces_2021_117012 crossref_primary_10_1016_j_mtcomm_2022_104632 crossref_primary_10_1007_s00500_022_07449_2 crossref_primary_10_1016_j_ijhydene_2021_05_137 crossref_primary_10_1016_j_mineng_2020_106609 crossref_primary_10_1007_s00500_018_3373_9 crossref_primary_10_1016_j_ifacol_2018_09_353 |
| Cites_doi | 10.1016/j.neucom.2011.05.028 10.1109/TIE.2008.2004378 10.1016/S0967-0661(01)00088-0 10.1088/0957-0233/12/8/321 10.1146/annurev.fluid.31.1.417 10.1109/TPDS.2015.2506573 10.1002/cem.887 10.1016/j.jprocont.2011.10.002 10.1109/CC.2016.7559076 10.1109/TNNLS.2014.2342533 10.1109/TII.2013.2271979 10.1007/3-540-45164-1_41 10.1109/IPMM.1999.791509 10.1109/TBC.2015.2419824 10.3724/SP.J.1004.2013.00471 10.1109/TC.1977.1674939 10.1109/TPAMI.2004.28 10.1016/j.artint.2004.09.006 10.1016/j.neucom.2017.01.064 10.1109/TIM.2004.834066 10.1016/j.ins.2014.10.040 10.1016/j.jprocont.2009.09.002 10.1016/S0967-0661(02)00035-7 10.1016/j.ymssp.2006.12.004 10.1016/j.conengprac.2012.03.020 10.1109/34.709601 10.1109/TII.2016.2586419 10.1109/TPAMI.2006.211 10.1016/0892-6875(94)90162-7 10.1016/j.neucom.2017.05.047 10.1142/S1793536909000047 10.1016/j.neucom.2008.04.005 10.1016/j.compchemeng.2008.12.012 10.1109/WCICA.2014.7052838 10.1002/sec.1582 10.1177/1077546310395970 10.1109/TASE.2008.2011562 10.1016/j.triboint.2008.11.008 10.1016/j.ymssp.2015.04.028 10.1098/rspa.1998.0193 10.1016/j.jprocont.2014.01.012 10.1016/j.cie.2006.07.004 10.1007/s10852-005-9020-3 10.1016/j.arcontrol.2012.09.004 10.1016/j.mineng.2010.05.001 10.3724/SP.J.1004.2013.01744 10.1016/j.minpro.2008.10.009 10.1504/IJSNET.2017.083532 10.1088/0957-0233/19/4/045105 10.1109/34.58871 10.1109/TII.2013.2289392 10.1016/j.patcog.2008.10.028 10.1016/j.mineng.2009.06.008 10.1016/j.mineng.2010.08.014 10.1252/jcej.12we167 10.1109/TIE.2007.911960 10.1109/TIFS.2016.2601065 10.1109/TII.2013.2289941 10.1109/TPDS.2015.2401003 10.1109/TIM.2011.2179819 10.1016/j.proeng.2011.08.1136 10.1016/j.neucom.2012.12.057 10.1109/TNNLS.2014.2333664 10.1016/j.ndteint.2016.12.009 10.1587/transinf.2015EDP7341 10.1111/j.1467-842X.1997.tb00521.x 10.1016/j.ymssp.2016.03.007 10.1016/S0004-3702(02)00190-X 10.1109/TASE.2012.2225142 10.1109/TIFS.2014.2381872 10.1177/1550147717694172 10.1016/j.ymssp.2008.11.005 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Jan 15, 2018 |
| Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Jan 15, 2018 |
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.ymssp.2017.06.008 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1096-1216 |
| EndPage | 168 |
| ExternalDocumentID | 10_1016_j_ymssp_2017_06_008 S0888327017303229 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SST SSV SSZ T5K XPP ZMT ZU3 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ ~HD 7SC 7SP 8FD AFXIZ AGCQF AGRNS JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c331t-8a50c88bc4fed8524a6a14b9d896bcbc9cf4075b963fb450cbdc8740db1fa81f3 |
| IEDL.DBID | .~1 |
| ISSN | 0888-3270 |
| IngestDate | Sun Jul 13 04:22:43 EDT 2025 Thu Oct 16 04:29:37 EDT 2025 Thu Apr 24 23:07:30 EDT 2025 Fri Feb 23 02:47:45 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Frequency spectrum Selective information fusion Kernel partial least squares Mechanical vibration and acoustic signals Multi-layer selective ensemble Genetic algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c331t-8a50c88bc4fed8524a6a14b9d896bcbc9cf4075b963fb450cbdc8740db1fa81f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9851-8462 |
| PQID | 1966074775 |
| PQPubID | 2045429 |
| PageCount | 27 |
| ParticipantIDs | proquest_journals_1966074775 crossref_primary_10_1016_j_ymssp_2017_06_008 crossref_citationtrail_10_1016_j_ymssp_2017_06_008 elsevier_sciencedirect_doi_10_1016_j_ymssp_2017_06_008 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-01-15 |
| PublicationDateYYYYMMDD | 2018-01-15 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin |
| PublicationPlace_xml | – name: Berlin |
| PublicationTitle | Mechanical systems and signal processing |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Wang, Gu, Ma, Yan (b0065) 2017; 23 Wu, Huang (b0135) 2009; 1 Faiz, Ghorbanian, Ebrahimi (b0140) 2014; 10 Xia, Wang, Sun, Wang (b0325) 2016; 27 Tang, Chai, Yu, Liu, Zhou (b0080) 2016; 12 Zhou, Wu, Tang (b0360) 2002; 137 J. Tang, W. Yu, T.Y. Chai, Modeling parameters of mill load based on dual layer selective ensemble learning strategy, in: Proceeding of the 11th World Congress on Intelligent Control and Automation (WCICA2014), Shenyang, June 29–July 4, 2014, pp. 916–921. Tang, Chai, Zhao, Yue, Zheng (b0295) 2012; 29 Granitto, Verdes, Ceccatto (b0335) 2005; 163 Tang, Chai, Cong, Zhao, Liu, Yu (b0165) 2015; 32 B.J. Chen, J.H. Yang, B.W. Jeon, X.P. Zhang, Kernel quaternion principal component analysis and its application in RGB-D object recognition, Neurocomputing. Shukla, Mishra, Singh (b0145) 2014; 10 Feng, Wang, Xu, Xu (b0035) 2012; 19 Kadlec, Gabrys, Strandt (b0055) 2009; 33 Z.L. Zhou, C.N. Yang, B.J. Chen, X.M. Sun, Q. Liu, Q.M.J. Wu, Effective and efficient image copy detection with resistance to arbitrary rotation, IEICE Trans. Inf. Syst. E99-D (2016) 1531–1540. M.P. Perrone, L.N. Cooper, When networks disagree: ensemble methods for hybrid neural networks, Tech. Rep. A121062, Brown University, Institute for Brain and Neural Systems (Jan. 1993). Zeng, Forssberg (b0020) 1994; 7 Rai, Mohanty (b0170) 2007; 21 Rosipal, Trejo (b0275) 2002; 2 Shang, Yang, Huang, Lyu (b0240) 2014; 24 Wang, Li, Shi, Lian, Ye (b0120) 2016 Fan, Zuo (b0075) 2008; 19 Jian, Li, Yang, Sun (b0320) 2015; 10 Das, Das, Behera, Mishra (b0030) 2011; 24 Tang, Zhao, Zhou, Yue, Chai (b0180) 2010; 23 Liu, Sun, Liu, Zhang (b0185) 2009; 42 Gu, Sheng (b0245) 2016; 1 Singh, AlKazzaz (b0095) 2009; 42 Tian, Chen (b0230) 2017; 238 Kano, Fujiwara (b0060) 2013; 46 Qin (b0205) 2012; 36 Su, Wang, Shen, Zhang, Chen (b0015) 2012; 22 Yuan, Sun, Lv (b0195) 2016; 13 Tang, Chai, Zhao, Yu, Yue (b0265) 2012; 78 Liu, Cai, Shen, Fu, Liu, Linge (b0350) 2016; 9 Z.G. Su, P.H. Wang, Improved adaptive evidential k-NN rule and its application for monitoring level of coal powder filling in ball mill, J. Process Control 19 (2009) 1751–1762. Cusido, Romeral, Ortega, Rosero, Garcia Espinosa (b0100) 2008; 55 Hansen, Salamon (b0385) 1990; 12 Li, He (b0150) 2012; 61 Tang, Zhao, Yue, Yu, Chai (b0175) 2011; 16 Fu, Ren, Shu, Sun, Huang (b0330) 2016; 27 Huang, Jia, Zhong (b0025) 2009; 14 Rai, Mohanty (b0045) 2007; 21 . Tan, Lim, Cheah (b0345) 2014; 125 Tang, Chai, Yu, Zhao (b0440) 2013; 39 Rodriguez, Kuncheva, Alonso (b0305) 2006; 28 Pan, Zhang, Kwong (b0200) 2015; 61 P. Zhou, T.Y. Chai, H. Wang, Intelligent optimal-setting control for grinding circuits of mineral processing, IEEE Trans. Automation Sci. Eng. 6 (2009) 730–743. Wen, Shao, Xue, Fang (b0255) 2015; 295 T.K. Ho, The random subspace method for constructing decision forest, IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998) 832–844. C. Tamon, J. Xiang, On the boosting pruning problem, in: 11th European Conference on Machine Learning (ECML 2000), Springer, Berlin, 2000. Somol, Pudil, Kittler (b0405) 2004; 26 Krzanowski, Hand (b0450) 1997; 39 Seshadrinath, Singh, Panigrahi (b0110) 2014; 10 Xu, Li, Dong, Wang, Xu (b0410) 2001; 12 Z.L. Zhou, Q.M.J. Wu, F. Huang, X.M. Sun, Fast and accurate near-duplicate image elimination for visual sensor networks, Int. J. Distributed Sensor Netw. 13(2) (2017). Liu, Huang, Zeng (b0155) 2017; 86 Tang, Chai, Yu, Zhao (b0365) 2013; 10 J. Tang, T.Y. Chai, Q.M. Cong, B.C. Yuan, L.J. Zhao, Z. Liu, W. Yu, Soft sensor approach for modeling mill load parameters based on EMD and selective ensemble learning algorithm, Acta Automatica Sinica 40 (2014) 1853–1866. Cusido, Romeral, Ortega, Rosero, Garcia Espinosa (b0050) 2008; 55 Lo, Oblad, Herbst (b0415) 1996; 8 Gu, Sun, Sheng (b0235) 2016; 1 Thornhill, Shah, Huang, Vishnubhotla (b0040) 2002; 10 E.Z. Yu, S.Z. Cho, Ensemble based on GA wrapper feature selection, Comput. Ind. Eng. 51(2006) 111–116. S.J. Spencer, J.J. Campbell, K.R. Weller, Y. Liu, Acoustic emissions monitoring of SAG mill performance, in: Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials, IPMM '99, 1999, pp. 936–946. Charanpal, Gunn, John (b0270) 2008; 31 Lei, He, Zi (b0090) 2009; 23 Motai (b0210) 2015; 26 Zhou, Wang, Wu, Yang, Sun (b0220) 2017; 12 Dietterieg (b0285) 1998; 18 Singh, Zhao (b0160) 2016; 81 T.Y. Chai, Operational optimization and feedback control for complex industrial processes, Acta Automatica Sinica 39 (2013) 1744–1757. Riera-Guasp, Antonino-Daviu, Pineda-Sanchez, Puche-Panadero, Perez-Cruz (b0105) 2008; 55 Huang, Shen, Long (b0130) 1998; 454 Huang, Shen, Long (b0380) 1999; 31 Cederkvist, Mevik (b0455) Sep 2004; 18 P.M. Narendra, K. Fukunaga, A branch and bound algorithm for feature subset selection, IEEE Trans. Comput. C-26 (1977) 917–922. Hodouin, Jämsä-Jounela, Carvalho (b0070) 2001; 9 Xiong, Xu, Shi (b0125) 2017 Wei, Craig (b0430) 2009; 90 Y. Zeng, E. Forssberg, Monitoring grinding parameters by vibration signal measurement-a primary application, Miner. Eng. 7 (1994) 495–501. Houck, Joines, Kay (b0395) 1995 Tang, Yu, Chai, Liu, Zhou (b0085) 2016; 66–67 Arjun, Yao (b0355) 2006; 5 Tang, Zhao, Yu, Yue, Chai (b0290) 2012; 78 Yu, Jiang, Zhao, Ma (b0315) 2017 Kankar (b0115) 2011; 17 Efron, Tibshirani (b0445) 1997; 2 Hao, Yang, Wen (b0190) 2009; 72 Tang, Chai, Wen, Zhao (b0250) 2012; 20 Gu, Sheng, Tay, Romano, Li (b0260) 2015; 26 Xu, Zhang, Yan (b0280) 2004; 53 Cusido (10.1016/j.ymssp.2017.06.008_b0100) 2008; 55 Singh (10.1016/j.ymssp.2017.06.008_b0095) 2009; 42 10.1016/j.ymssp.2017.06.008_b0370 Tan (10.1016/j.ymssp.2017.06.008_b0345) 2014; 125 Lo (10.1016/j.ymssp.2017.06.008_b0415) 1996; 8 10.1016/j.ymssp.2017.06.008_b0010 Hodouin (10.1016/j.ymssp.2017.06.008_b0070) 2001; 9 Yuan (10.1016/j.ymssp.2017.06.008_b0195) 2016; 13 Shang (10.1016/j.ymssp.2017.06.008_b0240) 2014; 24 Somol (10.1016/j.ymssp.2017.06.008_b0405) 2004; 26 Wei (10.1016/j.ymssp.2017.06.008_b0430) 2009; 90 Tang (10.1016/j.ymssp.2017.06.008_b0175) 2011; 16 Yu (10.1016/j.ymssp.2017.06.008_b0315) 2017 Tang (10.1016/j.ymssp.2017.06.008_b0265) 2012; 78 Hansen (10.1016/j.ymssp.2017.06.008_b0385) 1990; 12 Rai (10.1016/j.ymssp.2017.06.008_b0170) 2007; 21 10.1016/j.ymssp.2017.06.008_b0375 Hao (10.1016/j.ymssp.2017.06.008_b0190) 2009; 72 10.1016/j.ymssp.2017.06.008_b0215 Wen (10.1016/j.ymssp.2017.06.008_b0255) 2015; 295 Jian (10.1016/j.ymssp.2017.06.008_b0320) 2015; 10 Faiz (10.1016/j.ymssp.2017.06.008_b0140) 2014; 10 Krzanowski (10.1016/j.ymssp.2017.06.008_b0450) 1997; 39 Das (10.1016/j.ymssp.2017.06.008_b0030) 2011; 24 Fu (10.1016/j.ymssp.2017.06.008_b0330) 2016; 27 Tang (10.1016/j.ymssp.2017.06.008_b0085) 2016; 66–67 Huang (10.1016/j.ymssp.2017.06.008_b0380) 1999; 31 Kano (10.1016/j.ymssp.2017.06.008_b0060) 2013; 46 Zeng (10.1016/j.ymssp.2017.06.008_b0020) 1994; 7 Xu (10.1016/j.ymssp.2017.06.008_b0410) 2001; 12 Rosipal (10.1016/j.ymssp.2017.06.008_b0275) 2002; 2 10.1016/j.ymssp.2017.06.008_b0340 10.1016/j.ymssp.2017.06.008_b0460 Su (10.1016/j.ymssp.2017.06.008_b0015) 2012; 22 10.1016/j.ymssp.2017.06.008_b0300 Wang (10.1016/j.ymssp.2017.06.008_b0065) 2017; 23 Pan (10.1016/j.ymssp.2017.06.008_b0200) 2015; 61 10.1016/j.ymssp.2017.06.008_b0420 Gu (10.1016/j.ymssp.2017.06.008_b0260) 2015; 26 10.1016/j.ymssp.2017.06.008_b0425 Thornhill (10.1016/j.ymssp.2017.06.008_b0040) 2002; 10 10.1016/j.ymssp.2017.06.008_b0225 Tang (10.1016/j.ymssp.2017.06.008_b0365) 2013; 10 Huang (10.1016/j.ymssp.2017.06.008_b0025) 2009; 14 Tang (10.1016/j.ymssp.2017.06.008_b0080) 2016; 12 Charanpal (10.1016/j.ymssp.2017.06.008_b0270) 2008; 31 Arjun (10.1016/j.ymssp.2017.06.008_b0355) 2006; 5 Xu (10.1016/j.ymssp.2017.06.008_b0280) 2004; 53 Kadlec (10.1016/j.ymssp.2017.06.008_b0055) 2009; 33 Kankar (10.1016/j.ymssp.2017.06.008_b0115) 2011; 17 Houck (10.1016/j.ymssp.2017.06.008_b0395) 1995 Rai (10.1016/j.ymssp.2017.06.008_b0045) 2007; 21 Gu (10.1016/j.ymssp.2017.06.008_b0245) 2016; 1 Tian (10.1016/j.ymssp.2017.06.008_b0230) 2017; 238 10.1016/j.ymssp.2017.06.008_b0390 Qin (10.1016/j.ymssp.2017.06.008_b0205) 2012; 36 Granitto (10.1016/j.ymssp.2017.06.008_b0335) 2005; 163 10.1016/j.ymssp.2017.06.008_b0310 Zhou (10.1016/j.ymssp.2017.06.008_b0220) 2017; 12 Seshadrinath (10.1016/j.ymssp.2017.06.008_b0110) 2014; 10 Xia (10.1016/j.ymssp.2017.06.008_b0325) 2016; 27 Shukla (10.1016/j.ymssp.2017.06.008_b0145) 2014; 10 10.1016/j.ymssp.2017.06.008_b0435 Tang (10.1016/j.ymssp.2017.06.008_b0440) 2013; 39 Motai (10.1016/j.ymssp.2017.06.008_b0210) 2015; 26 Huang (10.1016/j.ymssp.2017.06.008_b0130) 1998; 454 Cederkvist (10.1016/j.ymssp.2017.06.008_b0455) 2004; 18 Tang (10.1016/j.ymssp.2017.06.008_b0290) 2012; 78 Efron (10.1016/j.ymssp.2017.06.008_b0445) 1997; 2 Tang (10.1016/j.ymssp.2017.06.008_b0165) 2015; 32 Rodriguez (10.1016/j.ymssp.2017.06.008_b0305) 2006; 28 Cusido (10.1016/j.ymssp.2017.06.008_b0050) 2008; 55 Liu (10.1016/j.ymssp.2017.06.008_b0155) 2017; 86 Zhou (10.1016/j.ymssp.2017.06.008_b0360) 2002; 137 Feng (10.1016/j.ymssp.2017.06.008_b0035) 2012; 19 Liu (10.1016/j.ymssp.2017.06.008_b0185) 2009; 42 Tang (10.1016/j.ymssp.2017.06.008_b0180) 2010; 23 Dietterieg (10.1016/j.ymssp.2017.06.008_b0285) 1998; 18 10.1016/j.ymssp.2017.06.008_b0400 Gu (10.1016/j.ymssp.2017.06.008_b0235) 2016; 1 Riera-Guasp (10.1016/j.ymssp.2017.06.008_b0105) 2008; 55 Xiong (10.1016/j.ymssp.2017.06.008_b0125) 2017 10.1016/j.ymssp.2017.06.008_b0005 Tang (10.1016/j.ymssp.2017.06.008_b0250) 2012; 20 Li (10.1016/j.ymssp.2017.06.008_b0150) 2012; 61 Liu (10.1016/j.ymssp.2017.06.008_b0350) 2016; 9 Wu (10.1016/j.ymssp.2017.06.008_b0135) 2009; 1 Tang (10.1016/j.ymssp.2017.06.008_b0295) 2012; 29 Singh (10.1016/j.ymssp.2017.06.008_b0160) 2016; 81 Lei (10.1016/j.ymssp.2017.06.008_b0090) 2009; 23 Wang (10.1016/j.ymssp.2017.06.008_b0120) 2016 Fan (10.1016/j.ymssp.2017.06.008_b0075) 2008; 19 |
| References_xml | – volume: 66–67 start-page: 485 year: 2016 end-page: 504 ident: b0085 article-title: Selective ensemble modeling load parameters of ball mill based on multi-scale frequency spectral features and sphere criterion publication-title: Mech. Syst. Signal Process. – volume: 55 start-page: 633 year: 2008 end-page: 643 ident: b0050 article-title: Fault detection in induction machines using power spectral density in wavelet decomposition publication-title: IEEE Trans. Ind. Electron. – volume: 36 start-page: 220 year: 2012 end-page: 234 ident: b0205 article-title: Survey on data-driven industrial process monitoring and diagnosis publication-title: Ann. Rev. Control – volume: 1 start-page: 1 year: 2016 end-page: 8 ident: b0245 article-title: A robust regularization path algorithm for ν-support vector classification publication-title: IEEE Trans. Neural Netw. Learning Syst. – volume: 18 start-page: 97 year: 1998 end-page: 136 ident: b0285 article-title: Machine-learning research: four current directions publication-title: AI Mag. – reference: P. Zhou, T.Y. Chai, H. Wang, Intelligent optimal-setting control for grinding circuits of mineral processing, IEEE Trans. Automation Sci. Eng. 6 (2009) 730–743. – volume: 12 start-page: 2008 year: 2016 end-page: 2019 ident: b0080 article-title: A Comparative study that measures ball mill load parameters through different single-scale and multi-scale frequency spectra-based approaches publication-title: IEEE Trans. Ind. Inf. – volume: 20 start-page: 991 year: 2012 end-page: 1004 ident: b0250 article-title: Feature extraction and selection based on vibration spectrum with application to estimating the load parameters of ball mill in grinding process publication-title: Control Eng. Pract. – volume: 16 start-page: 646 year: 2011 end-page: 652 ident: b0175 article-title: Vibration analysis based on empirical mode decomposition and partial least squares publication-title: Proc. Eng. – volume: 137 start-page: 239 year: 2002 end-page: 263 ident: b0360 article-title: Ensembling neural networks: many could be better than all publication-title: Artif. Intell. – volume: 10 start-page: 957 year: 2014 end-page: 966 ident: b0140 article-title: EMD-based analysis of industrial induction motors with broken rotor bars for identification of operating point at different supply modes publication-title: IEEE Trans. Ind. Inf. – reference: T.K. Ho, The random subspace method for constructing decision forest, IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998) 832–844. – volume: 31 start-page: 1347 year: 2008 end-page: 1361 ident: b0270 article-title: Efficient sparse kernel feature extraction based on partial least squares publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 55 start-page: 633 year: 2008 end-page: 643 ident: b0100 article-title: Fault detection in induction machines using power spectral density in wavelet decomposition publication-title: IEEE Trans. Ind. Electron. – volume: 28 start-page: 1619 year: 2006 end-page: 1630 ident: b0305 article-title: Rotation forest: a new classifier ensemble method publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Z.G. Su, P.H. Wang, Improved adaptive evidential k-NN rule and its application for monitoring level of coal powder filling in ball mill, J. Process Control 19 (2009) 1751–1762. – volume: 24 start-page: 223 year: 2014 end-page: 233 ident: b0240 article-title: Data-driven soft sensor development based on deep learning technique publication-title: J. Process Control – volume: 295 start-page: 395 year: 2015 end-page: 406 ident: b0255 article-title: A rapid learning algorithm for vehicle classification publication-title: Inf. Sci. – volume: 18 start-page: 422 year: Sep 2004 end-page: 429 ident: b0455 article-title: Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR) publication-title: J. Chemom. – volume: 2 start-page: 97 year: 2002 end-page: 123 ident: b0275 article-title: Kernel partial least squares regression in reproducing kernel Hilbert space publication-title: J. Mach. Learning Res. – volume: 12 start-page: 993 year: 1990 end-page: 1001 ident: b0385 article-title: Neural network ensembles publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 46 start-page: 1 year: 2013 end-page: 17 ident: b0060 article-title: Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications publication-title: J. Chem. Eng. Jpn – volume: 27 start-page: 340 year: 2016 end-page: 352 ident: b0325 article-title: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data publication-title: IEEE Trans. Parallel Distrib. Syst. – reference: E.Z. Yu, S.Z. Cho, Ensemble based on GA wrapper feature selection, Comput. Ind. Eng. 51(2006) 111–116. – volume: 238 start-page: 286 year: 2017 end-page: 295 ident: b0230 article-title: Cross-heterogeneous-database age estimation through correlation representation learning publication-title: Neurocomputing – volume: 61 start-page: 990 year: 2012 end-page: 1001 ident: b0150 article-title: Rotational machine health monitoring and fault detection using EMD-based acoustic emission feature quantification publication-title: IEEE Trans. Instr. Meas. – reference: T.Y. Chai, Operational optimization and feedback control for complex industrial processes, Acta Automatica Sinica 39 (2013) 1744–1757. – volume: 9 start-page: 4002 year: 2016 end-page: 4012 ident: b0350 article-title: A speculative approach to spatial-temporal efficiency with multi-objective optimization in a heterogeneous cloud environment publication-title: Secur. Commun. Netw. – volume: 21 start-page: 2607 year: 2007 end-page: 2615 ident: b0170 article-title: Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform publication-title: Mech. Syst. Signal Process. – volume: 23 start-page: 1327 year: 2009 end-page: 1338 ident: b0090 article-title: Application of the EEMD method to rotor fault diagnosis of rotating machinery publication-title: Mech. Syst. Signal Process. – volume: 125 start-page: 217 year: 2014 end-page: 228 ident: b0345 article-title: A multi-objective evolutionary algorithm-based ensemble optimizer for feature selection and classification with neural network models publication-title: Neurocomputing – volume: 31 start-page: 417 year: 1999 end-page: 457 ident: b0380 article-title: A new view of nonlinear water waves: the Hilbert spectrum publication-title: Annu. Rev. Fluid Mech. – volume: 61 start-page: 166 year: 2015 end-page: 176 ident: b0200 article-title: Efficient motion and disparity estimation optimization for low complexity multiview video coding publication-title: IEEE Trans. Broadcast. – reference: Y. Zeng, E. Forssberg, Monitoring grinding parameters by vibration signal measurement-a primary application, Miner. Eng. 7 (1994) 495–501. – volume: 7 start-page: 495 year: 1994 end-page: 501 ident: b0020 article-title: Monitoring grinding parameters by vibration signal measurement-a primary application publication-title: Miner. Eng. – volume: 23 start-page: 265 year: 2017 end-page: 278 ident: b0065 article-title: Temperature Error Correction based on BP Neural Network in Meteorological WSN publication-title: Int. J. Sensor Netw. – volume: 10 start-page: 1044 year: 2014 end-page: 1054 ident: b0145 article-title: Power quality event classification under noisy conditions using EMD-based de-noising techniques publication-title: IEEE Trans. Ind. Inf. – reference: S.J. Spencer, J.J. Campbell, K.R. Weller, Y. Liu, Acoustic emissions monitoring of SAG mill performance, in: Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials, IPMM '99, 1999, pp. 936–946. – volume: 55 start-page: 4167 year: 2008 end-page: 4180 ident: b0105 article-title: A general approach for the transient detection of slip-dependent fault components based on the discrete wavelet transform publication-title: IEEE Trans. Ind. Electron. – volume: 53 start-page: 1539 year: 2004 end-page: 1544 ident: b0280 article-title: A wavelet-based multisensor data fusion algorithm publication-title: IEEE Trans. Instr. Meas. – start-page: 1 year: 2016 end-page: 17 ident: b0120 article-title: Forensics feature analysis in quaternion wavelet domain for distinguishing photographic images and computer graphics publication-title: Multimedia Tools and Applications – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: b0130 article-title: The empirical mode decomposition and the Hilbert spectrum for non-linear and non stationary time series analysis publication-title: Proc. Royal Soc. London A – volume: 26 start-page: 1403 year: 2015 end-page: 1416 ident: b0260 article-title: Incremental support vector learning for ordinal regression publication-title: IEEE Trans. Neural Netw. Learning Syst. – volume: 27 start-page: 2546 year: 2016 end-page: 2559 ident: b0330 article-title: Enabling personalized search over encrypted outsourced data with efficiency improvement publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 1 start-page: 1 year: 2009 end-page: 41 ident: b0135 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Advances in Adaptive Data Analysis – volume: 14 start-page: 1200 year: 2009 end-page: 1208 ident: b0025 article-title: Investigation on measuring the fill level of an industrial ball mill based on the vibration characteristics of the mill shell publication-title: Miner. Eng. – volume: 78 start-page: 38 year: 2012 end-page: 47 ident: b0290 article-title: Soft sensor for parameters of mill load based on multi-spectral segments PLS sub-models and on-line adaptive weighted fusion algorithm publication-title: Neurocomputing – volume: 81 start-page: 202 year: 2016 end-page: 218 ident: b0160 article-title: Pseudo-fault signal assisted EMD for fault detection and isolation in rotating machines publication-title: Mech. Syst. Signal Process. – volume: 13 start-page: 60 year: 2016 end-page: 65 ident: b0195 article-title: Fingerprint liveness detection based on multi-scale LPQ and PCA publication-title: China Commun. – volume: 26 start-page: 900 year: 2004 end-page: 913 ident: b0405 article-title: Fast branch & bound algorithms for optimal feature selection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: J. Tang, T.Y. Chai, Q.M. Cong, B.C. Yuan, L.J. Zhao, Z. Liu, W. Yu, Soft sensor approach for modeling mill load parameters based on EMD and selective ensemble learning algorithm, Acta Automatica Sinica 40 (2014) 1853–1866. – volume: 90 start-page: 56 year: 2009 end-page: 66 ident: b0430 article-title: Grinding mill circuits-a survey of control and economic concerns publication-title: Int. J. Miner. Process. – volume: 9 start-page: 995 year: 2001 end-page: 1005 ident: b0070 article-title: State of the art and challenges in mineral processing control publication-title: Control Eng. Pract. – volume: 78 start-page: 38 year: 2012 end-page: 47 ident: b0265 article-title: Soft sensor for parameters of mill load based on multi-spectral segments PLS sub-models and on-line adaptive weighted fusion algorithm publication-title: Neurocomputing – volume: 42 start-page: 849 year: 2009 end-page: 861 ident: b0095 article-title: Isolation and identification of dry bearing faults in induction machine using wavelet transform publication-title: Tribol. Int. – volume: 8 start-page: 19 year: 1996 end-page: 21 ident: b0415 article-title: Cost reduction in grinding plants through process optimization and control publication-title: Miner. Metall. Process. – volume: 24 start-page: 245 year: 2011 end-page: 251 ident: b0030 article-title: Interpretation of mill vibration signal via wireless sensing publication-title: Miner. Eng. – volume: 33 start-page: 795 year: 2009 end-page: 814 ident: b0055 article-title: Data-driven soft sensors in the process industry publication-title: Comput. Chem. Eng. – reference: Z.L. Zhou, C.N. Yang, B.J. Chen, X.M. Sun, Q. Liu, Q.M.J. Wu, Effective and efficient image copy detection with resistance to arbitrary rotation, IEICE Trans. Inf. Syst. E99-D (2016) 1531–1540. – volume: 163 start-page: 139 year: 2005 end-page: 162 ident: b0335 article-title: Neural networks ensembles: evaluation of aggregation algorithms publication-title: Artif. Intell. – volume: 10 start-page: 726 year: 2013 end-page: 740 ident: b0365 article-title: Modeling load parameters of ball mill in grinding process based on selective ensemble multisensor information publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 42 start-page: 1330 year: 2009 end-page: 1339 ident: b0185 article-title: Feature selection with dynamic mutual information publication-title: Pattern Recogn. – volume: 22 start-page: 108 year: 2012 end-page: 124 ident: b0015 article-title: Convenient T-S fuzzy model with enhanced performance using a novel swarm intelligent fuzzy clustering technique publication-title: J. Process Control – start-page: 1 year: 2017 end-page: 12 ident: b0125 article-title: An integer wavelet transform based scheme for reversible data hiding in encrypted images publication-title: Multidimension. Syst. Signal Process. – reference: J. Tang, W. Yu, T.Y. Chai, Modeling parameters of mill load based on dual layer selective ensemble learning strategy, in: Proceeding of the 11th World Congress on Intelligent Control and Automation (WCICA2014), Shenyang, June 29–July 4, 2014, pp. 916–921. – volume: 26 start-page: 208 year: 2015 end-page: 223 ident: b0210 article-title: Kernel association for classification and prediction: a survey publication-title: IEEE Trans. Neural Netw. Learning Syst. – volume: 12 start-page: 1139 year: 2001 end-page: 1146 ident: b0410 article-title: Optimum estimation of the mean flow velocity for the multi-electrode inductance flowmeter publication-title: Meas. Sci. Technol. – year: 2017 ident: b0315 article-title: A self-adaptive artificial bee colony algorithm based on global best for global optimization publication-title: Soft. Comput. – volume: 17 start-page: 2081 year: 2011 end-page: 2094 ident: b0115 article-title: S. C. S. harma, S. P. Harsha, Rolling element bearing fault diagnosis using auto correlation and continuous wavelet transform publication-title: J. Vib. Control – volume: 39 start-page: 35 year: 1997 end-page: 46 ident: b0450 article-title: Assessing error rate estimators: the leave-one-out method reconsidered publication-title: Aust. J. Stat. – reference: B.J. Chen, J.H. Yang, B.W. Jeon, X.P. Zhang, Kernel quaternion principal component analysis and its application in RGB-D object recognition, Neurocomputing. – volume: 1 start-page: 1 year: 2016 end-page: 11 ident: b0235 article-title: Structural minimax probability machine publication-title: IEEE Trans. Neural Netw. Learning Syst. – reference: Z.L. Zhou, Q.M.J. Wu, F. Huang, X.M. Sun, Fast and accurate near-duplicate image elimination for visual sensor networks, Int. J. Distributed Sensor Netw. 13(2) (2017). – volume: 23 start-page: 720 year: 2010 end-page: 730 ident: b0180 article-title: Experimental analysis of wet mill load based on vibration signals of laboratory-scale ball mill shell publication-title: Miner. Eng. – volume: 10 start-page: 507 year: 2015 end-page: 518 ident: b0320 article-title: Segmentation-based image copy-move forgery detection scheme publication-title: IEEE Trans. Inf. Forensics Secur. – volume: 10 start-page: 833 year: 2002 end-page: 846 ident: b0040 article-title: Spectral principal component analysis of dynamic process data publication-title: Control Eng. Pract. – volume: 72 start-page: 991 year: 2009 end-page: 999 ident: b0190 article-title: An efficient gene selection algorithm based on mutual information publication-title: Neurocomputing – volume: 19 start-page: 334 year: 2008 end-page: 340 ident: b0075 article-title: Machine fault feature extraction based on intrinsic mode functions publication-title: Meas. Sci. Technol. – volume: 10 start-page: 340 year: 2014 end-page: 350 ident: b0110 article-title: Vibration analysis based interturn fault diagnosis in induction machines publication-title: Trans. Ind. Inf. – volume: 21 start-page: 2607 year: 2007 end-page: 2615 ident: b0045 article-title: Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform publication-title: J. Mech. Syst. Signal Process – volume: 29 start-page: 183 year: 2012 end-page: 201 ident: b0295 article-title: Ensemble modeling for parameters of ball-mill load in grinding process based on frequency spectrum of shell vibration publication-title: Chin. Control Theory Appl. – volume: 12 start-page: 48 year: 2017 end-page: 63 ident: b0220 article-title: Effective and efficient global context verification for image copy detection publication-title: IEEE Trans. Inf. Forensics Secur. – year: 1995 ident: b0395 article-title: A Genetic Algorithm for Function Optimization: A Matlab Implementation, Technical Report: NCSU-IE-TR-95-09 – volume: 19 start-page: 66 year: 2012 end-page: 69 ident: b0035 article-title: An on-line mill load monitoring system based on shell vibration signals publication-title: Mining Metall. – reference: . – volume: 2 start-page: 548 year: 1997 end-page: 560 ident: b0445 article-title: Improvements on cross-validation: the 632+ bootstrap method publication-title: J. Am. Stat. Assoc. – reference: C. Tamon, J. Xiang, On the boosting pruning problem, in: 11th European Conference on Machine Learning (ECML 2000), Springer, Berlin, 2000. – volume: 39 start-page: 471 year: 2013 end-page: 486 ident: b0440 article-title: On-line KPLS algorithm with application to ensemble modeling parameters of mill load publication-title: Acta Automatica Sinica – volume: 5 start-page: 417 year: 2006 end-page: 445 ident: b0355 article-title: Ensemble learning using multi-objective evolutionary algorithms publication-title: J. Math. Model. Algorithms Oper. Res. – volume: 32 start-page: 1582 year: 2015 end-page: 1591 ident: b0165 article-title: Modeling mill load parameters based on selective fusion of multi-scale shell vibration frequency spectrum publication-title: Control Theory Appl. – volume: 86 start-page: 175 year: 2017 end-page: 185 ident: b0155 article-title: Hidden defect recognition based on the improved ensemble empirical decomposition method and pulsed eddy current testing publication-title: NDT & E Int. – reference: M.P. Perrone, L.N. Cooper, When networks disagree: ensemble methods for hybrid neural networks, Tech. Rep. A121062, Brown University, Institute for Brain and Neural Systems (Jan. 1993). – reference: P.M. Narendra, K. Fukunaga, A branch and bound algorithm for feature subset selection, IEEE Trans. Comput. C-26 (1977) 917–922. – volume: 78 start-page: 38 year: 2012 ident: 10.1016/j.ymssp.2017.06.008_b0290 article-title: Soft sensor for parameters of mill load based on multi-spectral segments PLS sub-models and on-line adaptive weighted fusion algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.05.028 – volume: 55 start-page: 4167 year: 2008 ident: 10.1016/j.ymssp.2017.06.008_b0105 article-title: A general approach for the transient detection of slip-dependent fault components based on the discrete wavelet transform publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2008.2004378 – volume: 9 start-page: 995 year: 2001 ident: 10.1016/j.ymssp.2017.06.008_b0070 article-title: State of the art and challenges in mineral processing control publication-title: Control Eng. Pract. doi: 10.1016/S0967-0661(01)00088-0 – volume: 12 start-page: 1139 year: 2001 ident: 10.1016/j.ymssp.2017.06.008_b0410 article-title: Optimum estimation of the mean flow velocity for the multi-electrode inductance flowmeter publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/12/8/321 – volume: 31 start-page: 417 year: 1999 ident: 10.1016/j.ymssp.2017.06.008_b0380 article-title: A new view of nonlinear water waves: the Hilbert spectrum publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.31.1.417 – start-page: 1 year: 2016 ident: 10.1016/j.ymssp.2017.06.008_b0120 article-title: Forensics feature analysis in quaternion wavelet domain for distinguishing photographic images and computer graphics publication-title: Multimedia Tools and Applications – volume: 27 start-page: 2546 issue: 9 year: 2016 ident: 10.1016/j.ymssp.2017.06.008_b0330 article-title: Enabling personalized search over encrypted outsourced data with efficiency improvement publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2015.2506573 – volume: 18 start-page: 422 issue: 9 year: 2004 ident: 10.1016/j.ymssp.2017.06.008_b0455 article-title: Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR) publication-title: J. Chemom. doi: 10.1002/cem.887 – volume: 22 start-page: 108 year: 2012 ident: 10.1016/j.ymssp.2017.06.008_b0015 article-title: Convenient T-S fuzzy model with enhanced performance using a novel swarm intelligent fuzzy clustering technique publication-title: J. Process Control doi: 10.1016/j.jprocont.2011.10.002 – volume: 13 start-page: 60 year: 2016 ident: 10.1016/j.ymssp.2017.06.008_b0195 article-title: Fingerprint liveness detection based on multi-scale LPQ and PCA publication-title: China Commun. doi: 10.1109/CC.2016.7559076 – volume: 26 start-page: 1403 year: 2015 ident: 10.1016/j.ymssp.2017.06.008_b0260 article-title: Incremental support vector learning for ordinal regression publication-title: IEEE Trans. Neural Netw. Learning Syst. doi: 10.1109/TNNLS.2014.2342533 – volume: 10 start-page: 340 year: 2014 ident: 10.1016/j.ymssp.2017.06.008_b0110 article-title: Vibration analysis based interturn fault diagnosis in induction machines publication-title: Trans. Ind. Inf. doi: 10.1109/TII.2013.2271979 – ident: 10.1016/j.ymssp.2017.06.008_b0340 doi: 10.1007/3-540-45164-1_41 – ident: 10.1016/j.ymssp.2017.06.008_b0435 doi: 10.1109/IPMM.1999.791509 – volume: 61 start-page: 166 issue: 2 year: 2015 ident: 10.1016/j.ymssp.2017.06.008_b0200 article-title: Efficient motion and disparity estimation optimization for low complexity multiview video coding publication-title: IEEE Trans. Broadcast. doi: 10.1109/TBC.2015.2419824 – volume: 39 start-page: 471 year: 2013 ident: 10.1016/j.ymssp.2017.06.008_b0440 article-title: On-line KPLS algorithm with application to ensemble modeling parameters of mill load publication-title: Acta Automatica Sinica doi: 10.3724/SP.J.1004.2013.00471 – ident: 10.1016/j.ymssp.2017.06.008_b0400 doi: 10.1109/TC.1977.1674939 – volume: 26 start-page: 900 year: 2004 ident: 10.1016/j.ymssp.2017.06.008_b0405 article-title: Fast branch & bound algorithms for optimal feature selection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.28 – start-page: 1 year: 2017 ident: 10.1016/j.ymssp.2017.06.008_b0125 article-title: An integer wavelet transform based scheme for reversible data hiding in encrypted images publication-title: Multidimension. Syst. Signal Process. – volume: 163 start-page: 139 year: 2005 ident: 10.1016/j.ymssp.2017.06.008_b0335 article-title: Neural networks ensembles: evaluation of aggregation algorithms publication-title: Artif. Intell. doi: 10.1016/j.artint.2004.09.006 – volume: 238 start-page: 286 year: 2017 ident: 10.1016/j.ymssp.2017.06.008_b0230 article-title: Cross-heterogeneous-database age estimation through correlation representation learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.01.064 – volume: 53 start-page: 1539 year: 2004 ident: 10.1016/j.ymssp.2017.06.008_b0280 article-title: A wavelet-based multisensor data fusion algorithm publication-title: IEEE Trans. Instr. Meas. doi: 10.1109/TIM.2004.834066 – volume: 2 start-page: 548 issue: 438 year: 1997 ident: 10.1016/j.ymssp.2017.06.008_b0445 article-title: Improvements on cross-validation: the 632+ bootstrap method publication-title: J. Am. Stat. Assoc. – volume: 295 start-page: 395 year: 2015 ident: 10.1016/j.ymssp.2017.06.008_b0255 article-title: A rapid learning algorithm for vehicle classification publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.10.040 – year: 1995 ident: 10.1016/j.ymssp.2017.06.008_b0395 – ident: 10.1016/j.ymssp.2017.06.008_b0375 – ident: 10.1016/j.ymssp.2017.06.008_b0010 doi: 10.1016/j.jprocont.2009.09.002 – volume: 10 start-page: 833 year: 2002 ident: 10.1016/j.ymssp.2017.06.008_b0040 article-title: Spectral principal component analysis of dynamic process data publication-title: Control Eng. Pract. doi: 10.1016/S0967-0661(02)00035-7 – volume: 21 start-page: 2607 year: 2007 ident: 10.1016/j.ymssp.2017.06.008_b0170 article-title: Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2006.12.004 – volume: 2 start-page: 97 year: 2002 ident: 10.1016/j.ymssp.2017.06.008_b0275 article-title: Kernel partial least squares regression in reproducing kernel Hilbert space publication-title: J. Mach. Learning Res. – volume: 20 start-page: 991 year: 2012 ident: 10.1016/j.ymssp.2017.06.008_b0250 article-title: Feature extraction and selection based on vibration spectrum with application to estimating the load parameters of ball mill in grinding process publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2012.03.020 – ident: 10.1016/j.ymssp.2017.06.008_b0300 doi: 10.1109/34.709601 – volume: 12 start-page: 2008 year: 2016 ident: 10.1016/j.ymssp.2017.06.008_b0080 article-title: A Comparative study that measures ball mill load parameters through different single-scale and multi-scale frequency spectra-based approaches publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2016.2586419 – volume: 28 start-page: 1619 year: 2006 ident: 10.1016/j.ymssp.2017.06.008_b0305 article-title: Rotation forest: a new classifier ensemble method publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.211 – ident: 10.1016/j.ymssp.2017.06.008_b0425 doi: 10.1016/0892-6875(94)90162-7 – volume: 19 start-page: 66 year: 2012 ident: 10.1016/j.ymssp.2017.06.008_b0035 article-title: An on-line mill load monitoring system based on shell vibration signals publication-title: Mining Metall. – ident: 10.1016/j.ymssp.2017.06.008_b0215 doi: 10.1016/j.neucom.2017.05.047 – volume: 1 start-page: 1 year: 2009 ident: 10.1016/j.ymssp.2017.06.008_b0135 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Advances in Adaptive Data Analysis doi: 10.1142/S1793536909000047 – volume: 72 start-page: 991 year: 2009 ident: 10.1016/j.ymssp.2017.06.008_b0190 article-title: An efficient gene selection algorithm based on mutual information publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.04.005 – volume: 78 start-page: 38 year: 2012 ident: 10.1016/j.ymssp.2017.06.008_b0265 article-title: Soft sensor for parameters of mill load based on multi-spectral segments PLS sub-models and on-line adaptive weighted fusion algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.05.028 – volume: 33 start-page: 795 year: 2009 ident: 10.1016/j.ymssp.2017.06.008_b0055 article-title: Data-driven soft sensors in the process industry publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2008.12.012 – volume: 1 start-page: 1 year: 2016 ident: 10.1016/j.ymssp.2017.06.008_b0245 article-title: A robust regularization path algorithm for ν-support vector classification publication-title: IEEE Trans. Neural Netw. Learning Syst. – ident: 10.1016/j.ymssp.2017.06.008_b0370 doi: 10.1109/WCICA.2014.7052838 – volume: 1 start-page: 1 year: 2016 ident: 10.1016/j.ymssp.2017.06.008_b0235 article-title: Structural minimax probability machine publication-title: IEEE Trans. Neural Netw. Learning Syst. – volume: 9 start-page: 4002 issue: 17 year: 2016 ident: 10.1016/j.ymssp.2017.06.008_b0350 article-title: A speculative approach to spatial-temporal efficiency with multi-objective optimization in a heterogeneous cloud environment publication-title: Secur. Commun. Netw. doi: 10.1002/sec.1582 – volume: 17 start-page: 2081 year: 2011 ident: 10.1016/j.ymssp.2017.06.008_b0115 article-title: S. C. S. harma, S. P. Harsha, Rolling element bearing fault diagnosis using auto correlation and continuous wavelet transform publication-title: J. Vib. Control doi: 10.1177/1077546310395970 – ident: 10.1016/j.ymssp.2017.06.008_b0420 doi: 10.1109/TASE.2008.2011562 – volume: 32 start-page: 1582 year: 2015 ident: 10.1016/j.ymssp.2017.06.008_b0165 article-title: Modeling mill load parameters based on selective fusion of multi-scale shell vibration frequency spectrum publication-title: Control Theory Appl. – volume: 42 start-page: 849 year: 2009 ident: 10.1016/j.ymssp.2017.06.008_b0095 article-title: Isolation and identification of dry bearing faults in induction machine using wavelet transform publication-title: Tribol. Int. doi: 10.1016/j.triboint.2008.11.008 – volume: 66–67 start-page: 485 year: 2016 ident: 10.1016/j.ymssp.2017.06.008_b0085 article-title: Selective ensemble modeling load parameters of ball mill based on multi-scale frequency spectral features and sphere criterion publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.04.028 – volume: 31 start-page: 1347 year: 2008 ident: 10.1016/j.ymssp.2017.06.008_b0270 article-title: Efficient sparse kernel feature extraction based on partial least squares publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 454 start-page: 903 year: 1998 ident: 10.1016/j.ymssp.2017.06.008_b0130 article-title: The empirical mode decomposition and the Hilbert spectrum for non-linear and non stationary time series analysis publication-title: Proc. Royal Soc. London A doi: 10.1098/rspa.1998.0193 – volume: 24 start-page: 223 year: 2014 ident: 10.1016/j.ymssp.2017.06.008_b0240 article-title: Data-driven soft sensor development based on deep learning technique publication-title: J. Process Control doi: 10.1016/j.jprocont.2014.01.012 – ident: 10.1016/j.ymssp.2017.06.008_b0310 doi: 10.1016/j.cie.2006.07.004 – volume: 5 start-page: 417 issue: 4 year: 2006 ident: 10.1016/j.ymssp.2017.06.008_b0355 article-title: Ensemble learning using multi-objective evolutionary algorithms publication-title: J. Math. Model. Algorithms Oper. Res. doi: 10.1007/s10852-005-9020-3 – volume: 36 start-page: 220 year: 2012 ident: 10.1016/j.ymssp.2017.06.008_b0205 article-title: Survey on data-driven industrial process monitoring and diagnosis publication-title: Ann. Rev. Control doi: 10.1016/j.arcontrol.2012.09.004 – volume: 23 start-page: 720 year: 2010 ident: 10.1016/j.ymssp.2017.06.008_b0180 article-title: Experimental analysis of wet mill load based on vibration signals of laboratory-scale ball mill shell publication-title: Miner. Eng. doi: 10.1016/j.mineng.2010.05.001 – ident: 10.1016/j.ymssp.2017.06.008_b0005 doi: 10.3724/SP.J.1004.2013.01744 – volume: 90 start-page: 56 issue: 1–4 year: 2009 ident: 10.1016/j.ymssp.2017.06.008_b0430 article-title: Grinding mill circuits-a survey of control and economic concerns publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2008.10.009 – volume: 23 start-page: 265 issue: 4 year: 2017 ident: 10.1016/j.ymssp.2017.06.008_b0065 article-title: Temperature Error Correction based on BP Neural Network in Meteorological WSN publication-title: Int. J. Sensor Netw. doi: 10.1504/IJSNET.2017.083532 – volume: 19 start-page: 334 year: 2008 ident: 10.1016/j.ymssp.2017.06.008_b0075 article-title: Machine fault feature extraction based on intrinsic mode functions publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/19/4/045105 – volume: 12 start-page: 993 year: 1990 ident: 10.1016/j.ymssp.2017.06.008_b0385 article-title: Neural network ensembles publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.58871 – volume: 10 start-page: 1044 year: 2014 ident: 10.1016/j.ymssp.2017.06.008_b0145 article-title: Power quality event classification under noisy conditions using EMD-based de-noising techniques publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2013.2289392 – volume: 42 start-page: 1330 year: 2009 ident: 10.1016/j.ymssp.2017.06.008_b0185 article-title: Feature selection with dynamic mutual information publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2008.10.028 – volume: 14 start-page: 1200 year: 2009 ident: 10.1016/j.ymssp.2017.06.008_b0025 article-title: Investigation on measuring the fill level of an industrial ball mill based on the vibration characteristics of the mill shell publication-title: Miner. Eng. doi: 10.1016/j.mineng.2009.06.008 – volume: 24 start-page: 245 year: 2011 ident: 10.1016/j.ymssp.2017.06.008_b0030 article-title: Interpretation of mill vibration signal via wireless sensing publication-title: Miner. Eng. doi: 10.1016/j.mineng.2010.08.014 – volume: 46 start-page: 1 year: 2013 ident: 10.1016/j.ymssp.2017.06.008_b0060 article-title: Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications publication-title: J. Chem. Eng. Jpn doi: 10.1252/jcej.12we167 – volume: 18 start-page: 97 year: 1998 ident: 10.1016/j.ymssp.2017.06.008_b0285 article-title: Machine-learning research: four current directions publication-title: AI Mag. – volume: 55 start-page: 633 year: 2008 ident: 10.1016/j.ymssp.2017.06.008_b0050 article-title: Fault detection in induction machines using power spectral density in wavelet decomposition publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2007.911960 – volume: 12 start-page: 48 year: 2017 ident: 10.1016/j.ymssp.2017.06.008_b0220 article-title: Effective and efficient global context verification for image copy detection publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2016.2601065 – year: 2017 ident: 10.1016/j.ymssp.2017.06.008_b0315 article-title: A self-adaptive artificial bee colony algorithm based on global best for global optimization publication-title: Soft. Comput. – volume: 10 start-page: 957 year: 2014 ident: 10.1016/j.ymssp.2017.06.008_b0140 article-title: EMD-based analysis of industrial induction motors with broken rotor bars for identification of operating point at different supply modes publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2013.2289941 – volume: 27 start-page: 340 issue: 2 year: 2016 ident: 10.1016/j.ymssp.2017.06.008_b0325 article-title: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2015.2401003 – volume: 7 start-page: 495 issue: 1994 year: 1994 ident: 10.1016/j.ymssp.2017.06.008_b0020 article-title: Monitoring grinding parameters by vibration signal measurement-a primary application publication-title: Miner. Eng. doi: 10.1016/0892-6875(94)90162-7 – volume: 61 start-page: 990 year: 2012 ident: 10.1016/j.ymssp.2017.06.008_b0150 article-title: Rotational machine health monitoring and fault detection using EMD-based acoustic emission feature quantification publication-title: IEEE Trans. Instr. Meas. doi: 10.1109/TIM.2011.2179819 – volume: 16 start-page: 646 year: 2011 ident: 10.1016/j.ymssp.2017.06.008_b0175 article-title: Vibration analysis based on empirical mode decomposition and partial least squares publication-title: Proc. Eng. doi: 10.1016/j.proeng.2011.08.1136 – volume: 125 start-page: 217 issue: 3 year: 2014 ident: 10.1016/j.ymssp.2017.06.008_b0345 article-title: A multi-objective evolutionary algorithm-based ensemble optimizer for feature selection and classification with neural network models publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.12.057 – volume: 26 start-page: 208 year: 2015 ident: 10.1016/j.ymssp.2017.06.008_b0210 article-title: Kernel association for classification and prediction: a survey publication-title: IEEE Trans. Neural Netw. Learning Syst. doi: 10.1109/TNNLS.2014.2333664 – volume: 86 start-page: 175 year: 2017 ident: 10.1016/j.ymssp.2017.06.008_b0155 article-title: Hidden defect recognition based on the improved ensemble empirical decomposition method and pulsed eddy current testing publication-title: NDT & E Int. doi: 10.1016/j.ndteint.2016.12.009 – ident: 10.1016/j.ymssp.2017.06.008_b0225 doi: 10.1587/transinf.2015EDP7341 – volume: 39 start-page: 35 issue: 1 year: 1997 ident: 10.1016/j.ymssp.2017.06.008_b0450 article-title: Assessing error rate estimators: the leave-one-out method reconsidered publication-title: Aust. J. Stat. doi: 10.1111/j.1467-842X.1997.tb00521.x – volume: 29 start-page: 183 year: 2012 ident: 10.1016/j.ymssp.2017.06.008_b0295 article-title: Ensemble modeling for parameters of ball-mill load in grinding process based on frequency spectrum of shell vibration publication-title: Chin. Control Theory Appl. – volume: 21 start-page: 2607 year: 2007 ident: 10.1016/j.ymssp.2017.06.008_b0045 article-title: Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform publication-title: J. Mech. Syst. Signal Process doi: 10.1016/j.ymssp.2006.12.004 – volume: 81 start-page: 202 year: 2016 ident: 10.1016/j.ymssp.2017.06.008_b0160 article-title: Pseudo-fault signal assisted EMD for fault detection and isolation in rotating machines publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2016.03.007 – volume: 137 start-page: 239 year: 2002 ident: 10.1016/j.ymssp.2017.06.008_b0360 article-title: Ensembling neural networks: many could be better than all publication-title: Artif. Intell. doi: 10.1016/S0004-3702(02)00190-X – ident: 10.1016/j.ymssp.2017.06.008_b0390 – volume: 55 start-page: 633 year: 2008 ident: 10.1016/j.ymssp.2017.06.008_b0100 article-title: Fault detection in induction machines using power spectral density in wavelet decomposition publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2007.911960 – volume: 10 start-page: 726 year: 2013 ident: 10.1016/j.ymssp.2017.06.008_b0365 article-title: Modeling load parameters of ball mill in grinding process based on selective ensemble multisensor information publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2012.2225142 – volume: 8 start-page: 19 year: 1996 ident: 10.1016/j.ymssp.2017.06.008_b0415 article-title: Cost reduction in grinding plants through process optimization and control publication-title: Miner. Metall. Process. – volume: 10 start-page: 507 issue: 3 year: 2015 ident: 10.1016/j.ymssp.2017.06.008_b0320 article-title: Segmentation-based image copy-move forgery detection scheme publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2014.2381872 – ident: 10.1016/j.ymssp.2017.06.008_b0460 doi: 10.1177/1550147717694172 – volume: 23 start-page: 1327 year: 2009 ident: 10.1016/j.ymssp.2017.06.008_b0090 article-title: Application of the EEMD method to rotor fault diagnosis of rotating machinery publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2008.11.005 |
| SSID | ssj0009406 |
| Score | 2.4065607 |
| Snippet | •A multi-layer selective ensemble (MLSEN) method for modeling mechanical signals is proposed.•The objective of MLSEN is to simulate domain experts’ cognitive... Frequency spectral data of mechanical vibration and acoustic signals relate to difficult-to-measure production quality and quantity parameters of complex... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 142 |
| SubjectTerms | Acoustics Adaptive algorithms Computer simulation Data integration Frequency spectrum Genetic algorithm Genetic algorithms Grinding mills Kernel partial least squares Mathematical models Mechanical vibration and acoustic signals Multi-layer selective ensemble Multisensor fusion Process parameters Selective information fusion Sensors Signaling Spectra Studies Vibration Vibration measurement |
| Title | Vibration and acoustic frequency spectra for industrial process modeling using selective fusion multi-condition samples and multi-source features |
| URI | https://dx.doi.org/10.1016/j.ymssp.2017.06.008 https://www.proquest.com/docview/1966074775 |
| Volume | 99 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: AKRWK dateStart: 19870101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLUQLDAgnqJQKg-MmDaJE9sjqkAFBAsPsVl2YqMiKFXTDiz8A3_MvU7CS6gDY9ubtPLj-N703HMIOcgyYQEaHVMOKh0ufMIgqU-Zk0liTE9Z5bBR-PIqG9zy8_v0foH0m14YpFXW2F9hekDr-p1uPZrd8XDYvYb9ActRwJICGI5jbOLjXKCLwdHbF81D8eCvicEMoxvlocDxen0uSxStjEQQ8USPyb9Pp184HQ6f0zWyWmeN9Lj6YetkwY02yMo3LcFN8n6HhS8OMzWjggLQBZ8u6icVWfqVhqbKiaGQptLhp2MHHVetAjR44sCtKFLhH2gZDHIAC6mf4RM1GqiHDMrnIrC8aGlQWLgM31Z9Vv0RQL0LYqHlFrk9PbnpD1jtt8DyJImmTJq0l0tpc-5dIdOYm8xE3KpCqszmNle5h_IvtbBnveUQa4scHf0KG3kjI59sk8XRy8jtEApVoYkBujKhUm5EbJSDVMRzB4FOct8icTPOOq_FyNET40k3rLNHHSZH4-TowL2TLXL4edG40uKYH541E6h_LCkNp8X8C9vNdOt6R5c6QhlTqL1Euvvf--6RZXiF3EEWpW2yOJ3M3D6kNFPbCWu2Q5aOzy4GVx-gS_tZ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TsQwELVgKYACcYqFBVxQYpYkdmKXCIGWs-EQnWUnNloEy2qzFDT8A3_MjJNwCVHQJpNDPp5nkuf3CNlO08wCNDqmHFQ6PPMJg6ReMCeTxJg9ZZXDjcLnF2nvmp_citsJctDshUFaZY39FaYHtK6PdOvW7A77_e4lzA8YjhkMKYDhOFaTZIqLOMMKbPf1k-eheDDYxGiG4Y30UCB5vTyWJapWRllQ8USTyd-Xpx9AHVafo3kyV6eNdL96swUy4QaLZPaLmOASebvByhfbmZpBQQHpglEX9aOKLf1Cw67KkaGQp9L-h2UHHVZ7BWgwxYFbUeTC39EyOOQAGFL_jJ_UaOAeMqifi0DzoqVBZeEyPK06V_0JoN4FtdBymVwfHV4d9FhtuMDyJInGTBqxl0tpc-5dIUXMTWoiblUhVWpzm6vcQ_0nLExabznE2iJHS7_CRt7IyCcrpDV4GrhVQqEsNDFgV5opwU0WG-UgF_HcQaCT3LdJ3LSzzms1cjTFeNAN7exeh87R2Dk6kO9km-x8XDSsxDj-Dk-bDtTfxpSG5eLvCztNd-t6Spc6Qh1TKL4ysfbf-26R6d7V-Zk-O744XSczcAaJhCwSHdIaj57dBuQ3Y7sZxu87ZUL87g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vibration+and+acoustic+frequency+spectra+for+industrial+process+modeling+using+selective+fusion+multi-condition+samples+and+multi-source+features&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Tang%2C+Jian&rft.au=Qiao%2C+Junfei&rft.au=Wu%2C+ZhiWei&rft.au=Chai%2C+Tianyou&rft.date=2018-01-15&rft.pub=Elsevier+BV&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=99&rft.spage=142&rft_id=info:doi/10.1016%2Fj.ymssp.2017.06.008&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |