Failure diagnosis system using a new nonlinear mapping augmentation approach for deep learning algorithm

This paper develops a new nonlinear transformation-based augmentation method for Convolutional Neural Network (CNN) approach with vibration signals of simple, small scale and elementary reference models for the classification or prediction of vibration signals of perplex healthy or damaged systems u...

Full description

Saved in:
Bibliographic Details
Published inMechanical systems and signal processing Vol. 172; p. 108914
Main Authors Kim, Dong-Yoon, Woo, Yeon-Jun, Kang, Keonwook, Yoon, Gil Ho
Format Journal Article
LanguageEnglish
Published Berlin Elsevier Ltd 01.06.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN0888-3270
1096-1216
DOI10.1016/j.ymssp.2022.108914

Cover

Abstract This paper develops a new nonlinear transformation-based augmentation method for Convolutional Neural Network (CNN) approach with vibration signals of simple, small scale and elementary reference models for the classification or prediction of vibration signals of perplex healthy or damaged systems using a smart diagnosis system. The accuracy of deep learning algorithm being highly dependent on the quantity of qualified data, the acquiring of a large set of formatted data for the training and verification of a deep learning algorithm is essential. Unfortunately, many scientific and engineering application domains do not allow access to a Big Data accurately bearing domain knowledge and the artificial intelligent (AI) based classification methods suffer from the lack of data and often end up with poor prediction. To overcome this issue, data augmentation approaches have been utilized. In many applications, however, the obtaining of data reflecting physical phenomena is even not possible. To overcome this issue, this research suggests a new nonlinear transformation-based augmentation approach mapping from the data obtained from lab-scale healthy models to the data of complex real healthy models whose data in the damaged status are hard to be obtained. The nonlinear transformation method defined between the data of lab-scale healthy models and the data of complex real healthy model is then applied to predict the data of complex real damaged models for an accurate classification. To validate the concept of the nonlinear transformation augmentation, several vibration examples including an example showing the mode switching are considered. To extract discriminating features from the vibration-based spectrograms using a deep learning algorithm, the nonlinear transformation-based augmentation and the classification between healthy and damaged structures are presented. •A new nonlinear mapping augmentation approach is presented for vibration signals.•The vibration signals of simple models can be augmented with the augmentation approach.•Damage signals of complex real models are predicted with the augmentation approach.•The augmentation approach can consider the mode switching phenomenon.•Various fracture features can be predicted with the augmentation approach.
AbstractList This paper develops a new nonlinear transformation-based augmentation method for Convolutional Neural Network (CNN) approach with vibration signals of simple, small scale and elementary reference models for the classification or prediction of vibration signals of perplex healthy or damaged systems using a smart diagnosis system. The accuracy of deep learning algorithm being highly dependent on the quantity of qualified data, the acquiring of a large set of formatted data for the training and verification of a deep learning algorithm is essential. Unfortunately, many scientific and engineering application domains do not allow access to a Big Data accurately bearing domain knowledge and the artificial intelligent (AI) based classification methods suffer from the lack of data and often end up with poor prediction. To overcome this issue, data augmentation approaches have been utilized. In many applications, however, the obtaining of data reflecting physical phenomena is even not possible. To overcome this issue, this research suggests a new nonlinear transformation-based augmentation approach mapping from the data obtained from lab-scale healthy models to the data of complex real healthy models whose data in the damaged status are hard to be obtained. The nonlinear transformation method defined between the data of lab-scale healthy models and the data of complex real healthy model is then applied to predict the data of complex real damaged models for an accurate classification. To validate the concept of the nonlinear transformation augmentation, several vibration examples including an example showing the mode switching are considered. To extract discriminating features from the vibration-based spectrograms using a deep learning algorithm, the nonlinear transformation-based augmentation and the classification between healthy and damaged structures are presented.
This paper develops a new nonlinear transformation-based augmentation method for Convolutional Neural Network (CNN) approach with vibration signals of simple, small scale and elementary reference models for the classification or prediction of vibration signals of perplex healthy or damaged systems using a smart diagnosis system. The accuracy of deep learning algorithm being highly dependent on the quantity of qualified data, the acquiring of a large set of formatted data for the training and verification of a deep learning algorithm is essential. Unfortunately, many scientific and engineering application domains do not allow access to a Big Data accurately bearing domain knowledge and the artificial intelligent (AI) based classification methods suffer from the lack of data and often end up with poor prediction. To overcome this issue, data augmentation approaches have been utilized. In many applications, however, the obtaining of data reflecting physical phenomena is even not possible. To overcome this issue, this research suggests a new nonlinear transformation-based augmentation approach mapping from the data obtained from lab-scale healthy models to the data of complex real healthy models whose data in the damaged status are hard to be obtained. The nonlinear transformation method defined between the data of lab-scale healthy models and the data of complex real healthy model is then applied to predict the data of complex real damaged models for an accurate classification. To validate the concept of the nonlinear transformation augmentation, several vibration examples including an example showing the mode switching are considered. To extract discriminating features from the vibration-based spectrograms using a deep learning algorithm, the nonlinear transformation-based augmentation and the classification between healthy and damaged structures are presented. •A new nonlinear mapping augmentation approach is presented for vibration signals.•The vibration signals of simple models can be augmented with the augmentation approach.•Damage signals of complex real models are predicted with the augmentation approach.•The augmentation approach can consider the mode switching phenomenon.•Various fracture features can be predicted with the augmentation approach.
ArticleNumber 108914
Author Kang, Keonwook
Woo, Yeon-Jun
Yoon, Gil Ho
Kim, Dong-Yoon
Author_xml – sequence: 1
  givenname: Dong-Yoon
  surname: Kim
  fullname: Kim, Dong-Yoon
  organization: School of Mechanical Engineering, Hanyang University, Seoul, South Korea
– sequence: 2
  givenname: Yeon-Jun
  surname: Woo
  fullname: Woo, Yeon-Jun
  organization: School of Mechanical Engineering, Hanyang University, Seoul, South Korea
– sequence: 3
  givenname: Keonwook
  orcidid: 0000-0002-8428-8288
  surname: Kang
  fullname: Kang, Keonwook
  email: kwkang75@yonsei.ac.kr
  organization: School of Mechanical Engineering, Yonsei University, Seoul, South Korea
– sequence: 4
  givenname: Gil Ho
  surname: Yoon
  fullname: Yoon, Gil Ho
  email: ghy@hanyang.ac.kr
  organization: School of Mechanical Engineering, Hanyang University, Seoul, South Korea
BookMark eNqFkEtPwzAQhC1UJMrjF3CxxDnFj9R1DhxQxUtC4gJny7E3ravEDnYC6r_HNJw4wGml0Xy7O3OKZj54QOiSkgUlVFzvFvsupX7BCGNZkRUtj9CckkoUlFExQ3MipSw4W5ETdJrSjhBSlUTM0fZeu3aMgK3TGx-SSzjt0wAdHpPzG6yxh0-cz7XOg464031_0MdNB37QgwseZy0Gbba4CRFbgB632esPvnYTohu23Tk6bnSb4OJnnqG3-7vX9WPx_PLwtL59LgzndCiEaUgpjLT1sloJ3nBpGLNlJTVlmsLKCMmotbUAkGVT1zmG0cLWVLPGGEb5Gbqa9uaX3kdIg9qFMfp8UjGx5EvJSs6yq5pcJoaUIjTKuCnMEHMhihL1XazaqUOx6rtYNRWbWf6L7aPrdNz_Q91MFOTwHw6iSsaBN2BdBDMoG9yf_BddVpgd
CitedBy_id crossref_primary_10_1016_j_ymssp_2023_110678
crossref_primary_10_5006_4582
crossref_primary_10_7734_COSEIK_2023_36_1_57
crossref_primary_10_1016_j_eswa_2023_122214
crossref_primary_10_1016_j_isatra_2023_12_045
crossref_primary_10_1016_j_epsr_2024_110173
crossref_primary_10_1016_j_compstruc_2023_107094
crossref_primary_10_1016_j_jmbbm_2023_106077
crossref_primary_10_1177_10775463231216919
crossref_primary_10_1088_1361_6501_ada821
crossref_primary_10_1155_2022_1338392
Cites_doi 10.3390/s20082335
10.1016/j.measurement.2020.108832
10.1016/j.tafmec.2019.102447
10.3390/rs10010139
10.1016/j.knosys.2017.10.024
10.1371/journal.pone.0228324
10.1109/TIM.2019.2933342
10.1016/j.ecoinf.2020.101093
10.1109/CVPR.2019.00020
10.1198/106186007X181425
10.1177/0954411921997575
10.1007/s13239-011-0065-3
10.1016/j.compositesb.2018.12.118
10.1016/j.knosys.2020.106453
10.1109/TPEL.2019.2911594
10.1080/00207543.2018.1552032
10.1016/S0009-2509(97)85420-6
10.1016/j.mser.2004.05.001
10.1186/s40537-019-0197-0
10.1109/78.376839
10.1016/j.compag.2018.02.016
10.1016/j.ymssp.2011.02.020
10.3390/s17020425
10.1186/s40537-016-0043-6
10.1006/jsvi.1993.1078
10.1038/s41598-019-44839-3
10.1177/1475921720986945
10.3390/rs11232765
10.1016/j.cmpb.2019.06.023
10.3390/sym11101212
10.1016/j.compstruct.2020.112681
10.1007/s13244-018-0639-9
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Jun 1, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 1, 2022
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ymssp.2022.108914
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
ExternalDocumentID 10_1016_j_ymssp_2022_108914
S0888327022001005
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
XPP
ZMT
ZU3
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
~HD
7SC
7SP
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c331t-6cf046c8db59763f38c22d498a12a1e7c6821ddb6ee84fbb094ca6db1a2fcc213
IEDL.DBID .~1
ISSN 0888-3270
IngestDate Fri Jul 25 06:52:03 EDT 2025
Thu Apr 24 22:57:40 EDT 2025
Thu Oct 16 04:34:00 EDT 2025
Fri Feb 23 02:41:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Data augmentation
Transverse vibration
Damage
Nonlinear mapping
Virtual spectrogram
Frequency response function
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-6cf046c8db59763f38c22d498a12a1e7c6821ddb6ee84fbb094ca6db1a2fcc213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8428-8288
PQID 2653582432
PQPubID 2045429
ParticipantIDs proquest_journals_2653582432
crossref_citationtrail_10_1016_j_ymssp_2022_108914
crossref_primary_10_1016_j_ymssp_2022_108914
elsevier_sciencedirect_doi_10_1016_j_ymssp_2022_108914
PublicationCentury 2000
PublicationDate 2022-06-01
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Mechanical systems and signal processing
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Nex, Duarte, Tonolo, Kerle (b15) 2019; 11
Khan, Ko, Lim, Kim (b5) 2019; 161
Balmes (b46) 1993; 161
Astarita (b25) 1997; 52
Kathirvel, Manikandan, Prasanna, Soman (b22) 2011; 2
Zhang, Peng, Li, Chen, Zhang (b8) 2017; 17
E.D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, Q.V. Le, Autoaugment: Learning augmentation strategies from data, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 113–123.
Paszyński, Grzeszczuk, Pardo, Demkowicz (b20) 2021
Shorten, Khoshgoftaar (b1) 2019; 6
Yoon, Woo, Sim, Kim, Hwang (b44) 2021
Albawi, Mohammed, Al-Zawi (b40) 2017
Li, Gu, Huang (b18) 2021; 171
Sohaib, Kim (b14) 2019; 69
Maragos (b23) 1995; 43
Cheng, Cheng (b24) 2004; 44
Boschert, Rosen (b9) 2016
Chen, Zhang, Cao (b7) 2020; 15
Krois, Ekert, Meinhold, Golla, Kharbot, Wittemeier, Dörfer, Schwendicke (b35) 2019; 9
Yamashita, Nishio, Do, Togashi (b36) 2018; 9
Liang, Zheng (b34) 2020; 187
Jain, Poon, Singh, Spanos, Sanders, Panda (b11) 2019; 35
Kumar, Gandhi, Zhou, Vashishtha, Kumar, Xiang (b12) 2020; 208
Poston, Schloemann, Buehrer, Malladi, Woolard, Tarazaga (b16) 2015
Kamilaris, Prenafeta-Boldú (b29) 2018; 147
Shen, Wan, Ye, Guan, Liu (b32) 2019
Weiss, Khoshgoftaar, Wang (b26) 2016; 3
(b45) 2020
Han, Qi, Ding, Geng (b19) 2021
Gallina, Pichler, Uhl (b47) 2011; 25
Royle, Dorazio, Link (b4) 2007; 16
Khan, Shin, Lim, Kim, Kim (b6) 2020; 20
Wang, Ye, Gao, Li, Zhang (b10) 2019; 57
Goswami, Anitescu, Chakraborty, Rabczuk (b28) 2020; 106
Agarap (b42) 2018
Wang, Yang, Li, Du, Wang (b17) 2021
R. Barman, S. Deshpande, S. Agarwal, U. Inamdar, M. Devare, A. Patil, Transfer learning for small dataset, in: Proceedings of the National Conference on Machine Learning, Mumbai, India, Vol. 26, 2019.
Gong, Shao, Luo, Li (b33) 2020; 252
Qin, Pan, Xiang, Tan, Hou (b37) 2020; 58
Hürkamp, Gellrich, Ossowski, Beuscher, Thiede, Herrmann, Dröder (b21) 2020; 4
Chen, Zhang, Ouyang (b31) 2018; 10
Aghdam, Heravi (b43) 2017
Ketkar (b39) 2017
Wang, Perez (b2) 2017; 11
Hsueh, Ittangihal, Wu, Chang, Kuo (b13) 2019; 11
Haidong, Hongkai, Xingqiu, Shuaipeng (b30) 2018; 140
Chauhan, Ghanshala, Joshi (b38) 2018
Kim (b41) 2017
Astarita (10.1016/j.ymssp.2022.108914_b25) 1997; 52
Liang (10.1016/j.ymssp.2022.108914_b34) 2020; 187
Poston (10.1016/j.ymssp.2022.108914_b16) 2015
Khan (10.1016/j.ymssp.2022.108914_b6) 2020; 20
Krois (10.1016/j.ymssp.2022.108914_b35) 2019; 9
Yoon (10.1016/j.ymssp.2022.108914_b44) 2021
Hürkamp (10.1016/j.ymssp.2022.108914_b21) 2020; 4
Gallina (10.1016/j.ymssp.2022.108914_b47) 2011; 25
Nex (10.1016/j.ymssp.2022.108914_b15) 2019; 11
Royle (10.1016/j.ymssp.2022.108914_b4) 2007; 16
Zhang (10.1016/j.ymssp.2022.108914_b8) 2017; 17
Jain (10.1016/j.ymssp.2022.108914_b11) 2019; 35
Maragos (10.1016/j.ymssp.2022.108914_b23) 1995; 43
Wang (10.1016/j.ymssp.2022.108914_b17) 2021
Kamilaris (10.1016/j.ymssp.2022.108914_b29) 2018; 147
10.1016/j.ymssp.2022.108914_b27
Goswami (10.1016/j.ymssp.2022.108914_b28) 2020; 106
(10.1016/j.ymssp.2022.108914_b45) 2020
Cheng (10.1016/j.ymssp.2022.108914_b24) 2004; 44
10.1016/j.ymssp.2022.108914_b3
Kathirvel (10.1016/j.ymssp.2022.108914_b22) 2011; 2
Chen (10.1016/j.ymssp.2022.108914_b31) 2018; 10
Hsueh (10.1016/j.ymssp.2022.108914_b13) 2019; 11
Albawi (10.1016/j.ymssp.2022.108914_b40) 2017
Boschert (10.1016/j.ymssp.2022.108914_b9) 2016
Han (10.1016/j.ymssp.2022.108914_b19) 2021
Sohaib (10.1016/j.ymssp.2022.108914_b14) 2019; 69
Kim (10.1016/j.ymssp.2022.108914_b41) 2017
Khan (10.1016/j.ymssp.2022.108914_b5) 2019; 161
Qin (10.1016/j.ymssp.2022.108914_b37) 2020; 58
