Pulsed laser-scanning laser Doppler vibrometer (PL-SLDV) phased arrays for damage detection in aluminum plates
•Fully noncontact Lamb wave phased arrays based on a pulse laser-scanning laser Doppler vibrometer sensing system.•An improved delay-and-sum (DAS) phased array imaging algorithm with better radial and angular resolutions.•Experimental demonstration of detection and localization of various defects on...
        Saved in:
      
    
          | Published in | Mechanical systems and signal processing Vol. 121; pp. 158 - 170 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin
          Elsevier Ltd
    
        15.04.2019
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0888-3270 1096-1216  | 
| DOI | 10.1016/j.ymssp.2018.11.016 | 
Cover
| Abstract | •Fully noncontact Lamb wave phased arrays based on a pulse laser-scanning laser Doppler vibrometer sensing system.•An improved delay-and-sum (DAS) phased array imaging algorithm with better radial and angular resolutions.•Experimental demonstration of detection and localization of various defects on an aluminum plate.
Lamb wave phased arrays employ sensors placed close to each other in compact distributions and can quickly inspect large plate-like structures through time (or phase) delays in the way analogous to radar. Traditional Lamb wave phased arrays usually adopt large-size ultrasonic transducers bonded on (or placed close to the surface of) a structure, and hence they limit the array configurability and cannot perform inspection from a far distance to the structure. This paper presents Lamb wave phased arrays implemented with a fully noncontact pulsed laser – scanning laser Doppler vibrometer (PL-SLDV) system, which employs a PL for exciting Lamb waves at a single PL spot through the thermoelastic effect and an SLDV for acquiring signals of Lamb waves at multiple scanning points based on the Doppler effect, respectively. The fully noncontact PL-SLDV phased arrays enable inspection from a far distance, as well as easily constructible receiver phased arrays in various configurations due to the use of high-resolution scanning laser. To generate inspection images with the acquired signals of Lamb waves, an improved delay-and-sum (DAS) imaging algorithm for receiver phased arrays is developed, where the exact Lamb wave frequency-wavenumber dispersion relation is considered for both the phase delay and back-propagation phase. This improved DAS imaging algorithm addresses the dispersion effect and results in higher radial imaging resolution, compared to the conventional DAS imaging algorithm. In addition, adaptive weighting factors are implemented to improve the angular imaging resolution. Proof-of-concept experiments demonstrate that multiple simulated defects of different sizes as well as broadside and offside simulated cracks can be successfully detected using a PL-SLDV phased array with a high-dispersion A0 mode. The experimental study also shows that the improved DAS imaging algorithm can achieve high radial and angular imaging resolution. | 
    
|---|---|
| AbstractList | •Fully noncontact Lamb wave phased arrays based on a pulse laser-scanning laser Doppler vibrometer sensing system.•An improved delay-and-sum (DAS) phased array imaging algorithm with better radial and angular resolutions.•Experimental demonstration of detection and localization of various defects on an aluminum plate.
Lamb wave phased arrays employ sensors placed close to each other in compact distributions and can quickly inspect large plate-like structures through time (or phase) delays in the way analogous to radar. Traditional Lamb wave phased arrays usually adopt large-size ultrasonic transducers bonded on (or placed close to the surface of) a structure, and hence they limit the array configurability and cannot perform inspection from a far distance to the structure. This paper presents Lamb wave phased arrays implemented with a fully noncontact pulsed laser – scanning laser Doppler vibrometer (PL-SLDV) system, which employs a PL for exciting Lamb waves at a single PL spot through the thermoelastic effect and an SLDV for acquiring signals of Lamb waves at multiple scanning points based on the Doppler effect, respectively. The fully noncontact PL-SLDV phased arrays enable inspection from a far distance, as well as easily constructible receiver phased arrays in various configurations due to the use of high-resolution scanning laser. To generate inspection images with the acquired signals of Lamb waves, an improved delay-and-sum (DAS) imaging algorithm for receiver phased arrays is developed, where the exact Lamb wave frequency-wavenumber dispersion relation is considered for both the phase delay and back-propagation phase. This improved DAS imaging algorithm addresses the dispersion effect and results in higher radial imaging resolution, compared to the conventional DAS imaging algorithm. In addition, adaptive weighting factors are implemented to improve the angular imaging resolution. Proof-of-concept experiments demonstrate that multiple simulated defects of different sizes as well as broadside and offside simulated cracks can be successfully detected using a PL-SLDV phased array with a high-dispersion A0 mode. The experimental study also shows that the improved DAS imaging algorithm can achieve high radial and angular imaging resolution. Lamb wave phased arrays employ sensors placed close to each other in compact distributions and can quickly inspect large plate-like structures through time (or phase) delays in the way analogous to radar. Traditional Lamb wave phased arrays usually adopt large-size ultrasonic transducers bonded on (or placed close to the surface of) a structure, and hence they limit the array configurability and cannot perform inspection from a far distance to the structure. This paper presents Lamb wave phased arrays implemented with a fully noncontact pulsed laser – scanning laser Doppler vibrometer (PL-SLDV) system, which employs a PL for exciting Lamb waves at a single PL spot through the thermoelastic effect and an SLDV for acquiring signals of Lamb waves at multiple scanning points based on the Doppler effect, respectively. The fully noncontact PL-SLDV phased arrays enable inspection from a far distance, as well as easily constructible receiver phased arrays in various configurations due to the use of high-resolution scanning laser. To generate inspection images with the acquired signals of Lamb waves, an improved delay-and-sum (DAS) imaging algorithm for receiver phased arrays is developed, where the exact Lamb wave frequency-wavenumber dispersion relation is considered for both the phase delay and back-propagation phase. This improved DAS imaging algorithm addresses the dispersion effect and results in higher radial imaging resolution, compared to the conventional DAS imaging algorithm. In addition, adaptive weighting factors are implemented to improve the angular imaging resolution. Proof-of-concept experiments demonstrate that multiple simulated defects of different sizes as well as broadside and offside simulated cracks can be successfully detected using a PL-SLDV phased array with a high-dispersion A0 mode. The experimental study also shows that the improved DAS imaging algorithm can achieve high radial and angular imaging resolution.  | 
    
| Author | Xiao, Wenfeng Tian, Zhenhua Ma, Zhaoyun Howden, Stephen Yu, Lingyu  | 
    
| Author_xml | – sequence: 1 givenname: Zhenhua orcidid: 0000-0002-1903-5604 surname: Tian fullname: Tian, Zhenhua organization: Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA – sequence: 2 givenname: Stephen surname: Howden fullname: Howden, Stephen organization: Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA – sequence: 3 givenname: Zhaoyun surname: Ma fullname: Ma, Zhaoyun organization: Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA – sequence: 4 givenname: Wenfeng surname: Xiao fullname: Xiao, Wenfeng organization: Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA – sequence: 5 givenname: Lingyu surname: Yu fullname: Yu, Lingyu email: yu3@cec.sc.edu organization: Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA  | 
    
| BookMark | eNqFkE1P3DAQhq2KSl1ofwEXS1zgkNTjZPNx4ICgpZVWKlIpV2vijMGrxE7tBGn_PV6WE4f2NF_vM6N5j9mR844YOwWRg4Dq6zbfjTFOuRTQ5AB56n1gKxBtlYGE6oitRNM0WSFr8Ykdx7gVQrSlqFbM3S1DpJ4PGClkUaNz1j0eSn7jp2lI8dl2wY80p_T8bpP93tw8XPDpCfcghoC7yI0PvMcRH4n3Sahn6x23juOwjNYtI58GnCl-Zh8NpoNf3uIJ-_P92_31j2zz6_bn9dUm00UBcwZluzYFQCewM9KQ7quyLru2JCqkJC1LWlMNaUYCy0rXutC9oc5g15uOsDhhZ4e9U_B_F4qz2voluHRSSWiqupXlukqq4qDSwccYyKgp2BHDToFQe2PVVr0aq_bGKgCVeolq31Hazrh_eA5oh_-wlweW0vPPloKK2pLT1NuQTFO9t__kXwBLppqD | 
    
| CitedBy_id | crossref_primary_10_1016_j_ndteint_2020_102344 crossref_primary_10_3390_s19132930 crossref_primary_10_3390_s21124221 crossref_primary_10_1016_j_measurement_2022_111676 crossref_primary_10_1016_j_ymssp_2021_107873 crossref_primary_10_1115_1_4048541 crossref_primary_10_1016_j_ymssp_2020_107240 crossref_primary_10_1109_TIM_2023_3329090 crossref_primary_10_1016_j_ijleo_2019_04_066 crossref_primary_10_1016_j_matdes_2022_111454 crossref_primary_10_1016_j_ymssp_2025_112465 crossref_primary_10_1080_10584587_2023_2296312 crossref_primary_10_1016_j_ndteint_2022_102753 crossref_primary_10_1109_ACCESS_2024_3456862 crossref_primary_10_1016_j_ndteint_2023_102973 crossref_primary_10_1016_j_ymssp_2022_109010 crossref_primary_10_2139_ssrn_4065258 crossref_primary_10_1016_j_ymssp_2022_109178 crossref_primary_10_1115_1_4049468 crossref_primary_10_1016_j_ymssp_2021_108463 crossref_primary_10_1007_s12666_022_02653_y crossref_primary_10_1080_17455030_2024_2422480 crossref_primary_10_1364_OL_461140 crossref_primary_10_3390_ma17205098 crossref_primary_10_1007_s10921_023_00981_7 crossref_primary_10_1080_10589759_2024_2440820 crossref_primary_10_1088_1361_665X_ac726f crossref_primary_10_1109_TMTT_2022_3183575 crossref_primary_10_1177_1475921720942958 crossref_primary_10_1016_j_nanoen_2023_109021 crossref_primary_10_1177_14759217231191267 crossref_primary_10_3390_s23063183 crossref_primary_10_1177_1045389X20952536 crossref_primary_10_1016_j_ymssp_2021_108626 crossref_primary_10_1177_1475921720976926 crossref_primary_10_3390_s20051445 crossref_primary_10_1016_j_ultras_2025_107568 crossref_primary_10_1088_1742_6596_2698_1_012010 crossref_primary_10_1016_j_ultras_2021_106672 crossref_primary_10_1016_j_measurement_2024_115061 crossref_primary_10_1016_j_ndteint_2024_103309 crossref_primary_10_1016_j_ultras_2022_106915 crossref_primary_10_3390_s21092994 crossref_primary_10_1088_1361_665X_acf178 crossref_primary_10_1088_2631_8695_acc516 crossref_primary_10_1016_j_ultras_2021_106541 crossref_primary_10_1016_j_ymssp_2023_110954 crossref_primary_10_1088_1361_665X_ac7183 crossref_primary_10_1109_TIM_2023_3267528 crossref_primary_10_1016_j_ymssp_2024_111389 crossref_primary_10_1007_s00707_023_03750_9 crossref_primary_10_3390_s20113035  | 
    
| Cites_doi | 10.1177/1045389X14545389 10.1177/1045389X14521875 10.1016/j.ultras.2007.10.008 10.3813/AAA.919123 10.1177/1045389X10372003 10.1088/0964-1726/16/3/020 10.1016/j.ymssp.2018.02.008 10.1016/j.ndteint.2013.04.003 10.1088/0964-1726/24/10/105019 10.1016/j.ultras.2006.05.044 10.1109/TUFFC.2003.1197965 10.1016/j.ymssp.2008.10.011 10.1016/j.ultras.2010.11.011 10.1088/0964-1726/19/7/075017 10.1177/1475921704042697 10.1088/0957-0233/18/3/024 10.1007/s10921-013-0173-0 10.1016/j.compscitech.2008.09.034 10.1016/j.ymssp.2014.05.041 10.1177/1475921713506767 10.1117/12.897025 10.1109/TUFFC.2003.1209557 10.1007/s10443-011-9247-2 10.1088/0964-1726/25/8/085042 10.1016/j.ultras.2016.02.001 10.1088/0964-1726/22/8/085019 10.1016/j.ndteint.2013.06.001 10.1088/0964-1726/20/4/045017 10.1177/1475921713501108 10.1016/j.ultras.2012.04.006 10.1080/10589759.2011.573549  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Apr 15, 2019  | 
    
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Apr 15, 2019  | 
    
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1016/j.ymssp.2018.11.016 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1096-1216 | 
    
| EndPage | 170 | 
    
| ExternalDocumentID | 10_1016_j_ymssp_2018_11_016 S0888327018307350  | 
    
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SST SSV SSZ T5K XPP ZMT ZU3 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ ~HD 7SC 7SP 8FD AFXIZ AGCQF AGRNS JQ2 L7M L~C L~D SSH  | 
    
| ID | FETCH-LOGICAL-c331t-1495f311b0abf2fecd6474b94ee322ec24e5e71bf2e0a46c7c3cdfebfabdfbea3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0888-3270 | 
    
| IngestDate | Fri Jul 25 07:52:32 EDT 2025 Thu Apr 24 23:03:54 EDT 2025 Wed Oct 01 01:41:29 EDT 2025 Fri Feb 23 02:29:55 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Lamb waves Phased arrays Laser ultrasonics Damage imaging  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c331t-1495f311b0abf2fecd6474b94ee322ec24e5e71bf2e0a46c7c3cdfebfabdfbea3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-1903-5604 | 
    
| PQID | 2186792456 | 
    
| PQPubID | 2045429 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | proquest_journals_2186792456 crossref_primary_10_1016_j_ymssp_2018_11_016 crossref_citationtrail_10_1016_j_ymssp_2018_11_016 elsevier_sciencedirect_doi_10_1016_j_ymssp_2018_11_016  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-04-15 | 
    
| PublicationDateYYYYMMDD | 2019-04-15 | 
    
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-15 day: 15  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Berlin | 
    
| PublicationPlace_xml | – name: Berlin | 
    
| PublicationTitle | Mechanical systems and signal processing | 
    
| PublicationYear | 2019 | 
    
| Publisher | Elsevier Ltd Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV  | 
    
| References | Swift, Pierce, Culshaw (b0110) 2007; 16 Flynn, Chong, Jarmer, Lee (b0080) 2013; 59 Pierce, Cleary, Veres, Culshaw, Thursby, McKee, Swift, Armstrong (b0115) 2011; 26 Kudela, Radzienski, Ostachowicz, Yang (b0130) 2018; 108 Pistone, Li, Rizzo (b0150) 2013; 12 Rose (b0015) 2011; 7983 Yoo, Purekar, Zhang, Pines (b0045) 2010; 19 Prado, Higuti, Kitano, Martinez-Graullera, Adamowski (b0050) 2013; 59 Kudela, Radzienski, Ostachowicz (b0095) 2015; 50–51 Giurgiutiu, Soutis (b0010) 2012; 19 Rose (b0020) 1999 Staszewski, Mahzan, Traynor (b0005) 2009; 69 Michaels, Michaels, Ruzzene (b0105) 2011; 51 Veres, Cleary, Thursby, McKee, Armstrong, Pierce, Culshaw (b0085) 2013; 53 Nayfeh (b0155) 1995 Yu, Tian (b0125) 2016; 68 Gao, Yang, Cui, Cheng, Qian (b0145) 2006; 44 Staszewski, Lee, Traynor (b0090) 2007; 18 Tian, Yu, Leckey (b0175) 2016; 25 Giurgiutiu (b0030) 2008 Purekar, Pines (b0070) 2010; 21 Giurgiutiu, Bao (b0035) 2004; 3 Tian, Yu, Sun, Lin (b0165) 2018 Leleux, Micheau, Castaings (b0055) 2013; 32 Wilcox (b0135) 2003; 50 Ostachowicz, Kudela, Malinowski, Wandowski (b0025) 2009; 23 Yu, Tian (b0140) 2013; 12 Tian, Yu (b0170) 2014; 25 Tian, Yu, Leckey, Seebo (b0160) 2015; 24 Moll, De Marchi, Kexel, Marzani (b0060) 2017; 103 Yu, Giurgiutiu (b0065) 2008; 48 Wilcox (b0040) 2003; 50 Ambrozinski, Stepinski, Uhl (b0120) 2015; 26 Kannajosyula, Lissenden, Rose (b0075) 2013; 22 Sohn, Dutta, Yang, DeSimio, Olson, Swenson (b0100) 2011; 20 Staszewski (10.1016/j.ymssp.2018.11.016_b0090) 2007; 18 Kudela (10.1016/j.ymssp.2018.11.016_b0095) 2015; 50–51 Yu (10.1016/j.ymssp.2018.11.016_b0065) 2008; 48 Sohn (10.1016/j.ymssp.2018.11.016_b0100) 2011; 20 Michaels (10.1016/j.ymssp.2018.11.016_b0105) 2011; 51 Nayfeh (10.1016/j.ymssp.2018.11.016_b0155) 1995 Kudela (10.1016/j.ymssp.2018.11.016_b0130) 2018; 108 Pierce (10.1016/j.ymssp.2018.11.016_b0115) 2011; 26 Staszewski (10.1016/j.ymssp.2018.11.016_b0005) 2009; 69 Yu (10.1016/j.ymssp.2018.11.016_b0140) 2013; 12 Prado (10.1016/j.ymssp.2018.11.016_b0050) 2013; 59 Purekar (10.1016/j.ymssp.2018.11.016_b0070) 2010; 21 Giurgiutiu (10.1016/j.ymssp.2018.11.016_b0010) 2012; 19 Tian (10.1016/j.ymssp.2018.11.016_b0175) 2016; 25 Giurgiutiu (10.1016/j.ymssp.2018.11.016_b0035) 2004; 3 Kannajosyula (10.1016/j.ymssp.2018.11.016_b0075) 2013; 22 Gao (10.1016/j.ymssp.2018.11.016_b0145) 2006; 44 Moll (10.1016/j.ymssp.2018.11.016_b0060) 2017; 103 Tian (10.1016/j.ymssp.2018.11.016_b0170) 2014; 25 Rose (10.1016/j.ymssp.2018.11.016_b0020) 1999 Flynn (10.1016/j.ymssp.2018.11.016_b0080) 2013; 59 Tian (10.1016/j.ymssp.2018.11.016_b0165) 2018 Yoo (10.1016/j.ymssp.2018.11.016_b0045) 2010; 19 Wilcox (10.1016/j.ymssp.2018.11.016_b0040) 2003; 50 Pistone (10.1016/j.ymssp.2018.11.016_b0150) 2013; 12 Ambrozinski (10.1016/j.ymssp.2018.11.016_b0120) 2015; 26 Ostachowicz (10.1016/j.ymssp.2018.11.016_b0025) 2009; 23 Swift (10.1016/j.ymssp.2018.11.016_b0110) 2007; 16 Rose (10.1016/j.ymssp.2018.11.016_b0015) 2011; 7983 Veres (10.1016/j.ymssp.2018.11.016_b0085) 2013; 53 Giurgiutiu (10.1016/j.ymssp.2018.11.016_b0030) 2008 Leleux (10.1016/j.ymssp.2018.11.016_b0055) 2013; 32 Yu (10.1016/j.ymssp.2018.11.016_b0125) 2016; 68 Tian (10.1016/j.ymssp.2018.11.016_b0160) 2015; 24 Wilcox (10.1016/j.ymssp.2018.11.016_b0135) 2003; 50  | 
    
| References_xml | – year: 1995 ident: b0155 article-title: Wave Propagation in Layered Anisotropic Media – volume: 16 start-page: 728 year: 2007 end-page: 732 ident: b0110 article-title: Generation of a steerable ultrasonic beam using a phased array of low power semiconductor laser sources and fiber optic delivery publication-title: Smart Mater. Struct. – volume: 12 start-page: 549 year: 2013 end-page: 565 ident: b0150 article-title: Noncontact monitoring of immersed plates by means of laser-induced ultrasounds publication-title: Struct. Health Monit. Int. J. – volume: 18 start-page: 727 year: 2007 end-page: 739 ident: b0090 article-title: Fatigue crack detection in metallic structures with lamb waves and 3d laser vibrometry publication-title: Meas. Sci. Technol. – volume: 12 start-page: 469 year: 2013 end-page: 483 ident: b0140 article-title: Lamb wave structural health monitoring using a hybrid Pzt-laser vibrometer approach publication-title: Struct. Health Monit. – year: 2008 ident: b0030 article-title: Structural Health Monitoring with Piezoelectric Wafer Active Sensors – volume: 7983 start-page: 798302 year: 2011 ident: b0015 article-title: The upcoming revolution in ultrasonic guided waves publication-title: Proc. SPIE – volume: 24 year: 2015 ident: b0160 article-title: Guided wave imaging for detection and evaluation of impact-induced delamination in composites publication-title: Smart Mater. Struct. – year: 1999 ident: b0020 article-title: Ultrasonic Waves in Solid Media – volume: 22 year: 2013 ident: b0075 article-title: Analysis of annular phased array transducers for ultrasonic guided wave mode control publication-title: Smart Mater. Struct. – volume: 19 start-page: 813 year: 2012 end-page: 829 ident: b0010 article-title: Enhanced composites integrity through structural health monitoring publication-title: Appl. Compos. Mater. – volume: 50–51 start-page: 456 year: 2015 end-page: 466 ident: b0095 article-title: Identification of cracks in thin-walled structures by means of wavenumber filtering publication-title: Mech. Syst. Sig. Process. – year: 2018 ident: b0165 article-title: Damage localization with fiber Bragg grating lamb wave sensing through adaptive phased array imaging publication-title: Struct. Health Monit. – volume: 26 start-page: 2283 year: 2015 end-page: 2294 ident: b0120 article-title: Efficient tool for designing 2d phased arrays in lamb waves imaging of isotropic structures publication-title: J. Intell. Mater. Syst. Struct. – volume: 48 start-page: 117 year: 2008 end-page: 134 ident: b0065 article-title: In situ 2-D piezoelectric wafer active sensors arrays for guided wave damage detection publication-title: Ultrasonics – volume: 68 start-page: 43 year: 2016 end-page: 53 ident: b0125 article-title: Guided wave phased array beamforming and imaging in composite plates publication-title: Ultrasonics – volume: 26 start-page: 281 year: 2011 end-page: 301 ident: b0115 article-title: Low peak-power laser ultrasonics publication-title: Nondestructive Test. Eval. – volume: 32 start-page: 200 year: 2013 end-page: 214 ident: b0055 article-title: Long range detection of defects in composite plates using lamb waves generated and detected by ultrasonic phased array probes publication-title: J. Nondestr. Eval. – volume: 50 start-page: 699 year: 2003 end-page: 709 ident: b0040 article-title: Omni-directional guided wave transducer arrays for the rapid inspection of large areas of plate structures publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 19 year: 2010 ident: b0045 article-title: Piezoelectric-paint-based two-dimensional phased sensor arrays for structural health monitoring of thin panels publication-title: Smart Mater. Struct. – volume: 21 start-page: 995 year: 2010 end-page: 1010 ident: b0070 article-title: Damage detection in thin composite laminates using piezoelectric phased sensor arrays and guided lamb wave interrogation publication-title: J. Intell. Mater. Syst. Struct. – volume: 59 start-page: 86 year: 2013 end-page: 95 ident: b0050 article-title: Lamb mode diversity imaging for non-destructive testing of plate-like structures publication-title: NDT and E Int. – volume: 20 year: 2011 ident: b0100 article-title: Automated detection of delamination and disbond from wavefield images obtained using a scanning laser vibrometer publication-title: Smart Mater. Struct. – volume: 51 start-page: 452 year: 2011 end-page: 466 ident: b0105 article-title: Frequency-wavenumber domain analysis of guided wavefields publication-title: Ultrasonics – volume: 23 start-page: 1805 year: 2009 end-page: 1829 ident: b0025 article-title: Damage localisation in plate-like structures based on Pzt sensors publication-title: Mech. Syst. Sig. Process. – volume: 25 start-page: 1107 year: 2014 end-page: 1123 ident: b0170 article-title: Lamb wave frequency-wavenumber analysis and decomposition publication-title: J. Intell. Mater. Syst. Struct. – volume: 3 start-page: 121 year: 2004 end-page: 140 ident: b0035 article-title: Embedded-ultrasonics structural radar for in situ structural health monitoring of thin-wall structures publication-title: Struct. Health Monit. Int. J. – volume: 50 start-page: 419 year: 2003 end-page: 427 ident: b0135 article-title: A rapid signal processing technique to remove the effect of dispersion from guided wave signals publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 69 start-page: 1678 year: 2009 end-page: 1685 ident: b0005 article-title: Health monitoring of aerospace composite structures – active and passive approach publication-title: Compos. Sci. Technol. – volume: 59 start-page: 1 year: 2013 end-page: 10 ident: b0080 article-title: Structural imaging through local wavenumber estimation of guided waves publication-title: NDT and E Int. – volume: 53 start-page: 122 year: 2013 end-page: 129 ident: b0085 article-title: Golay code modulation in low-power laser-ultrasound publication-title: Ultrasonics – volume: 103 start-page: 941 year: 2017 end-page: 949 ident: b0060 article-title: High resolution defect imaging in guided waves inspections by dispersion compensation and nonlinear data fusion publication-title: Acta Acust. United Acust. – volume: 25 year: 2016 ident: b0175 article-title: Rapid guided wave delamination detection and quantification in composites using global-local sensing publication-title: Smart Mater. Struct. – volume: 108 start-page: 21 year: 2018 end-page: 32 ident: b0130 article-title: Structural Health monitoring system based on a concept of lamb wave focusing by the piezoelectric array publication-title: Mech. Syst. Sig. Process. – volume: 44 start-page: E985 year: 2006 end-page: E989 ident: b0145 article-title: Modeling laser-generated guided waves in bonded plates by the finite element method publication-title: Ultrasonics – volume: 26 start-page: 2283 year: 2015 ident: 10.1016/j.ymssp.2018.11.016_b0120 article-title: Efficient tool for designing 2d phased arrays in lamb waves imaging of isotropic structures publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X14545389 – volume: 25 start-page: 1107 year: 2014 ident: 10.1016/j.ymssp.2018.11.016_b0170 article-title: Lamb wave frequency-wavenumber analysis and decomposition publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X14521875 – year: 2008 ident: 10.1016/j.ymssp.2018.11.016_b0030 – volume: 48 start-page: 117 year: 2008 ident: 10.1016/j.ymssp.2018.11.016_b0065 article-title: In situ 2-D piezoelectric wafer active sensors arrays for guided wave damage detection publication-title: Ultrasonics doi: 10.1016/j.ultras.2007.10.008 – volume: 103 start-page: 941 year: 2017 ident: 10.1016/j.ymssp.2018.11.016_b0060 article-title: High resolution defect imaging in guided waves inspections by dispersion compensation and nonlinear data fusion publication-title: Acta Acust. United Acust. doi: 10.3813/AAA.919123 – volume: 21 start-page: 995 year: 2010 ident: 10.1016/j.ymssp.2018.11.016_b0070 article-title: Damage detection in thin composite laminates using piezoelectric phased sensor arrays and guided lamb wave interrogation publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X10372003 – volume: 16 start-page: 728 year: 2007 ident: 10.1016/j.ymssp.2018.11.016_b0110 article-title: Generation of a steerable ultrasonic beam using a phased array of low power semiconductor laser sources and fiber optic delivery publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/16/3/020 – year: 2018 ident: 10.1016/j.ymssp.2018.11.016_b0165 article-title: Damage localization with fiber Bragg grating lamb wave sensing through adaptive phased array imaging publication-title: Struct. Health Monit. – volume: 108 start-page: 21 year: 2018 ident: 10.1016/j.ymssp.2018.11.016_b0130 article-title: Structural Health monitoring system based on a concept of lamb wave focusing by the piezoelectric array publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2018.02.008 – volume: 59 start-page: 1 year: 2013 ident: 10.1016/j.ymssp.2018.11.016_b0080 article-title: Structural imaging through local wavenumber estimation of guided waves publication-title: NDT and E Int. doi: 10.1016/j.ndteint.2013.04.003 – volume: 24 year: 2015 ident: 10.1016/j.ymssp.2018.11.016_b0160 article-title: Guided wave imaging for detection and evaluation of impact-induced delamination in composites publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/10/105019 – volume: 44 start-page: E985 year: 2006 ident: 10.1016/j.ymssp.2018.11.016_b0145 article-title: Modeling laser-generated guided waves in bonded plates by the finite element method publication-title: Ultrasonics doi: 10.1016/j.ultras.2006.05.044 – volume: 50 start-page: 419 year: 2003 ident: 10.1016/j.ymssp.2018.11.016_b0135 article-title: A rapid signal processing technique to remove the effect of dispersion from guided wave signals publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2003.1197965 – volume: 23 start-page: 1805 year: 2009 ident: 10.1016/j.ymssp.2018.11.016_b0025 article-title: Damage localisation in plate-like structures based on Pzt sensors publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2008.10.011 – volume: 51 start-page: 452 year: 2011 ident: 10.1016/j.ymssp.2018.11.016_b0105 article-title: Frequency-wavenumber domain analysis of guided wavefields publication-title: Ultrasonics doi: 10.1016/j.ultras.2010.11.011 – volume: 19 year: 2010 ident: 10.1016/j.ymssp.2018.11.016_b0045 article-title: Piezoelectric-paint-based two-dimensional phased sensor arrays for structural health monitoring of thin panels publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/19/7/075017 – volume: 3 start-page: 121 year: 2004 ident: 10.1016/j.ymssp.2018.11.016_b0035 article-title: Embedded-ultrasonics structural radar for in situ structural health monitoring of thin-wall structures publication-title: Struct. Health Monit. Int. J. doi: 10.1177/1475921704042697 – volume: 18 start-page: 727 year: 2007 ident: 10.1016/j.ymssp.2018.11.016_b0090 article-title: Fatigue crack detection in metallic structures with lamb waves and 3d laser vibrometry publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/18/3/024 – volume: 32 start-page: 200 year: 2013 ident: 10.1016/j.ymssp.2018.11.016_b0055 article-title: Long range detection of defects in composite plates using lamb waves generated and detected by ultrasonic phased array probes publication-title: J. Nondestr. Eval. doi: 10.1007/s10921-013-0173-0 – volume: 69 start-page: 1678 year: 2009 ident: 10.1016/j.ymssp.2018.11.016_b0005 article-title: Health monitoring of aerospace composite structures – active and passive approach publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2008.09.034 – year: 1999 ident: 10.1016/j.ymssp.2018.11.016_b0020 – volume: 50–51 start-page: 456 year: 2015 ident: 10.1016/j.ymssp.2018.11.016_b0095 article-title: Identification of cracks in thin-walled structures by means of wavenumber filtering publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2014.05.041 – volume: 12 start-page: 549 year: 2013 ident: 10.1016/j.ymssp.2018.11.016_b0150 article-title: Noncontact monitoring of immersed plates by means of laser-induced ultrasounds publication-title: Struct. Health Monit. Int. J. doi: 10.1177/1475921713506767 – volume: 7983 start-page: 798302 year: 2011 ident: 10.1016/j.ymssp.2018.11.016_b0015 article-title: The upcoming revolution in ultrasonic guided waves publication-title: Proc. SPIE doi: 10.1117/12.897025 – volume: 50 start-page: 699 year: 2003 ident: 10.1016/j.ymssp.2018.11.016_b0040 article-title: Omni-directional guided wave transducer arrays for the rapid inspection of large areas of plate structures publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2003.1209557 – volume: 19 start-page: 813 year: 2012 ident: 10.1016/j.ymssp.2018.11.016_b0010 article-title: Enhanced composites integrity through structural health monitoring publication-title: Appl. Compos. Mater. doi: 10.1007/s10443-011-9247-2 – volume: 25 year: 2016 ident: 10.1016/j.ymssp.2018.11.016_b0175 article-title: Rapid guided wave delamination detection and quantification in composites using global-local sensing publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/8/085042 – volume: 68 start-page: 43 year: 2016 ident: 10.1016/j.ymssp.2018.11.016_b0125 article-title: Guided wave phased array beamforming and imaging in composite plates publication-title: Ultrasonics doi: 10.1016/j.ultras.2016.02.001 – volume: 22 year: 2013 ident: 10.1016/j.ymssp.2018.11.016_b0075 article-title: Analysis of annular phased array transducers for ultrasonic guided wave mode control publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/8/085019 – year: 1995 ident: 10.1016/j.ymssp.2018.11.016_b0155 – volume: 59 start-page: 86 year: 2013 ident: 10.1016/j.ymssp.2018.11.016_b0050 article-title: Lamb mode diversity imaging for non-destructive testing of plate-like structures publication-title: NDT and E Int. doi: 10.1016/j.ndteint.2013.06.001 – volume: 20 year: 2011 ident: 10.1016/j.ymssp.2018.11.016_b0100 article-title: Automated detection of delamination and disbond from wavefield images obtained using a scanning laser vibrometer publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/20/4/045017 – volume: 12 start-page: 469 year: 2013 ident: 10.1016/j.ymssp.2018.11.016_b0140 article-title: Lamb wave structural health monitoring using a hybrid Pzt-laser vibrometer approach publication-title: Struct. Health Monit. doi: 10.1177/1475921713501108 – volume: 53 start-page: 122 year: 2013 ident: 10.1016/j.ymssp.2018.11.016_b0085 article-title: Golay code modulation in low-power laser-ultrasound publication-title: Ultrasonics doi: 10.1016/j.ultras.2012.04.006 – volume: 26 start-page: 281 year: 2011 ident: 10.1016/j.ymssp.2018.11.016_b0115 article-title: Low peak-power laser ultrasonics publication-title: Nondestructive Test. Eval. doi: 10.1080/10589759.2011.573549  | 
    
| SSID | ssj0009406 | 
    
| Score | 2.5105424 | 
    
| Snippet | •Fully noncontact Lamb wave phased arrays based on a pulse laser-scanning laser Doppler vibrometer sensing system.•An improved delay-and-sum (DAS) phased array... Lamb wave phased arrays employ sensors placed close to each other in compact distributions and can quickly inspect large plate-like structures through time (or...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 158 | 
    
| SubjectTerms | Adaptive algorithms Algorithms Aluminum Back propagation Computer simulation Damage detection Damage imaging Delay Doppler effect Fracture mechanics Image acquisition Image resolution Inspection Lamb waves Laser doppler vibrometers Laser ultrasonics Lasers Metal plates Phased arrays Pulsed lasers Scanning Sensor arrays Transducers Ultrasonic transducers Wave dispersion Wavelengths Well construction  | 
    
| Title | Pulsed laser-scanning laser Doppler vibrometer (PL-SLDV) phased arrays for damage detection in aluminum plates | 
    
| URI | https://dx.doi.org/10.1016/j.ymssp.2018.11.016 https://www.proquest.com/docview/2186792456  | 
    
| Volume | 121 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: AKRWK dateStart: 19870101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYQvZQD6oMKKEU-9NBKmMRrb7x7jEJR2iKERKm4WX6MRVCyibIJEhd-e8fe3b6EOHBa2Tu2VuN5yrPzEfLROS-UKXPmi9BnkvOSFbawaAydK6RDlw-p2-f5YHwlv13n1xtk1P0LE8sqW9vf2PRkrduZXsvN3mIy6V2ifqA4qj4KJcppytulVBHF4PjhT5lHKRO-ZiRmkbrrPJRqvO5ndR2bVvLiOLbyjKDnj3un_-x0cj6nr8h2GzXSYfNhr8kGVG_I1l-9BN-S6mKN-3iK0TAsWe0aLKJmSE_mGGzi8w6T4_ksVsDQTxdn7PLs5OdnurgxcaFZLs19TTGIpd7M0MxQD6tUqFXRSUUNWrFJtZ7RxTSGpzvk6vTLj9GYtWAKzAnBVyxmQkFwbvvGhiyA8wOppC0lAOo0uExCDorjO-gbOXDKCecD2GCsDxaMeEc2q3kFu4QKEArpMwhGyOBK6wX33PDMKwNlDnsk65ioXdtpPAJeTHVXUnarE-d15DzmIBrn9sjR70WLptHG0-SD7nT0P_Ki0RU8vfCgO0vdqmutIzCXKuMd8P5z931PXuIoXTTx_IBsrpZr-IDxysoeJoE8JC-GX7-Pz38Bbn_tvA | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhPbQ5hD7J5tHq0EMLVXZlySv7GPJgm2xDIEnJTegxoluy3mW9G8ilv70j2W6bUnLoyVgaCTOaJxp_Q8h757xQpsyZL8KASc5LVtjCojF0rpAOXT4ktM_z4ehant7kN2vksPsXJpZVtra_senJWrcj_Zab_flk0r9E_UBxVAMUSpTTmLc_kXmmYga2_-N3nUcpU4PNSM0ieQc9lIq87qd1HVErebEfsTxj1_N_u6e_DHXyPifPyWYbNtKD5stekDWoXpKNP8AEX5HqYoX7eIrhMCxY7ZpmRM0rPZphtInPO8yOZ9NYAkM_XIzZ5fjo60c6_2biQrNYmPuaYhRLvZminaEelqlSq6KTiho0Y5NqNaXz2xifvibXJ8dXhyPWdlNgTgi-ZDEVCoJzOzA2ZAGcH0olbSkBUKnBZRJyUBznYGDk0CknnA9gg7E-WDDiDVmvZhVsESpAKKTPIBghgyutF9xzwzOvDJQ59EjWMVG7Fmo8dry41V1N2XedOK8j5zEJ0TjWI59-LZo3SBuPkw-709EPBEajL3h84W53lrrV11rHzlyqjJfA2_-77zvydHT1ZazHn8_PdsgznEm3TjzfJevLxQr2MHhZ2rdJOH8C9UzvUQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pulsed+laser-scanning+laser+Doppler+vibrometer+%28PL-SLDV%29+phased+arrays+for+damage+detection+in+aluminum+plates&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Tian%2C+Zhenhua&rft.au=Howden%2C+Stephen&rft.au=Ma%2C+Zhaoyun&rft.au=Xiao%2C+Wenfeng&rft.date=2019-04-15&rft.pub=Elsevier+Ltd&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=121&rft.spage=158&rft.epage=170&rft_id=info:doi/10.1016%2Fj.ymssp.2018.11.016&rft.externalDocID=S0888327018307350 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |