Distributed Seeking of Nash Equilibria With Applications to Mobile Sensor Networks
We consider the problem of distributed convergence to a Nash equilibrium in a noncooperative game where the players generate their actions based only on online measurements of their individual cost functions, corrupted with additive measurement noise. Exact analytical forms and/or parameters of the...
        Saved in:
      
    
          | Published in | IEEE transactions on automatic control Vol. 57; no. 4; pp. 904 - 919 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York, NY
          IEEE
    
        01.04.2012
     Institute of Electrical and Electronics Engineers  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0018-9286 1558-2523 1558-2523  | 
| DOI | 10.1109/TAC.2011.2174678 | 
Cover
| Abstract | We consider the problem of distributed convergence to a Nash equilibrium in a noncooperative game where the players generate their actions based only on online measurements of their individual cost functions, corrupted with additive measurement noise. Exact analytical forms and/or parameters of the cost functions, as well as the current actions of the players may be unknown. Additionally, the players' actions are subject to linear dynamic constraints. We propose an algorithm based on discrete-time stochastic extremum seeking using sinusoidal perturbations and prove its almost sure convergence to a Nash equilibrium. We show how the proposed algorithm can be applied to solving coordination problems in mobile sensor networks, where motion dynamics of the players can be modeled as: 1) single integrators (velocity-actuated vehicles), 2) double integrators (force-actuated vehicles), and 3) unicycles (a kinematic model with nonholonomic constraints). Examples are given in which the cost functions are selected such that the problems of connectivity control, formation control, rendezvous and coverage control are solved in an adaptive and distributed way. The methodology is illustrated through simulations. | 
    
|---|---|
| AbstractList | We consider the problem of distributed convergence to a Nash equilibrium in a noncooperative game where the players generate their actions based only on online measurements of their individual cost functions, corrupted with additive measurement noise. Exact analytical forms and/or parameters of the cost functions, as well as the current actions of the players may be unknown. Additionally, the players' actions are subject to linear dynamic constraints. We propose an algorithm based on discrete-time stochastic extremum seeking using sinusoidal perturbations and prove its almost sure convergence to a Nash equilibrium. We show how the proposed algorithm can be applied to solving coordination problems in mobile sensor networks, where motion dynamics of the players can be modeled as: 1) single integrators (velocity-actuated vehicles), 2) double integrators (force-actuated vehicles), and 3) unicycles (a kinematic model with nonholonomic constraints). Examples are given in which the cost functions are selected such that the problems of connectivity control, formation control, rendezvous and coverage control are solved in an adaptive and distributed way. The methodology is illustrated through simulations. We consider the problem of distributed convergenceto a Nash equilibrium in a noncooperative game where the playersgenerate their actions based only on online measurements oftheir individual cost functions, corrupted with additive measurementnoise. Exact analytical forms and/or parameters ofthe cost functions, as well as the current actions of the playersmay be unknown. Additionally, the players’ actions are subjectto linear dynamic constraints. We propose an algorithm basedon discrete-time stochastic extremum seeking using sinusoidalperturbations and prove its almost sure convergence to a Nashequilibrium. We show how the proposed algorithm can be appliedto solving coordination problems in mobile sensor networks,where motion dynamics of the players can be modeled as: 1) singleintegrators (velocity-actuated vehicles), 2) double integrators(force-actuated vehicles), and 3) unicycles (a kinematic modelwith nonholonomic constraints). Examples are given in which thecost functions are selected such that the problems of connectivitycontrol, formation control, rendezvous and coverage control aresolved in an adaptive and distributed way. The methodology isillustrated through simulations.  | 
    
| Author | Johansson, K. H. Stipanovic, D. M. Stankovic, M. S.  | 
    
| Author_xml | – sequence: 1 givenname: M. S. surname: Stankovic fullname: Stankovic, M. S. email: milsta@kth.se organization: ACCESS Linnaeus Center, KTH R. Inst. of Technol., Stockholm, Sweden – sequence: 2 givenname: K. H. surname: Johansson fullname: Johansson, K. H. email: kallej@kth.se organization: ACCESS Linnaeus Center, KTH R. Inst. of Technol., Stockholm, Sweden – sequence: 3 givenname: D. M. surname: Stipanovic fullname: Stipanovic, D. M. email: dusan@illinois.edu organization: Dept. of Ind. & Enterprise Syst. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26369966$$DView record in Pascal Francis https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-72945$$DView record from Swedish Publication Index  | 
    
| BookMark | eNp9kD1PwzAQQC0EEi2wI7F4YSPFjhPHGauWLwmKxOdo2Y7THg1xsF0h_j0pRR0YmE4nvXcnvSHabV1rETqmZEQpKc-fxpNRSigdpbTIeCF20IDmuUjSPGW7aEAIFUmZCr6PhiG89SvPMjpAD1MI0YNeRVvhR2uX0M6xq_FMhQW--FhBA9qDwq8QF3jcdQ0YFcG1AUeH75yGxvZaG5zHMxs_nV-GQ7RXqybYo995gJ4vL54m18nt_dXNZHybGMZITCqieF0YKupUlFmeE6FNJZjhIjPGcp2bglRUlUVZcm4IIyJXmdaFqgqta52xA3S2uRs-bbfSsvPwrvyXdArkFF7G0vm5XMaFLNL-fo-fbvBOBaOa2qvWQNhaKWd8_annyIYz3oXgbb1FKJHr1LJPLdep5W_qXuF_FAPxJ1P0Cpr_xJONCNba7R9OeJlnjH0D-0GN5A | 
    
| CODEN | IETAA9 | 
    
| CitedBy_id | crossref_primary_10_1109_TAC_2020_2995666 crossref_primary_10_1109_ACCESS_2018_2889840 crossref_primary_10_1109_TAC_2015_2511930 crossref_primary_10_1016_j_dcan_2022_05_028 crossref_primary_10_1109_TCST_2011_2104959 crossref_primary_10_1109_TAC_2015_2450611 crossref_primary_10_1016_j_ifacol_2015_12_249 crossref_primary_10_1109_JSYST_2023_3264791 crossref_primary_10_1109_TAC_2015_2504962 crossref_primary_10_1109_TAC_2022_3146055 crossref_primary_10_1007_s43684_022_00026_2 crossref_primary_10_1016_j_sysconle_2022_105162 crossref_primary_10_2514_1_58364 crossref_primary_10_1016_j_automatica_2018_05_020 crossref_primary_10_1016_j_automatica_2020_108815 crossref_primary_10_1002_rnc_7722 crossref_primary_10_1109_TCST_2016_2517574 crossref_primary_10_1109_TAC_2023_3342850 crossref_primary_10_1109_TCYB_2021_3049463 crossref_primary_10_1002_asjc_2527 crossref_primary_10_1109_TCST_2014_2303112 crossref_primary_10_1109_TII_2023_3332951 crossref_primary_10_1007_s11071_022_07582_5 crossref_primary_10_1109_TSMC_2024_3387908 crossref_primary_10_1109_TCNS_2023_3264749 crossref_primary_10_1109_TII_2024_3363060 crossref_primary_10_1002_acs_3652 crossref_primary_10_1109_TSG_2024_3395492 crossref_primary_10_1109_TCYB_2018_2828118 crossref_primary_10_1109_TCYB_2020_3029825 crossref_primary_10_1109_TSMC_2020_2968959 crossref_primary_10_1016_j_automatica_2016_10_029 crossref_primary_10_1016_j_neucom_2025_129465 crossref_primary_10_1109_TCYB_2023_3289712 crossref_primary_10_1002_rnc_7674 crossref_primary_10_1016_j_ifacol_2023_10_1293 crossref_primary_10_1109_TNNLS_2023_3290049 crossref_primary_10_1016_j_automatica_2013_02_062 crossref_primary_10_1109_JAS_2022_105857 crossref_primary_10_1109_LCSYS_2018_2840882 crossref_primary_10_1109_TCYB_2016_2524452 crossref_primary_10_1109_TNNLS_2023_3253080 crossref_primary_10_1080_00207179_2023_2262617 crossref_primary_10_1109_TCNS_2019_2920590 crossref_primary_10_1016_j_neucom_2023_01_077 crossref_primary_10_1109_TAC_2021_3133182 crossref_primary_10_1016_j_automatica_2021_109846 crossref_primary_10_1016_j_ins_2019_03_047 crossref_primary_10_1109_TAC_2020_3027795 crossref_primary_10_1109_TSMC_2021_3062827 crossref_primary_10_1109_TCNS_2018_2873166 crossref_primary_10_1109_TAC_2024_3476195 crossref_primary_10_1016_j_amc_2022_127669 crossref_primary_10_3390_en10050620 crossref_primary_10_1016_j_jfranklin_2024_107226 crossref_primary_10_1002_acs_2866 crossref_primary_10_1109_TSMC_2023_3282800 crossref_primary_10_1016_j_automatica_2019_108548 crossref_primary_10_1109_TCNS_2017_2754358 crossref_primary_10_1016_j_automatica_2022_110746 crossref_primary_10_1515_auto_2019_0080 crossref_primary_10_1109_TAC_2020_3046232 crossref_primary_10_1109_TCYB_2022_3155687 crossref_primary_10_1016_j_arcontrol_2024_100941 crossref_primary_10_1109_TCNS_2024_3432250 crossref_primary_10_1016_j_neucom_2023_126650 crossref_primary_10_1109_TAC_2018_2841319 crossref_primary_10_1016_j_neucom_2024_128213 crossref_primary_10_1016_j_automatica_2023_110919 crossref_primary_10_1146_annurev_control_073119_090634 crossref_primary_10_1109_TCST_2016_2627499 crossref_primary_10_1007_s11071_020_05758_5 crossref_primary_10_1109_TAC_2022_3168527 crossref_primary_10_1109_TCYB_2019_2932460 crossref_primary_10_1109_TAC_2018_2833140 crossref_primary_10_1109_TCYB_2020_3030824 crossref_primary_10_1016_j_automatica_2016_06_004 crossref_primary_10_1109_TCSII_2023_3259483 crossref_primary_10_1002_rnc_5618 crossref_primary_10_1109_TCNS_2017_2691464 crossref_primary_10_1016_j_ifacol_2017_08_2472 crossref_primary_10_1002_asjc_2563 crossref_primary_10_1109_TCNS_2024_3372889 crossref_primary_10_1016_j_sysconle_2022_105401 crossref_primary_10_1016_j_automatica_2023_110933 crossref_primary_10_1109_TAC_2023_3240981 crossref_primary_10_1109_TAC_2024_3419018 crossref_primary_10_1016_j_automatica_2021_109660 crossref_primary_10_1016_j_jfranklin_2023_06_004 crossref_primary_10_1002_rnc_7087 crossref_primary_10_1016_j_jfranklin_2022_11_022 crossref_primary_10_1063_5_0210973 crossref_primary_10_1007_s10957_021_01891_2 crossref_primary_10_1109_TAC_2020_3002592 crossref_primary_10_3390_math11102295 crossref_primary_10_1002_rnc_6314 crossref_primary_10_1109_TAC_2017_2688452 crossref_primary_10_1016_j_automatica_2016_06_010 crossref_primary_10_1109_TCYB_2021_3087663 crossref_primary_10_1016_j_sysconle_2020_104667 crossref_primary_10_1109_TNSE_2024_3365108 crossref_primary_10_1002_rnc_7506 crossref_primary_10_1016_j_automatica_2015_10_012 crossref_primary_10_1016_j_automatica_2021_109711 crossref_primary_10_1016_j_ifacol_2022_05_016 crossref_primary_10_1016_j_automatica_2023_110948 crossref_primary_10_1038_s41598_025_86683_8 crossref_primary_10_1080_09720502_2018_1495598 crossref_primary_10_1109_MCS_2022_3171480 crossref_primary_10_1016_j_automatica_2023_110945 crossref_primary_10_1016_j_sysconle_2018_11_009 crossref_primary_10_1016_j_automatica_2024_111738 crossref_primary_10_3390_s20071948 crossref_primary_10_1115_1_4027577 crossref_primary_10_1109_TCNS_2021_3056034 crossref_primary_10_1109_TAC_2022_3164984 crossref_primary_10_1109_TCYB_2022_3195361 crossref_primary_10_1016_j_ifacol_2018_12_063 crossref_primary_10_1109_TAC_2021_3131553 crossref_primary_10_1016_j_automatica_2014_08_019 crossref_primary_10_1109_TCYB_2015_2425411 crossref_primary_10_1109_TCYB_2020_3003372 crossref_primary_10_1109_TAC_2012_2225514 crossref_primary_10_1109_TCSII_2022_3149749 crossref_primary_10_1109_TCNS_2023_3259468 crossref_primary_10_1007_s11071_021_06871_9 crossref_primary_10_1109_TFUZZ_2024_3450500 crossref_primary_10_1016_j_automatica_2023_111486 crossref_primary_10_1109_ACCESS_2020_3041243 crossref_primary_10_1002_asjc_3070 crossref_primary_10_1109_TAC_2024_3433069 crossref_primary_10_1109_TCYB_2020_2984516 crossref_primary_10_1109_TNNLS_2022_3201133 crossref_primary_10_1109_TCSII_2022_3213316 crossref_primary_10_1016_j_automatica_2024_111847 crossref_primary_10_1109_TAC_2016_2526598 crossref_primary_10_1016_j_automatica_2017_09_016 crossref_primary_10_1109_JSTSP_2013_2246511 crossref_primary_10_1109_TNSE_2019_2921056 crossref_primary_10_1109_TNSE_2022_3197816 crossref_primary_10_1109_TCNS_2022_3203362 crossref_primary_10_1007_s11431_022_2333_3 crossref_primary_10_1109_TSMC_2020_2968127 crossref_primary_10_1016_j_automatica_2013_02_016 crossref_primary_10_1109_TAC_2021_3133269 crossref_primary_10_1109_JPROC_2023_3234687 crossref_primary_10_1016_j_neucom_2019_05_076 crossref_primary_10_1016_j_automatica_2019_02_032 crossref_primary_10_1109_TAC_2022_3226142 crossref_primary_10_1016_j_automatica_2024_111712 crossref_primary_10_1109_TCYB_2020_2989755 crossref_primary_10_1109_TSIPN_2025_3538996 crossref_primary_10_1002_oca_2694 crossref_primary_10_1016_j_automatica_2019_01_012 crossref_primary_10_1016_j_conengprac_2023_105743 crossref_primary_10_1109_TCNS_2023_3337671 crossref_primary_10_1016_j_jfranklin_2023_02_014 crossref_primary_10_1109_TNSE_2023_3275326 crossref_primary_10_1109_TSMC_2021_3090515 crossref_primary_10_1109_TCNS_2024_3469030 crossref_primary_10_1109_TCNS_2022_3161194 crossref_primary_10_1109_TNSE_2022_3142523 crossref_primary_10_1109_TNSE_2022_3163447 crossref_primary_10_1016_j_sysconle_2023_105510 crossref_primary_10_1016_j_amc_2024_128804 crossref_primary_10_1007_s13369_017_2910_7 crossref_primary_10_1016_j_automatica_2019_04_034 crossref_primary_10_1016_j_ejcon_2013_05_015 crossref_primary_10_1109_TAC_2024_3424345  | 
    
| Cites_doi | 10.2307/1911749 10.1016/j.sysconle.2006.10.014 10.1109/TSMCB.2009.2017273 10.1007/978-1-4684-9352-8 10.1137/070680199 10.1016/0005-1098(87)90081-1 10.1145/1536414.1536485 10.1109/TAC.2005.843878 10.1109/ACC.2011.5991324 10.1093/oso/9780198538493.001.0001 10.1016/j.automatica.2010.05.005 10.1007/s10846-009-9328-8 10.1016/j.automatica.2007.03.009 10.2307/1969529 10.1109/CDC.2011.6161053 10.1109/CDC.2009.5400504 10.1109/CDC.2010.5717257 10.1109/CDC.2007.4434530 10.1109/TAC.2006.878713 10.1109/JSAC.2007.070801 10.1016/j.geb.2008.02.011 10.1109/JPROC.2006.887293 10.1109/TRA.2004.824698 10.1515/9781400835355 10.1109/CDC.2005.1582828 10.1287/moor.11.1.1 10.3166/ejc.11.436-463 10.1006/game.1996.0044 10.1109/CDC.2009.5399545 10.1016/j.automatica.2009.11.012 10.1049/iet-cta.2009.0229 10.1109/TAC.2009.2034206 10.1002/0471669784 10.1109/TAC.2010.2076530 10.1109/CDC.2002.1184667 10.1016/j.automatica.2006.01.014 10.1109/ACC.2009.5160570 10.1109/9.983370 10.1007/978-1-4419-8909-3 10.1109/TAC.1977.1101561 10.1109/TAC.2009.2036291  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2015 INIST-CNRS | 
    
| Copyright_xml | – notice: 2015 INIST-CNRS | 
    
| DBID | 97E RIA RIE AAYXX CITATION IQODW ADTPV AOWAS D8V  | 
    
| DOI | 10.1109/TAC.2011.2174678 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Applied Sciences  | 
    
| EISSN | 1558-2523 | 
    
| EndPage | 919 | 
    
| ExternalDocumentID | oai_DiVA_org_kth_72945 26369966 10_1109_TAC_2011_2174678 6069543  | 
    
| Genre | orig-research | 
    
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYXX CITATION IQODW RIG ADTPV AOWAS D8V  | 
    
| ID | FETCH-LOGICAL-c330t-d0a6f7c18f28945508bcd83c684cce6b5c70d1a979966c03085a4bb7ad7bbfb43 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0018-9286 1558-2523  | 
    
| IngestDate | Thu Aug 21 07:00:01 EDT 2025 Mon Jul 21 09:14:01 EDT 2025 Wed Oct 01 01:53:38 EDT 2025 Thu Apr 24 23:01:39 EDT 2025 Wed Aug 27 02:52:16 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | Nash strategy Extreme search Nash equilibrium learning Fork join problem Modeling Adaptive method Convergence stochastic optimization multi-agent control Non cooperative game Kinematics Cost function Integrator Game equilibrium Additive noise Almost sure convergence Probabilistic approach Coordination Non holonomic system mobile sensor networks noncooperative games Game theory extremum seeking Stochastic programming Multiagent system Discrete time Problem solving Wireless network Sensor array Artificial intelligence Mobile computing  | 
    
| Language | English | 
    
| License | CC BY 4.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c330t-d0a6f7c18f28945508bcd83c684cce6b5c70d1a979966c03085a4bb7ad7bbfb43 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | crossref_primary_10_1109_TAC_2011_2174678 pascalfrancis_primary_26369966 crossref_citationtrail_10_1109_TAC_2011_2174678 ieee_primary_6069543 swepub_primary_oai_DiVA_org_kth_72945  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2012-04-01 | 
    
| PublicationDateYYYYMMDD | 2012-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2012 text: 2012-04-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York, NY | 
    
| PublicationPlace_xml | – name: New York, NY | 
    
| PublicationTitle | IEEE transactions on automatic control | 
    
| PublicationTitleAbbrev | TAC | 
    
| PublicationYear | 2012 | 
    
| Publisher | IEEE Institute of Electrical and Electronics Engineers  | 
    
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers  | 
    
| References | ref13 ref12 ref15 ref14 bishop (ref47) 1995 ref11 ref10 krstic (ref16) 2010 kushner (ref41) 1978 ref19 ref18 chen (ref40) 2003 ref50 polyak (ref45) 1977 ref48 ref42 ref43 frihauf (ref17) 2010 tan (ref20) 2006; 42 ref49 ref8 ref7 polyak (ref39) 1973 ref9 ref4 ref3 poznyak (ref44) 1984 ref6 basar (ref5) 1999 hoffmann (ref35) 2010; 55 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref38 mesbahi (ref29) 2010 ref24 drr (ref34) 2011 ref23 polyak (ref46) 1976 ref26 ref25 ref22 ref21 ref28 ref27  | 
    
| References_xml | – ident: ref43 doi: 10.2307/1911749 – ident: ref48 doi: 10.1016/j.sysconle.2006.10.014 – ident: ref32 doi: 10.1109/TSMCB.2009.2017273 – year: 1978 ident: ref41 publication-title: Stochastic Approximation Methods for Constrained and Unconstrained Systems doi: 10.1007/978-1-4684-9352-8 – ident: ref13 doi: 10.1137/070680199 – ident: ref11 doi: 10.1016/0005-1098(87)90081-1 – year: 2003 ident: ref40 publication-title: Stochastic Approximation and Its Applications – ident: ref9 doi: 10.1145/1536414.1536485 – ident: ref12 doi: 10.1109/TAC.2005.843878 – ident: ref33 doi: 10.1109/ACC.2011.5991324 – year: 1995 ident: ref47 publication-title: Neural Networks for Pattern Recognition doi: 10.1093/oso/9780198538493.001.0001 – ident: ref22 doi: 10.1016/j.automatica.2010.05.005 – start-page: 78 year: 1984 ident: ref44 article-title: Asymptotic properties of the stochastic approximation procedure with dependent noise publication-title: Autom Remote Control – ident: ref26 doi: 10.1007/s10846-009-9328-8 – ident: ref23 doi: 10.1016/j.automatica.2007.03.009 – ident: ref2 doi: 10.2307/1969529 – start-page: 83 year: 1976 ident: ref46 article-title: Convergence and rate of convergence of iterative stochastic algorithms, I general case publication-title: Autom Remote Control – ident: ref10 doi: 10.1109/CDC.2011.6161053 – ident: ref24 doi: 10.1109/CDC.2009.5400504 – year: 1999 ident: ref5 publication-title: Dynamic Noncooperative Game Theory – ident: ref1 doi: 10.1109/CDC.2010.5717257 – ident: ref25 doi: 10.1109/CDC.2007.4434530 – ident: ref38 doi: 10.1109/TAC.2006.878713 – ident: ref8 doi: 10.1109/JSAC.2007.070801 – ident: ref15 doi: 10.1016/j.geb.2008.02.011 – ident: ref30 doi: 10.1109/JPROC.2006.887293 – start-page: 101 year: 1977 ident: ref45 article-title: Convergence and rate of convergence of iterative stochastic algorithms, II linear case publication-title: Autom Remote Control – year: 2011 ident: ref34 article-title: Nash equilibrium seeking in multi-vehicle systems: A Lie bracket approximation-based approach publication-title: arXiv 1109 6129v2 – ident: ref37 doi: 10.1109/TRA.2004.824698 – year: 2010 ident: ref29 publication-title: Graph Theoretic Methods in Multiagent Networks doi: 10.1515/9781400835355 – ident: ref36 doi: 10.1109/CDC.2005.1582828 – ident: ref6 doi: 10.1287/moor.11.1.1 – ident: ref31 doi: 10.3166/ejc.11.436-463 – ident: ref4 doi: 10.1006/game.1996.0044 – ident: ref14 doi: 10.1109/CDC.2009.5399545 – year: 2010 ident: ref17 article-title: Nash equilibrium seeking for dynamic systems with non-quadratic payoffs publication-title: Proc 14th Int Symp Dynamic Games Applicat – ident: ref28 doi: 10.1016/j.automatica.2009.11.012 – year: 2010 ident: ref16 article-title: Nash equilibrium seeking with finitely- and infinitely-many players publication-title: Proc 8th IFAC Symp Nonlinear Control Syst – ident: ref27 doi: 10.1049/iet-cta.2009.0229 – volume: 55 start-page: 32 year: 2010 ident: ref35 article-title: Mobile sensor network control using mutual information methods and particle filters publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2009.2034206 – ident: ref18 doi: 10.1002/0471669784 – ident: ref49 doi: 10.1109/TAC.2010.2076530 – ident: ref7 doi: 10.1109/CDC.2002.1184667 – volume: 42 start-page: 889 year: 2006 ident: ref20 article-title: On non-local stability properties of extremum seeking control publication-title: Automatica doi: 10.1016/j.automatica.2006.01.014 – ident: ref21 doi: 10.1109/ACC.2009.5160570 – ident: ref19 doi: 10.1109/9.983370 – start-page: 45 year: 1973 ident: ref39 article-title: Pseudogradient algorithms of adaptation and learning publication-title: Autom Remote Control – ident: ref3 doi: 10.1007/978-1-4419-8909-3 – ident: ref42 doi: 10.1109/TAC.1977.1101561 – ident: ref50 doi: 10.1109/TAC.2009.2036291  | 
    
| SSID | ssj0016441 | 
    
| Score | 2.5356736 | 
    
| Snippet | We consider the problem of distributed convergence to a Nash equilibrium in a noncooperative game where the players generate their actions based only on online... We consider the problem of distributed convergenceto a Nash equilibrium in a noncooperative game where the playersgenerate their actions based only on online...  | 
    
| SourceID | swepub pascalfrancis crossref ieee  | 
    
| SourceType | Open Access Repository Index Database Enrichment Source Publisher  | 
    
| StartPage | 904 | 
    
| SubjectTerms | Algorithm design and analysis Applied sciences Artificial intelligence Computer science; control theory; systems Computer systems and distributed systems. User interface Convergence Cost function Exact sciences and technology extremum seeking Game theory Games Heuristic algorithms learning mobile sensor networks multi-agent control Nash equilibrium Noise noncooperative games Operational research and scientific management Operational research. Management science Software SRA - ICT SRA - Informations- och kommunikationsteknik stochastic optimization  | 
    
| Title | Distributed Seeking of Nash Equilibria With Applications to Mobile Sensor Networks | 
    
| URI | https://ieeexplore.ieee.org/document/6069543 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-72945  | 
    
| Volume | 57 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2523 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016441 issn: 1558-2523 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BJxh4I8pLHmBAIm0SO046Vm0RQqIDUOgWxY6jVqAGaLrw67mLQ1QQQmyR_Ejsc-zvfHffAZwJJYXxFSeiW-EI5eIv5SvPUQhmgyDrIEoo2T6H8nokbsbBeAUu61gYY0zpfGZa9Fja8tNcL-iqrI1guxMIvgqrYSRtrFZtMaBz3e669LaoNkm6nfZDt2e5Ogl-S0qotnQElTlVyCMymeOkZDabxQ_e0PKsudqE26-vtC4mz61FoVr64weB43-HsQUbFehkXbtKtmHFzHZgfYmKcBfu-sSgS8mvTMrujaEbdJZnbJjMJ2zwtpiWsQEJe5oWE9ZdsnqzIme3ucLNBZvN5vk7G1rP8vkejK4GD71rp8q34GjO3cJJ3URmofaiDLUwinaOlE4jrmUktDZSBTp0Uy8hQ6CUmohugkQoFSZpqFSmBN-HxiyfmQNgrvFw4xI8891M8BT1Ohn52InSXoIYzzSh_SWCWFdk5JQT4yUulRK3E6PQYhJaXAmtCRd1i1dLxPFH3V2a9bpeNeFNOP0m5brcl1zSmJpwbsVelxD5dn_62I1RgPFzMYlRFxHB4e_9H8EafoVv_XqOoVG8L8wJQpZCnZZr9RP-HedF | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6FcIAeyqMgUqDsAQ5IOLG9jzjHKG0VIMkBUuht5V2vlahV3CbOpb--M17HChVC3Cztw96d9e43OzPfAHwURgkXG05EtyIQJsRfKjZRYBDMSpkPECVUbJ8zNb4Q3y7lZQu-NLEwzrnK-cx16bGy5WeF3dJVWQ_B9kAK_ggeSyGE9NFajc2ATna_79L7ksYoGQ568-HIs3USAFeUUm3vEKqyqpBPZLrBacl9PosHzKHVaXP-DKa77_ROJlfdbWm69u4BheP_DuQ5HNawkw39OnkBLbd6CQd7ZIRH8OOUOHQp_ZXL2E_n6A6dFTmbpZsFO7vdLqvogJT9XpYLNtyze7OyYNPC4PaCzVabYs1m3rd88wouzs_mo3FQZ1wILOdhGWRhqvK-jZIc9TCKd06MzRJuVSKsdcpI2w-zKCVToFKWqG5kKozpp1nfmNwI_hraq2Ll3gALXYRbl-B5HOaCZ6jZqSTGToyNUkR5rgO9nQi0renIKSvGta7UknCgUWiahKZroXXgc9PixlNx_KPuEc16U6-e8A6c_CHlpjxWXNGYOvDJi70pIfrt0-WvoUYB6qtyoVEbEfL47_1_gCfj-XSiJ19n39_CU_yi2Hv5vIN2ud669whgSnNSrdt7PpHqkg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Seeking+of+Nash+Equilibria+With+Applications+to+Mobile+Sensor+Networks&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Stankovic%2C+M.+S.&rft.au=Johansson%2C+K.+H.&rft.au=Stipanovic%2C+D.+M.&rft.date=2012-04-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=57&rft.issue=4&rft.spage=904&rft.epage=919&rft_id=info:doi/10.1109%2FTAC.2011.2174678&rft.externalDocID=6069543 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |