Failure diagnosis system using a new nonlinear mapping augmentation approach for deep learning algorithm
This paper develops a new nonlinear transformation-based augmentation method for Convolutional Neural Network (CNN) approach with vibration signals of simple, small scale and elementary reference models for the classification or prediction of vibration signals of perplex healthy or damaged systems u...
        Saved in:
      
    
          | Published in | Mechanical systems and signal processing Vol. 172; p. 108914 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin
          Elsevier Ltd
    
        01.06.2022
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0888-3270 1096-1216  | 
| DOI | 10.1016/j.ymssp.2022.108914 | 
Cover
| Abstract | This paper develops a new nonlinear transformation-based augmentation method for Convolutional Neural Network (CNN) approach with vibration signals of simple, small scale and elementary reference models for the classification or prediction of vibration signals of perplex healthy or damaged systems using a smart diagnosis system. The accuracy of deep learning algorithm being highly dependent on the quantity of qualified data, the acquiring of a large set of formatted data for the training and verification of a deep learning algorithm is essential. Unfortunately, many scientific and engineering application domains do not allow access to a Big Data accurately bearing domain knowledge and the artificial intelligent (AI) based classification methods suffer from the lack of data and often end up with poor prediction. To overcome this issue, data augmentation approaches have been utilized. In many applications, however, the obtaining of data reflecting physical phenomena is even not possible. To overcome this issue, this research suggests a new nonlinear transformation-based augmentation approach mapping from the data obtained from lab-scale healthy models to the data of complex real healthy models whose data in the damaged status are hard to be obtained. The nonlinear transformation method defined between the data of lab-scale healthy models and the data of complex real healthy model is then applied to predict the data of complex real damaged models for an accurate classification. To validate the concept of the nonlinear transformation augmentation, several vibration examples including an example showing the mode switching are considered. To extract discriminating features from the vibration-based spectrograms using a deep learning algorithm, the nonlinear transformation-based augmentation and the classification between healthy and damaged structures are presented.
•A new nonlinear mapping augmentation approach is presented for vibration signals.•The vibration signals of simple models can be augmented with the augmentation approach.•Damage signals of complex real models are predicted with the augmentation approach.•The augmentation approach can consider the mode switching phenomenon.•Various fracture features can be predicted with the augmentation approach. | 
    
|---|---|
| AbstractList | This paper develops a new nonlinear transformation-based augmentation method for Convolutional Neural Network (CNN) approach with vibration signals of simple, small scale and elementary reference models for the classification or prediction of vibration signals of perplex healthy or damaged systems using a smart diagnosis system. The accuracy of deep learning algorithm being highly dependent on the quantity of qualified data, the acquiring of a large set of formatted data for the training and verification of a deep learning algorithm is essential. Unfortunately, many scientific and engineering application domains do not allow access to a Big Data accurately bearing domain knowledge and the artificial intelligent (AI) based classification methods suffer from the lack of data and often end up with poor prediction. To overcome this issue, data augmentation approaches have been utilized. In many applications, however, the obtaining of data reflecting physical phenomena is even not possible. To overcome this issue, this research suggests a new nonlinear transformation-based augmentation approach mapping from the data obtained from lab-scale healthy models to the data of complex real healthy models whose data in the damaged status are hard to be obtained. The nonlinear transformation method defined between the data of lab-scale healthy models and the data of complex real healthy model is then applied to predict the data of complex real damaged models for an accurate classification. To validate the concept of the nonlinear transformation augmentation, several vibration examples including an example showing the mode switching are considered. To extract discriminating features from the vibration-based spectrograms using a deep learning algorithm, the nonlinear transformation-based augmentation and the classification between healthy and damaged structures are presented. This paper develops a new nonlinear transformation-based augmentation method for Convolutional Neural Network (CNN) approach with vibration signals of simple, small scale and elementary reference models for the classification or prediction of vibration signals of perplex healthy or damaged systems using a smart diagnosis system. The accuracy of deep learning algorithm being highly dependent on the quantity of qualified data, the acquiring of a large set of formatted data for the training and verification of a deep learning algorithm is essential. Unfortunately, many scientific and engineering application domains do not allow access to a Big Data accurately bearing domain knowledge and the artificial intelligent (AI) based classification methods suffer from the lack of data and often end up with poor prediction. To overcome this issue, data augmentation approaches have been utilized. In many applications, however, the obtaining of data reflecting physical phenomena is even not possible. To overcome this issue, this research suggests a new nonlinear transformation-based augmentation approach mapping from the data obtained from lab-scale healthy models to the data of complex real healthy models whose data in the damaged status are hard to be obtained. The nonlinear transformation method defined between the data of lab-scale healthy models and the data of complex real healthy model is then applied to predict the data of complex real damaged models for an accurate classification. To validate the concept of the nonlinear transformation augmentation, several vibration examples including an example showing the mode switching are considered. To extract discriminating features from the vibration-based spectrograms using a deep learning algorithm, the nonlinear transformation-based augmentation and the classification between healthy and damaged structures are presented. •A new nonlinear mapping augmentation approach is presented for vibration signals.•The vibration signals of simple models can be augmented with the augmentation approach.•Damage signals of complex real models are predicted with the augmentation approach.•The augmentation approach can consider the mode switching phenomenon.•Various fracture features can be predicted with the augmentation approach.  | 
    
