Maximal Information Coefficient-Based Undersampling Method for Highly-Imbalanced Learning
Learning from highly-imbalanced datasets is still a big challenge in the field of machine learning because models created by general learning algorithms are weak in recognizing the samples from the minority class correctly. Undersampling is an alternative kind of methods to deal with imbalanced lear...
Saved in:
| Published in | IEEE access Vol. 13; pp. 4126 - 4135 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
IEEE
2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2025.3525475 |
Cover
| Abstract | Learning from highly-imbalanced datasets is still a big challenge in the field of machine learning because models created by general learning algorithms are weak in recognizing the samples from the minority class correctly. Undersampling is an alternative kind of methods to deal with imbalanced learning. In this paper, we propose a new undersampling method based on maximal information coefficient (including two algorithms MICU-1 and MICU-2) to rebalance the datasets. In order to evaluate the effectiveness of the method, 20 highly- imbalanced datasets are used for the benchmarks. Results show that compared with other undersampling methods, maximal information coefficient-based undersampling method are competitive in terms of G-mean and F-measure. |
|---|---|
| AbstractList | Learning from highly-imbalanced datasets is still a big challenge in the field of machine learning because models created by general learning algorithms are weak in recognizing the samples from the minority class correctly. Undersampling is an alternative kind of methods to deal with imbalanced learning. In this paper, we propose a new undersampling method based on maximal information coefficient (including two algorithms MICU-1 and MICU-2) to rebalance the datasets. In order to evaluate the effectiveness of the method, 20 highly- imbalanced datasets are used for the benchmarks. Results show that compared with other undersampling methods, maximal information coefficient-based undersampling method are competitive in terms of G-mean and F-measure. |
| Author | Qin, Haiou |
| Author_xml | – sequence: 1 givenname: Haiou orcidid: 0009-0006-6773-9215 surname: Qin fullname: Qin, Haiou email: 2022994845@nit.edu.cn organization: School of Information Engineering, Nanchang Institute of Technology, Nanchang, China |
| BookMark | eNplkc9uFDEMxiNUJErpE8BhXmCW_JnMJMcyKnSlrTiUHjhFnsTZpppNVskg2LcnZSpUgWXJluXfJ_nzW3IWU0RC3jO6YYzqj1fjeH13t-GUy42QXHaDfEXOOet1K6Toz170b8hlKY-0hqojOZyT77fwKxxgbrbRp3yAJaTYjAm9DzZgXNpPUNA199FhLnA4ziHum1tcHpJrKtDchP3DfGq3hwlmiLau7hByrFvvyGsPc8HL53pB7j9ffxtv2t3XL9vxatdaIdjSCs0sVwyYds7KYRooqJ72bgA-aWTSeq2g61CileiUnzSlg9LcKy6Edr24INtV1yV4NMdcr8knkyCYP4OU9wbyEuyMhk3WK8Gc9hY7razSVHEnnYTqiABRtbpV60c8wuknzPNfQUbNk9sGrMVSzJPb5tntiokVszmVktH_R60_-pf6sFIBEV8QitdU4jcobo5f |
| CODEN | IAECCG |
| Cites_doi | 10.1109/ACCESS.2021.3072682 10.1109/ICCIT60459.2023.10441026 10.1109/TMI.2024.3389747 10.1109/ICPEE50452.2021.9358623 10.1109/TIM.2021.3136175 10.1007/s10994-013-5422-z 10.1109/eSmarTA59349.2023.10293442 10.1109/ACCESS.2023.3236794 10.1109/TNSE.2021.3100322 10.1016/j.knosys.2020.106439 10.1016/j.patcog.2020.107525 10.1007/s13748-016-0094-0 10.1109/IJCNN.2018.8489320 10.1109/ACCESS.2020.3048198 10.1109/ACCESS.2022.3149295 10.1109/ECACE.2019.8679382 10.1016/j.nucengdes.2020.110699 10.1109/TSMC.1976.4309452 10.1109/TIT.1968.1054155 10.1109/aidas56890.2022.9918773 10.1016/j.neucom.2018.11.099 10.1109/IWCMC51323.2021.9498788 10.1613/jair.953 10.1126/science.1205438 10.1109/TNSM.2021.3112283 10.1016/j.compbiomed.2017.03.002 10.1109/ACCESS.2020.3009753 10.5555/3122009.3122026 10.1109/JBHI.2023.3325540 10.1093/gigascience/giy032 10.1007/s13748-014-0045-6 10.1109/SLAAI-ICAI56923.2022.10002630 10.1109/ICOMICON.2017.8279150 10.1109/ijcnn.2019.8852415 10.1109/iccci56745.2023.10128543 10.1109/CCET56606.2022.10080078 10.1109/ICCCNT56998.2023.10307102 10.1016/j.neucom.2020.04.078 10.1109/ICICyTA60173.2023.10428902 10.1007/3-540-48229-6_9 10.1109/TNNLS.2017.2755595 10.1109/ACCESS.2020.3015954 10.23919/softcom55329.2022.9911518 10.1016/j.engappai.2019.103319 10.1109/TKDE.2008.239 10.1109/TITS.2023.3314402 10.1109/CAC59555.2023.10450429 10.5555/1953048.2078195 10.1109/ICAIBD57115.2023.10206237 10.1109/iccsce50387.2020.9204948 10.1109/ITAIC.2019.8785887 10.1007/s00726-010-0595-2 10.1073/pnas.1309933111 10.1109/TSMC.1972.4309137 |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2025.3525475 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 4135 |
| ExternalDocumentID | oai_doaj_org_article_1bcf831d9fce498c89082d5d5a0003a3 10.1109/access.2025.3525475 10_1109_ACCESS_2025_3525475 10820828 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Start-Up Fund of Nanchang Institute of Technology for Talents funderid: 10.13039/501100014972 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c331t-391c281a19ddc57b70a8606d7a2b9e15cf98a44e5ec5ed8fb9007892f82339d63 |
| IEDL.DBID | UNPAY |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:44:47 EDT 2025 Sun Sep 07 11:06:29 EDT 2025 Wed Oct 01 03:43:34 EDT 2025 Wed Aug 27 01:58:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c331t-391c281a19ddc57b70a8606d7a2b9e15cf98a44e5ec5ed8fb9007892f82339d63 |
| ORCID | 0009-0006-6773-9215 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1109/access.2025.3525475 |
| PageCount | 10 |
| ParticipantIDs | unpaywall_primary_10_1109_access_2025_3525475 crossref_primary_10_1109_ACCESS_2025_3525475 ieee_primary_10820828 doaj_primary_oai_doaj_org_article_1bcf831d9fce498c89082d5d5a0003a3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Mani (ref38); 126 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 Alcala-Fdez (ref56) 2011; 17 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref17 doi: 10.1109/ACCESS.2021.3072682 – ident: ref21 doi: 10.1109/ICCIT60459.2023.10441026 – ident: ref23 doi: 10.1109/TMI.2024.3389747 – ident: ref15 doi: 10.1109/ICPEE50452.2021.9358623 – ident: ref32 doi: 10.1109/TIM.2021.3136175 – ident: ref48 doi: 10.1007/s10994-013-5422-z – ident: ref11 doi: 10.1109/eSmarTA59349.2023.10293442 – ident: ref28 doi: 10.1109/ACCESS.2023.3236794 – ident: ref30 doi: 10.1109/TNSE.2021.3100322 – volume: 126 start-page: 1 volume-title: Proc. Workshop Learn. Imbalanced Datasets ident: ref38 article-title: kNN approach to unbalanced data distributions: A case study involving information extraction – ident: ref51 doi: 10.1016/j.knosys.2020.106439 – ident: ref52 doi: 10.1016/j.patcog.2020.107525 – ident: ref10 doi: 10.1007/s13748-016-0094-0 – ident: ref42 doi: 10.1109/IJCNN.2018.8489320 – ident: ref12 doi: 10.1109/ACCESS.2020.3048198 – ident: ref13 doi: 10.1109/ACCESS.2022.3149295 – ident: ref18 doi: 10.1109/ECACE.2019.8679382 – ident: ref14 doi: 10.1016/j.nucengdes.2020.110699 – volume: 17 start-page: 255 issue: 2 year: 2011 ident: ref56 article-title: KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework publication-title: J. Multiple-Valued Log. Soft Comput. – ident: ref39 doi: 10.1109/TSMC.1976.4309452 – ident: ref35 doi: 10.1109/TIT.1968.1054155 – ident: ref4 doi: 10.1109/aidas56890.2022.9918773 – ident: ref20 doi: 10.1016/j.neucom.2018.11.099 – ident: ref34 doi: 10.1109/IWCMC51323.2021.9498788 – ident: ref27 doi: 10.1613/jair.953 – ident: ref50 doi: 10.1126/science.1205438 – ident: ref24 doi: 10.1109/TNSM.2021.3112283 – ident: ref3 doi: 10.1016/j.compbiomed.2017.03.002 – ident: ref44 doi: 10.1109/ACCESS.2020.3009753 – ident: ref55 doi: 10.5555/3122009.3122026 – ident: ref31 doi: 10.1109/JBHI.2023.3325540 – ident: ref54 doi: 10.1093/gigascience/giy032 – ident: ref41 doi: 10.1007/s13748-014-0045-6 – ident: ref8 doi: 10.1109/SLAAI-ICAI56923.2022.10002630 – ident: ref46 doi: 10.1109/ICOMICON.2017.8279150 – ident: ref6 doi: 10.1109/ijcnn.2019.8852415 – ident: ref1 doi: 10.1109/iccci56745.2023.10128543 – ident: ref40 doi: 10.1109/CCET56606.2022.10080078 – ident: ref33 doi: 10.1109/ICCCNT56998.2023.10307102 – ident: ref7 doi: 10.1016/j.neucom.2020.04.078 – ident: ref29 doi: 10.1109/ICICyTA60173.2023.10428902 – ident: ref37 doi: 10.1007/3-540-48229-6_9 – ident: ref43 doi: 10.1109/TNNLS.2017.2755595 – ident: ref19 doi: 10.1109/ACCESS.2020.3015954 – ident: ref5 doi: 10.23919/softcom55329.2022.9911518 – ident: ref47 doi: 10.1016/j.engappai.2019.103319 – ident: ref9 doi: 10.1109/TKDE.2008.239 – ident: ref22 doi: 10.1109/TITS.2023.3314402 – ident: ref16 doi: 10.1109/CAC59555.2023.10450429 – ident: ref53 doi: 10.5555/1953048.2078195 – ident: ref26 doi: 10.1109/ICAIBD57115.2023.10206237 – ident: ref2 doi: 10.1109/iccsce50387.2020.9204948 – ident: ref25 doi: 10.1109/ITAIC.2019.8785887 – ident: ref45 doi: 10.1007/s00726-010-0595-2 – ident: ref49 doi: 10.1073/pnas.1309933111 – ident: ref36 doi: 10.1109/TSMC.1972.4309137 |
| SSID | ssj0000816957 |
| Score | 2.3431253 |
| Snippet | Learning from highly-imbalanced datasets is still a big challenge in the field of machine learning because models created by general learning algorithms are... |
| SourceID | doaj unpaywall crossref ieee |
| SourceType | Open Website Open Access Repository Index Database Publisher |
| StartPage | 4126 |
| SubjectTerms | Classification algorithms Generative adversarial networks Imbalanced classification imbalanced learning Machine learning algorithms maximal information coefficient maximal information coefficient-based undersampling Microwave integrated circuits Noise measurement Sampling methods Sensitivity Shape Software packages Training undersampling |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQF2BAfIrypQyMGOLYru2xrUCAVCaQYIoc26mQSqigFfTfc-eEKoiBhTVxnMs7y3cXnd8j5FQFD4lxKChEE0eFUozqwD11tpBOKCltioeTR3e96wdx-ygfW1Jf2BNW0wPXwF2wwpWaM29KF4TRTqNGt5ceJoEFaSPPZ6pNq5iKe7BmPSNVQzPEUnPRHw7hi6AgzOQ5UoAK7CxshaLI2N9IrKyT1Xk1tYsPO5m0os3VJtlo0sSkX5u3RVZCtU3WW-SBO-RpZD-fX2BQc6IIEU6GryFyQkAooQMIUD6JwkbvFhvHq3EyioLRCTyQYIfHZEFvXgrsbnQwtOFaHe-Sh6vL--E1bYQSqOOczSg3zGWaWWa8d1IVKrUaChOvbFaYwKQrjbZCBBmcDF6XhcHMwGSlzjg3vsf3SKd6rcI-SZCfTwkPN6RALjULmwDn2DrDXVmmvEvOvjHLpzUfRh7riNTkNcQ5Qpw3EHfJAHFdDkUy63gBXJw3Ls7_cnGX7KJXWu-DtAUqxS6hSzf9MsZGvckfxhz8hzGHZA3nrP_CHJHO7G0ejiEvmRUncQl-AZ0l27s priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE/IET Electronic Library dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RXqCH8irqloJy4IiXOLbX9rFdtSpI2xOVyinyKxVim61gV6X8-s447moBIXGLEsee5LMzM87MNwDvdIpoGCfPUJsEJrXmzCQRWXBeBamVcjUlJ8_OJ2cX8tOluizJ6jkXJqWUg8_SmA7zv_y4CCvaKsMVjvoKXYQt2NJmMiRrrTdUqIKEVbowC_HafjiaTvEh0Ads1JhYPyUFE25on0zSX6qq7MDjVX_j7m7dfL6hYE6fwvmDaENcybfxaunH4dcfrI3_Lfsz2C2mZnU0zI3n8Cj1L2Bng4DwJXyZuZ9fr7FRyUoilKrpImVeCeyPHaOSi1UujvTDUfB5f1XNctHpCm-oKEpkfsc-XnuKkAzYtPC1Xu3BxenJ5-kZK8UWWBCCL5mwPDSGO25jDEp7XTuDzk3UrvE2cRU6a5yUSaWgUjSdt2Rd2KYzjRA2TsQr2O4XfdqHijj-tIx4QUniY3P4IRGCwm9E6LpajOD9AwjtzcCp0WZfpLbtgFlLmLUFsxEcE1DrpkSInU_g-23L-mq5D50RPNouJGlNMFTKPaqIg-N3y-GYe4TJxngDHCNga9z_EsblmpW_CXPwj35ewxNqNmzOHML28vsqvUFzZenf5ml6D-FN5ac priority: 102 providerName: IEEE |
| Title | Maximal Information Coefficient-Based Undersampling Method for Highly-Imbalanced Learning |
| URI | https://ieeexplore.ieee.org/document/10820828 https://doi.org/10.1109/access.2025.3525475 https://doaj.org/article/1bcf831d9fce498c89082d5d5a0003a3 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELZoOFQ5lPKoGmijPXCsw3q9ztrHJCKilYI4NBKcVn5thBoWVDYq8OuZcdwooRIq192xbHnGnhl55vsIOS68g8DYGwrexNK8KBiVnjtqtRE2L4TQKTYnT877Z9P8x6W4jDjb2Auz_n7PUnWiA20g5HGZ6CFyJwx_R7b7AgLvFtmenl8MrpA-jvUV5eEh8uiVkRu-J0D0R06VNnm_qO_04x89n6-5l_HOsm_7PqASYlXJr96iMT379AKz8T9X_pF8iGFmMljaxS7Z8vUeaa-BD-6Tq4l-uL4BodiRhBpKRrc-YEqAK6JDcHAuCcRI9xoLz-tZMgmE0wkMSLBCZP5Iv98YrI60IBqxWmcHZDo-_Tk6o5FogVrOWUO5YjaTTDPlnBWFKVItIbFxhc6M8kzYSkmd5154K7yTlVEYWaiskhnnyvX5J9Kqb2v_mSSI71fkDn6IHLHYNFwinGPpDbdVlfIO-fZXBeXdEk-jDHlIqsrBaARGV-KOlXHHOmSIalqJIhh2-AA7XcazVTJjK8mZU5X1uZJWIo27Ew4mhztLw5wHqOS1-SDsgUyzQ-hK6_8sZqm-jcUcvlH-C2k1vxf-K0QtjemGbL8bGgy70XKfAZdD5-8 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOZQeyqtVl2cOHPESx_bGPrYrqi1099RK5RT5lQqxzVawKyi_vjOOu1pASNyixI4n-ezMjDPzDcDbOgY0jKNjqE08k3XNmY4iMG-d8rJWypaUnDydjSbn8uOFusjJ6ikXJsaYgs_ikA7Tv_yw8CvaKsMVjvoKXYT78EBJKVWfrrXeUqEaEkbVmVuIl-b94XiMj4FeYKWGxPspKZxwQ_8kmv5cV2UHtlfdtb35YefzDRVz_Ahmd8L1kSVfh6ulG_pff_A2_rf0j2E3G5vFYT87nsC92D2FnQ0KwmfweWp_frnCRjkviXAqxouYmCXwfuwI1VwoUnmk75bCz7vLYprKThfYoaA4kfkNO7lyFCPpsWlmbL3cg_PjD2fjCcvlFpgXgi-ZMNxXmltuQvCqdnVpNbo3obaVM5Er3xptpYwqehWDbp0h-8JUra6EMGEk9mGrW3TxAApi-atlwAuE0wgBR00pKABH-LYtxQDe3YHQXPesGk3yRkrT9Jg1hFmTMRvAEQG1bkqU2OkEvt8mr7CGO99qwYNpfZRGe03F3IMKODh-uSyOuUeYbIzXwzEAtsb9L2Fsqlr5mzDP_3GfN7A9OZueNqcns08v4CF16bdqXsLW8tsqvkLjZelepyl7Cw726PQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD-LBt1hf7MGjqZvNppsca1FUqHiwoKclrxWxrqItPn69M2mUqiB63Z2QkJlkZsjM9xGyW3gHgbE3FLyJpXlRMCo9d9RqI2xeCKFTbE7unbWP-_nppbiMONvYCzP5fs9Sta8DbSDkcZloIXInDJ8mM20BgXeDzPTPzjtXSB_H2ory8BC5-cvIL74nQPRHTpU5MjuqH_Trsx4MJtzL0cK4b_spoBJiVcltazQ0Lfv2DbPxjytfJPMxzEw6Y7tYIlO-XiZzE-CDK-Sqp19u7kAodiShhpLuvQ-YEuCK6AE4OJcEYqQnjYXn9XXSC4TTCQxIsEJk8EpP7gxWR1oQjVit16ukf3R40T2mkWiBWs7ZkHLFbCaZZso5KwpTpFpCYuMKnRnlmbCVkjrPvfBWeCcrozCyUFklM86Va_M10qjva79OEsT3K3IHP0SOWGwaLhHOsfSG26pKeZPsfaigfBjjaZQhD0lV2el2wehK3LEy7liTHKCaPkURDDt8gJ0u49kqmbGV5MypyvpcSSuRxt0JB5PDnaVhzlVU8sR8EPZAptkk9FPrPxYzVt-XxWz8U36LNIaPI78NUcvQ7ERrfQfIzOX5 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximal+Information+Coefficient-Based+Undersampling+Method+for+Highly-Imbalanced+Learning&rft.jtitle=IEEE+access&rft.au=Qin%2C+Haiou&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=4126&rft.epage=4135&rft_id=info:doi/10.1109%2FACCESS.2025.3525475&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3525475 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |