An improved K-means clustering algorithm for fish image segmentation
Fish contour extraction from images is the foundation of many fish image applications such as disease early warning and diagnostics, animal behavior, aquatic product processing, etc. In order to improve the accuracy and stability of fish image segmentation, we propose a new fish images segmentation...
        Saved in:
      
    
          | Published in | Mathematical and computer modelling Vol. 58; no. 3-4; pp. 784 - 792 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.08.2013
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0895-7177 1872-9479  | 
| DOI | 10.1016/j.mcm.2012.12.025 | 
Cover
| Abstract | Fish contour extraction from images is the foundation of many fish image applications such as disease early warning and diagnostics, animal behavior, aquatic product processing, etc. In order to improve the accuracy and stability of fish image segmentation, we propose a new fish images segmentation method which is the combination of the K-means clustering segmentation algorithm and mathematical morphology. Firstly, the traditional K-means clustering segmentation algorithm has been improved for fish images. The best number of clusters is determined by the number of gray histogram peaks, and the cluster centers data is filtered by comparing the mean with the threshold decided by Otsu. Secondly, the opening and closing operations of mathematical morphology are used to get the contour of the fish body. The experimental results show that the algorithm realized the separation between the fish image and the background in the condition of complex backgrounds. Compared with Otsu and other segmentation algorithms, our algorithm is more accurate and stable. | 
    
|---|---|
| AbstractList | Fish contour extraction from images is the foundation of many fish image applications such as disease early warning and diagnostics, animal behavior, aquatic product processing, etc. In order to improve the accuracy and stability of fish image segmentation, we propose a new fish images segmentation method which is the combination of the K-means clustering segmentation algorithm and mathematical morphology. Firstly, the traditional K-means clustering segmentation algorithm has been improved for fish images. The best number of clusters is determined by the number of gray histogram peaks, and the cluster centers data is filtered by comparing the mean with the threshold decided by Otsu. Secondly, the opening and closing operations of mathematical morphology are used to get the contour of the fish body. The experimental results show that the algorithm realized the separation between the fish image and the background in the condition of complex backgrounds. Compared with Otsu and other segmentation algorithms, our algorithm is more accurate and stable. | 
    
| Author | Yao, Hong Wang, Jianping Li, Daoliang Duan, Qingling  | 
    
| Author_xml | – sequence: 1 givenname: Hong surname: Yao fullname: Yao, Hong organization: College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China – sequence: 2 givenname: Qingling surname: Duan fullname: Duan, Qingling email: dqling@cau.edu.cn organization: College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China – sequence: 3 givenname: Daoliang surname: Li fullname: Li, Daoliang organization: College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China – sequence: 4 givenname: Jianping surname: Wang fullname: Wang, Jianping organization: Ningbo Ocean & Fishery Institute, Ningbo, 315010, China  | 
    
| BookMark | eNp9kEtrwzAQhEVJoUnaH9Cbj73YXckPWfQU0icN9NKehSytEwVbTiUn0H9fhfTUQ2BgL_MtMzMjEzc4JOSWQkaBVvfbrNd9xoCyLApYeUGmtOYsFQUXEzKFWpQpp5xfkVkIWwAoBdRT8rhwie13fjigSd7THpULie72YURv3TpR3Xrwdtz0STv4pLVhE-1qjUnAdY9uVKMd3DW5bFUX8ObvzsnX89Pn8jVdfby8LRerVOc5jCkaqqIATSVYC2XTALBGQ0GLouS1UpURWDQtN2VTCVEg4xppxZgRqjB1nc_J3elvzPu9xzDK3gaNXaccDvsgKc_zkhYMqmjlJ6v2QwgeW6ntKezole0kBXncTW5l3E0ed5NRcbdI0n_kzsfK_ucs83BiMLY_WPQyaItOo7Ee9SjNYM_Qv1_PiAs | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2020_2969806 crossref_primary_10_1007_s11042_015_2518_4 crossref_primary_10_3390_s150924487 crossref_primary_10_4028_www_scientific_net_AMM_743_293 crossref_primary_10_1109_ACCESS_2019_2956988 crossref_primary_10_1177_1748006X19844127 crossref_primary_10_1002_mop_31062 crossref_primary_10_5424_sjar_2015131_6181 crossref_primary_10_1016_j_fishres_2019_04_016 crossref_primary_10_1016_j_ijleo_2018_07_079 crossref_primary_10_1109_ACCESS_2019_2910195 crossref_primary_10_1111_exsy_13176 crossref_primary_10_1016_j_ifacol_2018_08_066 crossref_primary_10_1016_j_mehy_2019_109507 crossref_primary_10_28989_compiler_v10i1_946 crossref_primary_10_1111_2041_210X_13712 crossref_primary_10_1007_s00244_016_0358_5 crossref_primary_10_1007_s11042_023_14861_9 crossref_primary_10_1109_ACCESS_2021_3077567 crossref_primary_10_1016_j_jksuci_2020_07_005 crossref_primary_10_14397_jals_2015_49_5_333 crossref_primary_10_1186_s40537_023_00711_w crossref_primary_10_3390_info14110583 crossref_primary_10_1186_s13660_017_1541_6 crossref_primary_10_3390_ani12212938 crossref_primary_10_1007_s11099_016_0663_2 crossref_primary_10_18178_ijiet_2019_9_2_1184 crossref_primary_10_3233_JIFS_223754 crossref_primary_10_1007_s11042_015_2795_y crossref_primary_10_3390_s22197224 crossref_primary_10_1186_s13660_017_1333_z crossref_primary_10_1016_j_aquaeng_2021_102222 crossref_primary_10_1016_j_engappai_2024_109469 crossref_primary_10_3390_app9214492 crossref_primary_10_1016_j_mtcomm_2022_103174 crossref_primary_10_1111_2041_210X_13768 crossref_primary_10_4316_AECE_2018_01014 crossref_primary_10_3390_fishes7060335 crossref_primary_10_1088_1757_899X_1088_1_012034 crossref_primary_10_1002_cpe_4109 crossref_primary_10_1007_s40815_020_01009_2 crossref_primary_10_1007_s11042_019_7348_3 crossref_primary_10_1371_journal_pone_0237570 crossref_primary_10_1016_j_aquaculture_2021_737018 crossref_primary_10_1016_j_neucom_2017_07_006 crossref_primary_10_1007_s11042_024_19180_1 crossref_primary_10_1007_s40815_024_01878_x crossref_primary_10_1007_s11042_014_2429_9 crossref_primary_10_1016_j_future_2019_07_026 crossref_primary_10_3389_fmars_2024_1471312 crossref_primary_10_1590_1413_7054202347018922 crossref_primary_10_1155_2024_3795126 crossref_primary_10_1016_j_ecoinf_2021_101495 crossref_primary_10_1016_j_conbuildmat_2021_123139 crossref_primary_10_1007_s11276_016_1257_4 crossref_primary_10_1016_j_compag_2022_107369 crossref_primary_10_1016_j_knosys_2021_107432 crossref_primary_10_1016_j_eswa_2021_115637 crossref_primary_10_1016_j_optlastec_2022_108852 crossref_primary_10_1007_s11760_019_01619_w crossref_primary_10_1088_1742_6596_1373_1_012054 crossref_primary_10_1142_S0218213015500347 crossref_primary_10_1007_s10661_020_08409_9 crossref_primary_10_1016_j_patcog_2016_12_011 crossref_primary_10_25046_aj060516 crossref_primary_10_1007_s00521_021_06610_6 crossref_primary_10_3390_electronics10121426 crossref_primary_10_1142_S0218001414500153 crossref_primary_10_3390_jmse12010161 crossref_primary_10_3390_w15112138 crossref_primary_10_2478_cait_2023_0010  | 
    
| Cites_doi | 10.1109/TIP.2002.806256 10.1109/IranianMVIP.2010.5941134 10.1109/BMEI.2009.5304816 10.1166/sl.2012.1840 10.1109/ETCS.2009.400 10.1109/SSIAI.2006.1633722 10.1109/ICELIE.2006.347204 10.1109/PACC.2011.5979016  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2012 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2012 Elsevier Ltd | 
    
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6  | 
    
| DOI | 10.1016/j.mcm.2012.12.025 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Mathematics  | 
    
| EISSN | 1872-9479 | 
    
| EndPage | 792 | 
    
| ExternalDocumentID | 10_1016_j_mcm_2012_12_025 S089571771200369X  | 
    
| GrantInformation_xml | – fundername: Chinese Universities Scientific Fund grantid: 2012QT003 – fundername: Special Research (Agro-scientific) in the Public Interest grantid: 201203017  | 
    
| GroupedDBID | --K --M -DZ -~X .DC .~1 0R~ 0SF 186 1B1 1RT 1~. 1~5 29M 4.4 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABFNM ABMAC ABUCO ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q HAMUX HVGLF HZ~ IHE IXB J1W JJJVA KOM LG9 M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SSB SSD SST SSW SSZ T5K T9H TN5 VOH WUQ XPP XSW YNT YQT ZMT AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION EFKBS ~HD 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c330t-ed1ad1a0ed692f05bb002bc04144578aa6d9e4bf7d5b6994e27ce1622d9a4d883 | 
    
| IEDL.DBID | AIKHN | 
    
| ISSN | 0895-7177 | 
    
| IngestDate | Sun Sep 28 12:17:41 EDT 2025 Wed Oct 01 04:59:49 EDT 2025 Thu Apr 24 22:50:41 EDT 2025 Fri Feb 23 02:22:47 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3-4 | 
    
| Keywords | Image segmentation Contour extraction Mathematical morphology K-means clustering  | 
    
| Language | English | 
    
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c330t-ed1ad1a0ed692f05bb002bc04144578aa6d9e4bf7d5b6994e27ce1622d9a4d883 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S089571771200369X | 
    
| PQID | 1733514206 | 
    
| PQPubID | 24069 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | proquest_miscellaneous_1733514206 crossref_citationtrail_10_1016_j_mcm_2012_12_025 crossref_primary_10_1016_j_mcm_2012_12_025 elsevier_sciencedirect_doi_10_1016_j_mcm_2012_12_025  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2013-08-01 | 
    
| PublicationDateYYYYMMDD | 2013-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Mathematical and computer modelling | 
    
| PublicationYear | 2013 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Veenman, Reinders, Backer (br000010) 2003; 12 means clustering algorithm in image segmentation, in: Proceedings of the 1st International Workshop on Education Technology and Computer Science, ETCS 2009. Zhou, Bai (br000060) 2010; 18 Xueyan Sun, Study of content based image retrieval algorithm, Beijing, China Agriculture University, 2005. M. Ziashahabi, H. Sadjedi, H. Khezripour, Automatic segmentation and classification of pipeline images using mathematic morphology and fuzzy means algorithm for image segmentation, in: Proceedings of 2011 International Conference on Process Automation, Control and Computing, PACC 2011, 2011. means algorithm, in: 2010 6th Iranian Conference on Machine Vision and Image Processing, MVIP 2010, 2010. Rehna Kalam, K. Manikandan, Enhancing Zhicun Tan, Ruihua Lu, Application of improved genetic . H.P. Ng, Medical image segmentation using He, Liang, Li (br000050) 2011; 23 Qi, Zhang, Wang (br000065) 2006; 36 Hu, Li (br000020) 2012; 10 means algorithm for clustering analysis, in: Proceedings of the 2009 2nd International Conference on Biomedical Engineering and Informatics, BMEI 2009, 2009. Yan Wang, Diseased fish carps image feature extraction algorithm, Beijing, China Agriculture University, 2009. means clustering algorithm initialization for unsupervised statistical satellite image segmentation, in: 2006 1st IEEE International Conference on E-Learning in Industrial Electronics, ICELIE, 2006, pp. 11–16. Huang, Zeng, Wang (br000070) 2009; 2 Ahmed Rekik, Mourad Zribi, Mohammed Benjelloun, A Zhou, Shen, Wang (br000040) 2008; 29 Chonglun Fang, Jinwen Ma, A novel means clustering and improved watershed algorithm, in: Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation, 2006. Hu (10.1016/j.mcm.2012.12.025_br000020) 2012; 10 10.1016/j.mcm.2012.12.025_br000005 10.1016/j.mcm.2012.12.025_br000015 10.1016/j.mcm.2012.12.025_br000025 10.1016/j.mcm.2012.12.025_br000035 10.1016/j.mcm.2012.12.025_br000045 He (10.1016/j.mcm.2012.12.025_br000050) 2011; 23 10.1016/j.mcm.2012.12.025_br000055 Huang (10.1016/j.mcm.2012.12.025_br000070) 2009; 2 10.1016/j.mcm.2012.12.025_br000075 10.1016/j.mcm.2012.12.025_br000030 Zhou (10.1016/j.mcm.2012.12.025_br000060) 2010; 18 Qi (10.1016/j.mcm.2012.12.025_br000065) 2006; 36 10.1016/j.mcm.2012.12.025_br000080 Zhou (10.1016/j.mcm.2012.12.025_br000040) 2008; 29 Veenman (10.1016/j.mcm.2012.12.025_br000010) 2003; 12  | 
    
| References_xml | – reference: Yan Wang, Diseased fish carps image feature extraction algorithm, Beijing, China Agriculture University, 2009. – reference: Chonglun Fang, Jinwen Ma, A novel – volume: 12 start-page: 304 year: 2003 end-page: 316 ident: br000010 article-title: A cellular corvolutionary algorithm for image segmentation publication-title: IEEE Transactions on Image Processing – reference: -means algorithm, in: 2010 6th Iranian Conference on Machine Vision and Image Processing, MVIP 2010, 2010. – reference: H.P. Ng, Medical image segmentation using – reference: -means algorithm for image segmentation, in: Proceedings of 2011 International Conference on Process Automation, Control and Computing, PACC 2011, 2011. – volume: 36 start-page: 25 year: 2006 end-page: 26 ident: br000065 article-title: Applications of Otsu in image processing publication-title: Radio Engineering of China – volume: 10 start-page: 190 year: 2012 end-page: 197 ident: br000020 article-title: A fuzzy publication-title: Sensor Letters – reference: Ahmed Rekik, Mourad Zribi, Mohammed Benjelloun, A – reference: -means algorithm for clustering analysis, in: Proceedings of the 2009 2nd International Conference on Biomedical Engineering and Informatics, BMEI 2009, 2009. – volume: 23 start-page: 829 year: 2011 end-page: 832 ident: br000050 article-title: Wheat color image segmentation based on the publication-title: Acta Agriculturae Zhejiangensis – reference: . – reference: Zhicun Tan, Ruihua Lu, Application of improved genetic – volume: 2 start-page: 96 year: 2009 end-page: 97 ident: br000070 article-title: Face images based on morphological edge detection algorithm publication-title: Information Technology – reference: -means clustering and improved watershed algorithm, in: Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation, 2006. – volume: 18 start-page: 2167 year: 2010 end-page: 2169 ident: br000060 article-title: Initial cluster centers to select the publication-title: Computer Measurement & Control – reference: Xueyan Sun, Study of content based image retrieval algorithm, Beijing, China Agriculture University, 2005. – reference: -means clustering algorithm initialization for unsupervised statistical satellite image segmentation, in: 2006 1st IEEE International Conference on E-Learning in Industrial Electronics, ICELIE, 2006, pp. 11–16. – reference: Rehna Kalam, K. Manikandan, Enhancing – volume: 29 start-page: 333 year: 2008 end-page: 336 ident: br000040 article-title: -means clustering algorithm based on particle swarm in image classification publication-title: Journal of Chinese Computer Systems – reference: -means clustering algorithm in image segmentation, in: Proceedings of the 1st International Workshop on Education Technology and Computer Science, ETCS 2009. – reference: M. Ziashahabi, H. Sadjedi, H. Khezripour, Automatic segmentation and classification of pipeline images using mathematic morphology and fuzzy – volume: 2 start-page: 96 year: 2009 ident: 10.1016/j.mcm.2012.12.025_br000070 article-title: Face images based on morphological edge detection algorithm publication-title: Information Technology – volume: 12 start-page: 304 issue: 3 year: 2003 ident: 10.1016/j.mcm.2012.12.025_br000010 article-title: A cellular corvolutionary algorithm for image segmentation publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2002.806256 – ident: 10.1016/j.mcm.2012.12.025_br000075 doi: 10.1109/IranianMVIP.2010.5941134 – volume: 29 start-page: 333 issue: 2 year: 2008 ident: 10.1016/j.mcm.2012.12.025_br000040 article-title: K-means clustering algorithm based on particle swarm in image classification publication-title: Journal of Chinese Computer Systems – volume: 36 start-page: 25 issue: 7 year: 2006 ident: 10.1016/j.mcm.2012.12.025_br000065 article-title: Applications of Otsu in image processing publication-title: Radio Engineering of China – ident: 10.1016/j.mcm.2012.12.025_br000030 – volume: 23 start-page: 829 issue: 4 year: 2011 ident: 10.1016/j.mcm.2012.12.025_br000050 article-title: Wheat color image segmentation based on the K-means clustering and mathematical morphology publication-title: Acta Agriculturae Zhejiangensis – ident: 10.1016/j.mcm.2012.12.025_br000045 doi: 10.1109/BMEI.2009.5304816 – volume: 18 start-page: 2167 issue: 9 year: 2010 ident: 10.1016/j.mcm.2012.12.025_br000060 article-title: Initial cluster centers to select the K-means clustering method based on graph publication-title: Computer Measurement & Control – volume: 10 start-page: 190 issue: 1–2 year: 2012 ident: 10.1016/j.mcm.2012.12.025_br000020 article-title: A fuzzy C-means clustering based algorithm to automatically segment fish disease visual symptoms publication-title: Sensor Letters doi: 10.1166/sl.2012.1840 – ident: 10.1016/j.mcm.2012.12.025_br000005 doi: 10.1109/ETCS.2009.400 – ident: 10.1016/j.mcm.2012.12.025_br000015 doi: 10.1109/SSIAI.2006.1633722 – ident: 10.1016/j.mcm.2012.12.025_br000035 doi: 10.1109/ICELIE.2006.347204 – ident: 10.1016/j.mcm.2012.12.025_br000080 – ident: 10.1016/j.mcm.2012.12.025_br000025 – ident: 10.1016/j.mcm.2012.12.025_br000055 doi: 10.1109/PACC.2011.5979016  | 
    
| SSID | ssj0005908 | 
    
| Score | 2.426518 | 
    
| Snippet | Fish contour extraction from images is the foundation of many fish image applications such as disease early warning and diagnostics, animal behavior, aquatic... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 784 | 
    
| SubjectTerms | [formula omitted]-means clustering algorithms animal behavior computer techniques Contour extraction decision making diagnostic techniques fish Image segmentation mathematical models Mathematical morphology  | 
    
| Title | An improved K-means clustering algorithm for fish image segmentation | 
    
| URI | https://dx.doi.org/10.1016/j.mcm.2012.12.025 https://www.proquest.com/docview/1733514206  | 
    
| Volume | 58 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-9479 dateEnd: 20131231 omitProxy: true ssIdentifier: ssj0005908 issn: 0895-7177 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1872-9479 dateEnd: 20131231 omitProxy: true ssIdentifier: ssj0005908 issn: 0895-7177 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9479 dateEnd: 20131231 omitProxy: true ssIdentifier: ssj0005908 issn: 0895-7177 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Free and Delayed Access Journal customDbUrl: eissn: 1872-9479 dateEnd: 20131201 omitProxy: true ssIdentifier: ssj0005908 issn: 0895-7177 databaseCode: IXB dateStart: 19880101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005908 issn: 0895-7177 databaseCode: AKRWK dateStart: 19880101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgu8AB8RTjpSBxQgpruzRtjmOANhBcYNJuUZsHFG0dYtuV347TteMhtANSLqnsqHIS20k-2wBnsUiURs-BcptqylSkqLCRpUWt7ZClsTHuoHj_wLt9djsIByvQqWJhHKyy1P1znV5o6_JLs5Rm8y3Lmo9eLEI8jES-w1dxMViFOtqfOK5Bvd276z58IT1EUZjO0VPHUD1uFjCvkXLx6H5QXAq6gtl_m6dfirqwPjebsFG6jaQ9_7MtWDH5Nqx_SyaIvftFBtbJDly1c5IVFwZGkzs6MmiSiBrOXF4EJCfJ8Hn8nk1fRgS9VmKzyQuSo24hE_M8KuOR8l3o31w_dbq0rJhAVavlTanRfoLNM5qLwHph6mxwqjyGxybcmknCtTAstZEOUy4EM0GkjM-DQIuE6Thu7UEtH-dmH0jqMYUT5vs6dCnfEmHQdbCKRcxaE2veAK8SlFRlOnFX1WIoK9zYq0TZSidbiQ1l24DzBcvbPJfGMmJWSV_-WBASdf0yttNqpiRuFPf6keRmPJtIP2q5qIXA4wf_G_oQ1oKiFoZD_x1Bbfo-M8fokUzTE1i9-PBPynWHvd7g8hOO5OAs | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA86D-pBfOLbCJ6EuLZL0-Y41DEf28UNdgttHrOydeK6q3-7X7J2TBEPQi4NX0r4JfkeyfdA6CrmiVSgORBmUkWojCThJjLE1doOaRprbQ3FTpe1-_RxEA5W0G0VC2PdKkveP-fpjluXPfUSzfp7ltVfvJiHYIxEvvWvYnywitZoGETWArv5XPLz4K4snaUmlrx62nROXmNpo9H9wF0J2nLZvwunH2zayZ7WNtoqlUbcnM9rB63ofBdtLqUShK_OIv_qdA_dNXOcuesCrfATGWsQSFiOZjYrApDjZDScfGTF6xiDzopNNn0FcuAseKqH4zIaKd9H_dZ977ZNynoJRDYaXkG08hNonlaMB8YLUyuBU-lRMJrgYCYJU1zT1EQqTBnnVAeR1D4LAsUTquK4cYBq-STXhwinHpWwXL6vQpvwLeEaFAcjaUSN0bFiR8irgBKyTCZua1qMROU19iYAW2GxFdAA2yN0vRjyPs-k8RcxrdAX37aDAE7_17DLaqUEHBP79pHkejKbCj9q2JiFwGPH__v1BVpv9zrP4vmh-3SCNgJXFcP6AZ6iWvEx02egmxTpudt7XyeW3_A | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+K-means+clustering+algorithm+for+fish+image+segmentation&rft.jtitle=Mathematical+and+computer+modelling&rft.au=Yao%2C+Hong&rft.au=Duan%2C+Qingling&rft.au=Li%2C+Daoliang&rft.au=Wang%2C+Jianping&rft.date=2013-08-01&rft.pub=Elsevier+Ltd&rft.issn=0895-7177&rft.eissn=1872-9479&rft.volume=58&rft.issue=3-4&rft.spage=784&rft.epage=792&rft_id=info:doi/10.1016%2Fj.mcm.2012.12.025&rft.externalDocID=S089571771200369X | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-7177&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-7177&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-7177&client=summon |