A powerful tool for near-infrared spectroscopy: Synergy adaptive moving window algorithm based on the immune support vector machine
[Display omitted] •It proposes a new convenient and efficient method for near-infrared spectroscopy base on AI algorithm.•It solves the problem of optimizing preprocessing methods, wavelength variables, and the hyper-parameters of the calibration model simultaneously.•It can effectively improve the...
Saved in:
Published in | Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy Vol. 282; p. 121631 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
05.12.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1386-1425 |
DOI | 10.1016/j.saa.2022.121631 |
Cover
Abstract | [Display omitted]
•It proposes a new convenient and efficient method for near-infrared spectroscopy base on AI algorithm.•It solves the problem of optimizing preprocessing methods, wavelength variables, and the hyper-parameters of the calibration model simultaneously.•It can effectively improve the accuracy of the model, select useful wavelength variable, and give reasonable preprocessing method.•It can deal not only with near-infrared spectroscopy but also with other related data.•If the type of calibration model or the optimization strategy were replaced, it can be easily transformed into other related modeling strategy.
Traditional trial-and-error methods are time-consuming and inefficient, especially very unfriendly to inexperienced analysts, and are sometimes still used to select preprocessing methods or wavelength variables in near-infrared spectroscopy (NIR). To deal with this problem, a new optimization algorithm called synergy adaptive moving window algorithm based on the immune support vector machine (SA-MW-ISVM) is proposed in this paper. Following the principle of SA-MW-ISVM, the original problem of calibration model optimization is transformed into a mathematical optimization problem that can be processed by the proposed immune support vector machine regression algorithm. The main objective of this optimization problem is the calibration model performance; meanwhile, the constraint conditions include a reasonable spectral data value, spectral data preprocessing method, and calibration model parameters. A unique antibody structure and specific coding and decoding method are used to achieve collaborative optimization in NIR spectroscopy. The tests on four actual near-infrared datasets, including a group of gasoline and three groups of diesel fuels, have shown that the proposed SA-MW-ISVM algorithm can significantly improve the calibration performance and thus achieve accurate prediction results. In the case of gasoline, the SA-MW-ISVM algorithm can decrease the prediction error by 44.09% compared with the common benchmark partial least square (PLS). Meanwhile, in the case of diesel fuels, the SA-MW-ISVM algorithm can decrease the prediction error of cetane number, freezing temperature, and viscosity by 9.99%, 28.69%, and 43.85%, respectively, compared with the PLS. The powerful prediction performance of the SA-MW-ISVM algorithm makes it an ideal tool for modeling near-infrared spectral data or other related application fields. |
---|---|
AbstractList | [Display omitted]
•It proposes a new convenient and efficient method for near-infrared spectroscopy base on AI algorithm.•It solves the problem of optimizing preprocessing methods, wavelength variables, and the hyper-parameters of the calibration model simultaneously.•It can effectively improve the accuracy of the model, select useful wavelength variable, and give reasonable preprocessing method.•It can deal not only with near-infrared spectroscopy but also with other related data.•If the type of calibration model or the optimization strategy were replaced, it can be easily transformed into other related modeling strategy.
Traditional trial-and-error methods are time-consuming and inefficient, especially very unfriendly to inexperienced analysts, and are sometimes still used to select preprocessing methods or wavelength variables in near-infrared spectroscopy (NIR). To deal with this problem, a new optimization algorithm called synergy adaptive moving window algorithm based on the immune support vector machine (SA-MW-ISVM) is proposed in this paper. Following the principle of SA-MW-ISVM, the original problem of calibration model optimization is transformed into a mathematical optimization problem that can be processed by the proposed immune support vector machine regression algorithm. The main objective of this optimization problem is the calibration model performance; meanwhile, the constraint conditions include a reasonable spectral data value, spectral data preprocessing method, and calibration model parameters. A unique antibody structure and specific coding and decoding method are used to achieve collaborative optimization in NIR spectroscopy. The tests on four actual near-infrared datasets, including a group of gasoline and three groups of diesel fuels, have shown that the proposed SA-MW-ISVM algorithm can significantly improve the calibration performance and thus achieve accurate prediction results. In the case of gasoline, the SA-MW-ISVM algorithm can decrease the prediction error by 44.09% compared with the common benchmark partial least square (PLS). Meanwhile, in the case of diesel fuels, the SA-MW-ISVM algorithm can decrease the prediction error of cetane number, freezing temperature, and viscosity by 9.99%, 28.69%, and 43.85%, respectively, compared with the PLS. The powerful prediction performance of the SA-MW-ISVM algorithm makes it an ideal tool for modeling near-infrared spectral data or other related application fields. |
ArticleNumber | 121631 |
Author | Fang, Zeping Lin, Zhixin Zhang, Peng Lin, Manman Wang, Shenghao Meng, Yanhong Chang, Jing Yang, Yi |
Author_xml | – sequence: 1 givenname: Shenghao surname: Wang fullname: Wang, Shenghao email: wangshenghao@zut.edu.cn organization: School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China – sequence: 2 givenname: Peng surname: Zhang fullname: Zhang, Peng organization: School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China – sequence: 3 givenname: Jing surname: Chang fullname: Chang, Jing organization: School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China – sequence: 4 givenname: Zeping surname: Fang fullname: Fang, Zeping organization: School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China – sequence: 5 givenname: Yi surname: Yang fullname: Yang, Yi organization: School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China – sequence: 6 givenname: Manman surname: Lin fullname: Lin, Manman organization: School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China – sequence: 7 givenname: Yanhong surname: Meng fullname: Meng, Yanhong organization: School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China – sequence: 8 givenname: Zhixin surname: Lin fullname: Lin, Zhixin organization: School of Political Science and Law, Zhongyuan University of Technology, Zhengzhou, China |
BookMark | eNp9kL1OwzAURj2ABC08AJtfIMV20sSCqUL8SUgMwGzd2tetq8SObLdVZ14cozIxdLrT-a7OmZAzHzwScsPZjDPe3m5mCWAmmBAzLnhb8zNyyWvZVrwR8wsySWnDGONSsEvyvaBj2GO0257mEHpqQ6QeIVbO2wgRDU0j6hxD0mE83NGPg8e4OlAwMGa3QzqEnfMrunfehD2FfhWiy-uBLiEVOHia10jdMGw90rQdxxAz3ZXF8mcAvXYer8i5hT7h9d-dkq-nx8-Hl-rt_fn1YfFW6bpmuVoaI0zRaOcSatk0qKHt7BKaGq3RKNGwlkm0EkB2nRBmLpesqYHNW2ZNB_WUdMddXWxSRKu0y5Bd8DmC6xVn6ref2qjST_32U8d-heT_yDG6AeLhJHN_ZLAo7RxGlbRDr9G4WPSVCe4E_QMx6JCA |
CitedBy_id | crossref_primary_10_1016_j_saa_2023_123224 crossref_primary_10_1016_j_saa_2024_124436 crossref_primary_10_3389_fninf_2022_1078685 crossref_primary_10_1016_j_saa_2023_123248 |
Cites_doi | 10.1039/B301555F 10.1109/TEVC.2002.1011539 10.1016/S0169-7439(98)00055-0 10.1002/cem.2702 10.1366/0003702854248656 10.1002/wics.101 10.1002/1099-128X(200009/12)14:5/6<643::AID-CEM621>3.0.CO;2-E 10.1366/0003702894202201 10.1070/RCR4746 10.1002/cem.1180080208 10.1002/cem.2426 10.1016/S0169-7439(97)00038-5 10.1080/14751798.2019.1600800 10.1002/cem.1360 10.1162/neco.1991.3.4.461 10.1016/j.talanta.2005.03.025 10.1255/jnirs.786 10.1016/j.eng.2020.07.017 10.1089/heq.2018.0037 10.1016/j.chemolab.2014.01.012 10.1109/ACCESS.2021.3058133 10.1016/j.chemolab.2004.01.002 10.1016/j.chemolab.2011.01.008 10.1016/j.chemolab.2016.02.001 10.1007/s10015-019-00525-1 10.1016/j.aca.2017.11.028 10.1016/S1872-2040(16)60928-3 10.1007/s10462-011-9206-1 10.1021/ac60214a047 10.1115/1.4047855 10.1023/A:1018628609742 10.1016/j.trac.2009.07.007 10.1609/aaai.v34i02.5533 10.1016/j.microc.2007.11.008 10.1016/j.tcs.2008.02.011 10.1016/S0169-7439(98)00051-3 10.1016/j.amjmed.2017.10.035 10.1002/cem.1192 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.saa.2022.121631 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
ExternalDocumentID | 10_1016_j_saa_2022_121631 S1386142522007806 |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABYKQ ACDAQ ACRLP ADBBV ADECG ADEZE AEBSH AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCB SDF SDG SDP SES SPC SPCBC SSK SSZ T5K WH7 XPP ZMT ~G- 1RT 53G 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FGOYB HZ~ M36 R2- SEW UHS ~HD |
ID | FETCH-LOGICAL-c330t-bdd2d386658a3844eca67fba43efdce8ed0608ef8aa87722d58b043a0560fd7a3 |
IEDL.DBID | .~1 |
ISSN | 1386-1425 |
IngestDate | Wed Oct 01 04:11:34 EDT 2025 Thu Apr 24 22:57:31 EDT 2025 Fri Feb 23 02:37:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Support vector machine Optimization calculation Diesel fuel Immune clone algorithm Gasoline Near-infrared spectrum |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-bdd2d386658a3844eca67fba43efdce8ed0608ef8aa87722d58b043a0560fd7a3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_saa_2022_121631 crossref_primary_10_1016_j_saa_2022_121631 elsevier_sciencedirect_doi_10_1016_j_saa_2022_121631 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-05 |
PublicationDateYYYYMMDD | 2022-12-05 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Guo, Li (b0010) 2018; 2 Devos, Duponchel (b0095) 2011; 107 Richard, Lippmann (b0150) 1991; 3 Haktanirlar Ulutas, Kulturel-Konak (b0125) 2011; 36 Baskin, Madzhidov, Antipin, Varnek (b0085) 2017; 86 Marini, Bucci, Magrì, Magrì (b0075) 2008; 88 Flaten, Walmsley (b0090) 2003; 128 De Jong, Ter Braak (b0135) 1994; 8 Niazi, Leardi (b0060) 2012; 26 Rasmussen (b0145) 2004 Miller, Brown (b0005) 2018; 131 Konen (b0040) 2019 Thissen, Pepers, Üstün, Melssen, Buydens (b0155) 2004; 73 Arinez, Chang, Gao, Xu, Zhang (b0020) 2020; 142 Madden, Howley (b0080) 2009 Westad, Schmidt, Kermit (b0220) 2008; 16 Leardi, Lupiáñez González (b0230) 1998; 41 Geladi, MacDougall, Martens (b0185) 1985; 39 Barnes, Dhanoa, Lister (b0190) 1989; 43 Abdi, Williams (b0200) 2010; 2 de Castro, Von Zuben (b0115) 2002; 6 Tipping (b0140) 2001; 1 Wang, Tao, Fang, Liu, Liu, Freiheit (b0015) 2021; 7 Pardalos, P.M. and H.E. Romeijn Zhao, Wang, Li, Pei, Cao (b0105) 2016; 152 Galvao, Araujo, Jose, Pontes, Silva, Saldanha (b0210) 2005; 67 A. Goldwaser, M. Thielscher. Deep reinforcement learning for general game playing. in Proceedings of the AAAI conference on artificial intelligence. 2020. Rinnan, Berg, Engelsen (b0195) 2009; 28 Ranzan, Strohm, Ranzan, Trierweiler, Hitzmann, Trierweiler (b0070) 2014; 132 De Swarte, Boufous, Escalle (b0050) 2019; 24 Cao, Wang, Yang, Zhou (b0065) 2015; 29 Swierenga, de Groot, de Weijer, Derksen, Buydens (b0055) 1998; 41 Johnson (b0045) 2019; 35 Andersen, Bro (b0235) 2010; 24 Vol. 2. 2013: Springer Science & Business Media. Liu, Shen, Wang (b0165) 2014 Teófilo, Martins, Ferreira (b0215) 2010; 23 Leardi (b0225) 2000; 14 Zhao, Wang, Li, Cao, Pei (b0100) 2016; 44 Pallathadka, Ramirez-Asis, Loli-Poma, Kaliyaperumal, Ventayen, Naved (b0025) 2021 Ferreira, Gandomi, Cardoso (b0030) 2021; 9 Kalivas (b0205) 1997; 37 Timmis, Hone, Stibor, Clark (b0130) 2008; 403 Song (b0170) 2008 Suykens, Vandewalle (b0120) 1999; 9 Wang, Zhang, Cao, Pei, Gao, Zhang, Zhao (b0110) 2018; 1000 Haifeng, Dejin (b0160) 2005 Savitzky, Golay (b0180) 1964; 36 Swierenga (10.1016/j.saa.2022.121631_b0055) 1998; 41 Haifeng (10.1016/j.saa.2022.121631_b0160) 2005 Ferreira (10.1016/j.saa.2022.121631_b0030) 2021; 9 10.1016/j.saa.2022.121631_b0035 10.1016/j.saa.2022.121631_b0175 Richard (10.1016/j.saa.2022.121631_b0150) 1991; 3 Guo (10.1016/j.saa.2022.121631_b0010) 2018; 2 Rinnan (10.1016/j.saa.2022.121631_b0195) 2009; 28 Song (10.1016/j.saa.2022.121631_b0170) 2008 Zhao (10.1016/j.saa.2022.121631_b0100) 2016; 44 Zhao (10.1016/j.saa.2022.121631_b0105) 2016; 152 De Jong (10.1016/j.saa.2022.121631_b0135) 1994; 8 Wang (10.1016/j.saa.2022.121631_b0110) 2018; 1000 Tipping (10.1016/j.saa.2022.121631_b0140) 2001; 1 Westad (10.1016/j.saa.2022.121631_b0220) 2008; 16 Konen (10.1016/j.saa.2022.121631_b0040) 2019 Niazi (10.1016/j.saa.2022.121631_b0060) 2012; 26 Miller (10.1016/j.saa.2022.121631_b0005) 2018; 131 De Swarte (10.1016/j.saa.2022.121631_b0050) 2019; 24 Thissen (10.1016/j.saa.2022.121631_b0155) 2004; 73 Ranzan (10.1016/j.saa.2022.121631_b0070) 2014; 132 Madden (10.1016/j.saa.2022.121631_b0080) 2009 Liu (10.1016/j.saa.2022.121631_b0165) 2014 Barnes (10.1016/j.saa.2022.121631_b0190) 1989; 43 Andersen (10.1016/j.saa.2022.121631_b0235) 2010; 24 Suykens (10.1016/j.saa.2022.121631_b0120) 1999; 9 Johnson (10.1016/j.saa.2022.121631_b0045) 2019; 35 Kalivas (10.1016/j.saa.2022.121631_b0205) 1997; 37 Arinez (10.1016/j.saa.2022.121631_b0020) 2020; 142 Haktanirlar Ulutas (10.1016/j.saa.2022.121631_b0125) 2011; 36 Baskin (10.1016/j.saa.2022.121631_b0085) 2017; 86 Wang (10.1016/j.saa.2022.121631_b0015) 2021; 7 Devos (10.1016/j.saa.2022.121631_b0095) 2011; 107 Leardi (10.1016/j.saa.2022.121631_b0230) 1998; 41 Cao (10.1016/j.saa.2022.121631_b0065) 2015; 29 Marini (10.1016/j.saa.2022.121631_b0075) 2008; 88 Abdi (10.1016/j.saa.2022.121631_b0200) 2010; 2 Timmis (10.1016/j.saa.2022.121631_b0130) 2008; 403 Rasmussen (10.1016/j.saa.2022.121631_b0145) 2004 Leardi (10.1016/j.saa.2022.121631_b0225) 2000; 14 Savitzky (10.1016/j.saa.2022.121631_b0180) 1964; 36 Galvao (10.1016/j.saa.2022.121631_b0210) 2005; 67 Geladi (10.1016/j.saa.2022.121631_b0185) 1985; 39 de Castro (10.1016/j.saa.2022.121631_b0115) 2002; 6 Pallathadka (10.1016/j.saa.2022.121631_b0025) 2021 Flaten (10.1016/j.saa.2022.121631_b0090) 2003; 128 Teófilo (10.1016/j.saa.2022.121631_b0215) 2010; 23 |
References_xml | – volume: 41 start-page: 237 year: 1998 end-page: 248 ident: b0055 article-title: Improvement of PLS model transferability by robust wavelength selection publication-title: Chemometrics & Intelligent Laboratory Systems – volume: 26 start-page: 345 year: 2012 end-page: 351 ident: b0060 article-title: Genetic algorithms in chemometrics publication-title: J. Chemom. – start-page: 77 year: 2009 end-page: 90 ident: b0080 publication-title: Applications and Innovations in Intelligent Systems XVI – volume: 142 year: 2020 ident: b0020 article-title: Artificial intelligence in advanced manufacturing: Current status and future outlook publication-title: J. Manuf. Sci. Eng. – volume: 36 start-page: 1627 year: 1964 end-page: 1639 ident: b0180 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal. Chem. – volume: 67 start-page: 736 year: 2005 end-page: 740 ident: b0210 article-title: A method for calibration and validation subset partitioning publication-title: Talanta – volume: 88 start-page: 178 year: 2008 end-page: 185 ident: b0075 article-title: Artificial neural networks in chemometrics History, examples and perspectives publication-title: Microchem. J. – volume: 28 start-page: 1201 year: 2009 end-page: 1222 ident: b0195 article-title: Review of the most common pre-processing techniques for near-infrared spectra publication-title: TrAC, Trends Anal. Chem. – volume: 16 start-page: 265 year: 2008 end-page: 273 ident: b0220 article-title: Incorporating chemical band-assignment in near infrared spectroscopy regression models publication-title: J. Near Infrared Spectrosc. – volume: 6 start-page: 239 year: 2002 end-page: 251 ident: b0115 article-title: Learning and optimization using the clonal selection principle publication-title: IEEE Trans. Evol. Comput. – reference: . Vol. 2. 2013: Springer Science & Business Media. – reference: Pardalos, P.M. and H.E. Romeijn, – volume: 24 start-page: 291 year: 2019 end-page: 296 ident: b0050 article-title: Artificial intelligence, ethics and human values: the cases of military drones and companion robots publication-title: Artificial life and robotics – reference: A. Goldwaser, M. Thielscher. Deep reinforcement learning for general game playing. in Proceedings of the AAAI conference on artificial intelligence. 2020. – volume: 2 start-page: 174 year: 2018 end-page: 181 ident: b0010 article-title: The application of medical artificial intelligence technology in rural areas of developing countries publication-title: Health equity – volume: 43 start-page: 772 year: 1989 end-page: 777 ident: b0190 article-title: Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra publication-title: Appl. Spectrosc. – volume: 128 start-page: 935 year: 2003 end-page: 943 ident: b0090 article-title: Using design of experiments to select optimum calibration model parameters publication-title: Analyst – volume: 7 start-page: 738 year: 2021 end-page: 757 ident: b0015 article-title: Smart manufacturing and intelligent manufacturing: A comparative review publication-title: Engineering – volume: 23 start-page: 32 year: 2010 end-page: 48 ident: b0215 article-title: Sorting variables by using informative vectors as a strategy for feature selection in multivariate regression publication-title: J. Chemom. – volume: 9 start-page: 30898 year: 2021 end-page: 30917 ident: b0030 article-title: Artificial intelligence applied to stock market trading: A review publication-title: IEEE Access – volume: 9 start-page: 293 year: 1999 end-page: 300 ident: b0120 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. – volume: 29 start-page: 289 year: 2015 end-page: 299 ident: b0065 article-title: A wavelength selection method based on random decision particle swarm optimization with attractor for near-infrared spectral quantitative analysis publication-title: J. Chemom. – volume: 107 start-page: 50 year: 2011 end-page: 58 ident: b0095 article-title: Parallel genetic algorithm co-optimization of spectral pre-processing and wavelength selection for PLS regression publication-title: Chemom. Intell. Lab. Syst. – volume: 14 start-page: 643 year: 2000 end-page: 655 ident: b0225 article-title: Application of genetic algorithm–PLS for feature selection in spectral data sets publication-title: J. Chemom. – volume: 8 start-page: 169 year: 1994 end-page: 174 ident: b0135 article-title: Comments on the PLS kernel algorithm publication-title: J. Chemom. – volume: 73 start-page: 169 year: 2004 end-page: 179 ident: b0155 article-title: Comparing support vector machines to PLS for spectral regression applications publication-title: Chemom. Intell. Lab. Syst. – volume: 131 start-page: 129 year: 2018 end-page: 133 ident: b0005 article-title: Artificial intelligence in medical practice: the question to the answer? publication-title: Am. J. Med. – volume: 1000 start-page: 109 year: 2018 end-page: 122 ident: b0110 article-title: Novel near-infrared spectrum analysis tool: Synergy adaptive moving window model based on immune clone algorithm publication-title: Anal. Chim. Acta – volume: 44 start-page: e1609 year: 2016 end-page: e1616 ident: b0100 article-title: A Novel Interval Integer Genetic Algorithm Used for Simultaneously Selecting Wavelengths and Pre-processing Methods publication-title: Chin. J. Anal. Chem. – start-page: 827 year: 2014 end-page: 834 ident: b0165 article-title: Research on kernel function of support vector machine publication-title: Advanced technologies, embedded and multimedia for human-centric computing – volume: 37 start-page: 255 year: 1997 end-page: 259 ident: b0205 article-title: Two data sets of near infrared spectra publication-title: Chemom. Intell. Lab. Syst. – volume: 35 start-page: 147 year: 2019 end-page: 169 ident: b0045 article-title: Artificial intelligence & future warfare: implications for international security publication-title: Defense & Security Analysis – volume: 403 start-page: 11 year: 2008 end-page: 32 ident: b0130 article-title: Theoretical advances in artificial immune systems publication-title: Theoret. Comput. Sci. – start-page: 63 year: 2004 end-page: 71 ident: b0145 article-title: Gaussian processes in machine learning publication-title: Advanced lectures on machine learning – volume: 2 start-page: 433 year: 2010 end-page: 459 ident: b0200 article-title: Principal component analysis publication-title: Wiley Interdiscip. Rev. Comput. Stat. – volume: 24 start-page: 728 year: 2010 end-page: 737 ident: b0235 article-title: Variable selection in regression—a tutorial publication-title: J. Chemom. – year: 2005 ident: b0160 article-title: Comparison of SVM and LS-SVM for Regression publication-title: in – volume: 39 start-page: 491 year: 1985 end-page: 500 ident: b0185 article-title: Linearization and scatter-correction for near-infrared reflectance spectra of meat publication-title: Appl. Spectrosc. – volume: 132 start-page: 133 year: 2014 end-page: 140 ident: b0070 article-title: Wheat flour characterization using NIR and spectral filter based on Ant Colony Optimization publication-title: Chemometrics and Intelligent Laboratory Systems – year: 2019 ident: b0040 article-title: General Board Game Playing for Education and Research in Generic AI Game Learning publication-title: in – volume: 1 start-page: 211 year: 2001 end-page: 244 ident: b0140 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J. Mach. Learn. Res. – volume: 36 start-page: 117 year: 2011 end-page: 138 ident: b0125 article-title: A review of clonal selection algorithm and its applications publication-title: Artif. Intell. Rev. – year: 2021 ident: b0025 article-title: Applications of artificial intelligence in business management, e-commerce and finance publication-title: Mater. Today:. Proc. – volume: 3 start-page: 461 year: 1991 end-page: 483 ident: b0150 article-title: Neural network classifiers estimate Bayesian a posteriori probabilities publication-title: Neural Comput. – volume: 41 start-page: 195 year: 1998 end-page: 207 ident: b0230 article-title: Genetic algorithms applied to feature selection in PLS regression: how and when to use them publication-title: Chemom. Intell. Lab. Syst. – year: 2008 ident: b0170 article-title: Research on Combination Kernel Function of Support Vector Machine publication-title: in – volume: 86 start-page: 1127 year: 2017 end-page: 1156 ident: b0085 article-title: Artificial intelligence in synthetic chemistry: achievements and prospects publication-title: Russ. Chem. Rev. – volume: 152 start-page: 118 year: 2016 end-page: 124 ident: b0105 article-title: An improved changeable size moving window partial least square applied for molecular spectroscopy publication-title: Chemom. Intell. Lab. Syst. – volume: 128 start-page: 935 issue: 7 year: 2003 ident: 10.1016/j.saa.2022.121631_b0090 article-title: Using design of experiments to select optimum calibration model parameters publication-title: Analyst doi: 10.1039/B301555F – volume: 6 start-page: 239 issue: 3 year: 2002 ident: 10.1016/j.saa.2022.121631_b0115 article-title: Learning and optimization using the clonal selection principle publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2002.1011539 – volume: 41 start-page: 237 issue: 2 year: 1998 ident: 10.1016/j.saa.2022.121631_b0055 article-title: Improvement of PLS model transferability by robust wavelength selection publication-title: Chemometrics & Intelligent Laboratory Systems doi: 10.1016/S0169-7439(98)00055-0 – year: 2008 ident: 10.1016/j.saa.2022.121631_b0170 article-title: Research on Combination Kernel Function of Support Vector Machine – ident: 10.1016/j.saa.2022.121631_b0175 – volume: 29 start-page: 289 issue: 5 year: 2015 ident: 10.1016/j.saa.2022.121631_b0065 article-title: A wavelength selection method based on random decision particle swarm optimization with attractor for near-infrared spectral quantitative analysis publication-title: J. Chemom. doi: 10.1002/cem.2702 – volume: 39 start-page: 491 issue: 3 year: 1985 ident: 10.1016/j.saa.2022.121631_b0185 article-title: Linearization and scatter-correction for near-infrared reflectance spectra of meat publication-title: Appl. Spectrosc. doi: 10.1366/0003702854248656 – volume: 2 start-page: 433 issue: 4 year: 2010 ident: 10.1016/j.saa.2022.121631_b0200 article-title: Principal component analysis publication-title: Wiley Interdiscip. Rev. Comput. Stat. doi: 10.1002/wics.101 – volume: 14 start-page: 643 issue: 5–6 year: 2000 ident: 10.1016/j.saa.2022.121631_b0225 article-title: Application of genetic algorithm–PLS for feature selection in spectral data sets publication-title: J. Chemom. doi: 10.1002/1099-128X(200009/12)14:5/6<643::AID-CEM621>3.0.CO;2-E – volume: 43 start-page: 772 issue: 5 year: 1989 ident: 10.1016/j.saa.2022.121631_b0190 article-title: Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra publication-title: Appl. Spectrosc. doi: 10.1366/0003702894202201 – year: 2005 ident: 10.1016/j.saa.2022.121631_b0160 article-title: Comparison of SVM and LS-SVM for Regression – volume: 86 start-page: 1127 issue: 11 year: 2017 ident: 10.1016/j.saa.2022.121631_b0085 article-title: Artificial intelligence in synthetic chemistry: achievements and prospects publication-title: Russ. Chem. Rev. doi: 10.1070/RCR4746 – volume: 8 start-page: 169 issue: 2 year: 1994 ident: 10.1016/j.saa.2022.121631_b0135 article-title: Comments on the PLS kernel algorithm publication-title: J. Chemom. doi: 10.1002/cem.1180080208 – volume: 26 start-page: 345 issue: 6 year: 2012 ident: 10.1016/j.saa.2022.121631_b0060 article-title: Genetic algorithms in chemometrics publication-title: J. Chemom. doi: 10.1002/cem.2426 – volume: 37 start-page: 255 issue: 2 year: 1997 ident: 10.1016/j.saa.2022.121631_b0205 article-title: Two data sets of near infrared spectra publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(97)00038-5 – volume: 35 start-page: 147 issue: 2 year: 2019 ident: 10.1016/j.saa.2022.121631_b0045 article-title: Artificial intelligence & future warfare: implications for international security publication-title: Defense & Security Analysis doi: 10.1080/14751798.2019.1600800 – volume: 24 start-page: 728 issue: 11–12 year: 2010 ident: 10.1016/j.saa.2022.121631_b0235 article-title: Variable selection in regression—a tutorial publication-title: J. Chemom. doi: 10.1002/cem.1360 – year: 2021 ident: 10.1016/j.saa.2022.121631_b0025 article-title: Applications of artificial intelligence in business management, e-commerce and finance publication-title: Mater. Today:. Proc. – volume: 3 start-page: 461 issue: 4 year: 1991 ident: 10.1016/j.saa.2022.121631_b0150 article-title: Neural network classifiers estimate Bayesian a posteriori probabilities publication-title: Neural Comput. doi: 10.1162/neco.1991.3.4.461 – volume: 67 start-page: 736 issue: 4 year: 2005 ident: 10.1016/j.saa.2022.121631_b0210 article-title: A method for calibration and validation subset partitioning publication-title: Talanta doi: 10.1016/j.talanta.2005.03.025 – volume: 16 start-page: 265 issue: 3 year: 2008 ident: 10.1016/j.saa.2022.121631_b0220 article-title: Incorporating chemical band-assignment in near infrared spectroscopy regression models publication-title: J. Near Infrared Spectrosc. doi: 10.1255/jnirs.786 – volume: 7 start-page: 738 issue: 6 year: 2021 ident: 10.1016/j.saa.2022.121631_b0015 article-title: Smart manufacturing and intelligent manufacturing: A comparative review publication-title: Engineering doi: 10.1016/j.eng.2020.07.017 – volume: 2 start-page: 174 issue: 1 year: 2018 ident: 10.1016/j.saa.2022.121631_b0010 article-title: The application of medical artificial intelligence technology in rural areas of developing countries publication-title: Health equity doi: 10.1089/heq.2018.0037 – start-page: 63 year: 2004 ident: 10.1016/j.saa.2022.121631_b0145 article-title: Gaussian processes in machine learning – volume: 132 start-page: 133 year: 2014 ident: 10.1016/j.saa.2022.121631_b0070 article-title: Wheat flour characterization using NIR and spectral filter based on Ant Colony Optimization publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2014.01.012 – start-page: 77 year: 2009 ident: 10.1016/j.saa.2022.121631_b0080 – volume: 9 start-page: 30898 year: 2021 ident: 10.1016/j.saa.2022.121631_b0030 article-title: Artificial intelligence applied to stock market trading: A review publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3058133 – volume: 73 start-page: 169 issue: 2 year: 2004 ident: 10.1016/j.saa.2022.121631_b0155 article-title: Comparing support vector machines to PLS for spectral regression applications publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2004.01.002 – start-page: 827 year: 2014 ident: 10.1016/j.saa.2022.121631_b0165 article-title: Research on kernel function of support vector machine – volume: 107 start-page: 50 issue: 1 year: 2011 ident: 10.1016/j.saa.2022.121631_b0095 article-title: Parallel genetic algorithm co-optimization of spectral pre-processing and wavelength selection for PLS regression publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2011.01.008 – volume: 152 start-page: 118 year: 2016 ident: 10.1016/j.saa.2022.121631_b0105 article-title: An improved changeable size moving window partial least square applied for molecular spectroscopy publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2016.02.001 – volume: 24 start-page: 291 issue: 3 year: 2019 ident: 10.1016/j.saa.2022.121631_b0050 article-title: Artificial intelligence, ethics and human values: the cases of military drones and companion robots publication-title: Artificial life and robotics doi: 10.1007/s10015-019-00525-1 – volume: 1000 start-page: 109 year: 2018 ident: 10.1016/j.saa.2022.121631_b0110 article-title: Novel near-infrared spectrum analysis tool: Synergy adaptive moving window model based on immune clone algorithm publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2017.11.028 – year: 2019 ident: 10.1016/j.saa.2022.121631_b0040 article-title: General Board Game Playing for Education and Research in Generic AI Game Learning – volume: 44 start-page: e1609 issue: 9 year: 2016 ident: 10.1016/j.saa.2022.121631_b0100 article-title: A Novel Interval Integer Genetic Algorithm Used for Simultaneously Selecting Wavelengths and Pre-processing Methods publication-title: Chin. J. Anal. Chem. doi: 10.1016/S1872-2040(16)60928-3 – volume: 36 start-page: 117 issue: 2 year: 2011 ident: 10.1016/j.saa.2022.121631_b0125 article-title: A review of clonal selection algorithm and its applications publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-011-9206-1 – volume: 1 start-page: 211 issue: Jun year: 2001 ident: 10.1016/j.saa.2022.121631_b0140 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J. Mach. Learn. Res. – volume: 36 start-page: 1627 issue: 8 year: 1964 ident: 10.1016/j.saa.2022.121631_b0180 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal. Chem. doi: 10.1021/ac60214a047 – volume: 142 issue: 11 year: 2020 ident: 10.1016/j.saa.2022.121631_b0020 article-title: Artificial intelligence in advanced manufacturing: Current status and future outlook publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4047855 – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 10.1016/j.saa.2022.121631_b0120 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. doi: 10.1023/A:1018628609742 – volume: 28 start-page: 1201 issue: 10 year: 2009 ident: 10.1016/j.saa.2022.121631_b0195 article-title: Review of the most common pre-processing techniques for near-infrared spectra publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2009.07.007 – ident: 10.1016/j.saa.2022.121631_b0035 doi: 10.1609/aaai.v34i02.5533 – volume: 88 start-page: 178 issue: 2 year: 2008 ident: 10.1016/j.saa.2022.121631_b0075 article-title: Artificial neural networks in chemometrics History, examples and perspectives publication-title: Microchem. J. doi: 10.1016/j.microc.2007.11.008 – volume: 403 start-page: 11 issue: 1 year: 2008 ident: 10.1016/j.saa.2022.121631_b0130 article-title: Theoretical advances in artificial immune systems publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2008.02.011 – volume: 41 start-page: 195 issue: 2 year: 1998 ident: 10.1016/j.saa.2022.121631_b0230 article-title: Genetic algorithms applied to feature selection in PLS regression: how and when to use them publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(98)00051-3 – volume: 131 start-page: 129 issue: 2 year: 2018 ident: 10.1016/j.saa.2022.121631_b0005 article-title: Artificial intelligence in medical practice: the question to the answer? publication-title: Am. J. Med. doi: 10.1016/j.amjmed.2017.10.035 – volume: 23 start-page: 32 issue: 1 year: 2010 ident: 10.1016/j.saa.2022.121631_b0215 article-title: Sorting variables by using informative vectors as a strategy for feature selection in multivariate regression publication-title: J. Chemom. doi: 10.1002/cem.1192 |
SSID | ssj0001820 |
Score | 2.3904836 |
Snippet | [Display omitted]
•It proposes a new convenient and efficient method for near-infrared spectroscopy base on AI algorithm.•It solves the problem of optimizing... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 121631 |
SubjectTerms | Diesel fuel Gasoline Immune clone algorithm Near-infrared spectrum Optimization calculation Support vector machine |
Title | A powerful tool for near-infrared spectroscopy: Synergy adaptive moving window algorithm based on the immune support vector machine |
URI | https://dx.doi.org/10.1016/j.saa.2022.121631 |
Volume | 282 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1386-1425 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001820 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 1386-1425 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001820 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 1386-1425 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001820 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 1386-1425 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001820 providerName: Elsevier |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS-RAEG1EEb2Iurv4TR08LfROTCedHm_DoIwKXlTwFjrdHXdkJgkzGcWLF_-4VT2JH7DrwWNCN4Suol5V59Urxg6z2EYG_Ygntis56bNzZXLJEduxjlNYE2lPkL2Ug5vo_Da-XWD9theGaJVN7J_HdB-tmzed5jQ71XDYuToSCrElxASCcM7LbpP6F_r0n-d3mgcJlPuiS0lOq9s_m57jNdUkPRSGpLEgxdG_sekD3pyus7UmUYTe_Fs22IIrNtlKv53PtsmWPXnTTH-wlx5UNOwsn42gLssRYCIKBbowR_eZEMMcfEMlCVeW1dMxXD35jj_QVlcU7mDs7xXgEQv08hH06K6cDOu_YyCMs1AWgGkiDKmVxMF0VlHODg_-vh_Gno3pfrKb05Pr_oA3wxW4ESKoeWZtaAWp3SktVBQ5o2WSZzoSLrfGKWcDGSiXK60VZuChjVUWREJjwhTkNtHiF1ssysJtMSB7YywQmRNY7GnVNYj6NpGJEVbmcXebBe2xpqZRHqcBGKO0pZjdp2iJlCyRzi2xzX6_banmshtfLY5aW6WffCdFWPj_tp3vbdtlq_TkKS3xHlusJzO3j4lJnR14zztgS72zi8HlK92041w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAEB2CQ0kvJU1bmn7OoafCYkUrrda9GZPgNKkvSSA3sdpdtQ62JGy5Ief-8c6spdBCk0OvkgaEZph5s3rzBuBTkbrEUhyJzI2UYH12oW2pBNV26uM09UQmEGRnanqVfL1Or3dg0s_CMK2yy_3bnB6ydXdl2H3NYTOfDy-OpKbaEhOA4DrHstu7SUo5eQC749Oz6ew-IbNGeei7tBJs0P_cDDSvtWH1oThmmQUlj_5dnv4oOSf78KzDijjevs5z2PHVAexN-hVtB_Ak8Dft-gX8GmPD-87KzQLbul4gYVGsKIoFRdCKSeYYZipZu7Ju7r7gxV0Y-kPjTMMZD5fhaAFvqUevb9EsvtereftjiVzmHNYVElLEOU-TeFxvGobt-DMc-eMyEDL9S7g6Ob6cTEW3X0FYKaNWFM7FTrLgnTZSJ4m3RmVlYRLpS2e99i5SkfalNkYTCI9dqosokYYwU1S6zMhXMKjqyr8GZJdTOpCFl9TvGT2yVPhdpjIrnSrT0SFE_WfNbSc-zjswFnnPMrvJyRM5eyLfeuIQPt-bNFvljcceTnpf5X-FT06V4WGzN_9n9hH2ppffzvPz09nZW3jKdwLDJX0Hg3a18e8Jp7TFhy4OfwOdaeYH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+powerful+tool+for+near-infrared+spectroscopy%3A+Synergy+adaptive+moving+window+algorithm+based+on+the+immune+support+vector+machine&rft.jtitle=Spectrochimica+acta.+Part+A%2C+Molecular+and+biomolecular+spectroscopy&rft.au=Wang%2C+Shenghao&rft.au=Zhang%2C+Peng&rft.au=Chang%2C+Jing&rft.au=Fang%2C+Zeping&rft.date=2022-12-05&rft.pub=Elsevier+B.V&rft.issn=1386-1425&rft.volume=282&rft_id=info:doi/10.1016%2Fj.saa.2022.121631&rft.externalDocID=S1386142522007806 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-1425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-1425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-1425&client=summon |