Kumar (10.1016/j.ymssp.2022.108914_b12) 2020; 208
Shen (10.1016/j.ymssp.2022.108914_b32) 2019
Haidong (10.1016/j.ymssp.2022.108914_b30) 2018; 140
Ketkar (10.1016/j.ymssp.2022.108914_b39) 2017
Gong (10.1016/j.ymssp.2022.108914_b33) 2020; 252
Yamashita (10.1016/j.ymssp.2022.108914_b36) 2018; 9
Paszyński (10.1016/j.ymssp.2022.108914_b20) 2021
Aghdam (10.1016/j.ymssp.2022.108914_b43) 2017
Shorten (10.1016/j.ymssp.2022.108914_b1) 2019; 6
Wang (10.1016/j.ymssp.2022.108914_b10) 2019; 57
Chen (10.1016/j.ymssp.2022.108914_b7) 2020; 15
Wang (10.1016/j.ymssp.2022.108914_b2) 2017; 11
Chauhan (10.1016/j.ymssp.2022.108914_b38) 2018
Agarap (10.1016/j.ymssp.2022.108914_b42) 2018
Balmes (10.1016/j.ymssp.2022.108914_b46) 1993; 161
Li (10.1016/j.ymssp.2022.108914_b18) 2021; 171
Weiss (10.1016/j.ymssp.2022.108914_b26) 2016; 3
References_xml – volume: 161
  start-page: 358
  year: 1993
  end-page: 363
  ident: b46
  article-title: High modal density, curve veering, localization: a different perspective on the structural response
  publication-title: J. Sound Vib.
– volume: 20
  start-page: 2335
  year: 2020
  ident: b6
  article-title: A deep learning framework for vibration-based assessment of delamination in smart composite laminates
  publication-title: Sensors
– volume: 35
  start-page: 940
  year: 2019
  end-page: 956
  ident: b11
  article-title: A digital twin approach for fault diagnosis in distributed photovoltaic systems
  publication-title: IEEE Trans. Power Electron.
– volume: 44
  start-page: 91
  year: 2004
  end-page: 149
  ident: b24
  article-title: Scaling, dimensional analysis, and indentation measurements
  publication-title: Mater. Sci. Eng. R
– year: 2020
  ident: b45
  article-title: Deep Learning Toolbox Version 14.0 (R2020a)
– volume: 43
  start-page: 864
  year: 1995
  end-page: 877
  ident: b23
  article-title: Slope transforms: theory and application to nonlinear signal processing
  publication-title: IEEE Trans. Signal Process.
– volume: 2
  start-page: 408
  year: 2011
  end-page: 425
  ident: b22
  article-title: An efficient r-peak detection based on new nonlinear transformation and first-order gaussian differentiator
  publication-title: Cardiovasc. Eng. Technol.
– volume: 25
  start-page: 2297
  year: 2011
  end-page: 2312
  ident: b47
  article-title: Enhanced meta-modelling technique for analysis of mode crossing, mode veering and mode coalescence in structural dynamics
  publication-title: Mech. Syst. Signal Process.
– volume: 52
  start-page: 4681
  year: 1997
  end-page: 4698
  ident: b25
  article-title: Dimensional analysis, scaling, and orders of magnitude
  publication-title: Chem. Eng. Sci.
– volume: 161
  start-page: 586
  year: 2019
  end-page: 594
  ident: b5
  article-title: Structural vibration-based classification and prediction of delamination in smart composite laminates using deep learning neural network
  publication-title: Composites B
– volume: 4
  start-page: 92
  year: 2020
  ident: b21
  article-title: Combining simulation and machine learning as digital twin for the manufacturing of overmolded thermoplastic composites
  publication-title: J. Manufact. Mater. Proces.
– volume: 11
  year: 2017
  ident: b2
  article-title: The effectiveness of data augmentation in image classification using deep learning
  publication-title: Convolutional Neural Netw. Vis. Recognit.
– volume: 3
  start-page: 1
  year: 2016
  end-page: 40
  ident: b26
  article-title: A survey of transfer learning
  publication-title: J. Big Data
– start-page: 114
  year: 2021
  end-page: 121
  ident: b20
  article-title: Deep learning driven self-adaptive hp finite element method
  publication-title: International Conference on Computational Science
– volume: 16
  start-page: 67
  year: 2007
  end-page: 85
  ident: b4
  article-title: Analysis of multinomial models with unknown index using data augmentation
  publication-title: J. Comput. Graph. Statist.
– volume: 147
  start-page: 70
  year: 2018
  end-page: 90
  ident: b29
  article-title: Deep learning in agriculture: A survey
  publication-title: Comput. Electron. Agric.
– start-page: 63
  year: 2017
  end-page: 78
  ident: b39
  article-title: Convolutional neural networks
  publication-title: Deep Learning with Python
– start-page: 59
  year: 2016
  end-page: 74
  ident: b9
  article-title: Digital twin—the simulation aspect
  publication-title: Mechatronic Futures
– volume: 187
  year: 2020
  ident: b34
  article-title: A transfer learning method with deep residual network for pediatric pneumonia diagnosis
  publication-title: Comput. Methods Programs Biomed.
– volume: 106
  year: 2020
  ident: b28
  article-title: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture
  publication-title: Theor. Appl. Fract. Mech.
– volume: 57
  start-page: 3920
  year: 2019
  end-page: 3934
  ident: b10
  article-title: Digital twin for rotating machinery fault diagnosis in smart manufacturing
  publication-title: Int. J. Prod. Res.
– start-page: 278
  year: 2018
  end-page: 282
  ident: b38
  article-title: Convolutional neural network (cnn) for image detection and recognition
  publication-title: 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)
– volume: 171
  year: 2021
  ident: b18
  article-title: A chaotic system-based signal identification technology: Fault-diagnosis of industrial bearing system
  publication-title: Measurement
– year: 2021
  ident: b19
  article-title: Short-time wavelet entropy integrating improved lstm for fault diagnosis of modular multilevel converter
  publication-title: IEEE Trans. Cybern.
– volume: 58
  year: 2020
  ident: b37
  article-title: A biological image classification method based on improved cnn
  publication-title: Ecol. Inform.
– volume: 9
  start-page: 611
  year: 2018
  end-page: 629
  ident: b36
  article-title: Convolutional neural networks: an overview and application in radiology
  publication-title: Insights Imaging
– year: 2017
  ident: b43
  article-title: Guide to Convolutional Neural Networks: A Practical Application to Traffic-Sign Detection and Classification
– start-page: 121
  year: 2017
  end-page: 147
  ident: b41
  article-title: Convolutional neural network
  publication-title: MATLAB Deep Learning
– volume: 208
  year: 2020
  ident: b12
  article-title: Improved cnn for the diagnosis of engine defects of 2-wheeler vehicle using wavelet synchro-squeezed transform (wsst)
  publication-title: Knowl.-Based Syst.
– volume: 6
  start-page: 1
  year: 2019
  end-page: 48
  ident: b1
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
– volume: 11
  start-page: 2765
  year: 2019
  ident: b15
  article-title: Structural building damage detection with deep learning: Assessment of a state-of-the-art cnn in operational conditions
  publication-title: Remote Sens.
– volume: 10
  start-page: 139
  year: 2018
  ident: b31
  article-title: End-to-end airplane detection using transfer learning in remote sensing images
  publication-title: Remote Sens.
– start-page: 1
  year: 2015
  end-page: 6
  ident: b16
  article-title: Towards indoor localization of pedestrians via smart building vibration sensing
  publication-title: 2015 International Conference on Localization and GNSS (ICL-GNSS)
– volume: 11
  start-page: 1212
  year: 2019
  ident: b13
  article-title: Fault diagnosis system for induction motors by cnn using empirical wavelet transform
  publication-title: Symmetry
– start-page: 1005
  year: 2019
  end-page: 1010
  ident: b32
  article-title: Deep learning based framework for automatic damage detection in aircraft engine borescope inspection
  publication-title: 2019 International Conference on Computing, Networking and Communications (ICNC)
– start-page: 1
  year: 2017
  end-page: 6
  ident: b40
  article-title: Understanding of a convolutional neural network
  publication-title: 2017 International Conference on Engineering and Technology (ICET)
– volume: 69
  start-page: 3334
  year: 2019
  end-page: 3347
  ident: b14
  article-title: Fault diagnosis of rotary machine bearings under inconsistent working conditions
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 6
  ident: b35
  article-title: Deep learning for the radiographic detection of periodontal bone loss
  publication-title: Sci. Rep.
– year: 2021
  ident: b17
  article-title: A new fault diagnosis method based on adaptive spectrum mode extraction
  publication-title: Struct. Health Monit.
– year: 2018
  ident: b42
  article-title: Deep learning using rectified linear units (relu)
– volume: 17
  start-page: 425
  year: 2017
  ident: b8
  article-title: A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals
  publication-title: Sensors
– volume: 140
  start-page: 1
  year: 2018
  end-page: 14
  ident: b30
  article-title: Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine
  publication-title: Knowl.-Based Syst.
– volume: 252
  year: 2020
  ident: b33
  article-title: A deep transfer learning model for inclusion defect detection of aeronautics composite materials
  publication-title: Compos. Struct.
– reference: R. Barman, S. Deshpande, S. Agarwal, U. Inamdar, M. Devare, A. Patil, Transfer learning for small dataset, in: Proceedings of the National Conference on Machine Learning, Mumbai, India, Vol. 26, 2019.
– volume: 15
  year: 2020
  ident: b7
  article-title: A novel method of combining generalized frequency response function and convolutional neural network for complex system fault diagnosis
  publication-title: PLoS One
– reference: E.D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, Q.V. Le, Autoaugment: Learning augmentation strategies from data, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 113–123.
– year: 2021
  ident: b44
  article-title: Investigation of bone fracture diagnosis system using transverse vibration response
  publication-title: Proc. Inst. Mech. Eng. Part H
– volume: 20
  start-page: 2335
  issue: 8
  year: 2020
  ident: 10.1016/j.ymssp.2022.108914_b6
  article-title: A deep learning framework for vibration-based assessment of delamination in smart composite laminates
  publication-title: Sensors
  doi: 10.3390/s20082335
– start-page: 1
  year: 2017
  ident: 10.1016/j.ymssp.2022.108914_b40
  article-title: Understanding of a convolutional neural network
– year: 2021
  ident: 10.1016/j.ymssp.2022.108914_b19
  article-title: Short-time wavelet entropy integrating improved lstm for fault diagnosis of modular multilevel converter
  publication-title: IEEE Trans. Cybern.
– volume: 171
  year: 2021
  ident: 10.1016/j.ymssp.2022.108914_b18
  article-title: A chaotic system-based signal identification technology: Fault-diagnosis of industrial bearing system
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108832
– volume: 106
  year: 2020
  ident: 10.1016/j.ymssp.2022.108914_b28
  article-title: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2019.102447
– volume: 10
  start-page: 139
  issue: 1
  year: 2018
  ident: 10.1016/j.ymssp.2022.108914_b31
  article-title: End-to-end airplane detection using transfer learning in remote sensing images
  publication-title: Remote Sens.
  doi: 10.3390/rs10010139
– volume: 140
  start-page: 1
  year: 2018
  ident: 10.1016/j.ymssp.2022.108914_b30
  article-title: Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.10.024
– volume: 15
  issue: 2
  year: 2020
  ident: 10.1016/j.ymssp.2022.108914_b7
  article-title: A novel method of combining generalized frequency response function and convolutional neural network for complex system fault diagnosis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0228324
– year: 2018
  ident: 10.1016/j.ymssp.2022.108914_b42
– volume: 69
  start-page: 3334
  issue: 6
  year: 2019
  ident: 10.1016/j.ymssp.2022.108914_b14
  article-title: Fault diagnosis of rotary machine bearings under inconsistent working conditions
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2933342
– volume: 58
  year: 2020
  ident: 10.1016/j.ymssp.2022.108914_b37
  article-title: A biological image classification method based on improved cnn
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2020.101093
– ident: 10.1016/j.ymssp.2022.108914_b3
  doi: 10.1109/CVPR.2019.00020
– volume: 16
  start-page: 67
  issue: 1
  year: 2007
  ident: 10.1016/j.ymssp.2022.108914_b4
  article-title: Analysis of multinomial models with unknown index using data augmentation
  publication-title: J. Comput. Graph. Statist.
  doi: 10.1198/106186007X181425
– year: 2021
  ident: 10.1016/j.ymssp.2022.108914_b44
  article-title: Investigation of bone fracture diagnosis system using transverse vibration response
  publication-title: Proc. Inst. Mech. Eng. Part H
  doi: 10.1177/0954411921997575
– volume: 4
  start-page: 92
  issue: 3
  year: 2020
  ident: 10.1016/j.ymssp.2022.108914_b21
  article-title: Combining simulation and machine learning as digital twin for the manufacturing of overmolded thermoplastic composites
  publication-title: J. Manufact. Mater. Proces.
– year: 2020
  ident: 10.1016/j.ymssp.2022.108914_b45
– volume: 2
  start-page: 408
  issue: 4
  year: 2011
  ident: 10.1016/j.ymssp.2022.108914_b22
  article-title: An efficient r-peak detection based on new nonlinear transformation and first-order gaussian differentiator
  publication-title: Cardiovasc. Eng. Technol.
  doi: 10.1007/s13239-011-0065-3
– volume: 161
  start-page: 586
  year: 2019
  ident: 10.1016/j.ymssp.2022.108914_b5
  article-title: Structural vibration-based classification and prediction of delamination in smart composite laminates using deep learning neural network
  publication-title: Composites B
  doi: 10.1016/j.compositesb.2018.12.118
– volume: 208
  year: 2020
  ident: 10.1016/j.ymssp.2022.108914_b12
  article-title: Improved cnn for the diagnosis of engine defects of 2-wheeler vehicle using wavelet synchro-squeezed transform (wsst)
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106453
– volume: 35
  start-page: 940
  issue: 1
  year: 2019
  ident: 10.1016/j.ymssp.2022.108914_b11
  article-title: A digital twin approach for fault diagnosis in distributed photovoltaic systems
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2019.2911594
– start-page: 121
  year: 2017
  ident: 10.1016/j.ymssp.2022.108914_b41
  article-title: Convolutional neural network
– volume: 57
  start-page: 3920
  issue: 12
  year: 2019
  ident: 10.1016/j.ymssp.2022.108914_b10
  article-title: Digital twin for rotating machinery fault diagnosis in smart manufacturing
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2018.1552032
– year: 2017
  ident: 10.1016/j.ymssp.2022.108914_b43
– volume: 52
  start-page: 4681
  issue: 24
  year: 1997
  ident: 10.1016/j.ymssp.2022.108914_b25
  article-title: Dimensional analysis, scaling, and orders of magnitude
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(97)85420-6
– volume: 44
  start-page: 91
  issue: 4–5
  year: 2004
  ident: 10.1016/j.ymssp.2022.108914_b24
  article-title: Scaling, dimensional analysis, and indentation measurements
  publication-title: Mater. Sci. Eng. R
  doi: 10.1016/j.mser.2004.05.001
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.ymssp.2022.108914_b1
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 43
  start-page: 864
  issue: 4
  year: 1995
  ident: 10.1016/j.ymssp.2022.108914_b23
  article-title: Slope transforms: theory and application to nonlinear signal processing
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.376839
– start-page: 278
  year: 2018
  ident: 10.1016/j.ymssp.2022.108914_b38
  article-title: Convolutional neural network (cnn) for image detection and recognition
– ident: 10.1016/j.ymssp.2022.108914_b27
– start-page: 59
  year: 2016
  ident: 10.1016/j.ymssp.2022.108914_b9
  article-title: Digital twin—the simulation aspect
– start-page: 63
  year: 2017
  ident: 10.1016/j.ymssp.2022.108914_b39
  article-title: Convolutional neural networks
– volume: 147
  start-page: 70
  year: 2018
  ident: 10.1016/j.ymssp.2022.108914_b29
  article-title: Deep learning in agriculture: A survey
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.02.016
– volume: 25
  start-page: 2297
  issue: 7
  year: 2011
  ident: 10.1016/j.ymssp.2022.108914_b47
  article-title: Enhanced meta-modelling technique for analysis of mode crossing, mode veering and mode coalescence in structural dynamics
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2011.02.020
– start-page: 114
  year: 2021
  ident: 10.1016/j.ymssp.2022.108914_b20
  article-title: Deep learning driven self-adaptive hp finite element method
– volume: 11
  year: 2017
  ident: 10.1016/j.ymssp.2022.108914_b2
  article-title: The effectiveness of data augmentation in image classification using deep learning
  publication-title: Convolutional Neural Netw. Vis. Recognit.
– volume: 17
  start-page: 425
  issue: 2
  year: 2017
  ident: 10.1016/j.ymssp.2022.108914_b8
  article-title: A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals
  publication-title: Sensors
  doi: 10.3390/s17020425
– volume: 3
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.ymssp.2022.108914_b26
  article-title: A survey of transfer learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-016-0043-6
– volume: 161
  start-page: 358
  issue: 2
  year: 1993
  ident: 10.1016/j.ymssp.2022.108914_b46
  article-title: High modal density, curve veering, localization: a different perspective on the structural response
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.1993.1078
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.ymssp.2022.108914_b35
  article-title: Deep learning for the radiographic detection of periodontal bone loss
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-44839-3
– year: 2021
  ident: 10.1016/j.ymssp.2022.108914_b17
  article-title: A new fault diagnosis method based on adaptive spectrum mode extraction
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921720986945
– volume: 11
  start-page: 2765
  issue: 23
  year: 2019
  ident: 10.1016/j.ymssp.2022.108914_b15
  article-title: Structural building damage detection with deep learning: Assessment of a state-of-the-art cnn in operational conditions
  publication-title: Remote Sens.
  doi: 10.3390/rs11232765
– volume: 187
  year: 2020
  ident: 10.1016/j.ymssp.2022.108914_b34
  article-title: A transfer learning method with deep residual network for pediatric pneumonia diagnosis
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.06.023
– start-page: 1
  year: 2015
  ident: 10.1016/j.ymssp.2022.108914_b16
  article-title: Towards indoor localization of pedestrians via smart building vibration sensing
– volume: 11
  start-page: 1212
  issue: 10
  year: 2019
  ident: 10.1016/j.ymssp.2022.108914_b13
  article-title: Fault diagnosis system for induction motors by cnn using empirical wavelet transform
  publication-title: Symmetry
  doi: 10.3390/sym11101212
– volume: 252
  year: 2020
  ident: 10.1016/j.ymssp.2022.108914_b33
  article-title: A deep transfer learning model for inclusion defect detection of aeronautics composite materials
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2020.112681
– volume: 9
  start-page: 611
  issue: 4
  year: 2018
  ident: 10.1016/j.ymssp.2022.108914_b36
  article-title: Convolutional neural networks: an overview and application in radiology
  publication-title: Insights Imaging
  doi: 10.1007/s13244-018-0639-9
– start-page: 1005
  year: 2019
  ident: 10.1016/j.ymssp.2022.108914_b32
  article-title: Deep learning based framework for automatic damage detection in aircraft engine borescope inspection
SSID ssj0009406
Score 2.4429445
Snippet This paper develops a new nonlinear transformation-based augmentation method for Convolutional Neural Network (CNN) approach with vibration signals of simple,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108914
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
Big Data
Classification
Damage
Data acquisition
Data augmentation
Deep learning
Diagnosis
Domains
Feature extraction
Frequency response function
Machine learning
Mapping
Nonlinear mapping
Spectrograms
Structural damage
Transformations (mathematics)
Transverse vibration
Vibration
Virtual spectrogram
Title Failure diagnosis system using a new nonlinear mapping augmentation approach for deep learning algorithm
URI https://dx.doi.org/10.1016/j.ymssp.2022.108914
https://www.proquest.com/docview/2653582432
Volume 172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: AKRWK
  dateStart: 19870101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLYQLDAgTlEueWAkVD7qJGOFqAoIFqjUzfLZBrWl6jGw8Nt5ThwuiQ6MsZ4t69l-h_K97yF0wanVeQqZaqpoK-HgUhPlM5V4JogPfyCpDwXOD4-i2-N3_VZ_DV3XtTABVhltf2XTS2sdR5pRm81pUTSf4H3AdUxDqSgkFSWPKedp6GJw9f4F88h52V8zCCdBumYeKjFeb-P5PJBWUhqwdjnhf3mnX3a6dD6dHbQdo0bcrja2i9bcZA9tfeMS3EfDjioCxBzbCjxXzHHF0owDtH2AFYYAGk8qZgw1w2MVmBlgfDkYx_qjCa4ZxjGEstg6N8WxqwTIjQavs2IxHB-gXufm-bqbxDYKiWGMLBJhPCTBJrMakgfBPMsMpZbnmSJUEZcakVFirRbOZdxrDSozSlhNFPXGUMIO0Trszh0hrJizBgKulBDDnXDKe8JaueIaFvE6byBaq0-ayDEeWl2MZA0me5GlzmXQuax03kCXn5OmFcXGanFRn4v8cVMkOIHVE0_rU5Txoc4lFa1QK8wZPf7vuidoM3xV-LFTtL6YLd0ZRCoLfV5exXO00b697z5-AIkU6qo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYQHKCHigJVoQF86LFL5Md6d49V1CiUxwWQuFl-hq2SECXh0Au_nZldLwWkcujVO7assT0P7TffEPJNcm-rAjLVwvA8k-BSMxNLk0WhWMQ_kDxigfPFpRrdyF-3-e0aGXS1MAirTLa_temNtU4j_aTN_ryu-1fwPuA6FlgqCkkF8phuyJwXmIGdPP7FeVSyabCJ0hmKd9RDDcjrz3S5RNZKzhFsVzH5L_f0xlA33me4TT6msJH-aHf2iayF2Q758IJMcJfcDU2NGHPqW_RcvaQtTTNFbPuYGgoRNJ211BhmQacGqRlg_GE8TQVIM9pRjFOIZakPYU5TWwmQm4zvF_XqbrpHboY_rwejLPVRyJwQbJUpFyELdqW3kD0oEUXpOPeyKg3jhoXCqZIz760KoZTRWlCZM8pbZnh0jjPxmazD7sIXQo0I3kHEVTDmZFDBxMhEXhlpYZFoq33CO_Vpl0jGsdfFRHdost-60blGnetW5_vk-_Okecux8b646s5Fv7oqGrzA-xN73Snq9FKXmqsci4Wl4Af_u-4x2RxdX5zr89PLs69kC7-0YLIeWV8tHsIhhC0re9RcyycCO-w_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Failure+diagnosis+system+using+a+new+nonlinear+mapping+augmentation+approach+for+deep+learning+algorithm&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Kim%2C+Dong-Yoon&rft.au=Woo%2C+Yeon-Jun&rft.au=Kang%2C+Keonwook&rft.au=Yoon%2C+Gil+Ho&rft.date=2022-06-01&rft.pub=Elsevier+BV&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=172&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ymssp.2022.108914&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon