Multi-level fuzzy mining with multiple minimum supports

Finding association rules in transaction databases is most commonly seen in data mining. In real applications, different items may have different support criteria to judge their importance, taxonomic relationships among items may appear, and data may have quantitative values. This paper thus propose...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 34; no. 1; pp. 459 - 468
Main Authors Lee, Yeong-Chyi, Hong, Tzung-Pei, Wang, Tien-Chin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2008
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2006.09.011

Cover

Abstract Finding association rules in transaction databases is most commonly seen in data mining. In real applications, different items may have different support criteria to judge their importance, taxonomic relationships among items may appear, and data may have quantitative values. This paper thus proposes a fuzzy multiple-level mining algorithm for extracting knowledge implicit in quantitative transactions with multiple minimum supports of items. Items may have different minimum supports and the maximum-itemset minimum-taxonomy support constraint is adopted to discover the large itemsets. Under the constraint, the characteristic of downward-closure is kept, such that the original apriori algorithm can be easily extended to find fuzzy large itemsets. The proposed algorithm adopts a top-down progressively deepening approach to derive large itemsets. It can also discover cross-level fuzzy association rules under the maximum-itemset minimum-taxonomy support constraint. An example is also given to demonstrate that the proposed mining algorithm can derive the multiple-level association rules under multiple item supports in a simple and effective way.
AbstractList Finding association rules in transaction databases is most commonly seen in data mining. In real applications, different items may have different support criteria to judge their importance, taxonomic relationships among items may appear, and data may have quantitative values. This paper thus proposes a fuzzy multiple-level mining algorithm for extracting knowledge implicit in quantitative transactions with multiple minimum supports of items. Items may have different minimum supports and the maximum-itemset minimum-taxonomy support constraint is adopted to discover the large itemsets. Under the constraint, the characteristic of downward-closure is kept, such that the original apriori algorithm can be easily extended to find fuzzy large itemsets. The proposed algorithm adopts a top-down progressively deepening approach to derive large itemsets. It can also discover cross-level fuzzy association rules under the maximum-itemset minimum-taxonomy support constraint. An example is also given to demonstrate that the proposed mining algorithm can derive the multiple-level association rules under multiple item supports in a simple and effective way.
Author Wang, Tien-Chin
Hong, Tzung-Pei
Lee, Yeong-Chyi
Author_xml – sequence: 1
  givenname: Yeong-Chyi
  surname: Lee
  fullname: Lee, Yeong-Chyi
  email: d9003007@stmail.isu.edu.tw
  organization: Department of Information Engineering, I-Shou University, Kaohsiung 84008, Taiwan, ROC
– sequence: 2
  givenname: Tzung-Pei
  surname: Hong
  fullname: Hong, Tzung-Pei
  email: tphong@nuk.edu.tw
  organization: Department of Electrical Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan, ROC
– sequence: 3
  givenname: Tien-Chin
  surname: Wang
  fullname: Wang, Tien-Chin
  email: tcwang@isu.edu.tw
  organization: Department of Information Management, I-Shou University, Kaohsiung 84008, Taiwan, ROC
BookMark eNp9kEtPwzAQhC1UJNrCH-CUE7eE3TiJE4kLqnhJRVzgbLnOBlzlhe20an89KeXEoaeVZufb1cyMTdquJcauESIEzG7XEbmtimKALIIiAsQzNsVc8DATBZ-wKRSpCBMUyQWbObcGQAEgpky8DrU3YU0bqoNq2O93QWNa034GW-O_guaw7Wv6FZuhCdzQ95317pKdV6p2dPU35-zj8eF98Rwu355eFvfLUHOOPuS4StJi_KvjHJNKpIJnoiQFZVYi11RwLSqFMSZ5SoSQFyuI40LlVY6rVQl8zm6Od3vbfQ_kvGyM01TXqqVucJKPUdMk4aMxPhq17ZyzVMnemkbZnUSQh47kWh46koeOJBRyBEco_wdp45U3XeutMvVp9O6I0ph-Y8hKpw21mkpjSXtZduYU_gPAloRY
CitedBy_id crossref_primary_10_1016_j_ijpe_2009_05_014
crossref_primary_10_1007_s00500_013_1214_4
crossref_primary_10_4304_jsw_6_1_91_99
crossref_primary_10_1109_ACCESS_2019_2933505
crossref_primary_10_1016_j_eswa_2011_04_137
crossref_primary_10_1016_j_ins_2012_07_047
crossref_primary_10_1016_j_fss_2008_05_012
crossref_primary_10_1016_j_ins_2020_02_073
crossref_primary_10_3233_JIFS_16240
crossref_primary_10_1007_s00500_012_0973_7
crossref_primary_10_1007_s00500_011_0786_0
crossref_primary_10_1016_j_asoc_2016_01_008
crossref_primary_10_1016_j_asoc_2012_12_031
crossref_primary_10_1007_s00500_018_3010_7
crossref_primary_10_1109_TFUZZ_2023_3323027
crossref_primary_10_1016_j_asoc_2015_01_055
crossref_primary_10_1016_j_scs_2016_04_008
crossref_primary_10_1108_IJOTB_20_02_2017_B003
crossref_primary_10_4028_www_scientific_net_KEM_460_461_363
crossref_primary_10_1016_j_ins_2014_03_056
crossref_primary_10_1016_j_knosys_2013_09_002
crossref_primary_10_1109_ACCESS_2020_3004095
crossref_primary_10_1016_j_proeng_2015_08_490
crossref_primary_10_3390_sym10040106
crossref_primary_10_4018_IJKBO_2019040102
crossref_primary_10_1016_j_jss_2011_04_022
crossref_primary_10_1007_s40815_017_0361_7
crossref_primary_10_1016_j_eswa_2010_10_009
crossref_primary_10_1007_s00500_021_06613_4
crossref_primary_10_1080_03772063_2020_1838343
crossref_primary_10_1016_j_eswa_2013_01_025
crossref_primary_10_1142_S021848851240020X
crossref_primary_10_1007_s00500_022_07123_7
Cites_doi 10.1002/int.4550100402
10.1016/S0165-0114(97)00181-4
10.1016/j.ijar.2004.11.006
10.1016/0165-0114(95)00305-3
10.1016/0165-0114(94)00229-Z
10.1016/0165-0114(93)90470-3
10.1016/S0165-0114(98)00179-1
10.1109/69.250074
10.1109/69.553155
10.1145/223784.223813
10.1145/237661.237708
10.1109/ICDE.1999.754926
10.1145/233269.233311
10.1145/170036.170072
10.1016/0165-0114(93)90125-2
10.1016/S1088-467X(99)00028-1
10.1016/S1088-467X(98)00007-9
10.1145/312129.312274
10.1109/FUZZY.1996.551712
ContentType Journal Article
Copyright 2006 Elsevier Ltd
Copyright_xml – notice: 2006 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2006.09.011
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 468
ExternalDocumentID 10_1016_j_eswa_2006_09_011
S0957417406002958
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c331t-31b459417c2814f757367dea0d6d13ce93c7fa121485ee1089b0229a8f81bbd03
IEDL.DBID AIKHN
ISSN 0957-4174
IngestDate Thu Oct 02 07:11:38 EDT 2025
Wed Oct 01 01:48:18 EDT 2025
Thu Apr 24 22:56:30 EDT 2025
Fri Feb 23 02:27:37 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Multiple minimum supports
Quantitative value
Data mining
Fuzzy set
Taxonomy
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-31b459417c2814f757367dea0d6d13ce93c7fa121485ee1089b0229a8f81bbd03
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 30115443
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_30115443
crossref_primary_10_1016_j_eswa_2006_09_011
crossref_citationtrail_10_1016_j_eswa_2006_09_011
elsevier_sciencedirect_doi_10_1016_j_eswa_2006_09_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008
2008-1-00
20080101
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – year: 2008
  text: 2008
PublicationDecade 2000
PublicationTitle Expert systems with applications
PublicationYear 2008
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Brin, S., Motwani, R., Ullman, J. D., & Tsur, S. (1997). Dynamic itemset counting and implication rules for market-basket data. In
Hong, Lee (bib13) 1996; 84
Srikant, R., & Agrawal, R. (1996). Mining quantitative association rules in large relational tables. In
Han, J., & Fu, Y. (1995). Discovery of multiple-level association rules from large databases.
(pp. 337–341).
Agrawal, Imielinksi, Swami (bib2) 1993; 5
Chen, Han, Yu (bib5) 1996; 8
Agrawal, R., & Srikant, R. (1994). Fast algorithm for mining association rules. In
(pp. 487–499).
Fukuda, T., Morimoto, Y., Morishita, S., & Tokuyama, T. (1996). Mining optimized association rules for numeric attributes.
Hong, Chen (bib15) 2000; 112
Lee, Hong, Lin (bib18) 2005; 40
Lee, Hong, Lin (bib17) 2004; Vol. 3214
Liu, B., Hsu, W., & Ma, Y. (1999). Mining association rules with multiple minimum supports. In
de Campos, Moral (bib6) 1993; 59
Savasere, A., Omiecinski, E., & Navathe, S. (1995). An efficient algorithm for mining association rules in large databases. In
(pp. 207–216) Washington DC, USA.
(pp. 1–12), Montreal, Canada, June.
Srikant, R., & Agrawal, R. (1995). Mining generalized association rules. In
Park, J. S., Chen, M. S., & Yu, P. S. (1995). An Effective hash-based algorithm for mining association rules. In
(pp. 43–52).
Famili, Shen, Weber, Simoudis (bib8) 1997; 1
Hong, Kuo, Chi (bib14) 1999; 3
Gonzalez (bib11) 1995; 10
(pp. 420–431).
(pp. 182–191), June.
Rives, J. (1990). FID3: fuzzy induction decision tree. In
Wang, Liu, Hong, Tseng (bib27) 1999; 103
Weber, R. (1992), Fuzzy-ID3: a class of methods for automatic knowledge acquisition. In
Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1991). Knowledge discovery in databases: an overview. In
Rastogi, R., & Shim, K. (1999). Mining optimized support rules for numeric attributes.
Wang, C. H., Hong, T. P., & Tseng, S. S. (1996). Inductive learning from fuzzy examples. In
(pp. 407–419).
(pp. 206–215) Sydney, Australia.
(pp. 265–268), Iizuka, Japan.
Agrawal, R., Imielinksi, T., & Swami, A. (1993a). Mining association rules between sets of items in large database. In
(pp. 457–462).
(pp. 207–216).
(pp. 432–443).
Wang, K., He, Y., & Han, J. (2000). Mining frequent itemsets using support constraints. In
(pp. 1–27).
Kandel (bib16) 1992
Yuan, Shaw (bib30) 1995; 69
(pp. 13–18), New Orleans.
Delgado, Gonzalez (bib7) 1993; 55
(pp. 175–186).
Wang (10.1016/j.eswa.2006.09.011_bib27) 1999; 103
10.1016/j.eswa.2006.09.011_bib28
10.1016/j.eswa.2006.09.011_bib29
Hong (10.1016/j.eswa.2006.09.011_bib13) 1996; 84
10.1016/j.eswa.2006.09.011_bib9
Agrawal (10.1016/j.eswa.2006.09.011_bib2) 1993; 5
10.1016/j.eswa.2006.09.011_bib3
Hong (10.1016/j.eswa.2006.09.011_bib15) 2000; 112
Yuan (10.1016/j.eswa.2006.09.011_bib30) 1995; 69
10.1016/j.eswa.2006.09.011_bib4
10.1016/j.eswa.2006.09.011_bib12
10.1016/j.eswa.2006.09.011_bib1
10.1016/j.eswa.2006.09.011_bib10
Gonzalez (10.1016/j.eswa.2006.09.011_bib11) 1995; 10
Hong (10.1016/j.eswa.2006.09.011_bib14) 1999; 3
Lee (10.1016/j.eswa.2006.09.011_bib17) 2004; Vol. 3214
de Campos (10.1016/j.eswa.2006.09.011_bib6) 1993; 59
Famili (10.1016/j.eswa.2006.09.011_bib8) 1997; 1
10.1016/j.eswa.2006.09.011_bib19
Lee (10.1016/j.eswa.2006.09.011_bib18) 2005; 40
Kandel (10.1016/j.eswa.2006.09.011_bib16) 1992
10.1016/j.eswa.2006.09.011_bib23
10.1016/j.eswa.2006.09.011_bib24
10.1016/j.eswa.2006.09.011_bib25
10.1016/j.eswa.2006.09.011_bib26
Chen (10.1016/j.eswa.2006.09.011_bib5) 1996; 8
10.1016/j.eswa.2006.09.011_bib20
Delgado (10.1016/j.eswa.2006.09.011_bib7) 1993; 55
10.1016/j.eswa.2006.09.011_bib21
10.1016/j.eswa.2006.09.011_bib22
References_xml – volume: 5
  start-page: 914
  year: 1993
  end-page: 925
  ident: bib2
  article-title: Database mining: a performance perspective
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: , (pp. 407–419).
– reference: (pp. 1–12), Montreal, Canada, June.
– reference: (pp. 207–216) Washington DC, USA.
– volume: 40
  start-page: 44
  year: 2005
  end-page: 54
  ident: bib18
  article-title: Mining association rules with multiple minimum supports using maximum constraints
  publication-title: International Journal of Approximate Reasoning
– volume: 3
  start-page: 363
  year: 1999
  end-page: 376
  ident: bib14
  article-title: A data mining algorithm for transaction data with quantitative values
  publication-title: Intelligent Data Analysis
– volume: 69
  start-page: 125
  year: 1995
  end-page: 139
  ident: bib30
  article-title: Induction of fuzzy decision trees
  publication-title: Fuzzy Sets and Systems
– reference: Srikant, R., & Agrawal, R. (1995). Mining generalized association rules. In
– volume: 59
  start-page: 247
  year: 1993
  end-page: 257
  ident: bib6
  article-title: Learning rules for a fuzzy inference model
  publication-title: Fuzzy Sets and Systems
– volume: 10
  start-page: 57
  year: 1995
  end-page: 371
  ident: bib11
  article-title: A learning methodology in uncertain and imprecise environments
  publication-title: International Journal of Intelligent Systems
– reference: (pp. 337–341).
– reference: Wang, C. H., Hong, T. P., & Tseng, S. S. (1996). Inductive learning from fuzzy examples. In
– reference: (pp. 43–52).
– reference: Srikant, R., & Agrawal, R. (1996). Mining quantitative association rules in large relational tables. In
– reference: Agrawal, R., Imielinksi, T., & Swami, A. (1993a). Mining association rules between sets of items in large database. In
– volume: 8
  start-page: 866
  year: 1996
  end-page: 883
  ident: bib5
  article-title: Data mining: an overview from a database perspective
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1991). Knowledge discovery in databases: an overview. In
– reference: Liu, B., Hsu, W., & Ma, Y. (1999). Mining association rules with multiple minimum supports. In
– volume: 1
  start-page: 3
  year: 1997
  end-page: 23
  ident: bib8
  article-title: Data preprocessing and intelligent data analysis
  publication-title: Intelligent Data Analysis
– reference: (pp. 175–186).
– reference: Weber, R. (1992), Fuzzy-ID3: a class of methods for automatic knowledge acquisition. In
– reference: Park, J. S., Chen, M. S., & Yu, P. S. (1995). An Effective hash-based algorithm for mining association rules. In
– reference: (pp. 457–462).
– volume: 103
  start-page: 91
  year: 1999
  end-page: 105
  ident: bib27
  article-title: A fuzzy inductive learning strategy for modular rules
  publication-title: Fuzzy Sets and Systems
– volume: Vol. 3214
  start-page: 1283
  year: 2004
  end-page: 1290
  ident: bib17
  article-title: Mining fuzzy association rules with multiple minimum supports using maximum constraints
  publication-title: The eighth international conference on knowledge-based intelligent information and engineering systems
– reference: (pp. 432–443).
– volume: 55
  start-page: 121
  year: 1993
  end-page: 132
  ident: bib7
  article-title: An inductive learning procedure to identify fuzzy systems
  publication-title: Fuzzy Sets and Systems
– reference: Rastogi, R., & Shim, K. (1999). Mining optimized support rules for numeric attributes.
– reference: Wang, K., He, Y., & Han, J. (2000). Mining frequent itemsets using support constraints. In
– reference: (pp. 1–27).
– reference: (pp. 13–18), New Orleans.
– volume: 112
  start-page: 127
  year: 2000
  end-page: 140
  ident: bib15
  article-title: Processing individual fuzzy attributes for fuzzy rule induction
  publication-title: Fuzzy Sets and Systems
– reference: (pp. 182–191), June.
– reference: Fukuda, T., Morimoto, Y., Morishita, S., & Tokuyama, T. (1996). Mining optimized association rules for numeric attributes.
– reference: Agrawal, R., & Srikant, R. (1994). Fast algorithm for mining association rules. In
– year: 1992
  ident: bib16
  article-title: Fuzzy expert systems
– reference: Savasere, A., Omiecinski, E., & Navathe, S. (1995). An efficient algorithm for mining association rules in large databases. In
– reference: (pp. 265–268), Iizuka, Japan.
– reference: Han, J., & Fu, Y. (1995). Discovery of multiple-level association rules from large databases.
– reference: Brin, S., Motwani, R., Ullman, J. D., & Tsur, S. (1997). Dynamic itemset counting and implication rules for market-basket data. In:
– reference: (pp. 420–431).
– reference: (pp. 487–499).
– volume: 84
  start-page: 33
  year: 1996
  end-page: 47
  ident: bib13
  article-title: Induction of fuzzy rules and membership functions from training examples
  publication-title: Fuzzy Sets and Systems
– reference: Rives, J. (1990). FID3: fuzzy induction decision tree. In
– reference: (pp. 207–216).
– reference: (pp. 206–215) Sydney, Australia.
– volume: 10
  start-page: 57
  year: 1995
  ident: 10.1016/j.eswa.2006.09.011_bib11
  article-title: A learning methodology in uncertain and imprecise environments
  publication-title: International Journal of Intelligent Systems
  doi: 10.1002/int.4550100402
– volume: 103
  start-page: 91
  issue: 1
  year: 1999
  ident: 10.1016/j.eswa.2006.09.011_bib27
  article-title: A fuzzy inductive learning strategy for modular rules
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(97)00181-4
– volume: 40
  start-page: 44
  issue: 1
  year: 2005
  ident: 10.1016/j.eswa.2006.09.011_bib18
  article-title: Mining association rules with multiple minimum supports using maximum constraints
  publication-title: International Journal of Approximate Reasoning
  doi: 10.1016/j.ijar.2004.11.006
– volume: 84
  start-page: 33
  year: 1996
  ident: 10.1016/j.eswa.2006.09.011_bib13
  article-title: Induction of fuzzy rules and membership functions from training examples
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/0165-0114(95)00305-3
– volume: 69
  start-page: 125
  year: 1995
  ident: 10.1016/j.eswa.2006.09.011_bib30
  article-title: Induction of fuzzy decision trees
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/0165-0114(94)00229-Z
– volume: 59
  start-page: 247
  year: 1993
  ident: 10.1016/j.eswa.2006.09.011_bib6
  article-title: Learning rules for a fuzzy inference model
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/0165-0114(93)90470-3
– volume: 112
  start-page: 127
  issue: 1
  year: 2000
  ident: 10.1016/j.eswa.2006.09.011_bib15
  article-title: Processing individual fuzzy attributes for fuzzy rule induction
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(98)00179-1
– ident: 10.1016/j.eswa.2006.09.011_bib23
– volume: 5
  start-page: 914
  issue: 6
  year: 1993
  ident: 10.1016/j.eswa.2006.09.011_bib2
  article-title: Database mining: a performance perspective
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/69.250074
– ident: 10.1016/j.eswa.2006.09.011_bib29
– volume: 8
  start-page: 866
  issue: 6
  year: 1996
  ident: 10.1016/j.eswa.2006.09.011_bib5
  article-title: Data mining: an overview from a database perspective
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/69.553155
– ident: 10.1016/j.eswa.2006.09.011_bib20
  doi: 10.1145/223784.223813
– ident: 10.1016/j.eswa.2006.09.011_bib3
– ident: 10.1016/j.eswa.2006.09.011_bib9
– ident: 10.1016/j.eswa.2006.09.011_bib10
  doi: 10.1145/237661.237708
– ident: 10.1016/j.eswa.2006.09.011_bib21
  doi: 10.1109/ICDE.1999.754926
– ident: 10.1016/j.eswa.2006.09.011_bib25
  doi: 10.1145/233269.233311
– ident: 10.1016/j.eswa.2006.09.011_bib22
– year: 1992
  ident: 10.1016/j.eswa.2006.09.011_bib16
– ident: 10.1016/j.eswa.2006.09.011_bib24
– ident: 10.1016/j.eswa.2006.09.011_bib1
  doi: 10.1145/170036.170072
– volume: 55
  start-page: 121
  year: 1993
  ident: 10.1016/j.eswa.2006.09.011_bib7
  article-title: An inductive learning procedure to identify fuzzy systems
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/0165-0114(93)90125-2
– volume: 3
  start-page: 363
  issue: 5
  year: 1999
  ident: 10.1016/j.eswa.2006.09.011_bib14
  article-title: A data mining algorithm for transaction data with quantitative values
  publication-title: Intelligent Data Analysis
  doi: 10.1016/S1088-467X(99)00028-1
– ident: 10.1016/j.eswa.2006.09.011_bib28
– volume: Vol. 3214
  start-page: 1283
  year: 2004
  ident: 10.1016/j.eswa.2006.09.011_bib17
  article-title: Mining fuzzy association rules with multiple minimum supports using maximum constraints
– volume: 1
  start-page: 3
  issue: 1
  year: 1997
  ident: 10.1016/j.eswa.2006.09.011_bib8
  article-title: Data preprocessing and intelligent data analysis
  publication-title: Intelligent Data Analysis
  doi: 10.1016/S1088-467X(98)00007-9
– ident: 10.1016/j.eswa.2006.09.011_bib19
  doi: 10.1145/312129.312274
– ident: 10.1016/j.eswa.2006.09.011_bib26
  doi: 10.1109/FUZZY.1996.551712
– ident: 10.1016/j.eswa.2006.09.011_bib4
– ident: 10.1016/j.eswa.2006.09.011_bib12
SSID ssj0017007
Score 2.1564016
Snippet Finding association rules in transaction databases is most commonly seen in data mining. In real applications, different items may have different support...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 459
SubjectTerms Data mining
Fuzzy set
Multiple minimum supports
Quantitative value
Taxonomy
Title Multi-level fuzzy mining with multiple minimum supports
URI https://dx.doi.org/10.1016/j.eswa.2006.09.011
https://www.proquest.com/docview/30115443
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdmHhjXiTgQ2F2nUS2yNCoAKiC1Ris_yqBKKloo0QDPx2zomDBBIMrJYdJefcw_6-uwM44sb1DDGoaZaP0qxwOtVG2BRPQ9IKIl1elV28GRT9YXZ1n9-34KzJhQm0ymj7a5teWes40o3S7E4fHrq3GBygO-TokQK0lIsF6KD_EaINndPL6_7gC0zgpM6axvlpWBBzZ2qal5-96ohJyBNC6W_-6YelrtzPxQosxbgxOa1fbRVafrIGy01PhiSq6DrwKqM2fQpcoGRUvr-_JeOqB0QSblyThj9YDY7LcTIrpxVosAHDi_O7s34amyOkljE6R9tpslzi59ieoNmI55wV3HlNXOEos14yFL6mPTzu5N5TIqRBdy21GGGgahxhm9CePE_8FiQ9m-ks8LuEtRkjUgcwmjktrcmd53QbaCMSZWPl8NDA4kk1FLFHFcQYWloWikiFYtyG468107puxp-z80bS6tvuKzTsf647bLZFoVoErENP_HM5U6yuM8R2_vnkXVismSHhsmUP2vOX0u9j-DE3B7Bw8kEP4k_2CVdQ2Og
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QD3rx24hf7ODNDNZ1XdejIRJU4CIk3Jp-kWBgEGExcvBvt906Ek3k4LVpl-3XvY_2_d57ANwRoUIRCCNpkoz9KFbc5yKRvjkNUZkEVOG87GKvH3eG0fMIjyqgVebCWFql0_2FTs-1tRtpOjSbi8mk-WqcA2MOibFINrSEkx2wG-GQ2BNY42vD87D150hRcI_4drrLnClIXnr5wV1EgjYCCP-yTr_0dG582kfgwHmN3kPxYsegotMTcFh2ZPCcgJ4CkufT-lPLBPLG2Xr96c3yDhCevW_1SvZgPjjLZt4yW-QhgzMwbD8OWh3ftUbwJUJwZTSniDA1nyPDBEZjggmKidI8ULGCSGqKDPQchuawg7WGQUKFMdaUJ2PjpgoVoHNQTeepvgBeKCMeWXZXImWEAsptKBopTqXAShNYA7CEhElXN9y2r5iykiD2xiyMtqFlzALKDIw1cL9ZsyiqZmydjUuk2Y-9Z0atb11XL7eFGaGwkQ6e6nm2ZKioMoQu__nkOtjrDHpd1n3qv1yB_YIjYq9drkF19Z7pG-OIrMRt_qN9AyBK2bA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-level+fuzzy+mining+with+multiple+minimum+supports&rft.jtitle=Expert+systems+with+applications&rft.au=Lee%2C+Yeong-Chyi&rft.au=Hong%2C+Tzung-Pei&rft.au=Wang%2C+Tien-Chin&rft.date=2008&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=34&rft.issue=1&rft.spage=459&rft.epage=468&rft_id=info:doi/10.1016%2Fj.eswa.2006.09.011&rft.externalDocID=S0957417406002958
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon