An improved K-means clustering algorithm for fish image segmentation

Fish contour extraction from images is the foundation of many fish image applications such as disease early warning and diagnostics, animal behavior, aquatic product processing, etc. In order to improve the accuracy and stability of fish image segmentation, we propose a new fish images segmentation...

Full description

Saved in:
Bibliographic Details
Published inMathematical and computer modelling Vol. 58; no. 3-4; pp. 784 - 792
Main Authors Yao, Hong, Duan, Qingling, Li, Daoliang, Wang, Jianping
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2013
Subjects
Online AccessGet full text
ISSN0895-7177
1872-9479
DOI10.1016/j.mcm.2012.12.025

Cover

Abstract Fish contour extraction from images is the foundation of many fish image applications such as disease early warning and diagnostics, animal behavior, aquatic product processing, etc. In order to improve the accuracy and stability of fish image segmentation, we propose a new fish images segmentation method which is the combination of the K-means clustering segmentation algorithm and mathematical morphology. Firstly, the traditional K-means clustering segmentation algorithm has been improved for fish images. The best number of clusters is determined by the number of gray histogram peaks, and the cluster centers data is filtered by comparing the mean with the threshold decided by Otsu. Secondly, the opening and closing operations of mathematical morphology are used to get the contour of the fish body. The experimental results show that the algorithm realized the separation between the fish image and the background in the condition of complex backgrounds. Compared with Otsu and other segmentation algorithms, our algorithm is more accurate and stable.
AbstractList Fish contour extraction from images is the foundation of many fish image applications such as disease early warning and diagnostics, animal behavior, aquatic product processing, etc. In order to improve the accuracy and stability of fish image segmentation, we propose a new fish images segmentation method which is the combination of the K-means clustering segmentation algorithm and mathematical morphology. Firstly, the traditional K-means clustering segmentation algorithm has been improved for fish images. The best number of clusters is determined by the number of gray histogram peaks, and the cluster centers data is filtered by comparing the mean with the threshold decided by Otsu. Secondly, the opening and closing operations of mathematical morphology are used to get the contour of the fish body. The experimental results show that the algorithm realized the separation between the fish image and the background in the condition of complex backgrounds. Compared with Otsu and other segmentation algorithms, our algorithm is more accurate and stable.
Author Yao, Hong
Wang, Jianping
Li, Daoliang
Duan, Qingling
Author_xml – sequence: 1
  givenname: Hong
  surname: Yao
  fullname: Yao, Hong
  organization: College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
– sequence: 2
  givenname: Qingling
  surname: Duan
  fullname: Duan, Qingling
  email: dqling@cau.edu.cn
  organization: College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
– sequence: 3
  givenname: Daoliang
  surname: Li
  fullname: Li, Daoliang
  organization: College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
– sequence: 4
  givenname: Jianping
  surname: Wang
  fullname: Wang, Jianping
  organization: Ningbo Ocean & Fishery Institute, Ningbo, 315010, China
BookMark eNp9kEtrwzAQhEVJoUnaH9Cbj73YXckPWfQU0icN9NKehSytEwVbTiUn0H9fhfTUQ2BgL_MtMzMjEzc4JOSWQkaBVvfbrNd9xoCyLApYeUGmtOYsFQUXEzKFWpQpp5xfkVkIWwAoBdRT8rhwie13fjigSd7THpULie72YURv3TpR3Xrwdtz0STv4pLVhE-1qjUnAdY9uVKMd3DW5bFUX8ObvzsnX89Pn8jVdfby8LRerVOc5jCkaqqIATSVYC2XTALBGQ0GLouS1UpURWDQtN2VTCVEg4xppxZgRqjB1nc_J3elvzPu9xzDK3gaNXaccDvsgKc_zkhYMqmjlJ6v2QwgeW6ntKezole0kBXncTW5l3E0ed5NRcbdI0n_kzsfK_ucs83BiMLY_WPQyaItOo7Ee9SjNYM_Qv1_PiAs
CitedBy_id crossref_primary_10_1109_ACCESS_2020_2969806
crossref_primary_10_1007_s11042_015_2518_4
crossref_primary_10_3390_s150924487
crossref_primary_10_4028_www_scientific_net_AMM_743_293
crossref_primary_10_1109_ACCESS_2019_2956988
crossref_primary_10_1177_1748006X19844127
crossref_primary_10_1002_mop_31062
crossref_primary_10_5424_sjar_2015131_6181
crossref_primary_10_1016_j_fishres_2019_04_016
crossref_primary_10_1016_j_ijleo_2018_07_079
crossref_primary_10_1109_ACCESS_2019_2910195
crossref_primary_10_1111_exsy_13176
crossref_primary_10_1016_j_ifacol_2018_08_066
crossref_primary_10_1016_j_mehy_2019_109507
crossref_primary_10_28989_compiler_v10i1_946
crossref_primary_10_1111_2041_210X_13712
crossref_primary_10_1007_s00244_016_0358_5
crossref_primary_10_1007_s11042_023_14861_9
crossref_primary_10_1109_ACCESS_2021_3077567
crossref_primary_10_1016_j_jksuci_2020_07_005
crossref_primary_10_14397_jals_2015_49_5_333
crossref_primary_10_1186_s40537_023_00711_w
crossref_primary_10_3390_info14110583
crossref_primary_10_1186_s13660_017_1541_6
crossref_primary_10_3390_ani12212938
crossref_primary_10_1007_s11099_016_0663_2
crossref_primary_10_18178_ijiet_2019_9_2_1184
crossref_primary_10_3233_JIFS_223754
crossref_primary_10_1007_s11042_015_2795_y
crossref_primary_10_3390_s22197224
crossref_primary_10_1186_s13660_017_1333_z
crossref_primary_10_1016_j_aquaeng_2021_102222
crossref_primary_10_1016_j_engappai_2024_109469
crossref_primary_10_3390_app9214492
crossref_primary_10_1016_j_mtcomm_2022_103174
crossref_primary_10_1111_2041_210X_13768
crossref_primary_10_4316_AECE_2018_01014
crossref_primary_10_3390_fishes7060335
crossref_primary_10_1088_1757_899X_1088_1_012034
crossref_primary_10_1002_cpe_4109
crossref_primary_10_1007_s40815_020_01009_2
crossref_primary_10_1007_s11042_019_7348_3
crossref_primary_10_1371_journal_pone_0237570
crossref_primary_10_1016_j_aquaculture_2021_737018
crossref_primary_10_1016_j_neucom_2017_07_006
crossref_primary_10_1007_s11042_024_19180_1
crossref_primary_10_1007_s40815_024_01878_x
crossref_primary_10_1007_s11042_014_2429_9
crossref_primary_10_1016_j_future_2019_07_026
crossref_primary_10_3389_fmars_2024_1471312
crossref_primary_10_1590_1413_7054202347018922
crossref_primary_10_1155_2024_3795126
crossref_primary_10_1016_j_ecoinf_2021_101495
crossref_primary_10_1016_j_conbuildmat_2021_123139
crossref_primary_10_1007_s11276_016_1257_4
crossref_primary_10_1016_j_compag_2022_107369
crossref_primary_10_1016_j_knosys_2021_107432
crossref_primary_10_1016_j_eswa_2021_115637
crossref_primary_10_1016_j_optlastec_2022_108852
crossref_primary_10_1007_s11760_019_01619_w
crossref_primary_10_1088_1742_6596_1373_1_012054
crossref_primary_10_1142_S0218213015500347
crossref_primary_10_1007_s10661_020_08409_9
crossref_primary_10_1016_j_patcog_2016_12_011
crossref_primary_10_25046_aj060516
crossref_primary_10_1007_s00521_021_06610_6
crossref_primary_10_3390_electronics10121426
crossref_primary_10_1142_S0218001414500153
crossref_primary_10_3390_jmse12010161
crossref_primary_10_3390_w15112138
crossref_primary_10_2478_cait_2023_0010
Cites_doi 10.1109/TIP.2002.806256
10.1109/IranianMVIP.2010.5941134
10.1109/BMEI.2009.5304816
10.1166/sl.2012.1840
10.1109/ETCS.2009.400
10.1109/SSIAI.2006.1633722
10.1109/ICELIE.2006.347204
10.1109/PACC.2011.5979016
ContentType Journal Article
Copyright 2012 Elsevier Ltd
Copyright_xml – notice: 2012 Elsevier Ltd
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.mcm.2012.12.025
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1872-9479
EndPage 792
ExternalDocumentID 10_1016_j_mcm_2012_12_025
S089571771200369X
GrantInformation_xml – fundername: Chinese Universities Scientific Fund
  grantid: 2012QT003
– fundername: Special Research (Agro-scientific) in the Public Interest
  grantid: 201203017
GroupedDBID --K
--M
-DZ
-~X
.DC
.~1
0R~
0SF
186
1B1
1RT
1~.
1~5
29M
4.4
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABFNM
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
HAMUX
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SSB
SSD
SST
SSW
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
XSW
YNT
YQT
ZMT
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c330t-ed1ad1a0ed692f05bb002bc04144578aa6d9e4bf7d5b6994e27ce1622d9a4d883
IEDL.DBID AIKHN
ISSN 0895-7177
IngestDate Sun Sep 28 12:17:41 EDT 2025
Wed Oct 01 04:59:49 EDT 2025
Thu Apr 24 22:50:41 EDT 2025
Fri Feb 23 02:22:47 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords Image segmentation
Contour extraction
Mathematical morphology
K-means clustering
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-ed1ad1a0ed692f05bb002bc04144578aa6d9e4bf7d5b6994e27ce1622d9a4d883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S089571771200369X
PQID 1733514206
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_1733514206
crossref_citationtrail_10_1016_j_mcm_2012_12_025
crossref_primary_10_1016_j_mcm_2012_12_025
elsevier_sciencedirect_doi_10_1016_j_mcm_2012_12_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Mathematical and computer modelling
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Veenman, Reinders, Backer (br000010) 2003; 12
means clustering algorithm in image segmentation, in: Proceedings of the 1st International Workshop on Education Technology and Computer Science, ETCS 2009.
Zhou, Bai (br000060) 2010; 18
Xueyan Sun, Study of content based image retrieval algorithm, Beijing, China Agriculture University, 2005.
M. Ziashahabi, H. Sadjedi, H. Khezripour, Automatic segmentation and classification of pipeline images using mathematic morphology and fuzzy
means algorithm for image segmentation, in: Proceedings of 2011 International Conference on Process Automation, Control and Computing, PACC 2011, 2011.
means algorithm, in: 2010 6th Iranian Conference on Machine Vision and Image Processing, MVIP 2010, 2010.
Rehna Kalam, K. Manikandan, Enhancing
Zhicun Tan, Ruihua Lu, Application of improved genetic
.
H.P. Ng, Medical image segmentation using
He, Liang, Li (br000050) 2011; 23
Qi, Zhang, Wang (br000065) 2006; 36
Hu, Li (br000020) 2012; 10
means algorithm for clustering analysis, in: Proceedings of the 2009 2nd International Conference on Biomedical Engineering and Informatics, BMEI 2009, 2009.
Yan Wang, Diseased fish carps image feature extraction algorithm, Beijing, China Agriculture University, 2009.
means clustering algorithm initialization for unsupervised statistical satellite image segmentation, in: 2006 1st IEEE International Conference on E-Learning in Industrial Electronics, ICELIE, 2006, pp. 11–16.
Huang, Zeng, Wang (br000070) 2009; 2
Ahmed Rekik, Mourad Zribi, Mohammed Benjelloun, A
Zhou, Shen, Wang (br000040) 2008; 29
Chonglun Fang, Jinwen Ma, A novel
means clustering and improved watershed algorithm, in: Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation, 2006.
Hu (10.1016/j.mcm.2012.12.025_br000020) 2012; 10
10.1016/j.mcm.2012.12.025_br000005
10.1016/j.mcm.2012.12.025_br000015
10.1016/j.mcm.2012.12.025_br000025
10.1016/j.mcm.2012.12.025_br000035
10.1016/j.mcm.2012.12.025_br000045
He (10.1016/j.mcm.2012.12.025_br000050) 2011; 23
10.1016/j.mcm.2012.12.025_br000055
Huang (10.1016/j.mcm.2012.12.025_br000070) 2009; 2
10.1016/j.mcm.2012.12.025_br000075
10.1016/j.mcm.2012.12.025_br000030
Zhou (10.1016/j.mcm.2012.12.025_br000060) 2010; 18
Qi (10.1016/j.mcm.2012.12.025_br000065) 2006; 36
10.1016/j.mcm.2012.12.025_br000080
Zhou (10.1016/j.mcm.2012.12.025_br000040) 2008; 29
Veenman (10.1016/j.mcm.2012.12.025_br000010) 2003; 12
References_xml – reference: Yan Wang, Diseased fish carps image feature extraction algorithm, Beijing, China Agriculture University, 2009.
– reference: Chonglun Fang, Jinwen Ma, A novel
– volume: 12
  start-page: 304
  year: 2003
  end-page: 316
  ident: br000010
  article-title: A cellular corvolutionary algorithm for image segmentation
  publication-title: IEEE Transactions on Image Processing
– reference: -means algorithm, in: 2010 6th Iranian Conference on Machine Vision and Image Processing, MVIP 2010, 2010.
– reference: H.P. Ng, Medical image segmentation using
– reference: -means algorithm for image segmentation, in: Proceedings of 2011 International Conference on Process Automation, Control and Computing, PACC 2011, 2011.
– volume: 36
  start-page: 25
  year: 2006
  end-page: 26
  ident: br000065
  article-title: Applications of Otsu in image processing
  publication-title: Radio Engineering of China
– volume: 10
  start-page: 190
  year: 2012
  end-page: 197
  ident: br000020
  article-title: A fuzzy
  publication-title: Sensor Letters
– reference: Ahmed Rekik, Mourad Zribi, Mohammed Benjelloun, A
– reference: -means algorithm for clustering analysis, in: Proceedings of the 2009 2nd International Conference on Biomedical Engineering and Informatics, BMEI 2009, 2009.
– volume: 23
  start-page: 829
  year: 2011
  end-page: 832
  ident: br000050
  article-title: Wheat color image segmentation based on the
  publication-title: Acta Agriculturae Zhejiangensis
– reference: .
– reference: Zhicun Tan, Ruihua Lu, Application of improved genetic
– volume: 2
  start-page: 96
  year: 2009
  end-page: 97
  ident: br000070
  article-title: Face images based on morphological edge detection algorithm
  publication-title: Information Technology
– reference: -means clustering and improved watershed algorithm, in: Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation, 2006.
– volume: 18
  start-page: 2167
  year: 2010
  end-page: 2169
  ident: br000060
  article-title: Initial cluster centers to select the
  publication-title: Computer Measurement & Control
– reference: Xueyan Sun, Study of content based image retrieval algorithm, Beijing, China Agriculture University, 2005.
– reference: -means clustering algorithm initialization for unsupervised statistical satellite image segmentation, in: 2006 1st IEEE International Conference on E-Learning in Industrial Electronics, ICELIE, 2006, pp. 11–16.
– reference: Rehna Kalam, K. Manikandan, Enhancing
– volume: 29
  start-page: 333
  year: 2008
  end-page: 336
  ident: br000040
  article-title: -means clustering algorithm based on particle swarm in image classification
  publication-title: Journal of Chinese Computer Systems
– reference: -means clustering algorithm in image segmentation, in: Proceedings of the 1st International Workshop on Education Technology and Computer Science, ETCS 2009.
– reference: M. Ziashahabi, H. Sadjedi, H. Khezripour, Automatic segmentation and classification of pipeline images using mathematic morphology and fuzzy
– volume: 2
  start-page: 96
  year: 2009
  ident: 10.1016/j.mcm.2012.12.025_br000070
  article-title: Face images based on morphological edge detection algorithm
  publication-title: Information Technology
– volume: 12
  start-page: 304
  issue: 3
  year: 2003
  ident: 10.1016/j.mcm.2012.12.025_br000010
  article-title: A cellular corvolutionary algorithm for image segmentation
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2002.806256
– ident: 10.1016/j.mcm.2012.12.025_br000075
  doi: 10.1109/IranianMVIP.2010.5941134
– volume: 29
  start-page: 333
  issue: 2
  year: 2008
  ident: 10.1016/j.mcm.2012.12.025_br000040
  article-title: K-means clustering algorithm based on particle swarm in image classification
  publication-title: Journal of Chinese Computer Systems
– volume: 36
  start-page: 25
  issue: 7
  year: 2006
  ident: 10.1016/j.mcm.2012.12.025_br000065
  article-title: Applications of Otsu in image processing
  publication-title: Radio Engineering of China
– ident: 10.1016/j.mcm.2012.12.025_br000030
– volume: 23
  start-page: 829
  issue: 4
  year: 2011
  ident: 10.1016/j.mcm.2012.12.025_br000050
  article-title: Wheat color image segmentation based on the K-means clustering and mathematical morphology
  publication-title: Acta Agriculturae Zhejiangensis
– ident: 10.1016/j.mcm.2012.12.025_br000045
  doi: 10.1109/BMEI.2009.5304816
– volume: 18
  start-page: 2167
  issue: 9
  year: 2010
  ident: 10.1016/j.mcm.2012.12.025_br000060
  article-title: Initial cluster centers to select the K-means clustering method based on graph
  publication-title: Computer Measurement & Control
– volume: 10
  start-page: 190
  issue: 1–2
  year: 2012
  ident: 10.1016/j.mcm.2012.12.025_br000020
  article-title: A fuzzy C-means clustering based algorithm to automatically segment fish disease visual symptoms
  publication-title: Sensor Letters
  doi: 10.1166/sl.2012.1840
– ident: 10.1016/j.mcm.2012.12.025_br000005
  doi: 10.1109/ETCS.2009.400
– ident: 10.1016/j.mcm.2012.12.025_br000015
  doi: 10.1109/SSIAI.2006.1633722
– ident: 10.1016/j.mcm.2012.12.025_br000035
  doi: 10.1109/ICELIE.2006.347204
– ident: 10.1016/j.mcm.2012.12.025_br000080
– ident: 10.1016/j.mcm.2012.12.025_br000025
– ident: 10.1016/j.mcm.2012.12.025_br000055
  doi: 10.1109/PACC.2011.5979016
SSID ssj0005908
Score 2.426518
Snippet Fish contour extraction from images is the foundation of many fish image applications such as disease early warning and diagnostics, animal behavior, aquatic...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 784
SubjectTerms [formula omitted]-means clustering
algorithms
animal behavior
computer techniques
Contour extraction
decision making
diagnostic techniques
fish
Image segmentation
mathematical models
Mathematical morphology
Title An improved K-means clustering algorithm for fish image segmentation
URI https://dx.doi.org/10.1016/j.mcm.2012.12.025
https://www.proquest.com/docview/1733514206
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-9479
  dateEnd: 20131231
  omitProxy: true
  ssIdentifier: ssj0005908
  issn: 0895-7177
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1872-9479
  dateEnd: 20131231
  omitProxy: true
  ssIdentifier: ssj0005908
  issn: 0895-7177
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9479
  dateEnd: 20131231
  omitProxy: true
  ssIdentifier: ssj0005908
  issn: 0895-7177
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Free and Delayed Access Journal
  customDbUrl:
  eissn: 1872-9479
  dateEnd: 20131201
  omitProxy: true
  ssIdentifier: ssj0005908
  issn: 0895-7177
  databaseCode: IXB
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005908
  issn: 0895-7177
  databaseCode: AKRWK
  dateStart: 19880101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgu8AB8RTjpSBxQgpruzRtjmOANhBcYNJuUZsHFG0dYtuV347TteMhtANSLqnsqHIS20k-2wBnsUiURs-BcptqylSkqLCRpUWt7ZClsTHuoHj_wLt9djsIByvQqWJhHKyy1P1znV5o6_JLs5Rm8y3Lmo9eLEI8jES-w1dxMViFOtqfOK5Bvd276z58IT1EUZjO0VPHUD1uFjCvkXLx6H5QXAq6gtl_m6dfirqwPjebsFG6jaQ9_7MtWDH5Nqx_SyaIvftFBtbJDly1c5IVFwZGkzs6MmiSiBrOXF4EJCfJ8Hn8nk1fRgS9VmKzyQuSo24hE_M8KuOR8l3o31w_dbq0rJhAVavlTanRfoLNM5qLwHph6mxwqjyGxybcmknCtTAstZEOUy4EM0GkjM-DQIuE6Thu7UEtH-dmH0jqMYUT5vs6dCnfEmHQdbCKRcxaE2veAK8SlFRlOnFX1WIoK9zYq0TZSidbiQ1l24DzBcvbPJfGMmJWSV_-WBASdf0yttNqpiRuFPf6keRmPJtIP2q5qIXA4wf_G_oQ1oKiFoZD_x1Bbfo-M8fokUzTE1i9-PBPynWHvd7g8hOO5OAs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA86D-pBfOLbCJ6EuLZL0-Y41DEf28UNdgttHrOydeK6q3-7X7J2TBEPQi4NX0r4JfkeyfdA6CrmiVSgORBmUkWojCThJjLE1doOaRprbQ3FTpe1-_RxEA5W0G0VC2PdKkveP-fpjluXPfUSzfp7ltVfvJiHYIxEvvWvYnywitZoGETWArv5XPLz4K4snaUmlrx62nROXmNpo9H9wF0J2nLZvwunH2zayZ7WNtoqlUbcnM9rB63ofBdtLqUShK_OIv_qdA_dNXOcuesCrfATGWsQSFiOZjYrApDjZDScfGTF6xiDzopNNn0FcuAseKqH4zIaKd9H_dZ977ZNynoJRDYaXkG08hNonlaMB8YLUyuBU-lRMJrgYCYJU1zT1EQqTBnnVAeR1D4LAsUTquK4cYBq-STXhwinHpWwXL6vQpvwLeEaFAcjaUSN0bFiR8irgBKyTCZua1qMROU19iYAW2GxFdAA2yN0vRjyPs-k8RcxrdAX37aDAE7_17DLaqUEHBP79pHkejKbCj9q2JiFwGPH__v1BVpv9zrP4vmh-3SCNgJXFcP6AZ6iWvEx02egmxTpudt7XyeW3_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+K-means+clustering+algorithm+for+fish+image+segmentation&rft.jtitle=Mathematical+and+computer+modelling&rft.au=Yao%2C+Hong&rft.au=Duan%2C+Qingling&rft.au=Li%2C+Daoliang&rft.au=Wang%2C+Jianping&rft.date=2013-08-01&rft.pub=Elsevier+Ltd&rft.issn=0895-7177&rft.eissn=1872-9479&rft.volume=58&rft.issue=3-4&rft.spage=784&rft.epage=792&rft_id=info:doi/10.1016%2Fj.mcm.2012.12.025&rft.externalDocID=S089571771200369X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-7177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-7177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-7177&client=summon