Large variation in Young's modulus of carbon nanotube yarns with different diameters

Twist-spun carbon nanotube (CNT) yarns are composed of numerous CNTs and their bundles with entangled and twisted structures. In this paper, we studied the mechanical properties of CNT yarns. The individual CNT, a component of yarn, is well known to have an extremely high mechanical strength. Howeve...

Full description

Saved in:
Bibliographic Details
Published inCurrent applied physics Vol. 21; pp. 96 - 100
Main Authors Kim, Jeong-Gyun, Suh, Dongseok, Kang, Haeyong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2021
한국물리학회
Subjects
Online AccessGet full text
ISSN1567-1739
1878-1675
DOI10.1016/j.cap.2020.10.015

Cover

Abstract Twist-spun carbon nanotube (CNT) yarns are composed of numerous CNTs and their bundles with entangled and twisted structures. In this paper, we studied the mechanical properties of CNT yarns. The individual CNT, a component of yarn, is well known to have an extremely high mechanical strength. However, CNT yarns are very flexible and relatively free to transform their shapes, showing the potential for application in the design of wearable devices. Since CNT yarns have two opposing characteristics at the same time, a wide range of Young's modulus can be achieved by simply changing the geometrical structure while using the same fabrication process. We also suggest that CNT yarns can be utilized as the base material for several applications that require different stresses in a structure, such as bioimplants or foldable devices. [Display omitted] •Expansion of the range of Young's modulus through the single component of carbon nanotubes (CNT).•Effect of the diameters of CNT yarns on the strength and strain.•Variation of Young's modulus through simple structural change.•Large tensile elongation in CNT yarns.
AbstractList Twist-spun carbon nanotube (CNT) yarns are composed of numerous CNTs and their bundles with entangled and twisted structures. In this paper, we studied the mechanical properties of CNT yarns. The individual CNT, a component of yarn, is well known to have an extremely high mechanical strength. However, CNT yarns are very flexible and relatively free to transform their shapes, showing the potential for application in the design of wearable devices. Since CNT yarns have two opposing characteristics at the same time, a wide range of Young’s modulus can be achieved by simply changing the geometrical structure while using the same fabrication process. We also suggest that CNT yarns can be utilized as the base material for several applications that require different stresses in a structure, such as bioimplants or foldable devices. KCI Citation Count: 0
Twist-spun carbon nanotube (CNT) yarns are composed of numerous CNTs and their bundles with entangled and twisted structures. In this paper, we studied the mechanical properties of CNT yarns. The individual CNT, a component of yarn, is well known to have an extremely high mechanical strength. However, CNT yarns are very flexible and relatively free to transform their shapes, showing the potential for application in the design of wearable devices. Since CNT yarns have two opposing characteristics at the same time, a wide range of Young's modulus can be achieved by simply changing the geometrical structure while using the same fabrication process. We also suggest that CNT yarns can be utilized as the base material for several applications that require different stresses in a structure, such as bioimplants or foldable devices. [Display omitted] •Expansion of the range of Young's modulus through the single component of carbon nanotubes (CNT).•Effect of the diameters of CNT yarns on the strength and strain.•Variation of Young's modulus through simple structural change.•Large tensile elongation in CNT yarns.
Author Kim, Jeong-Gyun
Kang, Haeyong
Suh, Dongseok
Author_xml – sequence: 1
  givenname: Jeong-Gyun
  surname: Kim
  fullname: Kim, Jeong-Gyun
  organization: Department of Energy Science, Sungkyunkwan University, Suwon, 16419, South Korea
– sequence: 2
  givenname: Dongseok
  orcidid: 0000-0002-0392-3391
  surname: Suh
  fullname: Suh, Dongseok
  organization: Department of Energy Science, Sungkyunkwan University, Suwon, 16419, South Korea
– sequence: 3
  givenname: Haeyong
  orcidid: 0000-0002-8799-3935
  surname: Kang
  fullname: Kang, Haeyong
  email: haeyong.kang@pusan.ac.kr
  organization: Department of Physics, Pusan National University, Busan, 46241, South Korea
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002679693$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kEtLAzEQgIMoaNUf4C038bA1j93sLp5K8QUFQerBU5jNztbUNpEkrfjvTa0nD14yj8w3MN-IHDrvkJALzsaccXW9HBv4GAsmdvWY8eqAnPCmbgqu6uow55WqC17L9piMYlyyzJSsPCHzGYQF0i0EC8l6R62jr37jFpeRrn2_WW0i9QM1ELr86cD5tOmQfkFwkX7a9EZ7OwwY0KWcwRoThnhGjgZYRTz_jafk5e52Pn0oZk_3j9PJrDBS8lRIpkRpBLQSmGp7IfpSsKGSXChmSlUrjggldF2b26pnAJgf3kvksoFGyFNytd_rwqDfjdUe7E9ceP0e9OR5_qjbmvFGtnmW72dN8DEGHPRHsGsIX5ozvVOolzor1DuFu1ZWmJn6D2Ns-tGUAtjVv-TNnsR8_tZi0NFYdAZ7G9Ak3Xv7D_0N3EyNRw
CitedBy_id crossref_primary_10_1016_j_carbon_2024_119092
crossref_primary_10_1021_acs_nanolett_2c03296
crossref_primary_10_2139_ssrn_4139091
crossref_primary_10_1016_j_jmrt_2025_02_074
crossref_primary_10_1038_s41528_022_00167_7
crossref_primary_10_1002_adma_202008432
crossref_primary_10_1007_s10853_023_08177_0
crossref_primary_10_1016_j_mtchem_2023_101763
crossref_primary_10_1021_acsnano_3c01537
Cites_doi 10.1073/pnas.0600945103
10.1038/ncomms4322
10.1016/j.carbon.2015.02.065
10.1038/381678a0
10.1021/nn1017318
10.1002/adma.201402794
10.1016/j.carbon.2012.02.057
10.1126/science.1104276
10.1016/j.carbon.2012.05.043
10.1016/j.ijplas.2012.07.003
10.1103/PhysRevB.65.235430
10.1088/0953-8984/22/33/334221
10.1088/0957-4484/28/1/015703
10.1016/j.carbon.2009.05.020
10.1177/155892501200702S04
10.1016/j.carbon.2010.04.009
10.1016/j.proeng.2011.04.424
10.1002/smll.200600368
10.1038/s41565-018-0141-z
10.1016/j.carbon.2010.12.061
10.1021/nn5045504
10.1016/j.carbon.2019.05.077
10.1007/s10853-016-0249-1
10.1002/adfm.201701108
10.1002/adma.201004228
10.1103/PhysRevLett.84.5552
10.1021/nn102405u
10.1126/science.1147635
10.1016/j.compositesa.2015.06.009
10.1016/S0921-5093(01)01807-X
10.1016/j.compositesb.2012.01.063
10.1016/j.carbon.2018.04.071
10.1016/j.carbon.2003.09.011
ContentType Journal Article
Copyright 2020 Korean Physical Society
Copyright_xml – notice: 2020 Korean Physical Society
DBID AAYXX
CITATION
ACYCR
DOI 10.1016/j.cap.2020.10.015
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1878-1675
EndPage 100
ExternalDocumentID oai_kci_go_kr_ARTI_9701839
10_1016_j_cap_2020_10_015
S1567173920302479
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9ZL
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SSZ
T5K
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ABPIF
ABPTK
ACYCR
ID FETCH-LOGICAL-c331t-30624c2a93a069d22d420f531260c46761eea4abb920f6d0aaed0a1d3e138a823
IEDL.DBID .~1
ISSN 1567-1739
IngestDate Fri Nov 17 19:17:22 EST 2023
Wed Oct 01 01:55:13 EDT 2025
Thu Apr 24 23:09:44 EDT 2025
Fri Feb 23 02:46:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Carbon nanotube
Young's modulus
CNT yarns
Stress
Strain
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-30624c2a93a069d22d420f531260c46761eea4abb920f6d0aaed0a1d3e138a823
ORCID 0000-0002-8799-3935
0000-0002-0392-3391
PageCount 5
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9701839
crossref_primary_10_1016_j_cap_2020_10_015
crossref_citationtrail_10_1016_j_cap_2020_10_015
elsevier_sciencedirect_doi_10_1016_j_cap_2020_10_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
2021-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle Current applied physics
PublicationYear 2021
Publisher Elsevier B.V
한국물리학회
Publisher_xml – name: Elsevier B.V
– name: 한국물리학회
References Jung, Kim, Park (bib24) 2015; 88
Treacy, Ebbesen, Gibson (bib2) 1996; 381
Natsuki, Tantrakarn, Endo (bib6) 2004; 42
Park, Lee, Lee, Lee, Jeong, Lee, Kim (bib27) 2019; 152
Dumitrica, Hua, Yakobson (bib4) 2006; 103
Kuznetsov, Fonseca, Baughman, Zakhidov (bib7) 2011; 5
Ghemes, Minami, Muramatsu, Okada, Mimura, Inoue (bib15) 2012; 50
Ryu, Lee, Hwang, Hong, Kim, Park, Lee, Hong (bib25) 2011; 23
Chun, Kim, Shin, Kwon, Park, Kim, Spinks, Lima, Haines, Baughman, Kim (bib11) 2014; 5
Deng, Lu, Zhao, Zhu, Kim, Chou (bib26) 2011; 49
Khandoker, Hawkins, Ibrahim, Huynh, Deng (bib13) 2011; 10
Kim, Wang, Lee, Kang, Nam, Ci, Suhr (bib14) 2017; 7
Belytschko, Xiao, Schatz, Ruoff (bib5) 2002; 65
Bai, Zhang, Ye, Zhu, Xie, Shen, Cai, Liu, Zhang, Jia (bib20) 2018; 13
Kim, Kang, Lee, Park, Kim, Truong, Kim, Yoon, Lee, Suh, Carbon‐Nanotube‐Templated (bib10) 2017; 27
Zhang, Li, Tu, Li, Coulter, Zheng, Zhao, Jia, Peterson, Zhu (bib19) 2007; 3
Hiremath, Lu, Evora, Naskar, Mays, Bhat (bib23) 2016; 51
Bykova, Lima, Haines, Tolly, Salamon, Baughman, Zakhidov (bib9) 2014; 26
Demczyk, Wang, Cumings, Hetman, Han, Zettl, Ritchie (bib3) 2002; 334
Joshi, Sharma, Harsha (bib12) 2012; 43
Beese, Wei, Sarkar, Ramachandramoorthy, Roenbeck, Moravsky, Ford, Yavari, Keane, Loutfy (bib32) 2014; 8
Vilatela, Windle (bib35) 2012; 7
Miao, McDonnell, Vuckovic, Hawkins (bib16) 2010; 48
Liu, Sun, Lin, Zhou, Wang, Fan, Jiang (bib28) 2010; 4
Zhang, Atkinson, Baughman (bib8) 2004; 306
Fang, Zhang, Zakhidov, Baughman (bib30) 2010; 22
Sun, Zheng, Zhou, Zhang, Zhan, Pang (bib34) 2013; 40
Liu, Sun, Zhou, Zhu, Wang, Liu, Fan, Jiang (bib29) 2010; 21
Yu, Files, Arepalli, Ruoff (bib1) 2000; 84
Koziol, Vilatela, Moisala, Motta, Cunniff, Sennett, Windle (bib17) 2007; 318
Jeon, Jang, Koo, Kim, Yu (bib31) 2017; 28
Cho, Lee, Oh, Lee, Park, Park, Yoon, Lee, Kwak, Lee (bib22) 2018; 136
Nam, Goto, Yamaguchi, Premalal, Shimamura, Inoue, Naito, Ogihara (bib21) 2015; 76
Tran, Humphries, Smith, Huynh, Lucas (bib18) 2009; 47
Zhang, Zheng, Sun, Zhan, Liao (bib33) 2012; 50
Zhang (10.1016/j.cap.2020.10.015_bib19) 2007; 3
Sun (10.1016/j.cap.2020.10.015_bib34) 2013; 40
Zhang (10.1016/j.cap.2020.10.015_bib8) 2004; 306
Natsuki (10.1016/j.cap.2020.10.015_bib6) 2004; 42
Bykova (10.1016/j.cap.2020.10.015_bib9) 2014; 26
Khandoker (10.1016/j.cap.2020.10.015_bib13) 2011; 10
Deng (10.1016/j.cap.2020.10.015_bib26) 2011; 49
Jeon (10.1016/j.cap.2020.10.015_bib31) 2017; 28
Ryu (10.1016/j.cap.2020.10.015_bib25) 2011; 23
Liu (10.1016/j.cap.2020.10.015_bib28) 2010; 4
Belytschko (10.1016/j.cap.2020.10.015_bib5) 2002; 65
Miao (10.1016/j.cap.2020.10.015_bib16) 2010; 48
Nam (10.1016/j.cap.2020.10.015_bib21) 2015; 76
Hiremath (10.1016/j.cap.2020.10.015_bib23) 2016; 51
Demczyk (10.1016/j.cap.2020.10.015_bib3) 2002; 334
Treacy (10.1016/j.cap.2020.10.015_bib2) 1996; 381
Bai (10.1016/j.cap.2020.10.015_bib20) 2018; 13
Jung (10.1016/j.cap.2020.10.015_bib24) 2015; 88
Ghemes (10.1016/j.cap.2020.10.015_bib15) 2012; 50
Fang (10.1016/j.cap.2020.10.015_bib30) 2010; 22
Beese (10.1016/j.cap.2020.10.015_bib32) 2014; 8
Dumitrica (10.1016/j.cap.2020.10.015_bib4) 2006; 103
Yu (10.1016/j.cap.2020.10.015_bib1) 2000; 84
Koziol (10.1016/j.cap.2020.10.015_bib17) 2007; 318
Zhang (10.1016/j.cap.2020.10.015_bib33) 2012; 50
Joshi (10.1016/j.cap.2020.10.015_bib12) 2012; 43
Vilatela (10.1016/j.cap.2020.10.015_bib35) 2012; 7
Park (10.1016/j.cap.2020.10.015_bib27) 2019; 152
Liu (10.1016/j.cap.2020.10.015_bib29) 2010; 21
Kim (10.1016/j.cap.2020.10.015_bib10) 2017; 27
Kim (10.1016/j.cap.2020.10.015_bib14) 2017; 7
Chun (10.1016/j.cap.2020.10.015_bib11) 2014; 5
Tran (10.1016/j.cap.2020.10.015_bib18) 2009; 47
Cho (10.1016/j.cap.2020.10.015_bib22) 2018; 136
Kuznetsov (10.1016/j.cap.2020.10.015_bib7) 2011; 5
References_xml – volume: 21
  year: 2010
  ident: bib29
  article-title: Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method
  publication-title: Nanotechnology
– volume: 43
  start-page: 2063
  year: 2012
  end-page: 2071
  ident: bib12
  article-title: Effect of carbon nanotube orientation on the mechanical properties of nanocomposites
  publication-title: Compos. B Eng.
– volume: 10
  start-page: 2572
  year: 2011
  end-page: 2578
  ident: bib13
  article-title: Tensile strength of spinnable multiwall carbon nanotubes
  publication-title: Procedia Engineering
– volume: 7
  start-page: 23
  year: 2012
  end-page: 28
  ident: bib35
  article-title: A multifunctional yarn made of carbon nanotubes
  publication-title: Journal of Engineered Fibers and Fabrics
– volume: 306
  start-page: 1358
  year: 2004
  end-page: 1361
  ident: bib8
  article-title: Multifunctional carbon nanotube yarns by downsizing an ancient technology
  publication-title: Science
– volume: 7
  start-page: 1
  year: 2017
  end-page: 7
  ident: bib14
  article-title: Tensile properties of millimeter-long multi-walled carbon nanotubes
  publication-title: Sci. Rep.
– volume: 50
  start-page: 4579
  year: 2012
  end-page: 4587
  ident: bib15
  article-title: Fabrication and mechanical properties of carbon nanotube yarns spun from ultra-long multi-walled carbon nanotube arrays
  publication-title: Carbon
– volume: 22
  start-page: 334221
  year: 2010
  ident: bib30
  article-title: Structure and process-dependent properties of solid-state spun carbon nanotube yarns
  publication-title: J. Phys. Condens. Matter
– volume: 47
  start-page: 2662
  year: 2009
  end-page: 2670
  ident: bib18
  article-title: Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process
  publication-title: Carbon
– volume: 42
  start-page: 39
  year: 2004
  end-page: 45
  ident: bib6
  article-title: Prediction of elastic properties for single-walled carbon nanotubes
  publication-title: Carbon
– volume: 50
  start-page: 2887
  year: 2012
  end-page: 2893
  ident: bib33
  article-title: Failure mechanisms of carbon nanotube fibers under different strain rates
  publication-title: Carbon
– volume: 381
  start-page: 678
  year: 1996
  end-page: 680
  ident: bib2
  article-title: Exceptionally high Young's modulus observed for individual carbon nanotubes
  publication-title: Nature
– volume: 28
  year: 2017
  ident: bib31
  article-title: A predictive model of the tensile strength of twisted carbon nanotube yarns
  publication-title: Nanotechnology
– volume: 152
  start-page: 151
  year: 2019
  end-page: 158
  ident: bib27
  article-title: Mathematical model for the dynamic mechanical behavior of carbon nanotube yarn in analogy with hierarchically structured bio-material
  publication-title: Carbon
– volume: 23
  start-page: 1971
  year: 2011
  end-page: 1975
  ident: bib25
  article-title: High‐strength carbon nanotube fibers fabricated by infiltration and curing of mussel‐inspired catecholamine polymer
  publication-title: Adv. Mater.
– volume: 334
  start-page: 173
  year: 2002
  end-page: 178
  ident: bib3
  article-title: Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes
  publication-title: Mater. Sci. Eng.
– volume: 318
  start-page: 1892
  year: 2007
  end-page: 1895
  ident: bib17
  article-title: High-performance carbon nanotube fiber
  publication-title: Science
– volume: 13
  start-page: 589
  year: 2018
  end-page: 595
  ident: bib20
  article-title: Carbon nanotube bundles with tensile strength over 80 GPa
  publication-title: Nat. Nanotechnol.
– volume: 48
  start-page: 2802
  year: 2010
  end-page: 2811
  ident: bib16
  article-title: Poisson's ratio and porosity of carbon nanotube dry-spun yarns
  publication-title: Carbon
– volume: 51
  start-page: 10215
  year: 2016
  end-page: 10228
  ident: bib23
  article-title: Effect of solvent/polymer infiltration and irradiation on microstructure and tensile properties of carbon nanotube yarns
  publication-title: J. Mater. Sci.
– volume: 27
  start-page: 1701108
  year: 2017
  ident: bib10
  article-title: Flexible superconducting NbN nanowire yarns
  publication-title: Adv. Funct. Mater.
– volume: 88
  start-page: 60
  year: 2015
  end-page: 69
  ident: bib24
  article-title: Effect of polymer infiltration on structure and properties of carbon nanotube yarns
  publication-title: Carbon
– volume: 76
  start-page: 289
  year: 2015
  end-page: 298
  ident: bib21
  article-title: Effects of CNT diameter on mechanical properties of aligned CNT sheets and composites Part A Applied science and manufacturing
  publication-title: Compos. Appl. Sci. Manuf.
– volume: 103
  start-page: 6105
  year: 2006
  end-page: 6109
  ident: bib4
  article-title: Symmetry-, time-, and temperature-dependent strength of carbon nanotubes
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 40
  start-page: 56
  year: 2013
  end-page: 64
  ident: bib34
  article-title: Load-transfer efficiency and mechanical reliability of carbon nanotube fibers under low strain rates
  publication-title: Int. J. Plast.
– volume: 4
  start-page: 5827
  year: 2010
  end-page: 5834
  ident: bib28
  article-title: Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns
  publication-title: ACS Nano
– volume: 3
  start-page: 244
  year: 2007
  end-page: 248
  ident: bib19
  article-title: Strong carbon‐nanotube fibers spun from long carbon‐nanotube arrays
  publication-title: Small
– volume: 5
  start-page: 3322
  year: 2014
  ident: bib11
  article-title: Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk
  publication-title: Nat. Commun.
– volume: 136
  start-page: 409
  year: 2018
  end-page: 416
  ident: bib22
  article-title: Hierarchical structure of carbon nanotube fibers, and the change of structure during densification by wet stretching
  publication-title: Carbon
– volume: 5
  start-page: 985
  year: 2011
  end-page: 993
  ident: bib7
  article-title: Structural model for dry-drawing of sheets and yarns from carbon nanotube forests
  publication-title: ACS Nano
– volume: 8
  start-page: 11454
  year: 2014
  end-page: 11466
  ident: bib32
  article-title: Key factors limiting carbon nanotube yarn strength: exploring processing-structure-property relationships
  publication-title: ACS Nano
– volume: 49
  start-page: 1752
  year: 2011
  end-page: 1757
  ident: bib26
  article-title: The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite
  publication-title: Carbon
– volume: 65
  start-page: 235430
  year: 2002
  ident: bib5
  article-title: Atomistic simulations of nanotube fracture
  publication-title: Phys. Rev. B
– volume: 84
  start-page: 5552
  year: 2000
  ident: bib1
  article-title: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties
  publication-title: Phys. Rev. Lett.
– volume: 26
  start-page: 7510
  year: 2014
  end-page: 7515
  ident: bib9
  article-title: Flexible, ultralight, porous superconducting yarns containing shell‐core magnesium diboride–carbon nanotube nanofibers
  publication-title: Adv. Mater.
– volume: 103
  start-page: 6105
  year: 2006
  ident: 10.1016/j.cap.2020.10.015_bib4
  article-title: Symmetry-, time-, and temperature-dependent strength of carbon nanotubes
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.0600945103
– volume: 5
  start-page: 3322
  year: 2014
  ident: 10.1016/j.cap.2020.10.015_bib11
  article-title: Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4322
– volume: 88
  start-page: 60
  year: 2015
  ident: 10.1016/j.cap.2020.10.015_bib24
  article-title: Effect of polymer infiltration on structure and properties of carbon nanotube yarns
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.02.065
– volume: 381
  start-page: 678
  year: 1996
  ident: 10.1016/j.cap.2020.10.015_bib2
  article-title: Exceptionally high Young's modulus observed for individual carbon nanotubes
  publication-title: Nature
  doi: 10.1038/381678a0
– volume: 4
  start-page: 5827
  year: 2010
  ident: 10.1016/j.cap.2020.10.015_bib28
  article-title: Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns
  publication-title: ACS Nano
  doi: 10.1021/nn1017318
– volume: 26
  start-page: 7510
  year: 2014
  ident: 10.1016/j.cap.2020.10.015_bib9
  article-title: Flexible, ultralight, porous superconducting yarns containing shell‐core magnesium diboride–carbon nanotube nanofibers
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402794
– volume: 50
  start-page: 2887
  year: 2012
  ident: 10.1016/j.cap.2020.10.015_bib33
  article-title: Failure mechanisms of carbon nanotube fibers under different strain rates
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.02.057
– volume: 306
  start-page: 1358
  year: 2004
  ident: 10.1016/j.cap.2020.10.015_bib8
  article-title: Multifunctional carbon nanotube yarns by downsizing an ancient technology
  publication-title: Science
  doi: 10.1126/science.1104276
– volume: 50
  start-page: 4579
  year: 2012
  ident: 10.1016/j.cap.2020.10.015_bib15
  article-title: Fabrication and mechanical properties of carbon nanotube yarns spun from ultra-long multi-walled carbon nanotube arrays
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.05.043
– volume: 40
  start-page: 56
  year: 2013
  ident: 10.1016/j.cap.2020.10.015_bib34
  article-title: Load-transfer efficiency and mechanical reliability of carbon nanotube fibers under low strain rates
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2012.07.003
– volume: 65
  start-page: 235430
  year: 2002
  ident: 10.1016/j.cap.2020.10.015_bib5
  article-title: Atomistic simulations of nanotube fracture
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.235430
– volume: 22
  start-page: 334221
  year: 2010
  ident: 10.1016/j.cap.2020.10.015_bib30
  article-title: Structure and process-dependent properties of solid-state spun carbon nanotube yarns
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/22/33/334221
– volume: 28
  year: 2017
  ident: 10.1016/j.cap.2020.10.015_bib31
  article-title: A predictive model of the tensile strength of twisted carbon nanotube yarns
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/28/1/015703
– volume: 47
  start-page: 2662
  year: 2009
  ident: 10.1016/j.cap.2020.10.015_bib18
  article-title: Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process
  publication-title: Carbon
  doi: 10.1016/j.carbon.2009.05.020
– volume: 7
  start-page: 23
  year: 2012
  ident: 10.1016/j.cap.2020.10.015_bib35
  article-title: A multifunctional yarn made of carbon nanotubes
  publication-title: Journal of Engineered Fibers and Fabrics
  doi: 10.1177/155892501200702S04
– volume: 48
  start-page: 2802
  year: 2010
  ident: 10.1016/j.cap.2020.10.015_bib16
  article-title: Poisson's ratio and porosity of carbon nanotube dry-spun yarns
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.04.009
– volume: 10
  start-page: 2572
  year: 2011
  ident: 10.1016/j.cap.2020.10.015_bib13
  article-title: Tensile strength of spinnable multiwall carbon nanotubes
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2011.04.424
– volume: 3
  start-page: 244
  year: 2007
  ident: 10.1016/j.cap.2020.10.015_bib19
  article-title: Strong carbon‐nanotube fibers spun from long carbon‐nanotube arrays
  publication-title: Small
  doi: 10.1002/smll.200600368
– volume: 13
  start-page: 589
  year: 2018
  ident: 10.1016/j.cap.2020.10.015_bib20
  article-title: Carbon nanotube bundles with tensile strength over 80 GPa
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0141-z
– volume: 49
  start-page: 1752
  year: 2011
  ident: 10.1016/j.cap.2020.10.015_bib26
  article-title: The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.12.061
– volume: 8
  start-page: 11454
  year: 2014
  ident: 10.1016/j.cap.2020.10.015_bib32
  article-title: Key factors limiting carbon nanotube yarn strength: exploring processing-structure-property relationships
  publication-title: ACS Nano
  doi: 10.1021/nn5045504
– volume: 152
  start-page: 151
  year: 2019
  ident: 10.1016/j.cap.2020.10.015_bib27
  article-title: Mathematical model for the dynamic mechanical behavior of carbon nanotube yarn in analogy with hierarchically structured bio-material
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.05.077
– volume: 51
  start-page: 10215
  year: 2016
  ident: 10.1016/j.cap.2020.10.015_bib23
  article-title: Effect of solvent/polymer infiltration and irradiation on microstructure and tensile properties of carbon nanotube yarns
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-016-0249-1
– volume: 27
  start-page: 1701108
  year: 2017
  ident: 10.1016/j.cap.2020.10.015_bib10
  article-title: Flexible superconducting NbN nanowire yarns
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201701108
– volume: 23
  start-page: 1971
  year: 2011
  ident: 10.1016/j.cap.2020.10.015_bib25
  article-title: High‐strength carbon nanotube fibers fabricated by infiltration and curing of mussel‐inspired catecholamine polymer
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201004228
– volume: 84
  start-page: 5552
  year: 2000
  ident: 10.1016/j.cap.2020.10.015_bib1
  article-title: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.5552
– volume: 5
  start-page: 985
  year: 2011
  ident: 10.1016/j.cap.2020.10.015_bib7
  article-title: Structural model for dry-drawing of sheets and yarns from carbon nanotube forests
  publication-title: ACS Nano
  doi: 10.1021/nn102405u
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.cap.2020.10.015_bib14
  article-title: Tensile properties of millimeter-long multi-walled carbon nanotubes
  publication-title: Sci. Rep.
– volume: 318
  start-page: 1892
  year: 2007
  ident: 10.1016/j.cap.2020.10.015_bib17
  article-title: High-performance carbon nanotube fiber
  publication-title: Science
  doi: 10.1126/science.1147635
– volume: 76
  start-page: 289
  year: 2015
  ident: 10.1016/j.cap.2020.10.015_bib21
  article-title: Effects of CNT diameter on mechanical properties of aligned CNT sheets and composites Part A Applied science and manufacturing
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2015.06.009
– volume: 334
  start-page: 173
  year: 2002
  ident: 10.1016/j.cap.2020.10.015_bib3
  article-title: Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/S0921-5093(01)01807-X
– volume: 43
  start-page: 2063
  year: 2012
  ident: 10.1016/j.cap.2020.10.015_bib12
  article-title: Effect of carbon nanotube orientation on the mechanical properties of nanocomposites
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2012.01.063
– volume: 136
  start-page: 409
  year: 2018
  ident: 10.1016/j.cap.2020.10.015_bib22
  article-title: Hierarchical structure of carbon nanotube fibers, and the change of structure during densification by wet stretching
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.04.071
– volume: 21
  year: 2010
  ident: 10.1016/j.cap.2020.10.015_bib29
  article-title: Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method
  publication-title: Nanotechnology
– volume: 42
  start-page: 39
  year: 2004
  ident: 10.1016/j.cap.2020.10.015_bib6
  article-title: Prediction of elastic properties for single-walled carbon nanotubes
  publication-title: Carbon
  doi: 10.1016/j.carbon.2003.09.011
SSID ssj0016404
Score 2.3343306
Snippet Twist-spun carbon nanotube (CNT) yarns are composed of numerous CNTs and their bundles with entangled and twisted structures. In this paper, we studied the...
SourceID nrf
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 96
SubjectTerms Carbon nanotube
CNT yarns
Strain
Stress
Young's modulus
물리학
Title Large variation in Young's modulus of carbon nanotube yarns with different diameters
URI https://dx.doi.org/10.1016/j.cap.2020.10.015
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002679693
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Current Applied Physics, 2021, 21(1), , pp.96-100
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1878-1675
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016404
  issn: 1567-1739
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1878-1675
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016404
  issn: 1567-1739
  databaseCode: ACRLP
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1878-1675
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016404
  issn: 1567-1739
  databaseCode: .~1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Freedom Collection Journals
  customDbUrl:
  eissn: 1878-1675
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016404
  issn: 1567-1739
  databaseCode: AIKHN
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1878-1675
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016404
  issn: 1567-1739
  databaseCode: AKRWK
  dateStart: 20010101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60IngRn1hfLCIIQtp0E9PkWMRSX73YQm_LPqVWE8lD8OJvdyZNioL04CWPzW4IX2ZnZ3a_nSHk3BNMW6Ot41rNcLaKOSIAWRZMaqZhxNER7nd-HAaDsX83uZqskOt6LwzSKivdP9fppbauStoVmu336bT9BJ4HLiFHDOSU-V3cxIfRv0CmW18Lmgd4A2UKQazsYO16ZbPkeCmBISsZ3rdczIz799i0Gqf2x6jT3yKblblIe_Mv2iYrJt4h6yVtU2W7ZPSARG76AQ5viTCdxrTsvxcZfUt08VpkNLFUiVTCw1jESV5IQz9FGmcUp2BpnSAlhyvxhtyYbI-M-zej64FT5UlwlOd1cgesfuYrJiJPuEGkGdM-cy10LvBVFCjCoGOM8IWUAJUNtCuEgUNHe6bjhSJk3j5pxElsDggNu5jNSIaBUNa_kjqU8Legl7rK2sBXXpO4NUJcVUHEMZfFK6_ZYi8cQOUIKhYBqE1yuWjyPo-gsayyX8POf4kBBw2_rNkZ_CI-U1OO4bLx_JzwWcrBKbjlUddFO_Dwf-8-IhsMeSzltMsxaeRpYU7AEMnlaSlpp2Std3s_GH4D7LjcDA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-NAEB-0It7L4Send-oiB8JBbLrZpsmjyEmrtS9XwbdlP6VWE0lSwf_emTSREw4f7iUfm2wIv52dndn97QzAz0hx6531Qegtp9kqHqgYZVlxbbnFEcemtN_5ZhIPb8XVXf9uBS7avTBEq2x0_1Kn19q6Kek2aHafZ7PuH_Q8aAk55SinXAzSVVgTfdTJHVg7H10PJ--LCbGoswjS-wFVaBc3a5qXURS1ktP9WUjJcf89PK1mhf9r4LnchK-NxcjOlz-1BSsu24b1mrlpyh2YjonLzV7Q561BZrOM1V34tGRPuV08LkqWe2ZUofFhprK8WmjHXlWRlYxmYVmbI6XCK_VE9JhyF24vf08vhkGTKiEwUdSrAjT8uTBcpZEK49RybgUPPfYvdFcM6sK455wSSmtEy8c2VMrhoWcj14sSlfBoDzpZnrlvwJIBJTTSSayMF31tE40Nhh01NN7HwkT7ELYISdPEEad0Fo-yJYw9SARVEqhUhKDuw6_3Ks_LIBqfvSxa2OUHSZCo5D-rdoJNJOdmJiliNp3vczkvJPoFI5kOQjIFD_7v28ewMZzejOV4NLn-Dl840VrqWZgf0KmKhTtEu6TSR43cvQF4D963
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+variation+in+Young%27s+modulus+of+carbon+nanotube+yarns+with+different+diameters&rft.jtitle=Current+applied+physics&rft.au=Kim%2C+Jeong-Gyun&rft.au=Suh%2C+Dongseok&rft.au=Kang%2C+Haeyong&rft.date=2021-01-01&rft.pub=Elsevier+B.V&rft.issn=1567-1739&rft.eissn=1878-1675&rft.volume=21&rft.spage=96&rft.epage=100&rft_id=info:doi/10.1016%2Fj.cap.2020.10.015&rft.externalDocID=S1567173920302479
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1739&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1739&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1739&client=summon