| ArticleNumber | 108914 | 
    
| Author | Kang, Keonwook Woo, Yeon-Jun Yoon, Gil Ho Kim, Dong-Yoon  | 
    
| Author_xml | – sequence: 1 givenname: Dong-Yoon surname: Kim fullname: Kim, Dong-Yoon organization: School of Mechanical Engineering, Hanyang University, Seoul, South Korea – sequence: 2 givenname: Yeon-Jun surname: Woo fullname: Woo, Yeon-Jun organization: School of Mechanical Engineering, Hanyang University, Seoul, South Korea – sequence: 3 givenname: Keonwook orcidid: 0000-0002-8428-8288 surname: Kang fullname: Kang, Keonwook email: kwkang75@yonsei.ac.kr organization: School of Mechanical Engineering, Yonsei University, Seoul, South Korea – sequence: 4 givenname: Gil Ho surname: Yoon fullname: Yoon, Gil Ho email: ghy@hanyang.ac.kr organization: School of Mechanical Engineering, Hanyang University, Seoul, South Korea  | 
    
| BookMark | eNqFkEtPwzAQhC1UJMrjF3CxxDnFj9R1DhxQxUtC4gJny7E3ravEDnYC6r_HNJw4wGml0Xy7O3OKZj54QOiSkgUlVFzvFvsupX7BCGNZkRUtj9CckkoUlFExQ3MipSw4W5ETdJrSjhBSlUTM0fZeu3aMgK3TGx-SSzjt0wAdHpPzG6yxh0-cz7XOg464031_0MdNB37QgwseZy0Gbba4CRFbgB632esPvnYTohu23Tk6bnSb4OJnnqG3-7vX9WPx_PLwtL59LgzndCiEaUgpjLT1sloJ3nBpGLNlJTVlmsLKCMmotbUAkGVT1zmG0cLWVLPGGEb5Gbqa9uaX3kdIg9qFMfp8UjGx5EvJSs6yq5pcJoaUIjTKuCnMEHMhihL1XazaqUOx6rtYNRWbWf6L7aPrdNz_Q91MFOTwHw6iSsaBN2BdBDMoG9yf_BddVpgd | 
    
| CitedBy_id | crossref_primary_10_1016_j_ymssp_2023_110678 crossref_primary_10_5006_4582 crossref_primary_10_7734_COSEIK_2023_36_1_57 crossref_primary_10_1016_j_eswa_2023_122214 crossref_primary_10_1016_j_isatra_2023_12_045 crossref_primary_10_1016_j_epsr_2024_110173 crossref_primary_10_1016_j_compstruc_2023_107094 crossref_primary_10_1016_j_jmbbm_2023_106077 crossref_primary_10_1177_10775463231216919 crossref_primary_10_1088_1361_6501_ada821 crossref_primary_10_1155_2022_1338392  | 
    
| Cites_doi | 10.3390/s20082335 10.1016/j.measurement.2020.108832 10.1016/j.tafmec.2019.102447 10.3390/rs10010139 10.1016/j.knosys.2017.10.024 10.1371/journal.pone.0228324 10.1109/TIM.2019.2933342 10.1016/j.ecoinf.2020.101093 10.1109/CVPR.2019.00020 10.1198/106186007X181425 10.1177/0954411921997575 10.1007/s13239-011-0065-3 10.1016/j.compositesb.2018.12.118 10.1016/j.knosys.2020.106453 10.1109/TPEL.2019.2911594 10.1080/00207543.2018.1552032 10.1016/S0009-2509(97)85420-6 10.1016/j.mser.2004.05.001 10.1186/s40537-019-0197-0 10.1109/78.376839 10.1016/j.compag.2018.02.016 10.1016/j.ymssp.2011.02.020 10.3390/s17020425 10.1186/s40537-016-0043-6 10.1006/jsvi.1993.1078 10.1038/s41598-019-44839-3 10.1177/1475921720986945 10.3390/rs11232765 10.1016/j.cmpb.2019.06.023 10.3390/sym11101212 10.1016/j.compstruct.2020.112681 10.1007/s13244-018-0639-9  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Jun 1, 2022  | 
    
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Jun 1, 2022  | 
    
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1016/j.ymssp.2022.108914 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1096-1216 | 
    
| ExternalDocumentID | 10_1016_j_ymssp_2022_108914 S0888327022001005  | 
    
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SST SSV SSZ T5K XPP ZMT ZU3 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ ~HD 7SC 7SP 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH  | 
    
| ID | FETCH-LOGICAL-c331t-6cf046c8db59763f38c22d498a12a1e7c6821ddb6ee84fbb094ca6db1a2fcc213 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0888-3270 | 
    
| IngestDate | Fri Jul 25 06:52:03 EDT 2025 Thu Apr 24 22:57:40 EDT 2025 Thu Oct 16 04:34:00 EDT 2025 Fri Feb 23 02:41:05 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Data augmentation Transverse vibration Damage Nonlinear mapping Virtual spectrogram Frequency response function  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c331t-6cf046c8db59763f38c22d498a12a1e7c6821ddb6ee84fbb094ca6db1a2fcc213 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-8428-8288 | 
    
| PQID | 2653582432 | 
    
| PQPubID | 2045429 | 
    
| ParticipantIDs | proquest_journals_2653582432 crossref_citationtrail_10_1016_j_ymssp_2022_108914 crossref_primary_10_1016_j_ymssp_2022_108914 elsevier_sciencedirect_doi_10_1016_j_ymssp_2022_108914  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-06-01 2022-06-00 20220601  | 
    
| PublicationDateYYYYMMDD | 2022-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin | 
    
| PublicationPlace_xml | – name: Berlin | 
    
| PublicationTitle | Mechanical systems and signal processing | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier Ltd Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV  | 
    
| References | Nex, Duarte, Tonolo, Kerle (b15) 2019; 11 Khan, Ko, Lim, Kim (b5) 2019; 161 Balmes (b46) 1993; 161 Astarita (b25) 1997; 52 Kathirvel, Manikandan, Prasanna, Soman (b22) 2011; 2 Zhang, Peng, Li, Chen, Zhang (b8) 2017; 17 E.D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, Q.V. Le, Autoaugment: Learning augmentation strategies from data, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 113–123. Paszyński, Grzeszczuk, Pardo, Demkowicz (b20) 2021 Shorten, Khoshgoftaar (b1) 2019; 6 Yoon, Woo, Sim, Kim, Hwang (b44) 2021 Albawi, Mohammed, Al-Zawi (b40) 2017 Li, Gu, Huang (b18) 2021; 171 Sohaib, Kim (b14) 2019; 69 Maragos (b23) 1995; 43 Cheng, Cheng (b24) 2004; 44 Boschert, Rosen (b9) 2016 Chen, Zhang, Cao (b7) 2020; 15 Krois, Ekert, Meinhold, Golla, Kharbot, Wittemeier, Dörfer, Schwendicke (b35) 2019; 9 Yamashita, Nishio, Do, Togashi (b36) 2018; 9 Liang, Zheng (b34) 2020; 187 Jain, Poon, Singh, Spanos, Sanders, Panda (b11) 2019; 35 Kumar, Gandhi, Zhou, Vashishtha, Kumar, Xiang (b12) 2020; 208 Poston, Schloemann, Buehrer, Malladi, Woolard, Tarazaga (b16) 2015 Kamilaris, Prenafeta-Boldú (b29) 2018; 147 Shen, Wan, Ye, Guan, Liu (b32) 2019 Weiss, Khoshgoftaar, Wang (b26) 2016; 3 (b45) 2020 Han, Qi, Ding, Geng (b19) 2021 Gallina, Pichler, Uhl (b47) 2011; 25 Royle, Dorazio, Link (b4) 2007; 16 Khan, Shin, Lim, Kim, Kim (b6) 2020; 20 Wang, Ye, Gao, Li, Zhang (b10) 2019; 57 Goswami, Anitescu, Chakraborty, Rabczuk (b28) 2020; 106 Agarap (b42) 2018 Wang, Yang, Li, Du, Wang (b17) 2021 R. Barman, S. Deshpande, S. Agarwal, U. Inamdar, M. Devare, A. Patil, Transfer learning for small dataset, in: Proceedings of the National Conference on Machine Learning, Mumbai, India, Vol. 26, 2019. Gong, Shao, Luo, Li (b33) 2020; 252 Qin, Pan, Xiang, Tan, Hou (b37) 2020; 58 Hürkamp, Gellrich, Ossowski, Beuscher, Thiede, Herrmann, Dröder (b21) 2020; 4 Chen, Zhang, Ouyang (b31) 2018; 10 Aghdam, Heravi (b43) 2017 Ketkar (b39) 2017 Wang, Perez (b2) 2017; 11 Hsueh, Ittangihal, Wu, Chang, Kuo (b13) 2019; 11 Haidong, Hongkai, Xingqiu, Shuaipeng (b30) 2018; 140 Chauhan, Ghanshala, Joshi (b38) 2018 Kim (b41) 2017 Astarita (10.1016/j.ymssp.2022.108914_b25) 1997; 52 Liang (10.1016/j.ymssp.2022.108914_b34) 2020; 187 Poston (10.1016/j.ymssp.2022.108914_b16) 2015 Khan (10.1016/j.ymssp.2022.108914_b6) 2020; 20 Krois (10.1016/j.ymssp.2022.108914_b35) 2019; 9 Yoon (10.1016/j.ymssp.2022.108914_b44) 2021 Hürkamp (10.1016/j.ymssp.2022.108914_b21) 2020; 4 Gallina (10.1016/j.ymssp.2022.108914_b47) 2011; 25 Nex (10.1016/j.ymssp.2022.108914_b15) 2019; 11 Royle (10.1016/j.ymssp.2022.108914_b4) 2007; 16 Zhang (10.1016/j.ymssp.2022.108914_b8) 2017; 17 Jain (10.1016/j.ymssp.2022.108914_b11) 2019; 35 Maragos (10.1016/j.ymssp.2022.108914_b23) 1995; 43 Wang (10.1016/j.ymssp.2022.108914_b17) 2021 Kamilaris (10.1016/j.ymssp.2022.108914_b29) 2018; 147 10.1016/j.ymssp.2022.108914_b27 Goswami (10.1016/j.ymssp.2022.108914_b28) 2020; 106 (10.1016/j.ymssp.2022.108914_b45) 2020 Cheng (10.1016/j.ymssp.2022.108914_b24) 2004; 44 10.1016/j.ymssp.2022.108914_b3 Kathirvel (10.1016/j.ymssp.2022.108914_b22) 2011; 2 Chen (10.1016/j.ymssp.2022.108914_b31) 2018; 10 Hsueh (10.1016/j.ymssp.2022.108914_b13) 2019; 11 Albawi (10.1016/j.ymssp.2022.108914_b40) 2017 Boschert (10.1016/j.ymssp.2022.108914_b9) 2016 Han (10.1016/j.ymssp.2022.108914_b19) 2021 Sohaib (10.1016/j.ymssp.2022.108914_b14) 2019; 69 Kim (10.1016/j.ymssp.2022.108914_b41) 2017 Khan (10.1016/j.ymssp.2022.108914_b5) 2019; 161 Qin (10.1016/j.ymssp.2022.108914_b37) 2020; 58 Kumar (10.1016/j.ymssp.2022.108914_b12) 2020; 208 Shen (10.1016/j.ymssp.2022.108914_b32) 2019 Haidong (10.1016/j.ymssp.2022.108914_b30) 2018; 140 Ketkar (10.1016/j.ymssp.2022.108914_b39) 2017 Gong (10.1016/j.ymssp.2022.108914_b33) 2020; 252 Yamashita (10.1016/j.ymssp.2022.108914_b36) 2018; 9 Paszyński (10.1016/j.ymssp.2022.108914_b20) 2021 Aghdam (10.1016/j.ymssp.2022.108914_b43) 2017 Shorten (10.1016/j.ymssp.2022.108914_b1) 2019; 6 Wang (10.1016/j.ymssp.2022.108914_b10) 2019; 57 Chen (10.1016/j.ymssp.2022.108914_b7) 2020; 15 Wang (10.1016/j.ymssp.2022.108914_b2) 2017; 11 Chauhan (10.1016/j.ymssp.2022.108914_b38) 2018 Agarap (10.1016/j.ymssp.2022.108914_b42) 2018 Balmes (10.1016/j.ymssp.2022.108914_b46) 1993; 161 Li (10.1016/j.ymssp.2022.108914_b18) 2021; 171 Weiss (10.1016/j.ymssp.2022.108914_b26) 2016; 3  | 
    
| References_xml | – volume: 161 start-page: 358 year: 1993 end-page: 363 ident: b46 article-title: High modal density, curve veering, localization: a different perspective on the structural response publication-title: J. Sound Vib. – volume: 20 start-page: 2335 year: 2020 ident: b6 article-title: A deep learning framework for vibration-based assessment of delamination in smart composite laminates publication-title: Sensors – volume: 35 start-page: 940 year: 2019 end-page: 956 ident: b11 article-title: A digital twin approach for fault diagnosis in distributed photovoltaic systems publication-title: IEEE Trans. Power Electron. – volume: 44 start-page: 91 year: 2004 end-page: 149 ident: b24 article-title: Scaling, dimensional analysis, and indentation measurements publication-title: Mater. Sci. Eng. R – year: 2020 ident: b45 article-title: Deep Learning Toolbox Version 14.0 (R2020a) – volume: 43 start-page: 864 year: 1995 end-page: 877 ident: b23 article-title: Slope transforms: theory and application to nonlinear signal processing publication-title: IEEE Trans. Signal Process. – volume: 2 start-page: 408 year: 2011 end-page: 425 ident: b22 article-title: An efficient r-peak detection based on new nonlinear transformation and first-order gaussian differentiator publication-title: Cardiovasc. Eng. Technol. – volume: 25 start-page: 2297 year: 2011 end-page: 2312 ident: b47 article-title: Enhanced meta-modelling technique for analysis of mode crossing, mode veering and mode coalescence in structural dynamics publication-title: Mech. Syst. Signal Process. – volume: 52 start-page: 4681 year: 1997 end-page: 4698 ident: b25 article-title: Dimensional analysis, scaling, and orders of magnitude publication-title: Chem. Eng. Sci. – volume: 161 start-page: 586 year: 2019 end-page: 594 ident: b5 article-title: Structural vibration-based classification and prediction of delamination in smart composite laminates using deep learning neural network publication-title: Composites B – volume: 4 start-page: 92 year: 2020 ident: b21 article-title: Combining simulation and machine learning as digital twin for the manufacturing of overmolded thermoplastic composites publication-title: J. Manufact. Mater. Proces. – volume: 11 year: 2017 ident: b2 article-title: The effectiveness of data augmentation in image classification using deep learning publication-title: Convolutional Neural Netw. Vis. Recognit. – volume: 3 start-page: 1 year: 2016 end-page: 40 ident: b26 article-title: A survey of transfer learning publication-title: J. Big Data – start-page: 114 year: 2021 end-page: 121 ident: b20 article-title: Deep learning driven self-adaptive hp finite element method publication-title: International Conference on Computational Science – volume: 16 start-page: 67 year: 2007 end-page: 85 ident: b4 article-title: Analysis of multinomial models with unknown index using data augmentation publication-title: J. Comput. Graph. Statist. – volume: 147 start-page: 70 year: 2018 end-page: 90 ident: b29 article-title: Deep learning in agriculture: A survey publication-title: Comput. Electron. Agric. – start-page: 63 year: 2017 end-page: 78 ident: b39 article-title: Convolutional neural networks publication-title: Deep Learning with Python – start-page: 59 year: 2016 end-page: 74 ident: b9 article-title: Digital twin—the simulation aspect publication-title: Mechatronic Futures – volume: 187 year: 2020 ident: b34 article-title: A transfer learning method with deep residual network for pediatric pneumonia diagnosis publication-title: Comput. Methods Programs Biomed. – volume: 106 year: 2020 ident: b28 article-title: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture publication-title: Theor. Appl. Fract. Mech. – volume: 57 start-page: 3920 year: 2019 end-page: 3934 ident: b10 article-title: Digital twin for rotating machinery fault diagnosis in smart manufacturing publication-title: Int. J. Prod. Res. – start-page: 278 year: 2018 end-page: 282 ident: b38 article-title: Convolutional neural network (cnn) for image detection and recognition publication-title: 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC) – volume: 171 year: 2021 ident: b18 article-title: A chaotic system-based signal identification technology: Fault-diagnosis of industrial bearing system publication-title: Measurement – year: 2021 ident: b19 article-title: Short-time wavelet entropy integrating improved lstm for fault diagnosis of modular multilevel converter publication-title: IEEE Trans. Cybern. – volume: 58 year: 2020 ident: b37 article-title: A biological image classification method based on improved cnn publication-title: Ecol. Inform. – volume: 9 start-page: 611 year: 2018 end-page: 629 ident: b36 article-title: Convolutional neural networks: an overview and application in radiology publication-title: Insights Imaging – year: 2017 ident: b43 article-title: Guide to Convolutional Neural Networks: A Practical Application to Traffic-Sign Detection and Classification – start-page: 121 year: 2017 end-page: 147 ident: b41 article-title: Convolutional neural network publication-title: MATLAB Deep Learning – volume: 208 year: 2020 ident: b12 article-title: Improved cnn for the diagnosis of engine defects of 2-wheeler vehicle using wavelet synchro-squeezed transform (wsst) publication-title: Knowl.-Based Syst. – volume: 6 start-page: 1 year: 2019 end-page: 48 ident: b1 article-title: A survey on image data augmentation for deep learning publication-title: J. Big Data – volume: 11 start-page: 2765 year: 2019 ident: b15 article-title: Structural building damage detection with deep learning: Assessment of a state-of-the-art cnn in operational conditions publication-title: Remote Sens. – volume: 10 start-page: 139 year: 2018 ident: b31 article-title: End-to-end airplane detection using transfer learning in remote sensing images publication-title: Remote Sens. – start-page: 1 year: 2015 end-page: 6 ident: b16 article-title: Towards indoor localization of pedestrians via smart building vibration sensing publication-title: 2015 International Conference on Localization and GNSS (ICL-GNSS) – volume: 11 start-page: 1212 year: 2019 ident: b13 article-title: Fault diagnosis system for induction motors by cnn using empirical wavelet transform publication-title: Symmetry – start-page: 1005 year: 2019 end-page: 1010 ident: b32 article-title: Deep learning based framework for automatic damage detection in aircraft engine borescope inspection publication-title: 2019 International Conference on Computing, Networking and Communications (ICNC) – start-page: 1 year: 2017 end-page: 6 ident: b40 article-title: Understanding of a convolutional neural network publication-title: 2017 International Conference on Engineering and Technology (ICET) – volume: 69 start-page: 3334 year: 2019 end-page: 3347 ident: b14 article-title: Fault diagnosis of rotary machine bearings under inconsistent working conditions publication-title: IEEE Trans. Instrum. Meas. – volume: 9 start-page: 1 year: 2019 end-page: 6 ident: b35 article-title: Deep learning for the radiographic detection of periodontal bone loss publication-title: Sci. Rep. – year: 2021 ident: b17 article-title: A new fault diagnosis method based on adaptive spectrum mode extraction publication-title: Struct. Health Monit. – year: 2018 ident: b42 article-title: Deep learning using rectified linear units (relu) – volume: 17 start-page: 425 year: 2017 ident: b8 article-title: A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals publication-title: Sensors – volume: 140 start-page: 1 year: 2018 end-page: 14 ident: b30 article-title: Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine publication-title: Knowl.-Based Syst. – volume: 252 year: 2020 ident: b33 article-title: A deep transfer learning model for inclusion defect detection of aeronautics composite materials publication-title: Compos. Struct. – reference: R. Barman, S. Deshpande, S. Agarwal, U. Inamdar, M. Devare, A. Patil, Transfer learning for small dataset, in: Proceedings of the National Conference on Machine Learning, Mumbai, India, Vol. 26, 2019. – volume: 15 year: 2020 ident: b7 article-title: A novel method of combining generalized frequency response function and convolutional neural network for complex system fault diagnosis publication-title: PLoS One – reference: E.D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, Q.V. Le, Autoaugment: Learning augmentation strategies from data, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 113–123. – year: 2021 ident: b44 article-title: Investigation of bone fracture diagnosis system using transverse vibration response publication-title: Proc. Inst. Mech. Eng. Part H – volume: 20 start-page: 2335 issue: 8 year: 2020 ident: 10.1016/j.ymssp.2022.108914_b6 article-title: A deep learning framework for vibration-based assessment of delamination in smart composite laminates publication-title: Sensors doi: 10.3390/s20082335 – start-page: 1 year: 2017 ident: 10.1016/j.ymssp.2022.108914_b40 article-title: Understanding of a convolutional neural network – year: 2021 ident: 10.1016/j.ymssp.2022.108914_b19 article-title: Short-time wavelet entropy integrating improved lstm for fault diagnosis of modular multilevel converter publication-title: IEEE Trans. Cybern. – volume: 171 year: 2021 ident: 10.1016/j.ymssp.2022.108914_b18 article-title: A chaotic system-based signal identification technology: Fault-diagnosis of industrial bearing system publication-title: Measurement doi: 10.1016/j.measurement.2020.108832 – volume: 106 year: 2020 ident: 10.1016/j.ymssp.2022.108914_b28 article-title: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2019.102447 – volume: 10 start-page: 139 issue: 1 year: 2018 ident: 10.1016/j.ymssp.2022.108914_b31 article-title: End-to-end airplane detection using transfer learning in remote sensing images publication-title: Remote Sens. doi: 10.3390/rs10010139 – volume: 140 start-page: 1 year: 2018 ident: 10.1016/j.ymssp.2022.108914_b30 article-title: Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.10.024 – volume: 15 issue: 2 year: 2020 ident: 10.1016/j.ymssp.2022.108914_b7 article-title: A novel method of combining generalized frequency response function and convolutional neural network for complex system fault diagnosis publication-title: PLoS One doi: 10.1371/journal.pone.0228324 – year: 2018 ident: 10.1016/j.ymssp.2022.108914_b42 – volume: 69 start-page: 3334 issue: 6 year: 2019 ident: 10.1016/j.ymssp.2022.108914_b14 article-title: Fault diagnosis of rotary machine bearings under inconsistent working conditions publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2019.2933342 – volume: 58 year: 2020 ident: 10.1016/j.ymssp.2022.108914_b37 article-title: A biological image classification method based on improved cnn publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2020.101093 – ident: 10.1016/j.ymssp.2022.108914_b3 doi: 10.1109/CVPR.2019.00020 – volume: 16 start-page: 67 issue: 1 year: 2007 ident: 10.1016/j.ymssp.2022.108914_b4 article-title: Analysis of multinomial models with unknown index using data augmentation publication-title: J. Comput. Graph. Statist. doi: 10.1198/106186007X181425 – year: 2021 ident: 10.1016/j.ymssp.2022.108914_b44 article-title: Investigation of bone fracture diagnosis system using transverse vibration response publication-title: Proc. Inst. Mech. Eng. Part H doi: 10.1177/0954411921997575 – volume: 4 start-page: 92 issue: 3 year: 2020 ident: 10.1016/j.ymssp.2022.108914_b21 article-title: Combining simulation and machine learning as digital twin for the manufacturing of overmolded thermoplastic composites publication-title: J. Manufact. Mater. Proces. – year: 2020 ident: 10.1016/j.ymssp.2022.108914_b45 – volume: 2 start-page: 408 issue: 4 year: 2011 ident: 10.1016/j.ymssp.2022.108914_b22 article-title: An efficient r-peak detection based on new nonlinear transformation and first-order gaussian differentiator publication-title: Cardiovasc. Eng. Technol. doi: 10.1007/s13239-011-0065-3 – volume: 161 start-page: 586 year: 2019 ident: 10.1016/j.ymssp.2022.108914_b5 article-title: Structural vibration-based classification and prediction of delamination in smart composite laminates using deep learning neural network publication-title: Composites B doi: 10.1016/j.compositesb.2018.12.118 – volume: 208 year: 2020 ident: 10.1016/j.ymssp.2022.108914_b12 article-title: Improved cnn for the diagnosis of engine defects of 2-wheeler vehicle using wavelet synchro-squeezed transform (wsst) publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106453 – volume: 35 start-page: 940 issue: 1 year: 2019 ident: 10.1016/j.ymssp.2022.108914_b11 article-title: A digital twin approach for fault diagnosis in distributed photovoltaic systems publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2019.2911594 – start-page: 121 year: 2017 ident: 10.1016/j.ymssp.2022.108914_b41 article-title: Convolutional neural network – volume: 57 start-page: 3920 issue: 12 year: 2019 ident: 10.1016/j.ymssp.2022.108914_b10 article-title: Digital twin for rotating machinery fault diagnosis in smart manufacturing publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2018.1552032 – year: 2017 ident: 10.1016/j.ymssp.2022.108914_b43 – volume: 52 start-page: 4681 issue: 24 year: 1997 ident: 10.1016/j.ymssp.2022.108914_b25 article-title: Dimensional analysis, scaling, and orders of magnitude publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(97)85420-6 – volume: 44 start-page: 91 issue: 4–5 year: 2004 ident: 10.1016/j.ymssp.2022.108914_b24 article-title: Scaling, dimensional analysis, and indentation measurements publication-title: Mater. Sci. Eng. R doi: 10.1016/j.mser.2004.05.001 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.ymssp.2022.108914_b1 article-title: A survey on image data augmentation for deep learning publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 – volume: 43 start-page: 864 issue: 4 year: 1995 ident: 10.1016/j.ymssp.2022.108914_b23 article-title: Slope transforms: theory and application to nonlinear signal processing publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.376839 – start-page: 278 year: 2018 ident: 10.1016/j.ymssp.2022.108914_b38 article-title: Convolutional neural network (cnn) for image detection and recognition – ident: 10.1016/j.ymssp.2022.108914_b27 – start-page: 59 year: 2016 ident: 10.1016/j.ymssp.2022.108914_b9 article-title: Digital twin—the simulation aspect – start-page: 63 year: 2017 ident: 10.1016/j.ymssp.2022.108914_b39 article-title: Convolutional neural networks – volume: 147 start-page: 70 year: 2018 ident: 10.1016/j.ymssp.2022.108914_b29 article-title: Deep learning in agriculture: A survey publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.02.016 – volume: 25 start-page: 2297 issue: 7 year: 2011 ident: 10.1016/j.ymssp.2022.108914_b47 article-title: Enhanced meta-modelling technique for analysis of mode crossing, mode veering and mode coalescence in structural dynamics publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2011.02.020 – start-page: 114 year: 2021 ident: 10.1016/j.ymssp.2022.108914_b20 article-title: Deep learning driven self-adaptive hp finite element method – volume: 11 year: 2017 ident: 10.1016/j.ymssp.2022.108914_b2 article-title: The effectiveness of data augmentation in image classification using deep learning publication-title: Convolutional Neural Netw. Vis. Recognit. – volume: 17 start-page: 425 issue: 2 year: 2017 ident: 10.1016/j.ymssp.2022.108914_b8 article-title: A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals publication-title: Sensors doi: 10.3390/s17020425 – volume: 3 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.ymssp.2022.108914_b26 article-title: A survey of transfer learning publication-title: J. Big Data doi: 10.1186/s40537-016-0043-6 – volume: 161 start-page: 358 issue: 2 year: 1993 ident: 10.1016/j.ymssp.2022.108914_b46 article-title: High modal density, curve veering, localization: a different perspective on the structural response publication-title: J. Sound Vib. doi: 10.1006/jsvi.1993.1078 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.ymssp.2022.108914_b35 article-title: Deep learning for the radiographic detection of periodontal bone loss publication-title: Sci. Rep. doi: 10.1038/s41598-019-44839-3 – year: 2021 ident: 10.1016/j.ymssp.2022.108914_b17 article-title: A new fault diagnosis method based on adaptive spectrum mode extraction publication-title: Struct. Health Monit. doi: 10.1177/1475921720986945 – volume: 11 start-page: 2765 issue: 23 year: 2019 ident: 10.1016/j.ymssp.2022.108914_b15 article-title: Structural building damage detection with deep learning: Assessment of a state-of-the-art cnn in operational conditions publication-title: Remote Sens. doi: 10.3390/rs11232765 – volume: 187 year: 2020 ident: 10.1016/j.ymssp.2022.108914_b34 article-title: A transfer learning method with deep residual network for pediatric pneumonia diagnosis publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.06.023 – start-page: 1 year: 2015 ident: 10.1016/j.ymssp.2022.108914_b16 article-title: Towards indoor localization of pedestrians via smart building vibration sensing – volume: 11 start-page: 1212 issue: 10 year: 2019 ident: 10.1016/j.ymssp.2022.108914_b13 article-title: Fault diagnosis system for induction motors by cnn using empirical wavelet transform publication-title: Symmetry doi: 10.3390/sym11101212 – volume: 252 year: 2020 ident: 10.1016/j.ymssp.2022.108914_b33 article-title: A deep transfer learning model for inclusion defect detection of aeronautics composite materials publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2020.112681 – volume: 9 start-page: 611 issue: 4 year: 2018 ident: 10.1016/j.ymssp.2022.108914_b36 article-title: Convolutional neural networks: an overview and application in radiology publication-title: Insights Imaging doi: 10.1007/s13244-018-0639-9 – start-page: 1005 year: 2019 ident: 10.1016/j.ymssp.2022.108914_b32 article-title: Deep learning based framework for automatic damage detection in aircraft engine borescope inspection  | 
    
| SSID | ssj0009406 | 
    
| Score | 2.4429445 | 
    
| Snippet | This paper develops a new nonlinear transformation-based augmentation method for Convolutional Neural Network (CNN) approach with vibration signals of simple,... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 108914 | 
    
| SubjectTerms | Algorithms Artificial intelligence Artificial neural networks Big Data Classification Damage Data acquisition Data augmentation Deep learning Diagnosis Domains Feature extraction Frequency response function Machine learning Mapping Nonlinear mapping Spectrograms Structural damage Transformations (mathematics) Transverse vibration Vibration Virtual spectrogram  | 
    
| Title | Failure diagnosis system using a new nonlinear mapping augmentation approach for deep learning algorithm | 
    
| URI | https://dx.doi.org/10.1016/j.ymssp.2022.108914 https://www.proquest.com/docview/2653582432  | 
    
| Volume | 172 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: AKRWK dateStart: 19870101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLYQLDAgTlEueWAkVD7qJGOFqAoIFqjUzfLZBrWl6jGw8Nt5ThwuiQ6MsZ4t69l-h_K97yF0wanVeQqZaqpoK-HgUhPlM5V4JogPfyCpDwXOD4-i2-N3_VZ_DV3XtTABVhltf2XTS2sdR5pRm81pUTSf4H3AdUxDqSgkFSWPKedp6GJw9f4F88h52V8zCCdBumYeKjFeb-P5PJBWUhqwdjnhf3mnX3a6dD6dHbQdo0bcrja2i9bcZA9tfeMS3EfDjioCxBzbCjxXzHHF0owDtH2AFYYAGk8qZgw1w2MVmBlgfDkYx_qjCa4ZxjGEstg6N8WxqwTIjQavs2IxHB-gXufm-bqbxDYKiWGMLBJhPCTBJrMakgfBPMsMpZbnmSJUEZcakVFirRbOZdxrDSozSlhNFPXGUMIO0Trszh0hrJizBgKulBDDnXDKe8JaueIaFvE6byBaq0-ayDEeWl2MZA0me5GlzmXQuax03kCXn5OmFcXGanFRn4v8cVMkOIHVE0_rU5Txoc4lFa1QK8wZPf7vuidoM3xV-LFTtL6YLd0ZRCoLfV5exXO00b697z5-AIkU6qo | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYQHKCHigJVoQF86LFL5Md6d49V1CiUxwWQuFl-hq2SECXh0Au_nZldLwWkcujVO7assT0P7TffEPJNcm-rAjLVwvA8k-BSMxNLk0WhWMQ_kDxigfPFpRrdyF-3-e0aGXS1MAirTLa_temNtU4j_aTN_ryu-1fwPuA6FlgqCkkF8phuyJwXmIGdPP7FeVSyabCJ0hmKd9RDDcjrz3S5RNZKzhFsVzH5L_f0xlA33me4TT6msJH-aHf2iayF2Q758IJMcJfcDU2NGHPqW_RcvaQtTTNFbPuYGgoRNJ211BhmQacGqRlg_GE8TQVIM9pRjFOIZakPYU5TWwmQm4zvF_XqbrpHboY_rwejLPVRyJwQbJUpFyELdqW3kD0oEUXpOPeyKg3jhoXCqZIz760KoZTRWlCZM8pbZnh0jjPxmazD7sIXQo0I3kHEVTDmZFDBxMhEXhlpYZFoq33CO_Vpl0jGsdfFRHdost-60blGnetW5_vk-_Okecux8b646s5Fv7oqGrzA-xN73Snq9FKXmqsci4Wl4Af_u-4x2RxdX5zr89PLs69kC7-0YLIeWV8tHsIhhC0re9RcyycCO-w_ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Failure+diagnosis+system+using+a+new+nonlinear+mapping+augmentation+approach+for+deep+learning+algorithm&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Kim%2C+Dong-Yoon&rft.au=Woo%2C+Yeon-Jun&rft.au=Kang%2C+Keonwook&rft.au=Yoon%2C+Gil+Ho&rft.date=2022-06-01&rft.pub=Elsevier+BV&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=172&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ymssp.2022.108914&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |