Stability and convergence of finite difference method for two-sided space-fractional diffusion equations

In this paper, we study and analyse Crank–Nicolson (CN) temporal discretization with certain spatial difference schemes for one- and two-dimensional two-sided space-fractional diffusion equations (TSFDEs) with variable diffusion coefficients. The stability and convergence of the resulting discretiza...

Full description

Saved in:
Bibliographic Details
Published inComputers & mathematics with applications (1987) Vol. 89; pp. 78 - 86
Main Authors She, Zi-Hang, Qu, Hai-Dong, Liu, Xuan
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.05.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0898-1221
1873-7668
DOI10.1016/j.camwa.2021.02.018

Cover

Abstract In this paper, we study and analyse Crank–Nicolson (CN) temporal discretization with certain spatial difference schemes for one- and two-dimensional two-sided space-fractional diffusion equations (TSFDEs) with variable diffusion coefficients. The stability and convergence of the resulting discretization linear systems for TSFDEs with variable diffusion coefficients are proven by a new technique. That is, under mild assumption, the scheme is unconditionally stable and convergent with O(τ2+hl)(l≥1), where τ and h denote the temporal and spatial mesh steps, respectively. Further, we show that several numerical schemes with lth order accuracy from the literature satisfy the required assumption. Numerical examples are implemented to illustrate our theoretical analyses.
AbstractList In this paper, we study and analyse Crank–Nicolson (CN) temporal discretization with certain spatial difference schemes for one- and two-dimensional two-sided space-fractional diffusion equations (TSFDEs) with variable diffusion coefficients. The stability and convergence of the resulting discretization linear systems for TSFDEs with variable diffusion coefficients are proven by a new technique. That is, under mild assumption, the scheme is unconditionally stable and convergent with O (τ2 + h1), where (l ≥ 1), τ and h denote the temporal and spatial mesh steps, respectively. Further, we show that several numerical schemes with lth order accuracy from the literature satisfy the required assumption. Numerical examples are implemented to illustrate our theoretical analyses.
In this paper, we study and analyse Crank–Nicolson (CN) temporal discretization with certain spatial difference schemes for one- and two-dimensional two-sided space-fractional diffusion equations (TSFDEs) with variable diffusion coefficients. The stability and convergence of the resulting discretization linear systems for TSFDEs with variable diffusion coefficients are proven by a new technique. That is, under mild assumption, the scheme is unconditionally stable and convergent with O(τ2+hl)(l≥1), where τ and h denote the temporal and spatial mesh steps, respectively. Further, we show that several numerical schemes with lth order accuracy from the literature satisfy the required assumption. Numerical examples are implemented to illustrate our theoretical analyses.
Author She, Zi-Hang
Liu, Xuan
Qu, Hai-Dong
Author_xml – sequence: 1
  givenname: Zi-Hang
  surname: She
  fullname: She, Zi-Hang
– sequence: 2
  givenname: Hai-Dong
  surname: Qu
  fullname: Qu, Hai-Dong
– sequence: 3
  givenname: Xuan
  surname: Liu
  fullname: Liu, Xuan
  email: 0950@hstc.edu.cn
BookMark eNqFkE1LAzEQhoMo2FZ_gZeA510n2a_swYMUv0DwoJ5DNpnYlHZTk7Sl_95t68mDnmZ4mWeYecbktPc9EnLFIGfA6pt5rtVyq3IOnOXAc2DihIyYaIqsqWtxSkYgWpExztk5Gcc4B4Cy4DAis7ekOrdwaUdVb6j2_QbDJ_YaqbfUut4lpMZZi-EQLjHNvKHWB5q2PovOoKFxpTRmNiidnO_V4gCs49BT_FqrfRgvyJlVi4iXP3VCPh7u36dP2cvr4_P07iXTRcFSxlFby-oSyqozuhWdZVxbqDqmjFCFLbuygrpUjRVt03UCa2thiBU0DeemLSbk-rh3FfzXGmOSc78Ow1FR8oqzuuIVa4ap4jilg48xoJWr4JYq7CQDuVcq5_KgVO6VSuByUDpQ7S9Ku3R4LwXlFv-wt0cWh-c3DoOM2u2VGhdQJ2m8-5P_BnA7l2M
CitedBy_id crossref_primary_10_1177_01423312231184003
crossref_primary_10_1186_s13662_021_03524_4
crossref_primary_10_3390_math11081838
crossref_primary_10_1007_s12190_023_01979_0
crossref_primary_10_1007_s11075_023_01592_z
crossref_primary_10_1016_j_cam_2024_115861
Cites_doi 10.1090/S0025-5718-2015-02917-2
10.1016/j.camwa.2017.02.040
10.1137/13093933X
10.1007/s10915-012-9661-0
10.1063/1.1416180
10.1016/j.cam.2019.06.008
10.1007/s10444-016-9476-x
10.1016/j.apnum.2005.02.008
10.1029/2000WR900031
10.1137/0517050
10.1080/00207160.2017.1401707
10.1016/j.cam.2011.01.011
10.1016/j.apnum.2018.12.002
10.1137/080714130
10.1007/s42967-019-00050-9
10.1016/j.apnum.2014.11.007
10.1016/j.jcp.2014.10.053
10.1109/TIP.2007.904971
10.1029/2000WR900032
10.1137/130934192
10.1137/130933447
10.3934/naco.2014.4.317
10.1016/S0370-1573(00)00070-3
10.1007/s10915-017-0417-8
10.1007/s10915-017-0581-x
10.1007/s10444-015-9430-3
10.1007/s10915-016-0317-3
10.1137/16M1076083
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV May 1, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV May 1, 2021
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.camwa.2021.02.018
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-7668
EndPage 86
ExternalDocumentID 10_1016_j_camwa_2021_02_018
S0898122121000663
GrantInformation_xml – fundername: Natural Science Foundation of Guangdong Provincial Department of Education, China
  grantid: 2018KQNCX156; 2020KZDZX1147
  funderid: http://dx.doi.org/10.13039/501100003453
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
T5K
TN5
XPP
ZMT
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFFNX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FGOYB
G-2
HZ~
R2-
SEW
SSZ
TAE
WUQ
ZY4
~HD
7SC
7TB
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
JQ2
KR7
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c331t-2ecff164045bdc98bf12cf05b1ad8a3f4b45064a7f897bb8e6ff03f4a07722d93
IEDL.DBID .~1
ISSN 0898-1221
IngestDate Fri Jul 25 02:09:01 EDT 2025
Thu Oct 16 04:32:33 EDT 2025
Thu Apr 24 23:04:11 EDT 2025
Fri Feb 23 02:46:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Variable diffusion coefficients
Stability and convergence
Two-sided space-fractional diffusion equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-2ecff164045bdc98bf12cf05b1ad8a3f4b45064a7f897bb8e6ff03f4a07722d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2521652517
PQPubID 2045493
PageCount 9
ParticipantIDs proquest_journals_2521652517
crossref_primary_10_1016_j_camwa_2021_02_018
crossref_citationtrail_10_1016_j_camwa_2021_02_018
elsevier_sciencedirect_doi_10_1016_j_camwa_2021_02_018
PublicationCentury 2000
PublicationDate 2021-05-01
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computers & mathematics with applications (1987)
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Hairer, Wanner (b26) 1996
Laub (b27) 2005
Zhou, Tian, Deng (b17) 2013; 56
Sousa, Li (b12) 2015; 90
Deng (b8) 2009; 47
Meerschaert, Tadjeran (b11) 2006; 56
Chen, Wang, Ding, Lei (b4) 2017; 73
Metzler, Klafter (b5) 2000; 339
Jin, Lazarov, Pasciak, Zhou (b10) 2014; 52
Zeng, Mao, Karniadakis (b31) 2017; 39
Benson, Wheatcraft, Meerschaert (b2) 2000; 36
Zeng, Liu, Li, Burrage, Turner, Anh (b14) 2014; 52
Zhao, Deng (b28) 2016; 42
Chen, Deng (b20) 2014; 52
Lin, Lyu, Ng, Sun, Vong (b24) 2020; 2
Ding, Li (b16) 2017; 71
Carreras, Lynch, Zaslavsky (b1) 2001; 8
Bai, Feng (b7) 2007; 16
Vong, Lyu (b23) 2019; 137
Kopteva, Stynes (b29) 2017; 43
Jiang, Ma (b9) 2011; 235
Lubich (b19) 1986; 17
Quarteroni, Sacco, Saleri (b25) 2007
Abirami, Prakash, Thangavel (b6) 2018; 95
Lin, Ng, Sun (b22) 2018; 75
Hao, Sun, Cao (b18) 2015; 281
Tian, Zhou, Deng (b13) 2015; 84
Lin, Liu (b15) 2020; 363
Qu, Lei, Vong (b21) 2014; 4
Benson, Wheatcraft, Meerschaert (b3) 2000; 36
Hao, Cao (b30) 2017; 73
Quarteroni (10.1016/j.camwa.2021.02.018_b25) 2007
Sousa (10.1016/j.camwa.2021.02.018_b12) 2015; 90
Vong (10.1016/j.camwa.2021.02.018_b23) 2019; 137
Jiang (10.1016/j.camwa.2021.02.018_b9) 2011; 235
Zhou (10.1016/j.camwa.2021.02.018_b17) 2013; 56
Lin (10.1016/j.camwa.2021.02.018_b22) 2018; 75
Bai (10.1016/j.camwa.2021.02.018_b7) 2007; 16
Zhao (10.1016/j.camwa.2021.02.018_b28) 2016; 42
Metzler (10.1016/j.camwa.2021.02.018_b5) 2000; 339
Abirami (10.1016/j.camwa.2021.02.018_b6) 2018; 95
Lin (10.1016/j.camwa.2021.02.018_b15) 2020; 363
Qu (10.1016/j.camwa.2021.02.018_b21) 2014; 4
Jin (10.1016/j.camwa.2021.02.018_b10) 2014; 52
Deng (10.1016/j.camwa.2021.02.018_b8) 2009; 47
Meerschaert (10.1016/j.camwa.2021.02.018_b11) 2006; 56
Carreras (10.1016/j.camwa.2021.02.018_b1) 2001; 8
Lin (10.1016/j.camwa.2021.02.018_b24) 2020; 2
Zeng (10.1016/j.camwa.2021.02.018_b31) 2017; 39
Tian (10.1016/j.camwa.2021.02.018_b13) 2015; 84
Chen (10.1016/j.camwa.2021.02.018_b4) 2017; 73
Laub (10.1016/j.camwa.2021.02.018_b27) 2005
Hairer (10.1016/j.camwa.2021.02.018_b26) 1996
Benson (10.1016/j.camwa.2021.02.018_b2) 2000; 36
Hao (10.1016/j.camwa.2021.02.018_b18) 2015; 281
Chen (10.1016/j.camwa.2021.02.018_b20) 2014; 52
Benson (10.1016/j.camwa.2021.02.018_b3) 2000; 36
Lubich (10.1016/j.camwa.2021.02.018_b19) 1986; 17
Ding (10.1016/j.camwa.2021.02.018_b16) 2017; 71
Zeng (10.1016/j.camwa.2021.02.018_b14) 2014; 52
Kopteva (10.1016/j.camwa.2021.02.018_b29) 2017; 43
Hao (10.1016/j.camwa.2021.02.018_b30) 2017; 73
References_xml – volume: 39
  start-page: A360
  year: 2017
  end-page: A383
  ident: b31
  article-title: A generalized spectral collocation method with tunable accuracy for fractional differential equations with end-point singularities
  publication-title: SIAM J. Sci. Comput.
– volume: 339
  start-page: 1
  year: 2000
  end-page: 77
  ident: b5
  article-title: The random walk’s guide to anomalous diffusion: a fractional dynamics approach
  publication-title: Phys. Rep.
– year: 2005
  ident: b27
  article-title: Matrix Analysis for Scientists and Engineers
– volume: 71
  start-page: 759
  year: 2017
  end-page: 784
  ident: b16
  article-title: High-order numerical algorithms for Riesz derivatives via constructing new generating functions
  publication-title: J. Sci. Comput.
– volume: 52
  start-page: 2599
  year: 2014
  end-page: 2622
  ident: b14
  article-title: A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation
  publication-title: SIAM J. Numer. Anal.
– volume: 95
  start-page: 1222
  year: 2018
  end-page: 1239
  ident: b6
  article-title: Fractional diffusion equation-based image denoising model using CN–GL scheme
  publication-title: Int. J. Comput. Math.
– volume: 363
  start-page: 77
  year: 2020
  end-page: 91
  ident: b15
  article-title: The accuracy and stability of CN-WSGD schemes for space fractional diffusion equation
  publication-title: J. Comput. Appl. Math.
– volume: 73
  start-page: 1932
  year: 2017
  end-page: 1944
  ident: b4
  article-title: A fast precondtioned policy iteration method for solving the tempered fractional HJB equation governing American options valuation
  publication-title: Comput. Math. Appl.
– year: 1996
  ident: b26
  article-title: Solving Ordinary Differential Equations II: Stiff and Differential Algebraic Problems
– volume: 42
  start-page: 425
  year: 2016
  end-page: 468
  ident: b28
  article-title: High order finite difference methods on non-uniform meshes for space fractional operators
  publication-title: Adv. Comput. Math.
– volume: 16
  start-page: 2492
  year: 2007
  end-page: 2502
  ident: b7
  article-title: Fractional-order anisotropic diffusion for image denoising
  publication-title: IEEE Tran. Image Proc.
– volume: 52
  start-page: 2272
  year: 2014
  end-page: 2294
  ident: b10
  article-title: Error analysis of a finite element method for the space-fractional parabolic equation
  publication-title: SIAM J. Numer. Anal.
– volume: 36
  start-page: 1413
  year: 2000
  end-page: 1423
  ident: b3
  article-title: The fractional-order governing equation of Lévy motion
  publication-title: Water Resour. Res.
– volume: 17
  start-page: 704
  year: 1986
  end-page: 719
  ident: b19
  article-title: Discretized fractional calculus
  publication-title: SIAM J. Math. Anal.
– volume: 47
  start-page: 204
  year: 2009
  end-page: 226
  ident: b8
  article-title: Finite element method for the space and time fractional Fokker–Planck equation
  publication-title: SIAM J. Numer. Anal.
– volume: 36
  start-page: 1403
  year: 2000
  end-page: 1412
  ident: b2
  article-title: Application of a fractional advection-dispersion equation
  publication-title: Water Resour. Res.
– volume: 75
  start-page: 1102
  year: 2018
  end-page: 1127
  ident: b22
  article-title: Stability and convergence analysis of finite difference schemes for time-dependent space-fractional diffusion equations with variable diffusion coefficients
  publication-title: J. Sci. Comput.
– year: 2007
  ident: b25
  article-title: Numerical Mathematics
– volume: 235
  start-page: 3285
  year: 2011
  end-page: 3290
  ident: b9
  article-title: High-order finite element methods for time-fractional partial differential equations
  publication-title: J. Comput. Appl. Math.
– volume: 56
  start-page: 80
  year: 2006
  end-page: 90
  ident: b11
  article-title: Finite difference approximations for two-sided space-fractional partial differential equations
  publication-title: Appl. Numer. Math.
– volume: 56
  start-page: 45
  year: 2013
  end-page: 66
  ident: b17
  article-title: Quasi-compact finite difference schemes for space fractional diffusion equations
  publication-title: J. Sci. Comput.
– volume: 43
  start-page: 77
  year: 2017
  end-page: 99
  ident: b29
  article-title: Analysis and numerical solution of a Riemann–Liouville fractional derivative two-point boundary value problem
  publication-title: Adv. Comput. Math.
– volume: 52
  start-page: 1418
  year: 2014
  end-page: 1438
  ident: b20
  article-title: Fourth order accurate scheme for the space fractional diffusion equations
  publication-title: SIAM J. Numer. Anal.
– volume: 73
  start-page: 395
  year: 2017
  end-page: 415
  ident: b30
  article-title: An improved algorithm based on finite difference schemes for fractional boundary value problems with nonsmooth solution
  publication-title: J. Sci. Comput.
– volume: 137
  start-page: 34
  year: 2019
  end-page: 48
  ident: b23
  article-title: On a second order scheme for space fractional diffusion equations with variable coefficients
  publication-title: Appl. Numer. Math.
– volume: 281
  start-page: 787
  year: 2015
  end-page: 805
  ident: b18
  article-title: A fourth-order approximation of fractional derivatives with its applications
  publication-title: J. Comput. Phys.
– volume: 90
  start-page: 22
  year: 2015
  end-page: 37
  ident: b12
  article-title: A weighted finite difference method for the fractional diffusion equation based on the Riemann–Liouville derivative
  publication-title: Appl. Numer. Math.
– volume: 8
  start-page: 5096
  year: 2001
  end-page: 5103
  ident: b1
  article-title: Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model
  publication-title: Phys. Plasmas
– volume: 2
  start-page: 215
  year: 2020
  end-page: 239
  ident: b24
  article-title: An efficient second-order convergent scheme for one-sided space fractional diffusion equations with variable coefficients
  publication-title: Commun. Appl. Math. Comput.
– volume: 84
  start-page: 1703
  year: 2015
  end-page: 1727
  ident: b13
  article-title: A class of second order difference approximations for solving space fractional diffusion equations
  publication-title: Math. Comp.
– volume: 4
  start-page: 317
  year: 2014
  end-page: 325
  ident: b21
  article-title: A note on the stability of a second order finite difference scheme for space fractional diffusion equations
  publication-title: Numer. Algebra Control Optim.
– volume: 84
  start-page: 1703
  issue: 294
  year: 2015
  ident: 10.1016/j.camwa.2021.02.018_b13
  article-title: A class of second order difference approximations for solving space fractional diffusion equations
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-2015-02917-2
– volume: 73
  start-page: 1932
  issue: 9
  year: 2017
  ident: 10.1016/j.camwa.2021.02.018_b4
  article-title: A fast precondtioned policy iteration method for solving the tempered fractional HJB equation governing American options valuation
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2017.02.040
– volume: 52
  start-page: 2272
  issue: 5
  year: 2014
  ident: 10.1016/j.camwa.2021.02.018_b10
  article-title: Error analysis of a finite element method for the space-fractional parabolic equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/13093933X
– volume: 56
  start-page: 45
  issue: 1
  year: 2013
  ident: 10.1016/j.camwa.2021.02.018_b17
  article-title: Quasi-compact finite difference schemes for space fractional diffusion equations
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-012-9661-0
– volume: 8
  start-page: 5096
  issue: 12
  year: 2001
  ident: 10.1016/j.camwa.2021.02.018_b1
  article-title: Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model
  publication-title: Phys. Plasmas
  doi: 10.1063/1.1416180
– volume: 363
  start-page: 77
  year: 2020
  ident: 10.1016/j.camwa.2021.02.018_b15
  article-title: The accuracy and stability of CN-WSGD schemes for space fractional diffusion equation
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2019.06.008
– volume: 43
  start-page: 77
  issue: 1
  year: 2017
  ident: 10.1016/j.camwa.2021.02.018_b29
  article-title: Analysis and numerical solution of a Riemann–Liouville fractional derivative two-point boundary value problem
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-016-9476-x
– volume: 56
  start-page: 80
  issue: 1
  year: 2006
  ident: 10.1016/j.camwa.2021.02.018_b11
  article-title: Finite difference approximations for two-sided space-fractional partial differential equations
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2005.02.008
– volume: 36
  start-page: 1403
  issue: 6
  year: 2000
  ident: 10.1016/j.camwa.2021.02.018_b2
  article-title: Application of a fractional advection-dispersion equation
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900031
– year: 2005
  ident: 10.1016/j.camwa.2021.02.018_b27
– volume: 17
  start-page: 704
  issue: 3
  year: 1986
  ident: 10.1016/j.camwa.2021.02.018_b19
  article-title: Discretized fractional calculus
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0517050
– volume: 95
  start-page: 1222
  issue: 6–7
  year: 2018
  ident: 10.1016/j.camwa.2021.02.018_b6
  article-title: Fractional diffusion equation-based image denoising model using CN–GL scheme
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160.2017.1401707
– volume: 235
  start-page: 3285
  issue: 11
  year: 2011
  ident: 10.1016/j.camwa.2021.02.018_b9
  article-title: High-order finite element methods for time-fractional partial differential equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2011.01.011
– year: 1996
  ident: 10.1016/j.camwa.2021.02.018_b26
– volume: 137
  start-page: 34
  year: 2019
  ident: 10.1016/j.camwa.2021.02.018_b23
  article-title: On a second order scheme for space fractional diffusion equations with variable coefficients
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2018.12.002
– volume: 47
  start-page: 204
  issue: 1
  year: 2009
  ident: 10.1016/j.camwa.2021.02.018_b8
  article-title: Finite element method for the space and time fractional Fokker–Planck equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/080714130
– volume: 2
  start-page: 215
  year: 2020
  ident: 10.1016/j.camwa.2021.02.018_b24
  article-title: An efficient second-order convergent scheme for one-sided space fractional diffusion equations with variable coefficients
  publication-title: Commun. Appl. Math. Comput.
  doi: 10.1007/s42967-019-00050-9
– volume: 90
  start-page: 22
  year: 2015
  ident: 10.1016/j.camwa.2021.02.018_b12
  article-title: A weighted finite difference method for the fractional diffusion equation based on the Riemann–Liouville derivative
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2014.11.007
– volume: 281
  start-page: 787
  year: 2015
  ident: 10.1016/j.camwa.2021.02.018_b18
  article-title: A fourth-order approximation of fractional derivatives with its applications
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.10.053
– volume: 16
  start-page: 2492
  issue: 10
  year: 2007
  ident: 10.1016/j.camwa.2021.02.018_b7
  article-title: Fractional-order anisotropic diffusion for image denoising
  publication-title: IEEE Tran. Image Proc.
  doi: 10.1109/TIP.2007.904971
– year: 2007
  ident: 10.1016/j.camwa.2021.02.018_b25
– volume: 36
  start-page: 1413
  issue: 6
  year: 2000
  ident: 10.1016/j.camwa.2021.02.018_b3
  article-title: The fractional-order governing equation of Lévy motion
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900032
– volume: 52
  start-page: 2599
  issue: 6
  year: 2014
  ident: 10.1016/j.camwa.2021.02.018_b14
  article-title: A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/130934192
– volume: 52
  start-page: 1418
  issue: 3
  year: 2014
  ident: 10.1016/j.camwa.2021.02.018_b20
  article-title: Fourth order accurate scheme for the space fractional diffusion equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/130933447
– volume: 4
  start-page: 317
  issue: 4
  year: 2014
  ident: 10.1016/j.camwa.2021.02.018_b21
  article-title: A note on the stability of a second order finite difference scheme for space fractional diffusion equations
  publication-title: Numer. Algebra Control Optim.
  doi: 10.3934/naco.2014.4.317
– volume: 339
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.camwa.2021.02.018_b5
  article-title: The random walk’s guide to anomalous diffusion: a fractional dynamics approach
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(00)00070-3
– volume: 73
  start-page: 395
  issue: 1
  year: 2017
  ident: 10.1016/j.camwa.2021.02.018_b30
  article-title: An improved algorithm based on finite difference schemes for fractional boundary value problems with nonsmooth solution
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-017-0417-8
– volume: 75
  start-page: 1102
  issue: 2
  year: 2018
  ident: 10.1016/j.camwa.2021.02.018_b22
  article-title: Stability and convergence analysis of finite difference schemes for time-dependent space-fractional diffusion equations with variable diffusion coefficients
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-017-0581-x
– volume: 42
  start-page: 425
  issue: 2
  year: 2016
  ident: 10.1016/j.camwa.2021.02.018_b28
  article-title: High order finite difference methods on non-uniform meshes for space fractional operators
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-015-9430-3
– volume: 71
  start-page: 759
  issue: 2
  year: 2017
  ident: 10.1016/j.camwa.2021.02.018_b16
  article-title: High-order numerical algorithms for Riesz derivatives via constructing new generating functions
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-016-0317-3
– volume: 39
  start-page: A360
  issue: 1
  year: 2017
  ident: 10.1016/j.camwa.2021.02.018_b31
  article-title: A generalized spectral collocation method with tunable accuracy for fractional differential equations with end-point singularities
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/16M1076083
SSID ssj0004320
Score 2.3535469
Snippet In this paper, we study and analyse Crank–Nicolson (CN) temporal discretization with certain spatial difference schemes for one- and two-dimensional two-sided...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 78
SubjectTerms Convergence
Diffusion
Dimensional stability
Discretization
Finite difference method
Linear systems
Stability and convergence
Two-sided space-fractional diffusion equation
Variable diffusion coefficients
Title Stability and convergence of finite difference method for two-sided space-fractional diffusion equations
URI https://dx.doi.org/10.1016/j.camwa.2021.02.018
https://www.proquest.com/docview/2521652517
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-7668
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004320
  issn: 0898-1221
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Open Access Journals
  customDbUrl:
  eissn: 1873-7668
  dateEnd: 20211105
  omitProxy: true
  ssIdentifier: ssj0004320
  issn: 0898-1221
  databaseCode: IXB
  dateStart: 19750101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-7668
  dateEnd: 20211105
  omitProxy: true
  ssIdentifier: ssj0004320
  issn: 0898-1221
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-7668
  dateEnd: 20211015
  omitProxy: true
  ssIdentifier: ssj0004320
  issn: 0898-1221
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-7668
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004320
  issn: 0898-1221
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-7668
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004320
  issn: 0898-1221
  databaseCode: AKRWK
  dateStart: 19750101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqsrDwjSiUygMjoamTJs5YKqoWRBeo1M2KY1sUQVr6oYqF386dnYBAqAOjLduJzvbdS3x-j5ALmQCojWXbSxRKmPm-9nikwRkGkWSxVglT-KF4P4z6o_B23B5XSLe8C4NplYXvdz7deuuipllYszmbTJoPPk8gOjFkwLKBE2-whzGqGFx9fKd5hIGjZoTGHrYumYdsjleWvq6RfIg54k5U_vg7Ov3y0zb49PbIToEaace92D6p6PyA7JaKDLTYoIfkCbCjzXZ9p2muqE0pt7crNZ0aaiYIMGmpiQKVTj-aAnCly_XUQ-lORcHHZNozc3flAR6LHVb4V43qN8cMvjgio97NY7fvFVoKXhYEraXHdGYMfBoBgpMqS7g0LZYZvy1bqeJpYEIZInVdGhuexFJyHRnjQ3XqA_xmKgmOSTWf5vqE0DCxh4dB2lI8VOClQo7HyikMFHNYEjXCShuKrCAaR72LF1FmlD0La3iBhhc-E2D4Grn86jRzPBubm0fl5Igfy0VAJNjcsV5OpSh260IwwDBRG8nbTv877hnZxpJLhayT6nK-0ucAV5ayYddjg2x1Bnf9IZQG4-tPIYHrZQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD4yEJs7LGRECFWi7ABKbFce2KIK0lKCKhd_OnZ2AQIiB1bGd6GzffY7P30fIocwA1KYy9jKFEma-rz2eaHCGYSJZqlXGFG4UB8Okdxtd3sV3LXLa3IXBtMra9zufbr11XdKtrdmdjEbda59nEJ0YMmDZwDlH5qOYpbgDO37_yvOIQsfNCLU9rN5QD9kkryJ_miH7EHPMnSj98Xt4-uGobfQ5XyFLNWykJ-7LVklLl2tkuZFkoPUKXSf3AB5tuusbzUtFbU65vV6p6dhQM0KESRtRFCh0AtIUkCutZmMPtTsVBSdTaM9M3Z0HeC02eMXfalQ_O2rwlw1ye352c9rzajEFrwjDoPKYLoyBvRFAOKmKjEsTsML4sQxyxfPQRDJC7ro8NTxLpeQ6McaH4twH_M1UFm6Sdjku9RahUWZPD8M8UDxS4KYijufKOXSUcpgTHcIaG4qiZhpHwYtH0aSUPQhreIGGFz4TYPgOOfpsNHFEG39XT5rBEd_mi4BQ8HfD3WYoRb1cXwQDEJPEyN62_d9-D8hC72bQF_2L4dUOWcQnLi9yl7Sr6aveA-xSyX07Nz8AGXrr9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+and+convergence+of+finite+difference+method+for+two-sided+space-fractional+diffusion+equations&rft.jtitle=Computers+%26+mathematics+with+applications+%281987%29&rft.au=She%2C+Zi-Hang&rft.au=Qu%2C+Hai-Dong&rft.au=Liu%2C+Xuan&rft.date=2021-05-01&rft.pub=Elsevier+Ltd&rft.issn=0898-1221&rft.eissn=1873-7668&rft.volume=89&rft.spage=78&rft.epage=86&rft_id=info:doi/10.1016%2Fj.camwa.2021.02.018&rft.externalDocID=S0898122121000663
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0898-1221&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0898-1221&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0898-1221&client=summon