Large variation in Young's modulus of carbon nanotube yarns with different diameters
Twist-spun carbon nanotube (CNT) yarns are composed of numerous CNTs and their bundles with entangled and twisted structures. In this paper, we studied the mechanical properties of CNT yarns. The individual CNT, a component of yarn, is well known to have an extremely high mechanical strength. Howeve...
Saved in:
Published in | Current applied physics Vol. 21; pp. 96 - 100 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2021
한국물리학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1567-1739 1878-1675 |
DOI | 10.1016/j.cap.2020.10.015 |
Cover
Abstract | Twist-spun carbon nanotube (CNT) yarns are composed of numerous CNTs and their bundles with entangled and twisted structures. In this paper, we studied the mechanical properties of CNT yarns. The individual CNT, a component of yarn, is well known to have an extremely high mechanical strength. However, CNT yarns are very flexible and relatively free to transform their shapes, showing the potential for application in the design of wearable devices. Since CNT yarns have two opposing characteristics at the same time, a wide range of Young's modulus can be achieved by simply changing the geometrical structure while using the same fabrication process. We also suggest that CNT yarns can be utilized as the base material for several applications that require different stresses in a structure, such as bioimplants or foldable devices.
[Display omitted]
•Expansion of the range of Young's modulus through the single component of carbon nanotubes (CNT).•Effect of the diameters of CNT yarns on the strength and strain.•Variation of Young's modulus through simple structural change.•Large tensile elongation in CNT yarns. |
---|---|
AbstractList | Twist-spun carbon nanotube (CNT) yarns are composed of numerous CNTs and their bundles with entangled and twisted structures. In this paper, we studied the mechanical properties of CNT yarns. The individual CNT, a component of yarn, is well known to have an extremely high mechanical strength. However, CNT yarns are very flexible and relatively free to transform their shapes, showing the potential for application in the design of wearable devices. Since CNT yarns have two opposing characteristics at the same time, a wide range of Young’s modulus can be achieved by simply changing the geometrical structure while using the same fabrication process.
We also suggest that CNT yarns can be utilized as the base material for several applications that require different stresses in a structure, such as bioimplants or foldable devices. KCI Citation Count: 0 Twist-spun carbon nanotube (CNT) yarns are composed of numerous CNTs and their bundles with entangled and twisted structures. In this paper, we studied the mechanical properties of CNT yarns. The individual CNT, a component of yarn, is well known to have an extremely high mechanical strength. However, CNT yarns are very flexible and relatively free to transform their shapes, showing the potential for application in the design of wearable devices. Since CNT yarns have two opposing characteristics at the same time, a wide range of Young's modulus can be achieved by simply changing the geometrical structure while using the same fabrication process. We also suggest that CNT yarns can be utilized as the base material for several applications that require different stresses in a structure, such as bioimplants or foldable devices. [Display omitted] •Expansion of the range of Young's modulus through the single component of carbon nanotubes (CNT).•Effect of the diameters of CNT yarns on the strength and strain.•Variation of Young's modulus through simple structural change.•Large tensile elongation in CNT yarns. |
Author | Kim, Jeong-Gyun Kang, Haeyong Suh, Dongseok |
Author_xml | – sequence: 1 givenname: Jeong-Gyun surname: Kim fullname: Kim, Jeong-Gyun organization: Department of Energy Science, Sungkyunkwan University, Suwon, 16419, South Korea – sequence: 2 givenname: Dongseok orcidid: 0000-0002-0392-3391 surname: Suh fullname: Suh, Dongseok organization: Department of Energy Science, Sungkyunkwan University, Suwon, 16419, South Korea – sequence: 3 givenname: Haeyong orcidid: 0000-0002-8799-3935 surname: Kang fullname: Kang, Haeyong email: haeyong.kang@pusan.ac.kr organization: Department of Physics, Pusan National University, Busan, 46241, South Korea |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002679693$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kEtLAzEQgIMoaNUf4C038bA1j93sLp5K8QUFQerBU5jNztbUNpEkrfjvTa0nD14yj8w3MN-IHDrvkJALzsaccXW9HBv4GAsmdvWY8eqAnPCmbgqu6uow55WqC17L9piMYlyyzJSsPCHzGYQF0i0EC8l6R62jr37jFpeRrn2_WW0i9QM1ELr86cD5tOmQfkFwkX7a9EZ7OwwY0KWcwRoThnhGjgZYRTz_jafk5e52Pn0oZk_3j9PJrDBS8lRIpkRpBLQSmGp7IfpSsKGSXChmSlUrjggldF2b26pnAJgf3kvksoFGyFNytd_rwqDfjdUe7E9ceP0e9OR5_qjbmvFGtnmW72dN8DEGHPRHsGsIX5ozvVOolzor1DuFu1ZWmJn6D2Ns-tGUAtjVv-TNnsR8_tZi0NFYdAZ7G9Ak3Xv7D_0N3EyNRw |
CitedBy_id | crossref_primary_10_1016_j_carbon_2024_119092 crossref_primary_10_1021_acs_nanolett_2c03296 crossref_primary_10_2139_ssrn_4139091 crossref_primary_10_1016_j_jmrt_2025_02_074 crossref_primary_10_1038_s41528_022_00167_7 crossref_primary_10_1002_adma_202008432 crossref_primary_10_1007_s10853_023_08177_0 crossref_primary_10_1016_j_mtchem_2023_101763 crossref_primary_10_1021_acsnano_3c01537 |
Cites_doi | 10.1073/pnas.0600945103 10.1038/ncomms4322 10.1016/j.carbon.2015.02.065 10.1038/381678a0 10.1021/nn1017318 10.1002/adma.201402794 10.1016/j.carbon.2012.02.057 10.1126/science.1104276 10.1016/j.carbon.2012.05.043 10.1016/j.ijplas.2012.07.003 10.1103/PhysRevB.65.235430 10.1088/0953-8984/22/33/334221 10.1088/0957-4484/28/1/015703 10.1016/j.carbon.2009.05.020 10.1177/155892501200702S04 10.1016/j.carbon.2010.04.009 10.1016/j.proeng.2011.04.424 10.1002/smll.200600368 10.1038/s41565-018-0141-z 10.1016/j.carbon.2010.12.061 10.1021/nn5045504 10.1016/j.carbon.2019.05.077 10.1007/s10853-016-0249-1 10.1002/adfm.201701108 10.1002/adma.201004228 10.1103/PhysRevLett.84.5552 10.1021/nn102405u 10.1126/science.1147635 10.1016/j.compositesa.2015.06.009 10.1016/S0921-5093(01)01807-X 10.1016/j.compositesb.2012.01.063 10.1016/j.carbon.2018.04.071 10.1016/j.carbon.2003.09.011 |
ContentType | Journal Article |
Copyright | 2020 Korean Physical Society |
Copyright_xml | – notice: 2020 Korean Physical Society |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1016/j.cap.2020.10.015 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1878-1675 |
EndPage | 100 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9701839 10_1016_j_cap_2020_10_015 S1567173920302479 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9ZL AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSQ SSZ T5K UHS ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD ABPIF ABPTK ACYCR |
ID | FETCH-LOGICAL-c331t-30624c2a93a069d22d420f531260c46761eea4abb920f6d0aaed0a1d3e138a823 |
IEDL.DBID | .~1 |
ISSN | 1567-1739 |
IngestDate | Fri Nov 17 19:17:22 EST 2023 Wed Oct 01 01:55:13 EDT 2025 Thu Apr 24 23:09:44 EDT 2025 Fri Feb 23 02:46:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Carbon nanotube Young's modulus CNT yarns Stress Strain |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-30624c2a93a069d22d420f531260c46761eea4abb920f6d0aaed0a1d3e138a823 |
ORCID | 0000-0002-8799-3935 0000-0002-0392-3391 |
PageCount | 5 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9701839 crossref_primary_10_1016_j_cap_2020_10_015 crossref_citationtrail_10_1016_j_cap_2020_10_015 elsevier_sciencedirect_doi_10_1016_j_cap_2020_10_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 2021-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationTitle | Current applied physics |
PublicationYear | 2021 |
Publisher | Elsevier B.V 한국물리학회 |
Publisher_xml | – name: Elsevier B.V – name: 한국물리학회 |
References | Jung, Kim, Park (bib24) 2015; 88 Treacy, Ebbesen, Gibson (bib2) 1996; 381 Natsuki, Tantrakarn, Endo (bib6) 2004; 42 Park, Lee, Lee, Lee, Jeong, Lee, Kim (bib27) 2019; 152 Dumitrica, Hua, Yakobson (bib4) 2006; 103 Kuznetsov, Fonseca, Baughman, Zakhidov (bib7) 2011; 5 Ghemes, Minami, Muramatsu, Okada, Mimura, Inoue (bib15) 2012; 50 Ryu, Lee, Hwang, Hong, Kim, Park, Lee, Hong (bib25) 2011; 23 Chun, Kim, Shin, Kwon, Park, Kim, Spinks, Lima, Haines, Baughman, Kim (bib11) 2014; 5 Deng, Lu, Zhao, Zhu, Kim, Chou (bib26) 2011; 49 Khandoker, Hawkins, Ibrahim, Huynh, Deng (bib13) 2011; 10 Kim, Wang, Lee, Kang, Nam, Ci, Suhr (bib14) 2017; 7 Belytschko, Xiao, Schatz, Ruoff (bib5) 2002; 65 Bai, Zhang, Ye, Zhu, Xie, Shen, Cai, Liu, Zhang, Jia (bib20) 2018; 13 Kim, Kang, Lee, Park, Kim, Truong, Kim, Yoon, Lee, Suh, Carbon‐Nanotube‐Templated (bib10) 2017; 27 Zhang, Li, Tu, Li, Coulter, Zheng, Zhao, Jia, Peterson, Zhu (bib19) 2007; 3 Hiremath, Lu, Evora, Naskar, Mays, Bhat (bib23) 2016; 51 Bykova, Lima, Haines, Tolly, Salamon, Baughman, Zakhidov (bib9) 2014; 26 Demczyk, Wang, Cumings, Hetman, Han, Zettl, Ritchie (bib3) 2002; 334 Joshi, Sharma, Harsha (bib12) 2012; 43 Beese, Wei, Sarkar, Ramachandramoorthy, Roenbeck, Moravsky, Ford, Yavari, Keane, Loutfy (bib32) 2014; 8 Vilatela, Windle (bib35) 2012; 7 Miao, McDonnell, Vuckovic, Hawkins (bib16) 2010; 48 Liu, Sun, Lin, Zhou, Wang, Fan, Jiang (bib28) 2010; 4 Zhang, Atkinson, Baughman (bib8) 2004; 306 Fang, Zhang, Zakhidov, Baughman (bib30) 2010; 22 Sun, Zheng, Zhou, Zhang, Zhan, Pang (bib34) 2013; 40 Liu, Sun, Zhou, Zhu, Wang, Liu, Fan, Jiang (bib29) 2010; 21 Yu, Files, Arepalli, Ruoff (bib1) 2000; 84 Koziol, Vilatela, Moisala, Motta, Cunniff, Sennett, Windle (bib17) 2007; 318 Jeon, Jang, Koo, Kim, Yu (bib31) 2017; 28 Cho, Lee, Oh, Lee, Park, Park, Yoon, Lee, Kwak, Lee (bib22) 2018; 136 Nam, Goto, Yamaguchi, Premalal, Shimamura, Inoue, Naito, Ogihara (bib21) 2015; 76 Tran, Humphries, Smith, Huynh, Lucas (bib18) 2009; 47 Zhang, Zheng, Sun, Zhan, Liao (bib33) 2012; 50 Zhang (10.1016/j.cap.2020.10.015_bib19) 2007; 3 Sun (10.1016/j.cap.2020.10.015_bib34) 2013; 40 Zhang (10.1016/j.cap.2020.10.015_bib8) 2004; 306 Natsuki (10.1016/j.cap.2020.10.015_bib6) 2004; 42 Bykova (10.1016/j.cap.2020.10.015_bib9) 2014; 26 Khandoker (10.1016/j.cap.2020.10.015_bib13) 2011; 10 Deng (10.1016/j.cap.2020.10.015_bib26) 2011; 49 Jeon (10.1016/j.cap.2020.10.015_bib31) 2017; 28 Ryu (10.1016/j.cap.2020.10.015_bib25) 2011; 23 Liu (10.1016/j.cap.2020.10.015_bib28) 2010; 4 Belytschko (10.1016/j.cap.2020.10.015_bib5) 2002; 65 Miao (10.1016/j.cap.2020.10.015_bib16) 2010; 48 Nam (10.1016/j.cap.2020.10.015_bib21) 2015; 76 Hiremath (10.1016/j.cap.2020.10.015_bib23) 2016; 51 Demczyk (10.1016/j.cap.2020.10.015_bib3) 2002; 334 Treacy (10.1016/j.cap.2020.10.015_bib2) 1996; 381 Bai (10.1016/j.cap.2020.10.015_bib20) 2018; 13 Jung (10.1016/j.cap.2020.10.015_bib24) 2015; 88 Ghemes (10.1016/j.cap.2020.10.015_bib15) 2012; 50 Fang (10.1016/j.cap.2020.10.015_bib30) 2010; 22 Beese (10.1016/j.cap.2020.10.015_bib32) 2014; 8 Dumitrica (10.1016/j.cap.2020.10.015_bib4) 2006; 103 Yu (10.1016/j.cap.2020.10.015_bib1) 2000; 84 Koziol (10.1016/j.cap.2020.10.015_bib17) 2007; 318 Zhang (10.1016/j.cap.2020.10.015_bib33) 2012; 50 Joshi (10.1016/j.cap.2020.10.015_bib12) 2012; 43 Vilatela (10.1016/j.cap.2020.10.015_bib35) 2012; 7 Park (10.1016/j.cap.2020.10.015_bib27) 2019; 152 Liu (10.1016/j.cap.2020.10.015_bib29) 2010; 21 Kim (10.1016/j.cap.2020.10.015_bib10) 2017; 27 Kim (10.1016/j.cap.2020.10.015_bib14) 2017; 7 Chun (10.1016/j.cap.2020.10.015_bib11) 2014; 5 Tran (10.1016/j.cap.2020.10.015_bib18) 2009; 47 Cho (10.1016/j.cap.2020.10.015_bib22) 2018; 136 Kuznetsov (10.1016/j.cap.2020.10.015_bib7) 2011; 5 |
References_xml | – volume: 21 year: 2010 ident: bib29 article-title: Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method publication-title: Nanotechnology – volume: 43 start-page: 2063 year: 2012 end-page: 2071 ident: bib12 article-title: Effect of carbon nanotube orientation on the mechanical properties of nanocomposites publication-title: Compos. B Eng. – volume: 10 start-page: 2572 year: 2011 end-page: 2578 ident: bib13 article-title: Tensile strength of spinnable multiwall carbon nanotubes publication-title: Procedia Engineering – volume: 7 start-page: 23 year: 2012 end-page: 28 ident: bib35 article-title: A multifunctional yarn made of carbon nanotubes publication-title: Journal of Engineered Fibers and Fabrics – volume: 306 start-page: 1358 year: 2004 end-page: 1361 ident: bib8 article-title: Multifunctional carbon nanotube yarns by downsizing an ancient technology publication-title: Science – volume: 7 start-page: 1 year: 2017 end-page: 7 ident: bib14 article-title: Tensile properties of millimeter-long multi-walled carbon nanotubes publication-title: Sci. Rep. – volume: 50 start-page: 4579 year: 2012 end-page: 4587 ident: bib15 article-title: Fabrication and mechanical properties of carbon nanotube yarns spun from ultra-long multi-walled carbon nanotube arrays publication-title: Carbon – volume: 22 start-page: 334221 year: 2010 ident: bib30 article-title: Structure and process-dependent properties of solid-state spun carbon nanotube yarns publication-title: J. Phys. Condens. Matter – volume: 47 start-page: 2662 year: 2009 end-page: 2670 ident: bib18 article-title: Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process publication-title: Carbon – volume: 42 start-page: 39 year: 2004 end-page: 45 ident: bib6 article-title: Prediction of elastic properties for single-walled carbon nanotubes publication-title: Carbon – volume: 50 start-page: 2887 year: 2012 end-page: 2893 ident: bib33 article-title: Failure mechanisms of carbon nanotube fibers under different strain rates publication-title: Carbon – volume: 381 start-page: 678 year: 1996 end-page: 680 ident: bib2 article-title: Exceptionally high Young's modulus observed for individual carbon nanotubes publication-title: Nature – volume: 28 year: 2017 ident: bib31 article-title: A predictive model of the tensile strength of twisted carbon nanotube yarns publication-title: Nanotechnology – volume: 152 start-page: 151 year: 2019 end-page: 158 ident: bib27 article-title: Mathematical model for the dynamic mechanical behavior of carbon nanotube yarn in analogy with hierarchically structured bio-material publication-title: Carbon – volume: 23 start-page: 1971 year: 2011 end-page: 1975 ident: bib25 article-title: High‐strength carbon nanotube fibers fabricated by infiltration and curing of mussel‐inspired catecholamine polymer publication-title: Adv. Mater. – volume: 334 start-page: 173 year: 2002 end-page: 178 ident: bib3 article-title: Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes publication-title: Mater. Sci. Eng. – volume: 318 start-page: 1892 year: 2007 end-page: 1895 ident: bib17 article-title: High-performance carbon nanotube fiber publication-title: Science – volume: 13 start-page: 589 year: 2018 end-page: 595 ident: bib20 article-title: Carbon nanotube bundles with tensile strength over 80 GPa publication-title: Nat. Nanotechnol. – volume: 48 start-page: 2802 year: 2010 end-page: 2811 ident: bib16 article-title: Poisson's ratio and porosity of carbon nanotube dry-spun yarns publication-title: Carbon – volume: 51 start-page: 10215 year: 2016 end-page: 10228 ident: bib23 article-title: Effect of solvent/polymer infiltration and irradiation on microstructure and tensile properties of carbon nanotube yarns publication-title: J. Mater. Sci. – volume: 27 start-page: 1701108 year: 2017 ident: bib10 article-title: Flexible superconducting NbN nanowire yarns publication-title: Adv. Funct. Mater. – volume: 88 start-page: 60 year: 2015 end-page: 69 ident: bib24 article-title: Effect of polymer infiltration on structure and properties of carbon nanotube yarns publication-title: Carbon – volume: 76 start-page: 289 year: 2015 end-page: 298 ident: bib21 article-title: Effects of CNT diameter on mechanical properties of aligned CNT sheets and composites Part A Applied science and manufacturing publication-title: Compos. Appl. Sci. Manuf. – volume: 103 start-page: 6105 year: 2006 end-page: 6109 ident: bib4 article-title: Symmetry-, time-, and temperature-dependent strength of carbon nanotubes publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 40 start-page: 56 year: 2013 end-page: 64 ident: bib34 article-title: Load-transfer efficiency and mechanical reliability of carbon nanotube fibers under low strain rates publication-title: Int. J. Plast. – volume: 4 start-page: 5827 year: 2010 end-page: 5834 ident: bib28 article-title: Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns publication-title: ACS Nano – volume: 3 start-page: 244 year: 2007 end-page: 248 ident: bib19 article-title: Strong carbon‐nanotube fibers spun from long carbon‐nanotube arrays publication-title: Small – volume: 5 start-page: 3322 year: 2014 ident: bib11 article-title: Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk publication-title: Nat. Commun. – volume: 136 start-page: 409 year: 2018 end-page: 416 ident: bib22 article-title: Hierarchical structure of carbon nanotube fibers, and the change of structure during densification by wet stretching publication-title: Carbon – volume: 5 start-page: 985 year: 2011 end-page: 993 ident: bib7 article-title: Structural model for dry-drawing of sheets and yarns from carbon nanotube forests publication-title: ACS Nano – volume: 8 start-page: 11454 year: 2014 end-page: 11466 ident: bib32 article-title: Key factors limiting carbon nanotube yarn strength: exploring processing-structure-property relationships publication-title: ACS Nano – volume: 49 start-page: 1752 year: 2011 end-page: 1757 ident: bib26 article-title: The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite publication-title: Carbon – volume: 65 start-page: 235430 year: 2002 ident: bib5 article-title: Atomistic simulations of nanotube fracture publication-title: Phys. Rev. B – volume: 84 start-page: 5552 year: 2000 ident: bib1 article-title: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties publication-title: Phys. Rev. Lett. – volume: 26 start-page: 7510 year: 2014 end-page: 7515 ident: bib9 article-title: Flexible, ultralight, porous superconducting yarns containing shell‐core magnesium diboride–carbon nanotube nanofibers publication-title: Adv. Mater. – volume: 103 start-page: 6105 year: 2006 ident: 10.1016/j.cap.2020.10.015_bib4 article-title: Symmetry-, time-, and temperature-dependent strength of carbon nanotubes publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.0600945103 – volume: 5 start-page: 3322 year: 2014 ident: 10.1016/j.cap.2020.10.015_bib11 article-title: Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk publication-title: Nat. Commun. doi: 10.1038/ncomms4322 – volume: 88 start-page: 60 year: 2015 ident: 10.1016/j.cap.2020.10.015_bib24 article-title: Effect of polymer infiltration on structure and properties of carbon nanotube yarns publication-title: Carbon doi: 10.1016/j.carbon.2015.02.065 – volume: 381 start-page: 678 year: 1996 ident: 10.1016/j.cap.2020.10.015_bib2 article-title: Exceptionally high Young's modulus observed for individual carbon nanotubes publication-title: Nature doi: 10.1038/381678a0 – volume: 4 start-page: 5827 year: 2010 ident: 10.1016/j.cap.2020.10.015_bib28 article-title: Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns publication-title: ACS Nano doi: 10.1021/nn1017318 – volume: 26 start-page: 7510 year: 2014 ident: 10.1016/j.cap.2020.10.015_bib9 article-title: Flexible, ultralight, porous superconducting yarns containing shell‐core magnesium diboride–carbon nanotube nanofibers publication-title: Adv. Mater. doi: 10.1002/adma.201402794 – volume: 50 start-page: 2887 year: 2012 ident: 10.1016/j.cap.2020.10.015_bib33 article-title: Failure mechanisms of carbon nanotube fibers under different strain rates publication-title: Carbon doi: 10.1016/j.carbon.2012.02.057 – volume: 306 start-page: 1358 year: 2004 ident: 10.1016/j.cap.2020.10.015_bib8 article-title: Multifunctional carbon nanotube yarns by downsizing an ancient technology publication-title: Science doi: 10.1126/science.1104276 – volume: 50 start-page: 4579 year: 2012 ident: 10.1016/j.cap.2020.10.015_bib15 article-title: Fabrication and mechanical properties of carbon nanotube yarns spun from ultra-long multi-walled carbon nanotube arrays publication-title: Carbon doi: 10.1016/j.carbon.2012.05.043 – volume: 40 start-page: 56 year: 2013 ident: 10.1016/j.cap.2020.10.015_bib34 article-title: Load-transfer efficiency and mechanical reliability of carbon nanotube fibers under low strain rates publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2012.07.003 – volume: 65 start-page: 235430 year: 2002 ident: 10.1016/j.cap.2020.10.015_bib5 article-title: Atomistic simulations of nanotube fracture publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.235430 – volume: 22 start-page: 334221 year: 2010 ident: 10.1016/j.cap.2020.10.015_bib30 article-title: Structure and process-dependent properties of solid-state spun carbon nanotube yarns publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/22/33/334221 – volume: 28 year: 2017 ident: 10.1016/j.cap.2020.10.015_bib31 article-title: A predictive model of the tensile strength of twisted carbon nanotube yarns publication-title: Nanotechnology doi: 10.1088/0957-4484/28/1/015703 – volume: 47 start-page: 2662 year: 2009 ident: 10.1016/j.cap.2020.10.015_bib18 article-title: Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process publication-title: Carbon doi: 10.1016/j.carbon.2009.05.020 – volume: 7 start-page: 23 year: 2012 ident: 10.1016/j.cap.2020.10.015_bib35 article-title: A multifunctional yarn made of carbon nanotubes publication-title: Journal of Engineered Fibers and Fabrics doi: 10.1177/155892501200702S04 – volume: 48 start-page: 2802 year: 2010 ident: 10.1016/j.cap.2020.10.015_bib16 article-title: Poisson's ratio and porosity of carbon nanotube dry-spun yarns publication-title: Carbon doi: 10.1016/j.carbon.2010.04.009 – volume: 10 start-page: 2572 year: 2011 ident: 10.1016/j.cap.2020.10.015_bib13 article-title: Tensile strength of spinnable multiwall carbon nanotubes publication-title: Procedia Engineering doi: 10.1016/j.proeng.2011.04.424 – volume: 3 start-page: 244 year: 2007 ident: 10.1016/j.cap.2020.10.015_bib19 article-title: Strong carbon‐nanotube fibers spun from long carbon‐nanotube arrays publication-title: Small doi: 10.1002/smll.200600368 – volume: 13 start-page: 589 year: 2018 ident: 10.1016/j.cap.2020.10.015_bib20 article-title: Carbon nanotube bundles with tensile strength over 80 GPa publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0141-z – volume: 49 start-page: 1752 year: 2011 ident: 10.1016/j.cap.2020.10.015_bib26 article-title: The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite publication-title: Carbon doi: 10.1016/j.carbon.2010.12.061 – volume: 8 start-page: 11454 year: 2014 ident: 10.1016/j.cap.2020.10.015_bib32 article-title: Key factors limiting carbon nanotube yarn strength: exploring processing-structure-property relationships publication-title: ACS Nano doi: 10.1021/nn5045504 – volume: 152 start-page: 151 year: 2019 ident: 10.1016/j.cap.2020.10.015_bib27 article-title: Mathematical model for the dynamic mechanical behavior of carbon nanotube yarn in analogy with hierarchically structured bio-material publication-title: Carbon doi: 10.1016/j.carbon.2019.05.077 – volume: 51 start-page: 10215 year: 2016 ident: 10.1016/j.cap.2020.10.015_bib23 article-title: Effect of solvent/polymer infiltration and irradiation on microstructure and tensile properties of carbon nanotube yarns publication-title: J. Mater. Sci. doi: 10.1007/s10853-016-0249-1 – volume: 27 start-page: 1701108 year: 2017 ident: 10.1016/j.cap.2020.10.015_bib10 article-title: Flexible superconducting NbN nanowire yarns publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201701108 – volume: 23 start-page: 1971 year: 2011 ident: 10.1016/j.cap.2020.10.015_bib25 article-title: High‐strength carbon nanotube fibers fabricated by infiltration and curing of mussel‐inspired catecholamine polymer publication-title: Adv. Mater. doi: 10.1002/adma.201004228 – volume: 84 start-page: 5552 year: 2000 ident: 10.1016/j.cap.2020.10.015_bib1 article-title: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.5552 – volume: 5 start-page: 985 year: 2011 ident: 10.1016/j.cap.2020.10.015_bib7 article-title: Structural model for dry-drawing of sheets and yarns from carbon nanotube forests publication-title: ACS Nano doi: 10.1021/nn102405u – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.cap.2020.10.015_bib14 article-title: Tensile properties of millimeter-long multi-walled carbon nanotubes publication-title: Sci. Rep. – volume: 318 start-page: 1892 year: 2007 ident: 10.1016/j.cap.2020.10.015_bib17 article-title: High-performance carbon nanotube fiber publication-title: Science doi: 10.1126/science.1147635 – volume: 76 start-page: 289 year: 2015 ident: 10.1016/j.cap.2020.10.015_bib21 article-title: Effects of CNT diameter on mechanical properties of aligned CNT sheets and composites Part A Applied science and manufacturing publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2015.06.009 – volume: 334 start-page: 173 year: 2002 ident: 10.1016/j.cap.2020.10.015_bib3 article-title: Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes publication-title: Mater. Sci. Eng. doi: 10.1016/S0921-5093(01)01807-X – volume: 43 start-page: 2063 year: 2012 ident: 10.1016/j.cap.2020.10.015_bib12 article-title: Effect of carbon nanotube orientation on the mechanical properties of nanocomposites publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2012.01.063 – volume: 136 start-page: 409 year: 2018 ident: 10.1016/j.cap.2020.10.015_bib22 article-title: Hierarchical structure of carbon nanotube fibers, and the change of structure during densification by wet stretching publication-title: Carbon doi: 10.1016/j.carbon.2018.04.071 – volume: 21 year: 2010 ident: 10.1016/j.cap.2020.10.015_bib29 article-title: Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method publication-title: Nanotechnology – volume: 42 start-page: 39 year: 2004 ident: 10.1016/j.cap.2020.10.015_bib6 article-title: Prediction of elastic properties for single-walled carbon nanotubes publication-title: Carbon doi: 10.1016/j.carbon.2003.09.011 |
SSID | ssj0016404 |
Score | 2.3343306 |
Snippet | Twist-spun carbon nanotube (CNT) yarns are composed of numerous CNTs and their bundles with entangled and twisted structures. In this paper, we studied the... |
SourceID | nrf crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 96 |
SubjectTerms | Carbon nanotube CNT yarns Strain Stress Young's modulus 물리학 |
Title | Large variation in Young's modulus of carbon nanotube yarns with different diameters |
URI | https://dx.doi.org/10.1016/j.cap.2020.10.015 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002679693 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Current Applied Physics, 2021, 21(1), , pp.96-100 |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1878-1675 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016404 issn: 1567-1739 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1878-1675 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016404 issn: 1567-1739 databaseCode: ACRLP dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1878-1675 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016404 issn: 1567-1739 databaseCode: .~1 dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Freedom Collection Journals customDbUrl: eissn: 1878-1675 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016404 issn: 1567-1739 databaseCode: AIKHN dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1878-1675 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016404 issn: 1567-1739 databaseCode: AKRWK dateStart: 20010101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60IngRn1hfLCIIQtp0E9PkWMRSX73YQm_LPqVWE8lD8OJvdyZNioL04CWPzW4IX2ZnZ3a_nSHk3BNMW6Ot41rNcLaKOSIAWRZMaqZhxNER7nd-HAaDsX83uZqskOt6LwzSKivdP9fppbauStoVmu336bT9BJ4HLiFHDOSU-V3cxIfRv0CmW18Lmgd4A2UKQazsYO16ZbPkeCmBISsZ3rdczIz799i0Gqf2x6jT3yKblblIe_Mv2iYrJt4h6yVtU2W7ZPSARG76AQ5viTCdxrTsvxcZfUt08VpkNLFUiVTCw1jESV5IQz9FGmcUp2BpnSAlhyvxhtyYbI-M-zej64FT5UlwlOd1cgesfuYrJiJPuEGkGdM-cy10LvBVFCjCoGOM8IWUAJUNtCuEgUNHe6bjhSJk3j5pxElsDggNu5jNSIaBUNa_kjqU8Legl7rK2sBXXpO4NUJcVUHEMZfFK6_ZYi8cQOUIKhYBqE1yuWjyPo-gsayyX8POf4kBBw2_rNkZ_CI-U1OO4bLx_JzwWcrBKbjlUddFO_Dwf-8-IhsMeSzltMsxaeRpYU7AEMnlaSlpp2Std3s_GH4D7LjcDA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-NAEB-0It7L4Send-oiB8JBbLrZpsmjyEmrtS9XwbdlP6VWE0lSwf_emTSREw4f7iUfm2wIv52dndn97QzAz0hx6531Qegtp9kqHqgYZVlxbbnFEcemtN_5ZhIPb8XVXf9uBS7avTBEq2x0_1Kn19q6Kek2aHafZ7PuH_Q8aAk55SinXAzSVVgTfdTJHVg7H10PJ--LCbGoswjS-wFVaBc3a5qXURS1ktP9WUjJcf89PK1mhf9r4LnchK-NxcjOlz-1BSsu24b1mrlpyh2YjonLzV7Q561BZrOM1V34tGRPuV08LkqWe2ZUofFhprK8WmjHXlWRlYxmYVmbI6XCK_VE9JhyF24vf08vhkGTKiEwUdSrAjT8uTBcpZEK49RybgUPPfYvdFcM6sK455wSSmtEy8c2VMrhoWcj14sSlfBoDzpZnrlvwJIBJTTSSayMF31tE40Nhh01NN7HwkT7ELYISdPEEad0Fo-yJYw9SARVEqhUhKDuw6_3Ks_LIBqfvSxa2OUHSZCo5D-rdoJNJOdmJiliNp3vczkvJPoFI5kOQjIFD_7v28ewMZzejOV4NLn-Dl840VrqWZgf0KmKhTtEu6TSR43cvQF4D963 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+variation+in+Young%27s+modulus+of+carbon+nanotube+yarns+with+different+diameters&rft.jtitle=Current+applied+physics&rft.au=Kim%2C+Jeong-Gyun&rft.au=Suh%2C+Dongseok&rft.au=Kang%2C+Haeyong&rft.date=2021-01-01&rft.pub=Elsevier+B.V&rft.issn=1567-1739&rft.eissn=1878-1675&rft.volume=21&rft.spage=96&rft.epage=100&rft_id=info:doi/10.1016%2Fj.cap.2020.10.015&rft.externalDocID=S1567173920302479 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1739&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1739&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1739&client=summon |