Maximal Information Coefficient-Based Undersampling Method for Highly-Imbalanced Learning

Learning from highly-imbalanced datasets is still a big challenge in the field of machine learning because models created by general learning algorithms are weak in recognizing the samples from the minority class correctly. Undersampling is an alternative kind of methods to deal with imbalanced lear...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 4126 - 4135
Main Author Qin, Haiou
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2025.3525475

Cover

Abstract Learning from highly-imbalanced datasets is still a big challenge in the field of machine learning because models created by general learning algorithms are weak in recognizing the samples from the minority class correctly. Undersampling is an alternative kind of methods to deal with imbalanced learning. In this paper, we propose a new undersampling method based on maximal information coefficient (including two algorithms MICU-1 and MICU-2) to rebalance the datasets. In order to evaluate the effectiveness of the method, 20 highly- imbalanced datasets are used for the benchmarks. Results show that compared with other undersampling methods, maximal information coefficient-based undersampling method are competitive in terms of G-mean and F-measure.
AbstractList Learning from highly-imbalanced datasets is still a big challenge in the field of machine learning because models created by general learning algorithms are weak in recognizing the samples from the minority class correctly. Undersampling is an alternative kind of methods to deal with imbalanced learning. In this paper, we propose a new undersampling method based on maximal information coefficient (including two algorithms MICU-1 and MICU-2) to rebalance the datasets. In order to evaluate the effectiveness of the method, 20 highly- imbalanced datasets are used for the benchmarks. Results show that compared with other undersampling methods, maximal information coefficient-based undersampling method are competitive in terms of G-mean and F-measure.
Author Qin, Haiou
Author_xml – sequence: 1
  givenname: Haiou
  orcidid: 0009-0006-6773-9215
  surname: Qin
  fullname: Qin, Haiou
  email: 2022994845@nit.edu.cn
  organization: School of Information Engineering, Nanchang Institute of Technology, Nanchang, China
BookMark eNplkc9uFDEMxiNUJErpE8BhXmCW_JnMJMcyKnSlrTiUHjhFnsTZpppNVskg2LcnZSpUgWXJluXfJ_nzW3IWU0RC3jO6YYzqj1fjeH13t-GUy42QXHaDfEXOOet1K6Toz170b8hlKY-0hqojOZyT77fwKxxgbrbRp3yAJaTYjAm9DzZgXNpPUNA199FhLnA4ziHum1tcHpJrKtDchP3DfGq3hwlmiLau7hByrFvvyGsPc8HL53pB7j9ffxtv2t3XL9vxatdaIdjSCs0sVwyYds7KYRooqJ72bgA-aWTSeq2g61CileiUnzSlg9LcKy6Edr24INtV1yV4NMdcr8knkyCYP4OU9wbyEuyMhk3WK8Gc9hY7razSVHEnnYTqiABRtbpV60c8wuknzPNfQUbNk9sGrMVSzJPb5tntiokVszmVktH_R60_-pf6sFIBEV8QitdU4jcobo5f
CODEN IAECCG
Cites_doi 10.1109/ACCESS.2021.3072682
10.1109/ICCIT60459.2023.10441026
10.1109/TMI.2024.3389747
10.1109/ICPEE50452.2021.9358623
10.1109/TIM.2021.3136175
10.1007/s10994-013-5422-z
10.1109/eSmarTA59349.2023.10293442
10.1109/ACCESS.2023.3236794
10.1109/TNSE.2021.3100322
10.1016/j.knosys.2020.106439
10.1016/j.patcog.2020.107525
10.1007/s13748-016-0094-0
10.1109/IJCNN.2018.8489320
10.1109/ACCESS.2020.3048198
10.1109/ACCESS.2022.3149295
10.1109/ECACE.2019.8679382
10.1016/j.nucengdes.2020.110699
10.1109/TSMC.1976.4309452
10.1109/TIT.1968.1054155
10.1109/aidas56890.2022.9918773
10.1016/j.neucom.2018.11.099
10.1109/IWCMC51323.2021.9498788
10.1613/jair.953
10.1126/science.1205438
10.1109/TNSM.2021.3112283
10.1016/j.compbiomed.2017.03.002
10.1109/ACCESS.2020.3009753
10.5555/3122009.3122026
10.1109/JBHI.2023.3325540
10.1093/gigascience/giy032
10.1007/s13748-014-0045-6
10.1109/SLAAI-ICAI56923.2022.10002630
10.1109/ICOMICON.2017.8279150
10.1109/ijcnn.2019.8852415
10.1109/iccci56745.2023.10128543
10.1109/CCET56606.2022.10080078
10.1109/ICCCNT56998.2023.10307102
10.1016/j.neucom.2020.04.078
10.1109/ICICyTA60173.2023.10428902
10.1007/3-540-48229-6_9
10.1109/TNNLS.2017.2755595
10.1109/ACCESS.2020.3015954
10.23919/softcom55329.2022.9911518
10.1016/j.engappai.2019.103319
10.1109/TKDE.2008.239
10.1109/TITS.2023.3314402
10.1109/CAC59555.2023.10450429
10.5555/1953048.2078195
10.1109/ICAIBD57115.2023.10206237
10.1109/iccsce50387.2020.9204948
10.1109/ITAIC.2019.8785887
10.1007/s00726-010-0595-2
10.1073/pnas.1309933111
10.1109/TSMC.1972.4309137
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2025.3525475
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 4135
ExternalDocumentID oai_doaj_org_article_1bcf831d9fce498c89082d5d5a0003a3
10.1109/access.2025.3525475
10_1109_ACCESS_2025_3525475
10820828
Genre orig-research
GrantInformation_xml – fundername: Start-Up Fund of Nanchang Institute of Technology for Talents
  funderid: 10.13039/501100014972
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c331t-391c281a19ddc57b70a8606d7a2b9e15cf98a44e5ec5ed8fb9007892f82339d63
IEDL.DBID UNPAY
ISSN 2169-3536
IngestDate Fri Oct 03 12:44:47 EDT 2025
Sun Sep 07 11:06:29 EDT 2025
Wed Oct 01 03:43:34 EDT 2025
Wed Aug 27 01:58:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-391c281a19ddc57b70a8606d7a2b9e15cf98a44e5ec5ed8fb9007892f82339d63
ORCID 0009-0006-6773-9215
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1109/access.2025.3525475
PageCount 10
ParticipantIDs unpaywall_primary_10_1109_access_2025_3525475
crossref_primary_10_1109_ACCESS_2025_3525475
ieee_primary_10820828
doaj_primary_oai_doaj_org_article_1bcf831d9fce498c89082d5d5a0003a3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Mani (ref38); 126
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
Alcala-Fdez (ref56) 2011; 17
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref17
  doi: 10.1109/ACCESS.2021.3072682
– ident: ref21
  doi: 10.1109/ICCIT60459.2023.10441026
– ident: ref23
  doi: 10.1109/TMI.2024.3389747
– ident: ref15
  doi: 10.1109/ICPEE50452.2021.9358623
– ident: ref32
  doi: 10.1109/TIM.2021.3136175
– ident: ref48
  doi: 10.1007/s10994-013-5422-z
– ident: ref11
  doi: 10.1109/eSmarTA59349.2023.10293442
– ident: ref28
  doi: 10.1109/ACCESS.2023.3236794
– ident: ref30
  doi: 10.1109/TNSE.2021.3100322
– volume: 126
  start-page: 1
  volume-title: Proc. Workshop Learn. Imbalanced Datasets
  ident: ref38
  article-title: kNN approach to unbalanced data distributions: A case study involving information extraction
– ident: ref51
  doi: 10.1016/j.knosys.2020.106439
– ident: ref52
  doi: 10.1016/j.patcog.2020.107525
– ident: ref10
  doi: 10.1007/s13748-016-0094-0
– ident: ref42
  doi: 10.1109/IJCNN.2018.8489320
– ident: ref12
  doi: 10.1109/ACCESS.2020.3048198
– ident: ref13
  doi: 10.1109/ACCESS.2022.3149295
– ident: ref18
  doi: 10.1109/ECACE.2019.8679382
– ident: ref14
  doi: 10.1016/j.nucengdes.2020.110699
– volume: 17
  start-page: 255
  issue: 2
  year: 2011
  ident: ref56
  article-title: KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework
  publication-title: J. Multiple-Valued Log. Soft Comput.
– ident: ref39
  doi: 10.1109/TSMC.1976.4309452
– ident: ref35
  doi: 10.1109/TIT.1968.1054155
– ident: ref4
  doi: 10.1109/aidas56890.2022.9918773
– ident: ref20
  doi: 10.1016/j.neucom.2018.11.099
– ident: ref34
  doi: 10.1109/IWCMC51323.2021.9498788
– ident: ref27
  doi: 10.1613/jair.953
– ident: ref50
  doi: 10.1126/science.1205438
– ident: ref24
  doi: 10.1109/TNSM.2021.3112283
– ident: ref3
  doi: 10.1016/j.compbiomed.2017.03.002
– ident: ref44
  doi: 10.1109/ACCESS.2020.3009753
– ident: ref55
  doi: 10.5555/3122009.3122026
– ident: ref31
  doi: 10.1109/JBHI.2023.3325540
– ident: ref54
  doi: 10.1093/gigascience/giy032
– ident: ref41
  doi: 10.1007/s13748-014-0045-6
– ident: ref8
  doi: 10.1109/SLAAI-ICAI56923.2022.10002630
– ident: ref46
  doi: 10.1109/ICOMICON.2017.8279150
– ident: ref6
  doi: 10.1109/ijcnn.2019.8852415
– ident: ref1
  doi: 10.1109/iccci56745.2023.10128543
– ident: ref40
  doi: 10.1109/CCET56606.2022.10080078
– ident: ref33
  doi: 10.1109/ICCCNT56998.2023.10307102
– ident: ref7
  doi: 10.1016/j.neucom.2020.04.078
– ident: ref29
  doi: 10.1109/ICICyTA60173.2023.10428902
– ident: ref37
  doi: 10.1007/3-540-48229-6_9
– ident: ref43
  doi: 10.1109/TNNLS.2017.2755595
– ident: ref19
  doi: 10.1109/ACCESS.2020.3015954
– ident: ref5
  doi: 10.23919/softcom55329.2022.9911518
– ident: ref47
  doi: 10.1016/j.engappai.2019.103319
– ident: ref9
  doi: 10.1109/TKDE.2008.239
– ident: ref22
  doi: 10.1109/TITS.2023.3314402
– ident: ref16
  doi: 10.1109/CAC59555.2023.10450429
– ident: ref53
  doi: 10.5555/1953048.2078195
– ident: ref26
  doi: 10.1109/ICAIBD57115.2023.10206237
– ident: ref2
  doi: 10.1109/iccsce50387.2020.9204948
– ident: ref25
  doi: 10.1109/ITAIC.2019.8785887
– ident: ref45
  doi: 10.1007/s00726-010-0595-2
– ident: ref49
  doi: 10.1073/pnas.1309933111
– ident: ref36
  doi: 10.1109/TSMC.1972.4309137
SSID ssj0000816957
Score 2.3431253
Snippet Learning from highly-imbalanced datasets is still a big challenge in the field of machine learning because models created by general learning algorithms are...
SourceID doaj
unpaywall
crossref
ieee
SourceType Open Website
Open Access Repository
Index Database
Publisher
StartPage 4126
SubjectTerms Classification algorithms
Generative adversarial networks
Imbalanced classification
imbalanced learning
Machine learning algorithms
maximal information coefficient
maximal information coefficient-based undersampling
Microwave integrated circuits
Noise measurement
Sampling methods
Sensitivity
Shape
Software packages
Training
undersampling
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQF2BAfIrypQyMGOLYru2xrUCAVCaQYIoc26mQSqigFfTfc-eEKoiBhTVxnMs7y3cXnd8j5FQFD4lxKChEE0eFUozqwD11tpBOKCltioeTR3e96wdx-ygfW1Jf2BNW0wPXwF2wwpWaM29KF4TRTqNGt5ceJoEFaSPPZ6pNq5iKe7BmPSNVQzPEUnPRHw7hi6AgzOQ5UoAK7CxshaLI2N9IrKyT1Xk1tYsPO5m0os3VJtlo0sSkX5u3RVZCtU3WW-SBO-RpZD-fX2BQc6IIEU6GryFyQkAooQMIUD6JwkbvFhvHq3EyioLRCTyQYIfHZEFvXgrsbnQwtOFaHe-Sh6vL--E1bYQSqOOczSg3zGWaWWa8d1IVKrUaChOvbFaYwKQrjbZCBBmcDF6XhcHMwGSlzjg3vsf3SKd6rcI-SZCfTwkPN6RALjULmwDn2DrDXVmmvEvOvjHLpzUfRh7riNTkNcQ5Qpw3EHfJAHFdDkUy63gBXJw3Ls7_cnGX7KJXWu-DtAUqxS6hSzf9MsZGvckfxhz8hzGHZA3nrP_CHJHO7G0ejiEvmRUncQl-AZ0l27s
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE/IET Electronic Library
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RXqCH8irqloJy4IiXOLbX9rFdtSpI2xOVyinyKxVim61gV6X8-s447moBIXGLEsee5LMzM87MNwDvdIpoGCfPUJsEJrXmzCQRWXBeBamVcjUlJ8_OJ2cX8tOluizJ6jkXJqWUg8_SmA7zv_y4CCvaKsMVjvoKXYQt2NJmMiRrrTdUqIKEVbowC_HafjiaTvEh0Ads1JhYPyUFE25on0zSX6qq7MDjVX_j7m7dfL6hYE6fwvmDaENcybfxaunH4dcfrI3_Lfsz2C2mZnU0zI3n8Cj1L2Bng4DwJXyZuZ9fr7FRyUoilKrpImVeCeyPHaOSi1UujvTDUfB5f1XNctHpCm-oKEpkfsc-XnuKkAzYtPC1Xu3BxenJ5-kZK8UWWBCCL5mwPDSGO25jDEp7XTuDzk3UrvE2cRU6a5yUSaWgUjSdt2Rd2KYzjRA2TsQr2O4XfdqHijj-tIx4QUniY3P4IRGCwm9E6LpajOD9AwjtzcCp0WZfpLbtgFlLmLUFsxEcE1DrpkSInU_g-23L-mq5D50RPNouJGlNMFTKPaqIg-N3y-GYe4TJxngDHCNga9z_EsblmpW_CXPwj35ewxNqNmzOHML28vsqvUFzZenf5ml6D-FN5ac
  priority: 102
  providerName: IEEE
Title Maximal Information Coefficient-Based Undersampling Method for Highly-Imbalanced Learning
URI https://ieeexplore.ieee.org/document/10820828
https://doi.org/10.1109/access.2025.3525475
https://doaj.org/article/1bcf831d9fce498c89082d5d5a0003a3
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELZoOFQ5lPKoGmijPXCsw3q9ztrHJCKilYI4NBKcVn5thBoWVDYq8OuZcdwooRIq192xbHnGnhl55vsIOS68g8DYGwrexNK8KBiVnjtqtRE2L4TQKTYnT877Z9P8x6W4jDjb2Auz_n7PUnWiA20g5HGZ6CFyJwx_R7b7AgLvFtmenl8MrpA-jvUV5eEh8uiVkRu-J0D0R06VNnm_qO_04x89n6-5l_HOsm_7PqASYlXJr96iMT379AKz8T9X_pF8iGFmMljaxS7Z8vUeaa-BD-6Tq4l-uL4BodiRhBpKRrc-YEqAK6JDcHAuCcRI9xoLz-tZMgmE0wkMSLBCZP5Iv98YrI60IBqxWmcHZDo-_Tk6o5FogVrOWUO5YjaTTDPlnBWFKVItIbFxhc6M8kzYSkmd5154K7yTlVEYWaiskhnnyvX5J9Kqb2v_mSSI71fkDn6IHLHYNFwinGPpDbdVlfIO-fZXBeXdEk-jDHlIqsrBaARGV-KOlXHHOmSIalqJIhh2-AA7XcazVTJjK8mZU5X1uZJWIo27Ew4mhztLw5wHqOS1-SDsgUyzQ-hK6_8sZqm-jcUcvlH-C2k1vxf-K0QtjemGbL8bGgy70XKfAZdD5-8
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOZQeyqtVl2cOHPESx_bGPrYrqi1099RK5RT5lQqxzVawKyi_vjOOu1pASNyixI4n-ezMjDPzDcDbOgY0jKNjqE08k3XNmY4iMG-d8rJWypaUnDydjSbn8uOFusjJ6ikXJsaYgs_ikA7Tv_yw8CvaKsMVjvoKXYT78EBJKVWfrrXeUqEaEkbVmVuIl-b94XiMj4FeYKWGxPspKZxwQ_8kmv5cV2UHtlfdtb35YefzDRVz_Ahmd8L1kSVfh6ulG_pff_A2_rf0j2E3G5vFYT87nsC92D2FnQ0KwmfweWp_frnCRjkviXAqxouYmCXwfuwI1VwoUnmk75bCz7vLYprKThfYoaA4kfkNO7lyFCPpsWlmbL3cg_PjD2fjCcvlFpgXgi-ZMNxXmltuQvCqdnVpNbo3obaVM5Er3xptpYwqehWDbp0h-8JUra6EMGEk9mGrW3TxAApi-atlwAuE0wgBR00pKABH-LYtxQDe3YHQXPesGk3yRkrT9Jg1hFmTMRvAEQG1bkqU2OkEvt8mr7CGO99qwYNpfZRGe03F3IMKODh-uSyOuUeYbIzXwzEAtsb9L2Fsqlr5mzDP_3GfN7A9OZueNqcns08v4CF16bdqXsLW8tsqvkLjZelepyl7Cw726PQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD-LBt1hf7MGjqZvNppsca1FUqHiwoKclrxWxrqItPn69M2mUqiB63Z2QkJlkZsjM9xGyW3gHgbE3FLyJpXlRMCo9d9RqI2xeCKFTbE7unbWP-_nppbiMONvYCzP5fs9Sta8DbSDkcZloIXInDJ8mM20BgXeDzPTPzjtXSB_H2ory8BC5-cvIL74nQPRHTpU5MjuqH_Trsx4MJtzL0cK4b_spoBJiVcltazQ0Lfv2DbPxjytfJPMxzEw6Y7tYIlO-XiZzE-CDK-Sqp19u7kAodiShhpLuvQ-YEuCK6AE4OJcEYqQnjYXn9XXSC4TTCQxIsEJk8EpP7gxWR1oQjVit16ukf3R40T2mkWiBWs7ZkHLFbCaZZso5KwpTpFpCYuMKnRnlmbCVkjrPvfBWeCcrozCyUFklM86Va_M10qjva79OEsT3K3IHP0SOWGwaLhHOsfSG26pKeZPsfaigfBjjaZQhD0lV2el2wehK3LEy7liTHKCaPkURDDt8gJ0u49kqmbGV5MypyvpcSSuRxt0JB5PDnaVhzlVU8sR8EPZAptkk9FPrPxYzVt-XxWz8U36LNIaPI78NUcvQ7ERrfQfIzOX5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximal+Information+Coefficient-Based+Undersampling+Method+for+Highly-Imbalanced+Learning&rft.jtitle=IEEE+access&rft.au=Qin%2C+Haiou&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=4126&rft.epage=4135&rft_id=info:doi/10.1109%2FACCESS.2025.3525475&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3525475
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon