Vibration and acoustic frequency spectra for industrial process modeling using selective fusion multi-condition samples and multi-source features

•A multi-layer selective ensemble (MLSEN) method for modeling mechanical signals is proposed.•The objective of MLSEN is to simulate domain experts’ cognitive process in industrial practice.•Selective information fusion based multi-condition samples and multi-source features is realized. Frequency sp...

Full description

Saved in:
Bibliographic Details
Published inMechanical systems and signal processing Vol. 99; pp. 142 - 168
Main Authors Tang, Jian, Qiao, Junfei, Wu, ZhiWei, Chai, Tianyou, Zhang, Jian, Yu, Wen
Format Journal Article
LanguageEnglish
Published Berlin Elsevier Ltd 15.01.2018
Elsevier BV
Subjects
Online AccessGet full text
ISSN0888-3270
1096-1216
DOI10.1016/j.ymssp.2017.06.008

Cover

Abstract •A multi-layer selective ensemble (MLSEN) method for modeling mechanical signals is proposed.•The objective of MLSEN is to simulate domain experts’ cognitive process in industrial practice.•Selective information fusion based multi-condition samples and multi-source features is realized. Frequency spectral data of mechanical vibration and acoustic signals relate to difficult-to-measure production quality and quantity parameters of complex industrial processes. A selective ensemble (SEN) algorithm can be used to build a soft sensor model of these process parameters by fusing valued information selectively from different perspectives. However, a combination of several optimized ensemble sub-models with SEN cannot guarantee the best prediction model. In this study, we use several techniques to construct mechanical vibration and acoustic frequency spectra of a data-driven industrial process parameter model based on selective fusion multi-condition samples and multi-source features. Multi-layer SEN (MLSEN) strategy is used to simulate the domain expert cognitive process. Genetic algorithm and kernel partial least squares are used to construct the inside-layer SEN sub-model based on each mechanical vibration and acoustic frequency spectral feature subset. Branch-and-bound and adaptive weighted fusion algorithms are integrated to select and combine outputs of the inside-layer SEN sub-models. Then, the outside-layer SEN is constructed. Thus, “sub-sampling training examples”-based and “manipulating input features”-based ensemble construction methods are integrated, thereby realizing the selective information fusion process based on multi-condition history samples and multi-source input features. This novel approach is applied to a laboratory-scale ball mill grinding process. A comparison with other methods indicates that the proposed MLSEN approach effectively models mechanical vibration and acoustic signals.
AbstractList •A multi-layer selective ensemble (MLSEN) method for modeling mechanical signals is proposed.•The objective of MLSEN is to simulate domain experts’ cognitive process in industrial practice.•Selective information fusion based multi-condition samples and multi-source features is realized. Frequency spectral data of mechanical vibration and acoustic signals relate to difficult-to-measure production quality and quantity parameters of complex industrial processes. A selective ensemble (SEN) algorithm can be used to build a soft sensor model of these process parameters by fusing valued information selectively from different perspectives. However, a combination of several optimized ensemble sub-models with SEN cannot guarantee the best prediction model. In this study, we use several techniques to construct mechanical vibration and acoustic frequency spectra of a data-driven industrial process parameter model based on selective fusion multi-condition samples and multi-source features. Multi-layer SEN (MLSEN) strategy is used to simulate the domain expert cognitive process. Genetic algorithm and kernel partial least squares are used to construct the inside-layer SEN sub-model based on each mechanical vibration and acoustic frequency spectral feature subset. Branch-and-bound and adaptive weighted fusion algorithms are integrated to select and combine outputs of the inside-layer SEN sub-models. Then, the outside-layer SEN is constructed. Thus, “sub-sampling training examples”-based and “manipulating input features”-based ensemble construction methods are integrated, thereby realizing the selective information fusion process based on multi-condition history samples and multi-source input features. This novel approach is applied to a laboratory-scale ball mill grinding process. A comparison with other methods indicates that the proposed MLSEN approach effectively models mechanical vibration and acoustic signals.
Frequency spectral data of mechanical vibration and acoustic signals relate to difficult-to-measure production quality and quantity parameters of complex industrial processes. A selective ensemble (SEN) algorithm can be used to build a soft sensor model of these process parameters by fusing valued information selectively from different perspectives. However, a combination of several optimized ensemble sub-models with SEN cannot guarantee the best prediction model. In this study, we use several techniques to construct mechanical vibration and acoustic frequency spectra of a data-driven industrial process parameter model based on selective fusion multi-condition samples and multi-source features. Multi-layer SEN (MLSEN) strategy is used to simulate the domain expert cognitive process. Genetic algorithm and kernel partial least squares are used to construct the inside-layer SEN sub-model based on each mechanical vibration and acoustic frequency spectral feature subset. Branch-and-bound and adaptive weighted fusion algorithms are integrated to select and combine outputs of the inside-layer SEN sub-models. Then, the outside-layer SEN is constructed. Thus, "sub-sampling training examples"-based and "manipulating input features"-based ensemble construction methods are integrated, thereby realizing the selective information fusion process based on multi-condition history samples and multi-source input features. This novel approach is applied to a laboratory-scale ball mill grinding process. A comparison with other methods indicates that the proposed MLSEN approach effectively models mechanical vibration and acoustic signals.
Author Qiao, Junfei
Tang, Jian
Wu, ZhiWei
Chai, Tianyou
Zhang, Jian
Yu, Wen
Author_xml – sequence: 1
  givenname: Jian
  orcidid: 0000-0001-9851-8462
  surname: Tang
  fullname: Tang, Jian
  email: freeflytang@bjut.edu.cn
  organization: Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
– sequence: 2
  givenname: Junfei
  surname: Qiao
  fullname: Qiao, Junfei
  organization: Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
– sequence: 3
  givenname: ZhiWei
  surname: Wu
  fullname: Wu, ZhiWei
  email: wuzhiwei_2017@126.com
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110189, China
– sequence: 4
  givenname: Tianyou
  surname: Chai
  fullname: Chai, Tianyou
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110189, China
– sequence: 5
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
  email: jianzhang_neu@163.com
  organization: School of Computer and Software, Nanjing University of Information Science & Technology, 210044, China
– sequence: 6
  givenname: Wen
  surname: Yu
  fullname: Yu, Wen
  email: yuw@ctrl.cinvestav.mx
  organization: Departamento de Control Automatico, CINVESTAV-IPN, Av.IPN 2508, México D.F. 07360, Mexico
BookMark eNqFkb-O1DAQxi10SOwdPAGNJeqE8SbrOAUFOsGBdBIN0Fr-M0ZeJXbwJCftY_DGeHepKKCxJc_3zTfz8y27STkhY68FtAKEfHtsTzPR0u5BDC3IFkA9YzsBo2zEXsgbtgOlVNPtB3jBbomOADD2IHfs1_doi1ljTtwkz43LG63R8VDw54bJnTgt6NZieMiFx-RruUQz8aVkh0R8zh6nmH7wjc4n4VTl8Ql5qA-167xNa2xcTj5eUsjMy4R0SbvWKG_FVT2adStIL9nzYCbCV3_uO_bt44ev95-axy8Pn-_fPzau68TaKHMAp5R1fUCvDvveSCN6O3o1SuusG13oYTjYUXbB9lVrvVNDD96KYJQI3R17c-1bN6mr0qqPdZBUI7UYpYShH4ZDVXVXlSuZqGDQS4mzKSctQJ_Z66O-sNdn9hqkruyra_zL5eJ6oVxJxuk_3ndXL9blnyIWTS7Wn0AfS0WrfY7_9P8GeZCpQA
CitedBy_id crossref_primary_10_1016_j_ymssp_2019_106371
crossref_primary_10_1109_ACCESS_2020_3015875
crossref_primary_10_1007_s11771_021_4629_6
crossref_primary_10_1016_j_ymssp_2024_111194
crossref_primary_10_1051_epjconf_202124914019
crossref_primary_10_3390_e21060540
crossref_primary_10_1016_j_jmapro_2023_11_038
crossref_primary_10_3390_min10110958
crossref_primary_10_1016_j_powtec_2022_117409
crossref_primary_10_1177_00202940221098048
crossref_primary_10_1016_j_mineng_2018_09_006
crossref_primary_10_1016_j_ymssp_2022_109012
crossref_primary_10_3390_e19100541
crossref_primary_10_1007_s00034_020_01410_0
crossref_primary_10_1016_j_ymssp_2019_01_011
crossref_primary_10_1016_j_ifacol_2018_09_392
crossref_primary_10_1109_TMECH_2019_2928967
crossref_primary_10_1016_j_ces_2021_117012
crossref_primary_10_1016_j_mtcomm_2022_104632
crossref_primary_10_1007_s00500_022_07449_2
crossref_primary_10_1016_j_ijhydene_2021_05_137
crossref_primary_10_1016_j_mineng_2020_106609
crossref_primary_10_1007_s00500_018_3373_9
crossref_primary_10_1016_j_ifacol_2018_09_353
Cites_doi 10.1016/j.neucom.2011.05.028
10.1109/TIE.2008.2004378
10.1016/S0967-0661(01)00088-0
10.1088/0957-0233/12/8/321
10.1146/annurev.fluid.31.1.417
10.1109/TPDS.2015.2506573
10.1002/cem.887
10.1016/j.jprocont.2011.10.002
10.1109/CC.2016.7559076
10.1109/TNNLS.2014.2342533
10.1109/TII.2013.2271979
10.1007/3-540-45164-1_41
10.1109/IPMM.1999.791509
10.1109/TBC.2015.2419824
10.3724/SP.J.1004.2013.00471
10.1109/TC.1977.1674939
10.1109/TPAMI.2004.28
10.1016/j.artint.2004.09.006
10.1016/j.neucom.2017.01.064
10.1109/TIM.2004.834066
10.1016/j.ins.2014.10.040
10.1016/j.jprocont.2009.09.002
10.1016/S0967-0661(02)00035-7
10.1016/j.ymssp.2006.12.004
10.1016/j.conengprac.2012.03.020
10.1109/34.709601
10.1109/TII.2016.2586419
10.1109/TPAMI.2006.211
10.1016/0892-6875(94)90162-7
10.1016/j.neucom.2017.05.047
10.1142/S1793536909000047
10.1016/j.neucom.2008.04.005
10.1016/j.compchemeng.2008.12.012
10.1109/WCICA.2014.7052838
10.1002/sec.1582
10.1177/1077546310395970
10.1109/TASE.2008.2011562
10.1016/j.triboint.2008.11.008
10.1016/j.ymssp.2015.04.028
10.1098/rspa.1998.0193
10.1016/j.jprocont.2014.01.012
10.1016/j.cie.2006.07.004
10.1007/s10852-005-9020-3
10.1016/j.arcontrol.2012.09.004
10.1016/j.mineng.2010.05.001
10.3724/SP.J.1004.2013.01744
10.1016/j.minpro.2008.10.009
10.1504/IJSNET.2017.083532
10.1088/0957-0233/19/4/045105
10.1109/34.58871
10.1109/TII.2013.2289392
10.1016/j.patcog.2008.10.028
10.1016/j.mineng.2009.06.008
10.1016/j.mineng.2010.08.014
10.1252/jcej.12we167
10.1109/TIE.2007.911960
10.1109/TIFS.2016.2601065
10.1109/TII.2013.2289941
10.1109/TPDS.2015.2401003
10.1109/TIM.2011.2179819
10.1016/j.proeng.2011.08.1136
10.1016/j.neucom.2012.12.057
10.1109/TNNLS.2014.2333664
10.1016/j.ndteint.2016.12.009
10.1587/transinf.2015EDP7341
10.1111/j.1467-842X.1997.tb00521.x
10.1016/j.ymssp.2016.03.007
10.1016/S0004-3702(02)00190-X
10.1109/TASE.2012.2225142
10.1109/TIFS.2014.2381872
10.1177/1550147717694172
10.1016/j.ymssp.2008.11.005
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Jan 15, 2018
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 15, 2018
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ymssp.2017.06.008
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
EndPage 168
ExternalDocumentID 10_1016_j_ymssp_2017_06_008
S0888327017303229
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
XPP
ZMT
ZU3
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
~HD
7SC
7SP
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c331t-8a50c88bc4fed8524a6a14b9d896bcbc9cf4075b963fb450cbdc8740db1fa81f3
IEDL.DBID .~1
ISSN 0888-3270
IngestDate Sun Jul 13 04:22:43 EDT 2025
Thu Oct 16 04:29:37 EDT 2025
Thu Apr 24 23:07:30 EDT 2025
Fri Feb 23 02:47:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Frequency spectrum
Selective information fusion
Kernel partial least squares
Mechanical vibration and acoustic signals
Multi-layer selective ensemble
Genetic algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-8a50c88bc4fed8524a6a14b9d896bcbc9cf4075b963fb450cbdc8740db1fa81f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9851-8462
PQID 1966074775
PQPubID 2045429
PageCount 27
ParticipantIDs proquest_journals_1966074775
crossref_primary_10_1016_j_ymssp_2017_06_008
crossref_citationtrail_10_1016_j_ymssp_2017_06_008
elsevier_sciencedirect_doi_10_1016_j_ymssp_2017_06_008
PublicationCentury 2000
PublicationDate 2018-01-15
PublicationDateYYYYMMDD 2018-01-15
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-15
  day: 15
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Mechanical systems and signal processing
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Wang, Gu, Ma, Yan (b0065) 2017; 23
Wu, Huang (b0135) 2009; 1
Faiz, Ghorbanian, Ebrahimi (b0140) 2014; 10
Xia, Wang, Sun, Wang (b0325) 2016; 27
Tang, Chai, Yu, Liu, Zhou (b0080) 2016; 12
Zhou, Wu, Tang (b0360) 2002; 137
J. Tang, W. Yu, T.Y. Chai, Modeling parameters of mill load based on dual layer selective ensemble learning strategy, in: Proceeding of the 11th World Congress on Intelligent Control and Automation (WCICA2014), Shenyang, June 29–July 4, 2014, pp. 916–921.
Tang, Chai, Zhao, Yue, Zheng (b0295) 2012; 29
Granitto, Verdes, Ceccatto (b0335) 2005; 163
Tang, Chai, Cong, Zhao, Liu, Yu (b0165) 2015; 32
B.J. Chen, J.H. Yang, B.W. Jeon, X.P. Zhang, Kernel quaternion principal component analysis and its application in RGB-D object recognition, Neurocomputing.
Shukla, Mishra, Singh (b0145) 2014; 10
Feng, Wang, Xu, Xu (b0035) 2012; 19
Kadlec, Gabrys, Strandt (b0055) 2009; 33
Z.L. Zhou, C.N. Yang, B.J. Chen, X.M. Sun, Q. Liu, Q.M.J. Wu, Effective and efficient image copy detection with resistance to arbitrary rotation, IEICE Trans. Inf. Syst. E99-D (2016) 1531–1540.
M.P. Perrone, L.N. Cooper, When networks disagree: ensemble methods for hybrid neural networks, Tech. Rep. A121062, Brown University, Institute for Brain and Neural Systems (Jan. 1993).
Zeng, Forssberg (b0020) 1994; 7
Rai, Mohanty (b0170) 2007; 21
Rosipal, Trejo (b0275) 2002; 2
Shang, Yang, Huang, Lyu (b0240) 2014; 24
Wang, Li, Shi, Lian, Ye (b0120) 2016
Fan, Zuo (b0075) 2008; 19
Jian, Li, Yang, Sun (b0320) 2015; 10
Das, Das, Behera, Mishra (b0030) 2011; 24
Tang, Zhao, Zhou, Yue, Chai (b0180) 2010; 23
Liu, Sun, Liu, Zhang (b0185) 2009; 42
Gu, Sheng (b0245) 2016; 1
Singh, AlKazzaz (b0095) 2009; 42
Tian, Chen (b0230) 2017; 238
Kano, Fujiwara (b0060) 2013; 46
Qin (b0205) 2012; 36
Su, Wang, Shen, Zhang, Chen (b0015) 2012; 22
Yuan, Sun, Lv (b0195) 2016; 13
Tang, Chai, Zhao, Yu, Yue (b0265) 2012; 78
Liu, Cai, Shen, Fu, Liu, Linge (b0350) 2016; 9
Z.G. Su, P.H. Wang, Improved adaptive evidential k-NN rule and its application for monitoring level of coal powder filling in ball mill, J. Process Control 19 (2009) 1751–1762.
Cusido, Romeral, Ortega, Rosero, Garcia Espinosa (b0100) 2008; 55
Hansen, Salamon (b0385) 1990; 12
Li, He (b0150) 2012; 61
Tang, Zhao, Yue, Yu, Chai (b0175) 2011; 16
Fu, Ren, Shu, Sun, Huang (b0330) 2016; 27
Huang, Jia, Zhong (b0025) 2009; 14
Rai, Mohanty (b0045) 2007; 21
.
Tan, Lim, Cheah (b0345) 2014; 125
Tang, Chai, Yu, Zhao (b0440) 2013; 39
Rodriguez, Kuncheva, Alonso (b0305) 2006; 28
Pan, Zhang, Kwong (b0200) 2015; 61
P. Zhou, T.Y. Chai, H. Wang, Intelligent optimal-setting control for grinding circuits of mineral processing, IEEE Trans. Automation Sci. Eng. 6 (2009) 730–743.
Wen, Shao, Xue, Fang (b0255) 2015; 295
T.K. Ho, The random subspace method for constructing decision forest, IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998) 832–844.
C. Tamon, J. Xiang, On the boosting pruning problem, in: 11th European Conference on Machine Learning (ECML 2000), Springer, Berlin, 2000.
Somol, Pudil, Kittler (b0405) 2004; 26
Krzanowski, Hand (b0450) 1997; 39
Seshadrinath, Singh, Panigrahi (b0110) 2014; 10
Xu, Li, Dong, Wang, Xu (b0410) 2001; 12
Z.L. Zhou, Q.M.J. Wu, F. Huang, X.M. Sun, Fast and accurate near-duplicate image elimination for visual sensor networks, Int. J. Distributed Sensor Netw. 13(2) (2017).
Liu, Huang, Zeng (b0155) 2017; 86
Tang, Chai, Yu, Zhao (b0365) 2013; 10
J. Tang, T.Y. Chai, Q.M. Cong, B.C. Yuan, L.J. Zhao, Z. Liu, W. Yu, Soft sensor approach for modeling mill load parameters based on EMD and selective ensemble learning algorithm, Acta Automatica Sinica 40 (2014) 1853–1866.
Cusido, Romeral, Ortega, Rosero, Garcia Espinosa (b0050) 2008; 55
Lo, Oblad, Herbst (b0415) 1996; 8
Gu, Sun, Sheng (b0235) 2016; 1
Thornhill, Shah, Huang, Vishnubhotla (b0040) 2002; 10
E.Z. Yu, S.Z. Cho, Ensemble based on GA wrapper feature selection, Comput. Ind. Eng. 51(2006) 111–116.
S.J. Spencer, J.J. Campbell, K.R. Weller, Y. Liu, Acoustic emissions monitoring of SAG mill performance, in: Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials, IPMM '99, 1999, pp. 936–946.
Charanpal, Gunn, John (b0270) 2008; 31
Lei, He, Zi (b0090) 2009; 23
Motai (b0210) 2015; 26
Zhou, Wang, Wu, Yang, Sun (b0220) 2017; 12
Dietterieg (b0285) 1998; 18
Singh, Zhao (b0160) 2016; 81
T.Y. Chai, Operational optimization and feedback control for complex industrial processes, Acta Automatica Sinica 39 (2013) 1744–1757.
Riera-Guasp, Antonino-Daviu, Pineda-Sanchez, Puche-Panadero, Perez-Cruz (b0105) 2008; 55
Huang, Shen, Long (b0130) 1998; 454
Huang, Shen, Long (b0380) 1999; 31
Cederkvist, Mevik (b0455) Sep 2004; 18
P.M. Narendra, K. Fukunaga, A branch and bound algorithm for feature subset selection, IEEE Trans. Comput. C-26 (1977) 917–922.
Hodouin, Jämsä-Jounela, Carvalho (b0070) 2001; 9
Xiong, Xu, Shi (b0125) 2017
Wei, Craig (b0430) 2009; 90
Y. Zeng, E. Forssberg, Monitoring grinding parameters by vibration signal measurement-a primary application, Miner. Eng. 7 (1994) 495–501.
Houck, Joines, Kay (b0395) 1995
Tang, Yu, Chai, Liu, Zhou (b0085) 2016; 66–67
Arjun, Yao (b0355) 2006; 5
Tang, Zhao, Yu, Yue, Chai (b0290) 2012; 78
Yu, Jiang, Zhao, Ma (b0315) 2017
Kankar (b0115) 2011; 17
Efron, Tibshirani (b0445) 1997; 2
Hao, Yang, Wen (b0190) 2009; 72
Tang, Chai, Wen, Zhao (b0250) 2012; 20
Gu, Sheng, Tay, Romano, Li (b0260) 2015; 26
Xu, Zhang, Yan (b0280) 2004; 53
Cusido (10.1016/j.ymssp.2017.06.008_b0100) 2008; 55
Singh (10.1016/j.ymssp.2017.06.008_b0095) 2009; 42
10.1016/j.ymssp.2017.06.008_b0370
Tan (10.1016/j.ymssp.2017.06.008_b0345) 2014; 125
Lo (10.1016/j.ymssp.2017.06.008_b0415) 1996; 8
10.1016/j.ymssp.2017.06.008_b0010
Hodouin (10.1016/j.ymssp.2017.06.008_b0070) 2001; 9
Yuan (10.1016/j.ymssp.2017.06.008_b0195) 2016; 13
Shang (10.1016/j.ymssp.2017.06.008_b0240) 2014; 24
Somol (10.1016/j.ymssp.2017.06.008_b0405) 2004; 26
Wei (10.1016/j.ymssp.2017.06.008_b0430) 2009; 90
Tang (10.1016/j.ymssp.2017.06.008_b0175) 2011; 16
Yu (10.1016/j.ymssp.2017.06.008_b0315) 2017
Tang (10.1016/j.ymssp.2017.06.008_b0265) 2012; 78
Hansen (10.1016/j.ymssp.2017.06.008_b0385) 1990; 12
Rai (10.1016/j.ymssp.2017.06.008_b0170) 2007; 21
10.1016/j.ymssp.2017.06.008_b0375
Hao (10.1016/j.ymssp.2017.06.008_b0190) 2009; 72
10.1016/j.ymssp.2017.06.008_b0215
Wen (10.1016/j.ymssp.2017.06.008_b0255) 2015; 295
Jian (10.1016/j.ymssp.2017.06.008_b0320) 2015; 10
Faiz (10.1016/j.ymssp.2017.06.008_b0140) 2014; 10
Krzanowski (10.1016/j.ymssp.2017.06.008_b0450) 1997; 39
Das (10.1016/j.ymssp.2017.06.008_b0030) 2011; 24
Fu (10.1016/j.ymssp.2017.06.008_b0330) 2016; 27
Tang (10.1016/j.ymssp.2017.06.008_b0085) 2016; 66–67
Huang (10.1016/j.ymssp.2017.06.008_b0380) 1999; 31
Kano (10.1016/j.ymssp.2017.06.008_b0060) 2013; 46
Zeng (10.1016/j.ymssp.2017.06.008_b0020) 1994; 7
Xu (10.1016/j.ymssp.2017.06.008_b0410) 2001; 12
Rosipal (10.1016/j.ymssp.2017.06.008_b0275) 2002; 2
10.1016/j.ymssp.2017.06.008_b0340
10.1016/j.ymssp.2017.06.008_b0460
Su (10.1016/j.ymssp.2017.06.008_b0015) 2012; 22
10.1016/j.ymssp.2017.06.008_b0300
Wang (10.1016/j.ymssp.2017.06.008_b0065) 2017; 23
Pan (10.1016/j.ymssp.2017.06.008_b0200) 2015; 61
10.1016/j.ymssp.2017.06.008_b0420
Gu (10.1016/j.ymssp.2017.06.008_b0260) 2015; 26
10.1016/j.ymssp.2017.06.008_b0425
Thornhill (10.1016/j.ymssp.2017.06.008_b0040) 2002; 10
10.1016/j.ymssp.2017.06.008_b0225
Tang (10.1016/j.ymssp.2017.06.008_b0365) 2013; 10
Huang (10.1016/j.ymssp.2017.06.008_b0025) 2009; 14
Tang (10.1016/j.ymssp.2017.06.008_b0080) 2016; 12
Charanpal (10.1016/j.ymssp.2017.06.008_b0270) 2008; 31
Arjun (10.1016/j.ymssp.2017.06.008_b0355) 2006; 5
Xu (10.1016/j.ymssp.2017.06.008_b0280) 2004; 53
Kadlec (10.1016/j.ymssp.2017.06.008_b0055) 2009; 33
Kankar (10.1016/j.ymssp.2017.06.008_b0115) 2011; 17
Houck (10.1016/j.ymssp.2017.06.008_b0395) 1995
Rai (10.1016/j.ymssp.2017.06.008_b0045) 2007; 21
Gu (10.1016/j.ymssp.2017.06.008_b0245) 2016; 1
Tian (10.1016/j.ymssp.2017.06.008_b0230) 2017; 238
10.1016/j.ymssp.2017.06.008_b0390
Qin (10.1016/j.ymssp.2017.06.008_b0205) 2012; 36
Granitto (10.1016/j.ymssp.2017.06.008_b0335) 2005; 163
10.1016/j.ymssp.2017.06.008_b0310
Zhou (10.1016/j.ymssp.2017.06.008_b0220) 2017; 12
Seshadrinath (10.1016/j.ymssp.2017.06.008_b0110) 2014; 10
Xia (10.1016/j.ymssp.2017.06.008_b0325) 2016; 27
Shukla (10.1016/j.ymssp.2017.06.008_b0145) 2014; 10
10.1016/j.ymssp.2017.06.008_b0435
Tang (10.1016/j.ymssp.2017.06.008_b0440) 2013; 39
Motai (10.1016/j.ymssp.2017.06.008_b0210) 2015; 26
Huang (10.1016/j.ymssp.2017.06.008_b0130) 1998; 454
Cederkvist (10.1016/j.ymssp.2017.06.008_b0455) 2004; 18
Tang (10.1016/j.ymssp.2017.06.008_b0290) 2012; 78
Efron (10.1016/j.ymssp.2017.06.008_b0445) 1997; 2
Tang (10.1016/j.ymssp.2017.06.008_b0165) 2015; 32
Rodriguez (10.1016/j.ymssp.2017.06.008_b0305) 2006; 28
Cusido (10.1016/j.ymssp.2017.06.008_b0050) 2008; 55
Liu (10.1016/j.ymssp.2017.06.008_b0155) 2017; 86
Zhou (10.1016/j.ymssp.2017.06.008_b0360) 2002; 137
Feng (10.1016/j.ymssp.2017.06.008_b0035) 2012; 19
Liu (10.1016/j.ymssp.2017.06.008_b0185) 2009; 42
Tang (10.1016/j.ymssp.2017.06.008_b0180) 2010; 23
Dietterieg (10.1016/j.ymssp.2017.06.008_b0285) 1998; 18
10.1016/j.ymssp.2017.06.008_b0400
Gu (10.1016/j.ymssp.2017.06.008_b0235) 2016; 1
Riera-Guasp (10.1016/j.ymssp.2017.06.008_b0105) 2008; 55
Xiong (10.1016/j.ymssp.2017.06.008_b0125) 2017
10.1016/j.ymssp.2017.06.008_b0005
Tang (10.1016/j.ymssp.2017.06.008_b0250) 2012; 20
Li (10.1016/j.ymssp.2017.06.008_b0150) 2012; 61
Liu (10.1016/j.ymssp.2017.06.008_b0350) 2016; 9
Wu (10.1016/j.ymssp.2017.06.008_b0135) 2009; 1
Tang (10.1016/j.ymssp.2017.06.008_b0295) 2012; 29
Singh (10.1016/j.ymssp.2017.06.008_b0160) 2016; 81
Lei (10.1016/j.ymssp.2017.06.008_b0090) 2009; 23
Wang (10.1016/j.ymssp.2017.06.008_b0120) 2016
Fan (10.1016/j.ymssp.2017.06.008_b0075) 2008; 19
References_xml – volume: 66–67
  start-page: 485
  year: 2016
  end-page: 504
  ident: b0085
  article-title: Selective ensemble modeling load parameters of ball mill based on multi-scale frequency spectral features and sphere criterion
  publication-title: Mech. Syst. Signal Process.
– volume: 55
  start-page: 633
  year: 2008
  end-page: 643
  ident: b0050
  article-title: Fault detection in induction machines using power spectral density in wavelet decomposition
  publication-title: IEEE Trans. Ind. Electron.
– volume: 36
  start-page: 220
  year: 2012
  end-page: 234
  ident: b0205
  article-title: Survey on data-driven industrial process monitoring and diagnosis
  publication-title: Ann. Rev. Control
– volume: 1
  start-page: 1
  year: 2016
  end-page: 8
  ident: b0245
  article-title: A robust regularization path algorithm for ν-support vector classification
  publication-title: IEEE Trans. Neural Netw. Learning Syst.
– volume: 18
  start-page: 97
  year: 1998
  end-page: 136
  ident: b0285
  article-title: Machine-learning research: four current directions
  publication-title: AI Mag.
– reference: P. Zhou, T.Y. Chai, H. Wang, Intelligent optimal-setting control for grinding circuits of mineral processing, IEEE Trans. Automation Sci. Eng. 6 (2009) 730–743.
– volume: 12
  start-page: 2008
  year: 2016
  end-page: 2019
  ident: b0080
  article-title: A Comparative study that measures ball mill load parameters through different single-scale and multi-scale frequency spectra-based approaches
  publication-title: IEEE Trans. Ind. Inf.
– volume: 20
  start-page: 991
  year: 2012
  end-page: 1004
  ident: b0250
  article-title: Feature extraction and selection based on vibration spectrum with application to estimating the load parameters of ball mill in grinding process
  publication-title: Control Eng. Pract.
– volume: 16
  start-page: 646
  year: 2011
  end-page: 652
  ident: b0175
  article-title: Vibration analysis based on empirical mode decomposition and partial least squares
  publication-title: Proc. Eng.
– volume: 137
  start-page: 239
  year: 2002
  end-page: 263
  ident: b0360
  article-title: Ensembling neural networks: many could be better than all
  publication-title: Artif. Intell.
– volume: 10
  start-page: 957
  year: 2014
  end-page: 966
  ident: b0140
  article-title: EMD-based analysis of industrial induction motors with broken rotor bars for identification of operating point at different supply modes
  publication-title: IEEE Trans. Ind. Inf.
– reference: T.K. Ho, The random subspace method for constructing decision forest, IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998) 832–844.
– volume: 31
  start-page: 1347
  year: 2008
  end-page: 1361
  ident: b0270
  article-title: Efficient sparse kernel feature extraction based on partial least squares
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 55
  start-page: 633
  year: 2008
  end-page: 643
  ident: b0100
  article-title: Fault detection in induction machines using power spectral density in wavelet decomposition
  publication-title: IEEE Trans. Ind. Electron.
– volume: 28
  start-page: 1619
  year: 2006
  end-page: 1630
  ident: b0305
  article-title: Rotation forest: a new classifier ensemble method
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Z.G. Su, P.H. Wang, Improved adaptive evidential k-NN rule and its application for monitoring level of coal powder filling in ball mill, J. Process Control 19 (2009) 1751–1762.
– volume: 24
  start-page: 223
  year: 2014
  end-page: 233
  ident: b0240
  article-title: Data-driven soft sensor development based on deep learning technique
  publication-title: J. Process Control
– volume: 295
  start-page: 395
  year: 2015
  end-page: 406
  ident: b0255
  article-title: A rapid learning algorithm for vehicle classification
  publication-title: Inf. Sci.
– volume: 18
  start-page: 422
  year: Sep 2004
  end-page: 429
  ident: b0455
  article-title: Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR)
  publication-title: J. Chemom.
– volume: 2
  start-page: 97
  year: 2002
  end-page: 123
  ident: b0275
  article-title: Kernel partial least squares regression in reproducing kernel Hilbert space
  publication-title: J. Mach. Learning Res.
– volume: 12
  start-page: 993
  year: 1990
  end-page: 1001
  ident: b0385
  article-title: Neural network ensembles
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 46
  start-page: 1
  year: 2013
  end-page: 17
  ident: b0060
  article-title: Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications
  publication-title: J. Chem. Eng. Jpn
– volume: 27
  start-page: 340
  year: 2016
  end-page: 352
  ident: b0325
  article-title: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– reference: E.Z. Yu, S.Z. Cho, Ensemble based on GA wrapper feature selection, Comput. Ind. Eng. 51(2006) 111–116.
– volume: 238
  start-page: 286
  year: 2017
  end-page: 295
  ident: b0230
  article-title: Cross-heterogeneous-database age estimation through correlation representation learning
  publication-title: Neurocomputing
– volume: 61
  start-page: 990
  year: 2012
  end-page: 1001
  ident: b0150
  article-title: Rotational machine health monitoring and fault detection using EMD-based acoustic emission feature quantification
  publication-title: IEEE Trans. Instr. Meas.
– reference: T.Y. Chai, Operational optimization and feedback control for complex industrial processes, Acta Automatica Sinica 39 (2013) 1744–1757.
– volume: 9
  start-page: 4002
  year: 2016
  end-page: 4012
  ident: b0350
  article-title: A speculative approach to spatial-temporal efficiency with multi-objective optimization in a heterogeneous cloud environment
  publication-title: Secur. Commun. Netw.
– volume: 21
  start-page: 2607
  year: 2007
  end-page: 2615
  ident: b0170
  article-title: Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform
  publication-title: Mech. Syst. Signal Process.
– volume: 23
  start-page: 1327
  year: 2009
  end-page: 1338
  ident: b0090
  article-title: Application of the EEMD method to rotor fault diagnosis of rotating machinery
  publication-title: Mech. Syst. Signal Process.
– volume: 125
  start-page: 217
  year: 2014
  end-page: 228
  ident: b0345
  article-title: A multi-objective evolutionary algorithm-based ensemble optimizer for feature selection and classification with neural network models
  publication-title: Neurocomputing
– volume: 31
  start-page: 417
  year: 1999
  end-page: 457
  ident: b0380
  article-title: A new view of nonlinear water waves: the Hilbert spectrum
  publication-title: Annu. Rev. Fluid Mech.
– volume: 61
  start-page: 166
  year: 2015
  end-page: 176
  ident: b0200
  article-title: Efficient motion and disparity estimation optimization for low complexity multiview video coding
  publication-title: IEEE Trans. Broadcast.
– reference: Y. Zeng, E. Forssberg, Monitoring grinding parameters by vibration signal measurement-a primary application, Miner. Eng. 7 (1994) 495–501.
– volume: 7
  start-page: 495
  year: 1994
  end-page: 501
  ident: b0020
  article-title: Monitoring grinding parameters by vibration signal measurement-a primary application
  publication-title: Miner. Eng.
– volume: 23
  start-page: 265
  year: 2017
  end-page: 278
  ident: b0065
  article-title: Temperature Error Correction based on BP Neural Network in Meteorological WSN
  publication-title: Int. J. Sensor Netw.
– volume: 10
  start-page: 1044
  year: 2014
  end-page: 1054
  ident: b0145
  article-title: Power quality event classification under noisy conditions using EMD-based de-noising techniques
  publication-title: IEEE Trans. Ind. Inf.
– reference: S.J. Spencer, J.J. Campbell, K.R. Weller, Y. Liu, Acoustic emissions monitoring of SAG mill performance, in: Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials, IPMM '99, 1999, pp. 936–946.
– volume: 55
  start-page: 4167
  year: 2008
  end-page: 4180
  ident: b0105
  article-title: A general approach for the transient detection of slip-dependent fault components based on the discrete wavelet transform
  publication-title: IEEE Trans. Ind. Electron.
– volume: 53
  start-page: 1539
  year: 2004
  end-page: 1544
  ident: b0280
  article-title: A wavelet-based multisensor data fusion algorithm
  publication-title: IEEE Trans. Instr. Meas.
– start-page: 1
  year: 2016
  end-page: 17
  ident: b0120
  article-title: Forensics feature analysis in quaternion wavelet domain for distinguishing photographic images and computer graphics
  publication-title: Multimedia Tools and Applications
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: b0130
  article-title: The empirical mode decomposition and the Hilbert spectrum for non-linear and non stationary time series analysis
  publication-title: Proc. Royal Soc. London A
– volume: 26
  start-page: 1403
  year: 2015
  end-page: 1416
  ident: b0260
  article-title: Incremental support vector learning for ordinal regression
  publication-title: IEEE Trans. Neural Netw. Learning Syst.
– volume: 27
  start-page: 2546
  year: 2016
  end-page: 2559
  ident: b0330
  article-title: Enabling personalized search over encrypted outsourced data with efficiency improvement
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 1
  start-page: 1
  year: 2009
  end-page: 41
  ident: b0135
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Advances in Adaptive Data Analysis
– volume: 14
  start-page: 1200
  year: 2009
  end-page: 1208
  ident: b0025
  article-title: Investigation on measuring the fill level of an industrial ball mill based on the vibration characteristics of the mill shell
  publication-title: Miner. Eng.
– volume: 78
  start-page: 38
  year: 2012
  end-page: 47
  ident: b0290
  article-title: Soft sensor for parameters of mill load based on multi-spectral segments PLS sub-models and on-line adaptive weighted fusion algorithm
  publication-title: Neurocomputing
– volume: 81
  start-page: 202
  year: 2016
  end-page: 218
  ident: b0160
  article-title: Pseudo-fault signal assisted EMD for fault detection and isolation in rotating machines
  publication-title: Mech. Syst. Signal Process.
– volume: 13
  start-page: 60
  year: 2016
  end-page: 65
  ident: b0195
  article-title: Fingerprint liveness detection based on multi-scale LPQ and PCA
  publication-title: China Commun.
– volume: 26
  start-page: 900
  year: 2004
  end-page: 913
  ident: b0405
  article-title: Fast branch & bound algorithms for optimal feature selection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: J. Tang, T.Y. Chai, Q.M. Cong, B.C. Yuan, L.J. Zhao, Z. Liu, W. Yu, Soft sensor approach for modeling mill load parameters based on EMD and selective ensemble learning algorithm, Acta Automatica Sinica 40 (2014) 1853–1866.
– volume: 90
  start-page: 56
  year: 2009
  end-page: 66
  ident: b0430
  article-title: Grinding mill circuits-a survey of control and economic concerns
  publication-title: Int. J. Miner. Process.
– volume: 9
  start-page: 995
  year: 2001
  end-page: 1005
  ident: b0070
  article-title: State of the art and challenges in mineral processing control
  publication-title: Control Eng. Pract.
– volume: 78
  start-page: 38
  year: 2012
  end-page: 47
  ident: b0265
  article-title: Soft sensor for parameters of mill load based on multi-spectral segments PLS sub-models and on-line adaptive weighted fusion algorithm
  publication-title: Neurocomputing
– volume: 42
  start-page: 849
  year: 2009
  end-page: 861
  ident: b0095
  article-title: Isolation and identification of dry bearing faults in induction machine using wavelet transform
  publication-title: Tribol. Int.
– volume: 8
  start-page: 19
  year: 1996
  end-page: 21
  ident: b0415
  article-title: Cost reduction in grinding plants through process optimization and control
  publication-title: Miner. Metall. Process.
– volume: 24
  start-page: 245
  year: 2011
  end-page: 251
  ident: b0030
  article-title: Interpretation of mill vibration signal via wireless sensing
  publication-title: Miner. Eng.
– volume: 33
  start-page: 795
  year: 2009
  end-page: 814
  ident: b0055
  article-title: Data-driven soft sensors in the process industry
  publication-title: Comput. Chem. Eng.
– reference: Z.L. Zhou, C.N. Yang, B.J. Chen, X.M. Sun, Q. Liu, Q.M.J. Wu, Effective and efficient image copy detection with resistance to arbitrary rotation, IEICE Trans. Inf. Syst. E99-D (2016) 1531–1540.
– volume: 163
  start-page: 139
  year: 2005
  end-page: 162
  ident: b0335
  article-title: Neural networks ensembles: evaluation of aggregation algorithms
  publication-title: Artif. Intell.
– volume: 10
  start-page: 726
  year: 2013
  end-page: 740
  ident: b0365
  article-title: Modeling load parameters of ball mill in grinding process based on selective ensemble multisensor information
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 42
  start-page: 1330
  year: 2009
  end-page: 1339
  ident: b0185
  article-title: Feature selection with dynamic mutual information
  publication-title: Pattern Recogn.
– volume: 22
  start-page: 108
  year: 2012
  end-page: 124
  ident: b0015
  article-title: Convenient T-S fuzzy model with enhanced performance using a novel swarm intelligent fuzzy clustering technique
  publication-title: J. Process Control
– start-page: 1
  year: 2017
  end-page: 12
  ident: b0125
  article-title: An integer wavelet transform based scheme for reversible data hiding in encrypted images
  publication-title: Multidimension. Syst. Signal Process.
– reference: J. Tang, W. Yu, T.Y. Chai, Modeling parameters of mill load based on dual layer selective ensemble learning strategy, in: Proceeding of the 11th World Congress on Intelligent Control and Automation (WCICA2014), Shenyang, June 29–July 4, 2014, pp. 916–921.
– volume: 26
  start-page: 208
  year: 2015
  end-page: 223
  ident: b0210
  article-title: Kernel association for classification and prediction: a survey
  publication-title: IEEE Trans. Neural Netw. Learning Syst.
– volume: 12
  start-page: 1139
  year: 2001
  end-page: 1146
  ident: b0410
  article-title: Optimum estimation of the mean flow velocity for the multi-electrode inductance flowmeter
  publication-title: Meas. Sci. Technol.
– year: 2017
  ident: b0315
  article-title: A self-adaptive artificial bee colony algorithm based on global best for global optimization
  publication-title: Soft. Comput.
– volume: 17
  start-page: 2081
  year: 2011
  end-page: 2094
  ident: b0115
  article-title: S. C. S. harma, S. P. Harsha, Rolling element bearing fault diagnosis using auto correlation and continuous wavelet transform
  publication-title: J. Vib. Control
– volume: 39
  start-page: 35
  year: 1997
  end-page: 46
  ident: b0450
  article-title: Assessing error rate estimators: the leave-one-out method reconsidered
  publication-title: Aust. J. Stat.
– reference: B.J. Chen, J.H. Yang, B.W. Jeon, X.P. Zhang, Kernel quaternion principal component analysis and its application in RGB-D object recognition, Neurocomputing.
– volume: 1
  start-page: 1
  year: 2016
  end-page: 11
  ident: b0235
  article-title: Structural minimax probability machine
  publication-title: IEEE Trans. Neural Netw. Learning Syst.
– reference: Z.L. Zhou, Q.M.J. Wu, F. Huang, X.M. Sun, Fast and accurate near-duplicate image elimination for visual sensor networks, Int. J. Distributed Sensor Netw. 13(2) (2017).
– volume: 23
  start-page: 720
  year: 2010
  end-page: 730
  ident: b0180
  article-title: Experimental analysis of wet mill load based on vibration signals of laboratory-scale ball mill shell
  publication-title: Miner. Eng.
– volume: 10
  start-page: 507
  year: 2015
  end-page: 518
  ident: b0320
  article-title: Segmentation-based image copy-move forgery detection scheme
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: 10
  start-page: 833
  year: 2002
  end-page: 846
  ident: b0040
  article-title: Spectral principal component analysis of dynamic process data
  publication-title: Control Eng. Pract.
– volume: 72
  start-page: 991
  year: 2009
  end-page: 999
  ident: b0190
  article-title: An efficient gene selection algorithm based on mutual information
  publication-title: Neurocomputing
– volume: 19
  start-page: 334
  year: 2008
  end-page: 340
  ident: b0075
  article-title: Machine fault feature extraction based on intrinsic mode functions
  publication-title: Meas. Sci. Technol.
– volume: 10
  start-page: 340
  year: 2014
  end-page: 350
  ident: b0110
  article-title: Vibration analysis based interturn fault diagnosis in induction machines
  publication-title: Trans. Ind. Inf.
– volume: 21
  start-page: 2607
  year: 2007
  end-page: 2615
  ident: b0045
  article-title: Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform
  publication-title: J. Mech. Syst. Signal Process
– volume: 29
  start-page: 183
  year: 2012
  end-page: 201
  ident: b0295
  article-title: Ensemble modeling for parameters of ball-mill load in grinding process based on frequency spectrum of shell vibration
  publication-title: Chin. Control Theory Appl.
– volume: 12
  start-page: 48
  year: 2017
  end-page: 63
  ident: b0220
  article-title: Effective and efficient global context verification for image copy detection
  publication-title: IEEE Trans. Inf. Forensics Secur.
– year: 1995
  ident: b0395
  article-title: A Genetic Algorithm for Function Optimization: A Matlab Implementation, Technical Report: NCSU-IE-TR-95-09
– volume: 19
  start-page: 66
  year: 2012
  end-page: 69
  ident: b0035
  article-title: An on-line mill load monitoring system based on shell vibration signals
  publication-title: Mining Metall.
– reference: .
– volume: 2
  start-page: 548
  year: 1997
  end-page: 560
  ident: b0445
  article-title: Improvements on cross-validation: the 632+ bootstrap method
  publication-title: J. Am. Stat. Assoc.
– reference: C. Tamon, J. Xiang, On the boosting pruning problem, in: 11th European Conference on Machine Learning (ECML 2000), Springer, Berlin, 2000.
– volume: 39
  start-page: 471
  year: 2013
  end-page: 486
  ident: b0440
  article-title: On-line KPLS algorithm with application to ensemble modeling parameters of mill load
  publication-title: Acta Automatica Sinica
– volume: 5
  start-page: 417
  year: 2006
  end-page: 445
  ident: b0355
  article-title: Ensemble learning using multi-objective evolutionary algorithms
  publication-title: J. Math. Model. Algorithms Oper. Res.
– volume: 32
  start-page: 1582
  year: 2015
  end-page: 1591
  ident: b0165
  article-title: Modeling mill load parameters based on selective fusion of multi-scale shell vibration frequency spectrum
  publication-title: Control Theory Appl.
– volume: 86
  start-page: 175
  year: 2017
  end-page: 185
  ident: b0155
  article-title: Hidden defect recognition based on the improved ensemble empirical decomposition method and pulsed eddy current testing
  publication-title: NDT & E Int.
– reference: M.P. Perrone, L.N. Cooper, When networks disagree: ensemble methods for hybrid neural networks, Tech. Rep. A121062, Brown University, Institute for Brain and Neural Systems (Jan. 1993).
– reference: P.M. Narendra, K. Fukunaga, A branch and bound algorithm for feature subset selection, IEEE Trans. Comput. C-26 (1977) 917–922.
– volume: 78
  start-page: 38
  year: 2012
  ident: 10.1016/j.ymssp.2017.06.008_b0290
  article-title: Soft sensor for parameters of mill load based on multi-spectral segments PLS sub-models and on-line adaptive weighted fusion algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.05.028
– volume: 55
  start-page: 4167
  year: 2008
  ident: 10.1016/j.ymssp.2017.06.008_b0105
  article-title: A general approach for the transient detection of slip-dependent fault components based on the discrete wavelet transform
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2008.2004378
– volume: 9
  start-page: 995
  year: 2001
  ident: 10.1016/j.ymssp.2017.06.008_b0070
  article-title: State of the art and challenges in mineral processing control
  publication-title: Control Eng. Pract.
  doi: 10.1016/S0967-0661(01)00088-0
– volume: 12
  start-page: 1139
  year: 2001
  ident: 10.1016/j.ymssp.2017.06.008_b0410
  article-title: Optimum estimation of the mean flow velocity for the multi-electrode inductance flowmeter
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/12/8/321
– volume: 31
  start-page: 417
  year: 1999
  ident: 10.1016/j.ymssp.2017.06.008_b0380
  article-title: A new view of nonlinear water waves: the Hilbert spectrum
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.31.1.417
– start-page: 1
  year: 2016
  ident: 10.1016/j.ymssp.2017.06.008_b0120
  article-title: Forensics feature analysis in quaternion wavelet domain for distinguishing photographic images and computer graphics
  publication-title: Multimedia Tools and Applications
– volume: 27
  start-page: 2546
  issue: 9
  year: 2016
  ident: 10.1016/j.ymssp.2017.06.008_b0330
  article-title: Enabling personalized search over encrypted outsourced data with efficiency improvement
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2015.2506573
– volume: 18
  start-page: 422
  issue: 9
  year: 2004
  ident: 10.1016/j.ymssp.2017.06.008_b0455
  article-title: Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR)
  publication-title: J. Chemom.
  doi: 10.1002/cem.887
– volume: 22
  start-page: 108
  year: 2012
  ident: 10.1016/j.ymssp.2017.06.008_b0015
  article-title: Convenient T-S fuzzy model with enhanced performance using a novel swarm intelligent fuzzy clustering technique
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2011.10.002
– volume: 13
  start-page: 60
  year: 2016
  ident: 10.1016/j.ymssp.2017.06.008_b0195
  article-title: Fingerprint liveness detection based on multi-scale LPQ and PCA
  publication-title: China Commun.
  doi: 10.1109/CC.2016.7559076
– volume: 26
  start-page: 1403
  year: 2015
  ident: 10.1016/j.ymssp.2017.06.008_b0260
  article-title: Incremental support vector learning for ordinal regression
  publication-title: IEEE Trans. Neural Netw. Learning Syst.
  doi: 10.1109/TNNLS.2014.2342533
– volume: 10
  start-page: 340
  year: 2014
  ident: 10.1016/j.ymssp.2017.06.008_b0110
  article-title: Vibration analysis based interturn fault diagnosis in induction machines
  publication-title: Trans. Ind. Inf.
  doi: 10.1109/TII.2013.2271979
– ident: 10.1016/j.ymssp.2017.06.008_b0340
  doi: 10.1007/3-540-45164-1_41
– ident: 10.1016/j.ymssp.2017.06.008_b0435
  doi: 10.1109/IPMM.1999.791509
– volume: 61
  start-page: 166
  issue: 2
  year: 2015
  ident: 10.1016/j.ymssp.2017.06.008_b0200
  article-title: Efficient motion and disparity estimation optimization for low complexity multiview video coding
  publication-title: IEEE Trans. Broadcast.
  doi: 10.1109/TBC.2015.2419824
– volume: 39
  start-page: 471
  year: 2013
  ident: 10.1016/j.ymssp.2017.06.008_b0440
  article-title: On-line KPLS algorithm with application to ensemble modeling parameters of mill load
  publication-title: Acta Automatica Sinica
  doi: 10.3724/SP.J.1004.2013.00471
– ident: 10.1016/j.ymssp.2017.06.008_b0400
  doi: 10.1109/TC.1977.1674939
– volume: 26
  start-page: 900
  year: 2004
  ident: 10.1016/j.ymssp.2017.06.008_b0405
  article-title: Fast branch & bound algorithms for optimal feature selection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.28
– start-page: 1
  year: 2017
  ident: 10.1016/j.ymssp.2017.06.008_b0125
  article-title: An integer wavelet transform based scheme for reversible data hiding in encrypted images
  publication-title: Multidimension. Syst. Signal Process.
– volume: 163
  start-page: 139
  year: 2005
  ident: 10.1016/j.ymssp.2017.06.008_b0335
  article-title: Neural networks ensembles: evaluation of aggregation algorithms
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2004.09.006
– volume: 238
  start-page: 286
  year: 2017
  ident: 10.1016/j.ymssp.2017.06.008_b0230
  article-title: Cross-heterogeneous-database age estimation through correlation representation learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.064
– volume: 53
  start-page: 1539
  year: 2004
  ident: 10.1016/j.ymssp.2017.06.008_b0280
  article-title: A wavelet-based multisensor data fusion algorithm
  publication-title: IEEE Trans. Instr. Meas.
  doi: 10.1109/TIM.2004.834066
– volume: 2
  start-page: 548
  issue: 438
  year: 1997
  ident: 10.1016/j.ymssp.2017.06.008_b0445
  article-title: Improvements on cross-validation: the 632+ bootstrap method
  publication-title: J. Am. Stat. Assoc.
– volume: 295
  start-page: 395
  year: 2015
  ident: 10.1016/j.ymssp.2017.06.008_b0255
  article-title: A rapid learning algorithm for vehicle classification
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.10.040
– year: 1995
  ident: 10.1016/j.ymssp.2017.06.008_b0395
– ident: 10.1016/j.ymssp.2017.06.008_b0375
– ident: 10.1016/j.ymssp.2017.06.008_b0010
  doi: 10.1016/j.jprocont.2009.09.002
– volume: 10
  start-page: 833
  year: 2002
  ident: 10.1016/j.ymssp.2017.06.008_b0040
  article-title: Spectral principal component analysis of dynamic process data
  publication-title: Control Eng. Pract.
  doi: 10.1016/S0967-0661(02)00035-7
– volume: 21
  start-page: 2607
  year: 2007
  ident: 10.1016/j.ymssp.2017.06.008_b0170
  article-title: Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2006.12.004
– volume: 2
  start-page: 97
  year: 2002
  ident: 10.1016/j.ymssp.2017.06.008_b0275
  article-title: Kernel partial least squares regression in reproducing kernel Hilbert space
  publication-title: J. Mach. Learning Res.
– volume: 20
  start-page: 991
  year: 2012
  ident: 10.1016/j.ymssp.2017.06.008_b0250
  article-title: Feature extraction and selection based on vibration spectrum with application to estimating the load parameters of ball mill in grinding process
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2012.03.020
– ident: 10.1016/j.ymssp.2017.06.008_b0300
  doi: 10.1109/34.709601
– volume: 12
  start-page: 2008
  year: 2016
  ident: 10.1016/j.ymssp.2017.06.008_b0080
  article-title: A Comparative study that measures ball mill load parameters through different single-scale and multi-scale frequency spectra-based approaches
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2016.2586419
– volume: 28
  start-page: 1619
  year: 2006
  ident: 10.1016/j.ymssp.2017.06.008_b0305
  article-title: Rotation forest: a new classifier ensemble method
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.211
– ident: 10.1016/j.ymssp.2017.06.008_b0425
  doi: 10.1016/0892-6875(94)90162-7
– volume: 19
  start-page: 66
  year: 2012
  ident: 10.1016/j.ymssp.2017.06.008_b0035
  article-title: An on-line mill load monitoring system based on shell vibration signals
  publication-title: Mining Metall.
– ident: 10.1016/j.ymssp.2017.06.008_b0215
  doi: 10.1016/j.neucom.2017.05.047
– volume: 1
  start-page: 1
  year: 2009
  ident: 10.1016/j.ymssp.2017.06.008_b0135
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Advances in Adaptive Data Analysis
  doi: 10.1142/S1793536909000047
– volume: 72
  start-page: 991
  year: 2009
  ident: 10.1016/j.ymssp.2017.06.008_b0190
  article-title: An efficient gene selection algorithm based on mutual information
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.04.005
– volume: 78
  start-page: 38
  year: 2012
  ident: 10.1016/j.ymssp.2017.06.008_b0265
  article-title: Soft sensor for parameters of mill load based on multi-spectral segments PLS sub-models and on-line adaptive weighted fusion algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.05.028
– volume: 33
  start-page: 795
  year: 2009
  ident: 10.1016/j.ymssp.2017.06.008_b0055
  article-title: Data-driven soft sensors in the process industry
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2008.12.012
– volume: 1
  start-page: 1
  year: 2016
  ident: 10.1016/j.ymssp.2017.06.008_b0245
  article-title: A robust regularization path algorithm for ν-support vector classification
  publication-title: IEEE Trans. Neural Netw. Learning Syst.
– ident: 10.1016/j.ymssp.2017.06.008_b0370
  doi: 10.1109/WCICA.2014.7052838
– volume: 1
  start-page: 1
  year: 2016
  ident: 10.1016/j.ymssp.2017.06.008_b0235
  article-title: Structural minimax probability machine
  publication-title: IEEE Trans. Neural Netw. Learning Syst.
– volume: 9
  start-page: 4002
  issue: 17
  year: 2016
  ident: 10.1016/j.ymssp.2017.06.008_b0350
  article-title: A speculative approach to spatial-temporal efficiency with multi-objective optimization in a heterogeneous cloud environment
  publication-title: Secur. Commun. Netw.
  doi: 10.1002/sec.1582
– volume: 17
  start-page: 2081
  year: 2011
  ident: 10.1016/j.ymssp.2017.06.008_b0115
  article-title: S. C. S. harma, S. P. Harsha, Rolling element bearing fault diagnosis using auto correlation and continuous wavelet transform
  publication-title: J. Vib. Control
  doi: 10.1177/1077546310395970
– ident: 10.1016/j.ymssp.2017.06.008_b0420
  doi: 10.1109/TASE.2008.2011562
– volume: 32
  start-page: 1582
  year: 2015
  ident: 10.1016/j.ymssp.2017.06.008_b0165
  article-title: Modeling mill load parameters based on selective fusion of multi-scale shell vibration frequency spectrum
  publication-title: Control Theory Appl.
– volume: 42
  start-page: 849
  year: 2009
  ident: 10.1016/j.ymssp.2017.06.008_b0095
  article-title: Isolation and identification of dry bearing faults in induction machine using wavelet transform
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2008.11.008
– volume: 66–67
  start-page: 485
  year: 2016
  ident: 10.1016/j.ymssp.2017.06.008_b0085
  article-title: Selective ensemble modeling load parameters of ball mill based on multi-scale frequency spectral features and sphere criterion
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.04.028
– volume: 31
  start-page: 1347
  year: 2008
  ident: 10.1016/j.ymssp.2017.06.008_b0270
  article-title: Efficient sparse kernel feature extraction based on partial least squares
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 454
  start-page: 903
  year: 1998
  ident: 10.1016/j.ymssp.2017.06.008_b0130
  article-title: The empirical mode decomposition and the Hilbert spectrum for non-linear and non stationary time series analysis
  publication-title: Proc. Royal Soc. London A
  doi: 10.1098/rspa.1998.0193
– volume: 24
  start-page: 223
  year: 2014
  ident: 10.1016/j.ymssp.2017.06.008_b0240
  article-title: Data-driven soft sensor development based on deep learning technique
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2014.01.012
– ident: 10.1016/j.ymssp.2017.06.008_b0310
  doi: 10.1016/j.cie.2006.07.004
– volume: 5
  start-page: 417
  issue: 4
  year: 2006
  ident: 10.1016/j.ymssp.2017.06.008_b0355
  article-title: Ensemble learning using multi-objective evolutionary algorithms
  publication-title: J. Math. Model. Algorithms Oper. Res.
  doi: 10.1007/s10852-005-9020-3
– volume: 36
  start-page: 220
  year: 2012
  ident: 10.1016/j.ymssp.2017.06.008_b0205
  article-title: Survey on data-driven industrial process monitoring and diagnosis
  publication-title: Ann. Rev. Control
  doi: 10.1016/j.arcontrol.2012.09.004
– volume: 23
  start-page: 720
  year: 2010
  ident: 10.1016/j.ymssp.2017.06.008_b0180
  article-title: Experimental analysis of wet mill load based on vibration signals of laboratory-scale ball mill shell
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2010.05.001
– ident: 10.1016/j.ymssp.2017.06.008_b0005
  doi: 10.3724/SP.J.1004.2013.01744
– volume: 90
  start-page: 56
  issue: 1–4
  year: 2009
  ident: 10.1016/j.ymssp.2017.06.008_b0430
  article-title: Grinding mill circuits-a survey of control and economic concerns
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2008.10.009
– volume: 23
  start-page: 265
  issue: 4
  year: 2017
  ident: 10.1016/j.ymssp.2017.06.008_b0065
  article-title: Temperature Error Correction based on BP Neural Network in Meteorological WSN
  publication-title: Int. J. Sensor Netw.
  doi: 10.1504/IJSNET.2017.083532
– volume: 19
  start-page: 334
  year: 2008
  ident: 10.1016/j.ymssp.2017.06.008_b0075
  article-title: Machine fault feature extraction based on intrinsic mode functions
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/19/4/045105
– volume: 12
  start-page: 993
  year: 1990
  ident: 10.1016/j.ymssp.2017.06.008_b0385
  article-title: Neural network ensembles
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.58871
– volume: 10
  start-page: 1044
  year: 2014
  ident: 10.1016/j.ymssp.2017.06.008_b0145
  article-title: Power quality event classification under noisy conditions using EMD-based de-noising techniques
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2013.2289392
– volume: 42
  start-page: 1330
  year: 2009
  ident: 10.1016/j.ymssp.2017.06.008_b0185
  article-title: Feature selection with dynamic mutual information
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2008.10.028
– volume: 14
  start-page: 1200
  year: 2009
  ident: 10.1016/j.ymssp.2017.06.008_b0025
  article-title: Investigation on measuring the fill level of an industrial ball mill based on the vibration characteristics of the mill shell
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2009.06.008
– volume: 24
  start-page: 245
  year: 2011
  ident: 10.1016/j.ymssp.2017.06.008_b0030
  article-title: Interpretation of mill vibration signal via wireless sensing
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2010.08.014
– volume: 46
  start-page: 1
  year: 2013
  ident: 10.1016/j.ymssp.2017.06.008_b0060
  article-title: Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications
  publication-title: J. Chem. Eng. Jpn
  doi: 10.1252/jcej.12we167
– volume: 18
  start-page: 97
  year: 1998
  ident: 10.1016/j.ymssp.2017.06.008_b0285
  article-title: Machine-learning research: four current directions
  publication-title: AI Mag.
– volume: 55
  start-page: 633
  year: 2008
  ident: 10.1016/j.ymssp.2017.06.008_b0050
  article-title: Fault detection in induction machines using power spectral density in wavelet decomposition
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2007.911960
– volume: 12
  start-page: 48
  year: 2017
  ident: 10.1016/j.ymssp.2017.06.008_b0220
  article-title: Effective and efficient global context verification for image copy detection
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2016.2601065
– year: 2017
  ident: 10.1016/j.ymssp.2017.06.008_b0315
  article-title: A self-adaptive artificial bee colony algorithm based on global best for global optimization
  publication-title: Soft. Comput.
– volume: 10
  start-page: 957
  year: 2014
  ident: 10.1016/j.ymssp.2017.06.008_b0140
  article-title: EMD-based analysis of industrial induction motors with broken rotor bars for identification of operating point at different supply modes
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2013.2289941
– volume: 27
  start-page: 340
  issue: 2
  year: 2016
  ident: 10.1016/j.ymssp.2017.06.008_b0325
  article-title: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2015.2401003
– volume: 7
  start-page: 495
  issue: 1994
  year: 1994
  ident: 10.1016/j.ymssp.2017.06.008_b0020
  article-title: Monitoring grinding parameters by vibration signal measurement-a primary application
  publication-title: Miner. Eng.
  doi: 10.1016/0892-6875(94)90162-7
– volume: 61
  start-page: 990
  year: 2012
  ident: 10.1016/j.ymssp.2017.06.008_b0150
  article-title: Rotational machine health monitoring and fault detection using EMD-based acoustic emission feature quantification
  publication-title: IEEE Trans. Instr. Meas.
  doi: 10.1109/TIM.2011.2179819
– volume: 16
  start-page: 646
  year: 2011
  ident: 10.1016/j.ymssp.2017.06.008_b0175
  article-title: Vibration analysis based on empirical mode decomposition and partial least squares
  publication-title: Proc. Eng.
  doi: 10.1016/j.proeng.2011.08.1136
– volume: 125
  start-page: 217
  issue: 3
  year: 2014
  ident: 10.1016/j.ymssp.2017.06.008_b0345
  article-title: A multi-objective evolutionary algorithm-based ensemble optimizer for feature selection and classification with neural network models
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.12.057
– volume: 26
  start-page: 208
  year: 2015
  ident: 10.1016/j.ymssp.2017.06.008_b0210
  article-title: Kernel association for classification and prediction: a survey
  publication-title: IEEE Trans. Neural Netw. Learning Syst.
  doi: 10.1109/TNNLS.2014.2333664
– volume: 86
  start-page: 175
  year: 2017
  ident: 10.1016/j.ymssp.2017.06.008_b0155
  article-title: Hidden defect recognition based on the improved ensemble empirical decomposition method and pulsed eddy current testing
  publication-title: NDT & E Int.
  doi: 10.1016/j.ndteint.2016.12.009
– ident: 10.1016/j.ymssp.2017.06.008_b0225
  doi: 10.1587/transinf.2015EDP7341
– volume: 39
  start-page: 35
  issue: 1
  year: 1997
  ident: 10.1016/j.ymssp.2017.06.008_b0450
  article-title: Assessing error rate estimators: the leave-one-out method reconsidered
  publication-title: Aust. J. Stat.
  doi: 10.1111/j.1467-842X.1997.tb00521.x
– volume: 29
  start-page: 183
  year: 2012
  ident: 10.1016/j.ymssp.2017.06.008_b0295
  article-title: Ensemble modeling for parameters of ball-mill load in grinding process based on frequency spectrum of shell vibration
  publication-title: Chin. Control Theory Appl.
– volume: 21
  start-page: 2607
  year: 2007
  ident: 10.1016/j.ymssp.2017.06.008_b0045
  article-title: Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform
  publication-title: J. Mech. Syst. Signal Process
  doi: 10.1016/j.ymssp.2006.12.004
– volume: 81
  start-page: 202
  year: 2016
  ident: 10.1016/j.ymssp.2017.06.008_b0160
  article-title: Pseudo-fault signal assisted EMD for fault detection and isolation in rotating machines
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2016.03.007
– volume: 137
  start-page: 239
  year: 2002
  ident: 10.1016/j.ymssp.2017.06.008_b0360
  article-title: Ensembling neural networks: many could be better than all
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(02)00190-X
– ident: 10.1016/j.ymssp.2017.06.008_b0390
– volume: 55
  start-page: 633
  year: 2008
  ident: 10.1016/j.ymssp.2017.06.008_b0100
  article-title: Fault detection in induction machines using power spectral density in wavelet decomposition
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2007.911960
– volume: 10
  start-page: 726
  year: 2013
  ident: 10.1016/j.ymssp.2017.06.008_b0365
  article-title: Modeling load parameters of ball mill in grinding process based on selective ensemble multisensor information
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2012.2225142
– volume: 8
  start-page: 19
  year: 1996
  ident: 10.1016/j.ymssp.2017.06.008_b0415
  article-title: Cost reduction in grinding plants through process optimization and control
  publication-title: Miner. Metall. Process.
– volume: 10
  start-page: 507
  issue: 3
  year: 2015
  ident: 10.1016/j.ymssp.2017.06.008_b0320
  article-title: Segmentation-based image copy-move forgery detection scheme
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2014.2381872
– ident: 10.1016/j.ymssp.2017.06.008_b0460
  doi: 10.1177/1550147717694172
– volume: 23
  start-page: 1327
  year: 2009
  ident: 10.1016/j.ymssp.2017.06.008_b0090
  article-title: Application of the EEMD method to rotor fault diagnosis of rotating machinery
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2008.11.005
SSID ssj0009406
Score 2.4065607
Snippet •A multi-layer selective ensemble (MLSEN) method for modeling mechanical signals is proposed.•The objective of MLSEN is to simulate domain experts’ cognitive...
Frequency spectral data of mechanical vibration and acoustic signals relate to difficult-to-measure production quality and quantity parameters of complex...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 142
SubjectTerms Acoustics
Adaptive algorithms
Computer simulation
Data integration
Frequency spectrum
Genetic algorithm
Genetic algorithms
Grinding mills
Kernel partial least squares
Mathematical models
Mechanical vibration and acoustic signals
Multi-layer selective ensemble
Multisensor fusion
Process parameters
Selective information fusion
Sensors
Signaling
Spectra
Studies
Vibration
Vibration measurement
Title Vibration and acoustic frequency spectra for industrial process modeling using selective fusion multi-condition samples and multi-source features
URI https://dx.doi.org/10.1016/j.ymssp.2017.06.008
https://www.proquest.com/docview/1966074775
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: AKRWK
  dateStart: 19870101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLUQLDAgnqJQKg-MmDaJE9sjqkAFBAsPsVl2YqMiKFXTDiz8A3_MvU7CS6gDY9ubtPLj-N703HMIOcgyYQEaHVMOKh0ufMIgqU-Zk0liTE9Z5bBR-PIqG9zy8_v0foH0m14YpFXW2F9hekDr-p1uPZrd8XDYvYb9ActRwJICGI5jbOLjXKCLwdHbF81D8eCvicEMoxvlocDxen0uSxStjEQQ8USPyb9Pp184HQ6f0zWyWmeN9Lj6YetkwY02yMo3LcFN8n6HhS8OMzWjggLQBZ8u6icVWfqVhqbKiaGQptLhp2MHHVetAjR44sCtKFLhH2gZDHIAC6mf4RM1GqiHDMrnIrC8aGlQWLgM31Z9Vv0RQL0LYqHlFrk9PbnpD1jtt8DyJImmTJq0l0tpc-5dIdOYm8xE3KpCqszmNle5h_IvtbBnveUQa4scHf0KG3kjI59sk8XRy8jtEApVoYkBujKhUm5EbJSDVMRzB4FOct8icTPOOq_FyNET40k3rLNHHSZH4-TowL2TLXL4edG40uKYH541E6h_LCkNp8X8C9vNdOt6R5c6QhlTqL1Euvvf--6RZXiF3EEWpW2yOJ3M3D6kNFPbCWu2Q5aOzy4GVx-gS_tZ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TsQwELVgKYACcYqFBVxQYpYkdmKXCIGWs-EQnWUnNloEy2qzFDT8A3_MjJNwCVHQJpNDPp5nkuf3CNlO08wCNDqmHFQ6PPMJg6ReMCeTxJg9ZZXDjcLnF2nvmp_citsJctDshUFaZY39FaYHtK6PdOvW7A77_e4lzA8YjhkMKYDhOFaTZIqLOMMKbPf1k-eheDDYxGiG4Y30UCB5vTyWJapWRllQ8USTyd-Xpx9AHVafo3kyV6eNdL96swUy4QaLZPaLmOASebvByhfbmZpBQQHpglEX9aOKLf1Cw67KkaGQp9L-h2UHHVZ7BWgwxYFbUeTC39EyOOQAGFL_jJ_UaOAeMqifi0DzoqVBZeEyPK06V_0JoN4FtdBymVwfHV4d9FhtuMDyJInGTBqxl0tpc-5dIUXMTWoiblUhVWpzm6vcQ_0nLExabznE2iJHS7_CRt7IyCcrpDV4GrhVQqEsNDFgV5opwU0WG-UgF_HcQaCT3LdJ3LSzzms1cjTFeNAN7exeh87R2Dk6kO9km-x8XDSsxDj-Dk-bDtTfxpSG5eLvCztNd-t6Spc6Qh1TKL4ysfbf-26R6d7V-Zk-O744XSczcAaJhCwSHdIaj57dBuQ3Y7sZxu87ZUL87g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vibration+and+acoustic+frequency+spectra+for+industrial+process+modeling+using+selective+fusion+multi-condition+samples+and+multi-source+features&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Tang%2C+Jian&rft.au=Qiao%2C+Junfei&rft.au=Wu%2C+ZhiWei&rft.au=Chai%2C+Tianyou&rft.date=2018-01-15&rft.pub=Elsevier+BV&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=99&rft.spage=142&rft_id=info:doi/10.1016%2Fj.ymssp.2017.06.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon