A powerful tool for near-infrared spectroscopy: Synergy adaptive moving window algorithm based on the immune support vector machine

[Display omitted] •It proposes a new convenient and efficient method for near-infrared spectroscopy base on AI algorithm.•It solves the problem of optimizing preprocessing methods, wavelength variables, and the hyper-parameters of the calibration model simultaneously.•It can effectively improve the...

Full description

Saved in:
Bibliographic Details
Published inSpectrochimica acta. Part A, Molecular and biomolecular spectroscopy Vol. 282; p. 121631
Main Authors Wang, Shenghao, Zhang, Peng, Chang, Jing, Fang, Zeping, Yang, Yi, Lin, Manman, Meng, Yanhong, Lin, Zhixin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 05.12.2022
Subjects
Online AccessGet full text
ISSN1386-1425
DOI10.1016/j.saa.2022.121631

Cover

Abstract [Display omitted] •It proposes a new convenient and efficient method for near-infrared spectroscopy base on AI algorithm.•It solves the problem of optimizing preprocessing methods, wavelength variables, and the hyper-parameters of the calibration model simultaneously.•It can effectively improve the accuracy of the model, select useful wavelength variable, and give reasonable preprocessing method.•It can deal not only with near-infrared spectroscopy but also with other related data.•If the type of calibration model or the optimization strategy were replaced, it can be easily transformed into other related modeling strategy. Traditional trial-and-error methods are time-consuming and inefficient, especially very unfriendly to inexperienced analysts, and are sometimes still used to select preprocessing methods or wavelength variables in near-infrared spectroscopy (NIR). To deal with this problem, a new optimization algorithm called synergy adaptive moving window algorithm based on the immune support vector machine (SA-MW-ISVM) is proposed in this paper. Following the principle of SA-MW-ISVM, the original problem of calibration model optimization is transformed into a mathematical optimization problem that can be processed by the proposed immune support vector machine regression algorithm. The main objective of this optimization problem is the calibration model performance; meanwhile, the constraint conditions include a reasonable spectral data value, spectral data preprocessing method, and calibration model parameters. A unique antibody structure and specific coding and decoding method are used to achieve collaborative optimization in NIR spectroscopy. The tests on four actual near-infrared datasets, including a group of gasoline and three groups of diesel fuels, have shown that the proposed SA-MW-ISVM algorithm can significantly improve the calibration performance and thus achieve accurate prediction results. In the case of gasoline, the SA-MW-ISVM algorithm can decrease the prediction error by 44.09% compared with the common benchmark partial least square (PLS). Meanwhile, in the case of diesel fuels, the SA-MW-ISVM algorithm can decrease the prediction error of cetane number, freezing temperature, and viscosity by 9.99%, 28.69%, and 43.85%, respectively, compared with the PLS. The powerful prediction performance of the SA-MW-ISVM algorithm makes it an ideal tool for modeling near-infrared spectral data or other related application fields.
AbstractList [Display omitted] •It proposes a new convenient and efficient method for near-infrared spectroscopy base on AI algorithm.•It solves the problem of optimizing preprocessing methods, wavelength variables, and the hyper-parameters of the calibration model simultaneously.•It can effectively improve the accuracy of the model, select useful wavelength variable, and give reasonable preprocessing method.•It can deal not only with near-infrared spectroscopy but also with other related data.•If the type of calibration model or the optimization strategy were replaced, it can be easily transformed into other related modeling strategy. Traditional trial-and-error methods are time-consuming and inefficient, especially very unfriendly to inexperienced analysts, and are sometimes still used to select preprocessing methods or wavelength variables in near-infrared spectroscopy (NIR). To deal with this problem, a new optimization algorithm called synergy adaptive moving window algorithm based on the immune support vector machine (SA-MW-ISVM) is proposed in this paper. Following the principle of SA-MW-ISVM, the original problem of calibration model optimization is transformed into a mathematical optimization problem that can be processed by the proposed immune support vector machine regression algorithm. The main objective of this optimization problem is the calibration model performance; meanwhile, the constraint conditions include a reasonable spectral data value, spectral data preprocessing method, and calibration model parameters. A unique antibody structure and specific coding and decoding method are used to achieve collaborative optimization in NIR spectroscopy. The tests on four actual near-infrared datasets, including a group of gasoline and three groups of diesel fuels, have shown that the proposed SA-MW-ISVM algorithm can significantly improve the calibration performance and thus achieve accurate prediction results. In the case of gasoline, the SA-MW-ISVM algorithm can decrease the prediction error by 44.09% compared with the common benchmark partial least square (PLS). Meanwhile, in the case of diesel fuels, the SA-MW-ISVM algorithm can decrease the prediction error of cetane number, freezing temperature, and viscosity by 9.99%, 28.69%, and 43.85%, respectively, compared with the PLS. The powerful prediction performance of the SA-MW-ISVM algorithm makes it an ideal tool for modeling near-infrared spectral data or other related application fields.
ArticleNumber 121631
Author Fang, Zeping
Lin, Zhixin
Zhang, Peng
Lin, Manman
Wang, Shenghao
Meng, Yanhong
Chang, Jing
Yang, Yi
Author_xml – sequence: 1
  givenname: Shenghao
  surname: Wang
  fullname: Wang, Shenghao
  email: wangshenghao@zut.edu.cn
  organization: School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China
– sequence: 2
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
  organization: School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China
– sequence: 3
  givenname: Jing
  surname: Chang
  fullname: Chang, Jing
  organization: School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China
– sequence: 4
  givenname: Zeping
  surname: Fang
  fullname: Fang, Zeping
  organization: School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China
– sequence: 5
  givenname: Yi
  surname: Yang
  fullname: Yang, Yi
  organization: School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China
– sequence: 6
  givenname: Manman
  surname: Lin
  fullname: Lin, Manman
  organization: School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China
– sequence: 7
  givenname: Yanhong
  surname: Meng
  fullname: Meng, Yanhong
  organization: School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China
– sequence: 8
  givenname: Zhixin
  surname: Lin
  fullname: Lin, Zhixin
  organization: School of Political Science and Law, Zhongyuan University of Technology, Zhengzhou, China
BookMark eNp9kL1OwzAURj2ABC08AJtfIMV20sSCqUL8SUgMwGzd2tetq8SObLdVZ14cozIxdLrT-a7OmZAzHzwScsPZjDPe3m5mCWAmmBAzLnhb8zNyyWvZVrwR8wsySWnDGONSsEvyvaBj2GO0257mEHpqQ6QeIVbO2wgRDU0j6hxD0mE83NGPg8e4OlAwMGa3QzqEnfMrunfehD2FfhWiy-uBLiEVOHia10jdMGw90rQdxxAz3ZXF8mcAvXYer8i5hT7h9d-dkq-nx8-Hl-rt_fn1YfFW6bpmuVoaI0zRaOcSatk0qKHt7BKaGq3RKNGwlkm0EkB2nRBmLpesqYHNW2ZNB_WUdMddXWxSRKu0y5Bd8DmC6xVn6ref2qjST_32U8d-heT_yDG6AeLhJHN_ZLAo7RxGlbRDr9G4WPSVCe4E_QMx6JCA
CitedBy_id crossref_primary_10_1016_j_saa_2023_123224
crossref_primary_10_1016_j_saa_2024_124436
crossref_primary_10_3389_fninf_2022_1078685
crossref_primary_10_1016_j_saa_2023_123248
Cites_doi 10.1039/B301555F
10.1109/TEVC.2002.1011539
10.1016/S0169-7439(98)00055-0
10.1002/cem.2702
10.1366/0003702854248656
10.1002/wics.101
10.1002/1099-128X(200009/12)14:5/6<643::AID-CEM621>3.0.CO;2-E
10.1366/0003702894202201
10.1070/RCR4746
10.1002/cem.1180080208
10.1002/cem.2426
10.1016/S0169-7439(97)00038-5
10.1080/14751798.2019.1600800
10.1002/cem.1360
10.1162/neco.1991.3.4.461
10.1016/j.talanta.2005.03.025
10.1255/jnirs.786
10.1016/j.eng.2020.07.017
10.1089/heq.2018.0037
10.1016/j.chemolab.2014.01.012
10.1109/ACCESS.2021.3058133
10.1016/j.chemolab.2004.01.002
10.1016/j.chemolab.2011.01.008
10.1016/j.chemolab.2016.02.001
10.1007/s10015-019-00525-1
10.1016/j.aca.2017.11.028
10.1016/S1872-2040(16)60928-3
10.1007/s10462-011-9206-1
10.1021/ac60214a047
10.1115/1.4047855
10.1023/A:1018628609742
10.1016/j.trac.2009.07.007
10.1609/aaai.v34i02.5533
10.1016/j.microc.2007.11.008
10.1016/j.tcs.2008.02.011
10.1016/S0169-7439(98)00051-3
10.1016/j.amjmed.2017.10.035
10.1002/cem.1192
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.saa.2022.121631
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
ExternalDocumentID 10_1016_j_saa_2022_121631
S1386142522007806
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABYKQ
ACDAQ
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSZ
T5K
WH7
XPP
ZMT
~G-
1RT
53G
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FGOYB
HZ~
M36
R2-
SEW
UHS
~HD
ID FETCH-LOGICAL-c330t-bdd2d386658a3844eca67fba43efdce8ed0608ef8aa87722d58b043a0560fd7a3
IEDL.DBID .~1
ISSN 1386-1425
IngestDate Wed Oct 01 04:11:34 EDT 2025
Thu Apr 24 22:57:31 EDT 2025
Fri Feb 23 02:37:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Support vector machine
Optimization calculation
Diesel fuel
Immune clone algorithm
Gasoline
Near-infrared spectrum
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-bdd2d386658a3844eca67fba43efdce8ed0608ef8aa87722d58b043a0560fd7a3
ParticipantIDs crossref_citationtrail_10_1016_j_saa_2022_121631
crossref_primary_10_1016_j_saa_2022_121631
elsevier_sciencedirect_doi_10_1016_j_saa_2022_121631
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-05
PublicationDateYYYYMMDD 2022-12-05
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-05
  day: 05
PublicationDecade 2020
PublicationTitle Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Guo, Li (b0010) 2018; 2
Devos, Duponchel (b0095) 2011; 107
Richard, Lippmann (b0150) 1991; 3
Haktanirlar Ulutas, Kulturel-Konak (b0125) 2011; 36
Baskin, Madzhidov, Antipin, Varnek (b0085) 2017; 86
Marini, Bucci, Magrì, Magrì (b0075) 2008; 88
Flaten, Walmsley (b0090) 2003; 128
De Jong, Ter Braak (b0135) 1994; 8
Niazi, Leardi (b0060) 2012; 26
Rasmussen (b0145) 2004
Miller, Brown (b0005) 2018; 131
Konen (b0040) 2019
Thissen, Pepers, Üstün, Melssen, Buydens (b0155) 2004; 73
Arinez, Chang, Gao, Xu, Zhang (b0020) 2020; 142
Madden, Howley (b0080) 2009
Westad, Schmidt, Kermit (b0220) 2008; 16
Leardi, Lupiáñez González (b0230) 1998; 41
Geladi, MacDougall, Martens (b0185) 1985; 39
Barnes, Dhanoa, Lister (b0190) 1989; 43
Abdi, Williams (b0200) 2010; 2
de Castro, Von Zuben (b0115) 2002; 6
Tipping (b0140) 2001; 1
Wang, Tao, Fang, Liu, Liu, Freiheit (b0015) 2021; 7
Pardalos, P.M. and H.E. Romeijn
Zhao, Wang, Li, Pei, Cao (b0105) 2016; 152
Galvao, Araujo, Jose, Pontes, Silva, Saldanha (b0210) 2005; 67
A. Goldwaser, M. Thielscher. Deep reinforcement learning for general game playing. in Proceedings of the AAAI conference on artificial intelligence. 2020.
Rinnan, Berg, Engelsen (b0195) 2009; 28
Ranzan, Strohm, Ranzan, Trierweiler, Hitzmann, Trierweiler (b0070) 2014; 132
De Swarte, Boufous, Escalle (b0050) 2019; 24
Cao, Wang, Yang, Zhou (b0065) 2015; 29
Swierenga, de Groot, de Weijer, Derksen, Buydens (b0055) 1998; 41
Johnson (b0045) 2019; 35
Andersen, Bro (b0235) 2010; 24
Vol. 2. 2013: Springer Science & Business Media.
Liu, Shen, Wang (b0165) 2014
Teófilo, Martins, Ferreira (b0215) 2010; 23
Leardi (b0225) 2000; 14
Zhao, Wang, Li, Cao, Pei (b0100) 2016; 44
Pallathadka, Ramirez-Asis, Loli-Poma, Kaliyaperumal, Ventayen, Naved (b0025) 2021
Ferreira, Gandomi, Cardoso (b0030) 2021; 9
Kalivas (b0205) 1997; 37
Timmis, Hone, Stibor, Clark (b0130) 2008; 403
Song (b0170) 2008
Suykens, Vandewalle (b0120) 1999; 9
Wang, Zhang, Cao, Pei, Gao, Zhang, Zhao (b0110) 2018; 1000
Haifeng, Dejin (b0160) 2005
Savitzky, Golay (b0180) 1964; 36
Swierenga (10.1016/j.saa.2022.121631_b0055) 1998; 41
Haifeng (10.1016/j.saa.2022.121631_b0160) 2005
Ferreira (10.1016/j.saa.2022.121631_b0030) 2021; 9
10.1016/j.saa.2022.121631_b0035
10.1016/j.saa.2022.121631_b0175
Richard (10.1016/j.saa.2022.121631_b0150) 1991; 3
Guo (10.1016/j.saa.2022.121631_b0010) 2018; 2
Rinnan (10.1016/j.saa.2022.121631_b0195) 2009; 28
Song (10.1016/j.saa.2022.121631_b0170) 2008
Zhao (10.1016/j.saa.2022.121631_b0100) 2016; 44
Zhao (10.1016/j.saa.2022.121631_b0105) 2016; 152
De Jong (10.1016/j.saa.2022.121631_b0135) 1994; 8
Wang (10.1016/j.saa.2022.121631_b0110) 2018; 1000
Tipping (10.1016/j.saa.2022.121631_b0140) 2001; 1
Westad (10.1016/j.saa.2022.121631_b0220) 2008; 16
Konen (10.1016/j.saa.2022.121631_b0040) 2019
Niazi (10.1016/j.saa.2022.121631_b0060) 2012; 26
Miller (10.1016/j.saa.2022.121631_b0005) 2018; 131
De Swarte (10.1016/j.saa.2022.121631_b0050) 2019; 24
Thissen (10.1016/j.saa.2022.121631_b0155) 2004; 73
Ranzan (10.1016/j.saa.2022.121631_b0070) 2014; 132
Madden (10.1016/j.saa.2022.121631_b0080) 2009
Liu (10.1016/j.saa.2022.121631_b0165) 2014
Barnes (10.1016/j.saa.2022.121631_b0190) 1989; 43
Andersen (10.1016/j.saa.2022.121631_b0235) 2010; 24
Suykens (10.1016/j.saa.2022.121631_b0120) 1999; 9
Johnson (10.1016/j.saa.2022.121631_b0045) 2019; 35
Kalivas (10.1016/j.saa.2022.121631_b0205) 1997; 37
Arinez (10.1016/j.saa.2022.121631_b0020) 2020; 142
Haktanirlar Ulutas (10.1016/j.saa.2022.121631_b0125) 2011; 36
Baskin (10.1016/j.saa.2022.121631_b0085) 2017; 86
Wang (10.1016/j.saa.2022.121631_b0015) 2021; 7
Devos (10.1016/j.saa.2022.121631_b0095) 2011; 107
Leardi (10.1016/j.saa.2022.121631_b0230) 1998; 41
Cao (10.1016/j.saa.2022.121631_b0065) 2015; 29
Marini (10.1016/j.saa.2022.121631_b0075) 2008; 88
Abdi (10.1016/j.saa.2022.121631_b0200) 2010; 2
Timmis (10.1016/j.saa.2022.121631_b0130) 2008; 403
Rasmussen (10.1016/j.saa.2022.121631_b0145) 2004
Leardi (10.1016/j.saa.2022.121631_b0225) 2000; 14
Savitzky (10.1016/j.saa.2022.121631_b0180) 1964; 36
Galvao (10.1016/j.saa.2022.121631_b0210) 2005; 67
Geladi (10.1016/j.saa.2022.121631_b0185) 1985; 39
de Castro (10.1016/j.saa.2022.121631_b0115) 2002; 6
Pallathadka (10.1016/j.saa.2022.121631_b0025) 2021
Flaten (10.1016/j.saa.2022.121631_b0090) 2003; 128
Teófilo (10.1016/j.saa.2022.121631_b0215) 2010; 23
References_xml – volume: 41
  start-page: 237
  year: 1998
  end-page: 248
  ident: b0055
  article-title: Improvement of PLS model transferability by robust wavelength selection
  publication-title: Chemometrics & Intelligent Laboratory Systems
– volume: 26
  start-page: 345
  year: 2012
  end-page: 351
  ident: b0060
  article-title: Genetic algorithms in chemometrics
  publication-title: J. Chemom.
– start-page: 77
  year: 2009
  end-page: 90
  ident: b0080
  publication-title: Applications and Innovations in Intelligent Systems XVI
– volume: 142
  year: 2020
  ident: b0020
  article-title: Artificial intelligence in advanced manufacturing: Current status and future outlook
  publication-title: J. Manuf. Sci. Eng.
– volume: 36
  start-page: 1627
  year: 1964
  end-page: 1639
  ident: b0180
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
– volume: 67
  start-page: 736
  year: 2005
  end-page: 740
  ident: b0210
  article-title: A method for calibration and validation subset partitioning
  publication-title: Talanta
– volume: 88
  start-page: 178
  year: 2008
  end-page: 185
  ident: b0075
  article-title: Artificial neural networks in chemometrics History, examples and perspectives
  publication-title: Microchem. J.
– volume: 28
  start-page: 1201
  year: 2009
  end-page: 1222
  ident: b0195
  article-title: Review of the most common pre-processing techniques for near-infrared spectra
  publication-title: TrAC, Trends Anal. Chem.
– volume: 16
  start-page: 265
  year: 2008
  end-page: 273
  ident: b0220
  article-title: Incorporating chemical band-assignment in near infrared spectroscopy regression models
  publication-title: J. Near Infrared Spectrosc.
– volume: 6
  start-page: 239
  year: 2002
  end-page: 251
  ident: b0115
  article-title: Learning and optimization using the clonal selection principle
  publication-title: IEEE Trans. Evol. Comput.
– reference: . Vol. 2. 2013: Springer Science & Business Media.
– reference: Pardalos, P.M. and H.E. Romeijn,
– volume: 24
  start-page: 291
  year: 2019
  end-page: 296
  ident: b0050
  article-title: Artificial intelligence, ethics and human values: the cases of military drones and companion robots
  publication-title: Artificial life and robotics
– reference: A. Goldwaser, M. Thielscher. Deep reinforcement learning for general game playing. in Proceedings of the AAAI conference on artificial intelligence. 2020.
– volume: 2
  start-page: 174
  year: 2018
  end-page: 181
  ident: b0010
  article-title: The application of medical artificial intelligence technology in rural areas of developing countries
  publication-title: Health equity
– volume: 43
  start-page: 772
  year: 1989
  end-page: 777
  ident: b0190
  article-title: Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra
  publication-title: Appl. Spectrosc.
– volume: 128
  start-page: 935
  year: 2003
  end-page: 943
  ident: b0090
  article-title: Using design of experiments to select optimum calibration model parameters
  publication-title: Analyst
– volume: 7
  start-page: 738
  year: 2021
  end-page: 757
  ident: b0015
  article-title: Smart manufacturing and intelligent manufacturing: A comparative review
  publication-title: Engineering
– volume: 23
  start-page: 32
  year: 2010
  end-page: 48
  ident: b0215
  article-title: Sorting variables by using informative vectors as a strategy for feature selection in multivariate regression
  publication-title: J. Chemom.
– volume: 9
  start-page: 30898
  year: 2021
  end-page: 30917
  ident: b0030
  article-title: Artificial intelligence applied to stock market trading: A review
  publication-title: IEEE Access
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: b0120
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
– volume: 29
  start-page: 289
  year: 2015
  end-page: 299
  ident: b0065
  article-title: A wavelength selection method based on random decision particle swarm optimization with attractor for near-infrared spectral quantitative analysis
  publication-title: J. Chemom.
– volume: 107
  start-page: 50
  year: 2011
  end-page: 58
  ident: b0095
  article-title: Parallel genetic algorithm co-optimization of spectral pre-processing and wavelength selection for PLS regression
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 14
  start-page: 643
  year: 2000
  end-page: 655
  ident: b0225
  article-title: Application of genetic algorithm–PLS for feature selection in spectral data sets
  publication-title: J. Chemom.
– volume: 8
  start-page: 169
  year: 1994
  end-page: 174
  ident: b0135
  article-title: Comments on the PLS kernel algorithm
  publication-title: J. Chemom.
– volume: 73
  start-page: 169
  year: 2004
  end-page: 179
  ident: b0155
  article-title: Comparing support vector machines to PLS for spectral regression applications
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 131
  start-page: 129
  year: 2018
  end-page: 133
  ident: b0005
  article-title: Artificial intelligence in medical practice: the question to the answer?
  publication-title: Am. J. Med.
– volume: 1000
  start-page: 109
  year: 2018
  end-page: 122
  ident: b0110
  article-title: Novel near-infrared spectrum analysis tool: Synergy adaptive moving window model based on immune clone algorithm
  publication-title: Anal. Chim. Acta
– volume: 44
  start-page: e1609
  year: 2016
  end-page: e1616
  ident: b0100
  article-title: A Novel Interval Integer Genetic Algorithm Used for Simultaneously Selecting Wavelengths and Pre-processing Methods
  publication-title: Chin. J. Anal. Chem.
– start-page: 827
  year: 2014
  end-page: 834
  ident: b0165
  article-title: Research on kernel function of support vector machine
  publication-title: Advanced technologies, embedded and multimedia for human-centric computing
– volume: 37
  start-page: 255
  year: 1997
  end-page: 259
  ident: b0205
  article-title: Two data sets of near infrared spectra
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 35
  start-page: 147
  year: 2019
  end-page: 169
  ident: b0045
  article-title: Artificial intelligence & future warfare: implications for international security
  publication-title: Defense & Security Analysis
– volume: 403
  start-page: 11
  year: 2008
  end-page: 32
  ident: b0130
  article-title: Theoretical advances in artificial immune systems
  publication-title: Theoret. Comput. Sci.
– start-page: 63
  year: 2004
  end-page: 71
  ident: b0145
  article-title: Gaussian processes in machine learning
  publication-title: Advanced lectures on machine learning
– volume: 2
  start-page: 433
  year: 2010
  end-page: 459
  ident: b0200
  article-title: Principal component analysis
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
– volume: 24
  start-page: 728
  year: 2010
  end-page: 737
  ident: b0235
  article-title: Variable selection in regression—a tutorial
  publication-title: J. Chemom.
– year: 2005
  ident: b0160
  article-title: Comparison of SVM and LS-SVM for Regression
  publication-title: in
– volume: 39
  start-page: 491
  year: 1985
  end-page: 500
  ident: b0185
  article-title: Linearization and scatter-correction for near-infrared reflectance spectra of meat
  publication-title: Appl. Spectrosc.
– volume: 132
  start-page: 133
  year: 2014
  end-page: 140
  ident: b0070
  article-title: Wheat flour characterization using NIR and spectral filter based on Ant Colony Optimization
  publication-title: Chemometrics and Intelligent Laboratory Systems
– year: 2019
  ident: b0040
  article-title: General Board Game Playing for Education and Research in Generic AI Game Learning
  publication-title: in
– volume: 1
  start-page: 211
  year: 2001
  end-page: 244
  ident: b0140
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J. Mach. Learn. Res.
– volume: 36
  start-page: 117
  year: 2011
  end-page: 138
  ident: b0125
  article-title: A review of clonal selection algorithm and its applications
  publication-title: Artif. Intell. Rev.
– year: 2021
  ident: b0025
  article-title: Applications of artificial intelligence in business management, e-commerce and finance
  publication-title: Mater. Today:. Proc.
– volume: 3
  start-page: 461
  year: 1991
  end-page: 483
  ident: b0150
  article-title: Neural network classifiers estimate Bayesian a posteriori probabilities
  publication-title: Neural Comput.
– volume: 41
  start-page: 195
  year: 1998
  end-page: 207
  ident: b0230
  article-title: Genetic algorithms applied to feature selection in PLS regression: how and when to use them
  publication-title: Chemom. Intell. Lab. Syst.
– year: 2008
  ident: b0170
  article-title: Research on Combination Kernel Function of Support Vector Machine
  publication-title: in
– volume: 86
  start-page: 1127
  year: 2017
  end-page: 1156
  ident: b0085
  article-title: Artificial intelligence in synthetic chemistry: achievements and prospects
  publication-title: Russ. Chem. Rev.
– volume: 152
  start-page: 118
  year: 2016
  end-page: 124
  ident: b0105
  article-title: An improved changeable size moving window partial least square applied for molecular spectroscopy
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 128
  start-page: 935
  issue: 7
  year: 2003
  ident: 10.1016/j.saa.2022.121631_b0090
  article-title: Using design of experiments to select optimum calibration model parameters
  publication-title: Analyst
  doi: 10.1039/B301555F
– volume: 6
  start-page: 239
  issue: 3
  year: 2002
  ident: 10.1016/j.saa.2022.121631_b0115
  article-title: Learning and optimization using the clonal selection principle
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2002.1011539
– volume: 41
  start-page: 237
  issue: 2
  year: 1998
  ident: 10.1016/j.saa.2022.121631_b0055
  article-title: Improvement of PLS model transferability by robust wavelength selection
  publication-title: Chemometrics & Intelligent Laboratory Systems
  doi: 10.1016/S0169-7439(98)00055-0
– year: 2008
  ident: 10.1016/j.saa.2022.121631_b0170
  article-title: Research on Combination Kernel Function of Support Vector Machine
– ident: 10.1016/j.saa.2022.121631_b0175
– volume: 29
  start-page: 289
  issue: 5
  year: 2015
  ident: 10.1016/j.saa.2022.121631_b0065
  article-title: A wavelength selection method based on random decision particle swarm optimization with attractor for near-infrared spectral quantitative analysis
  publication-title: J. Chemom.
  doi: 10.1002/cem.2702
– volume: 39
  start-page: 491
  issue: 3
  year: 1985
  ident: 10.1016/j.saa.2022.121631_b0185
  article-title: Linearization and scatter-correction for near-infrared reflectance spectra of meat
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702854248656
– volume: 2
  start-page: 433
  issue: 4
  year: 2010
  ident: 10.1016/j.saa.2022.121631_b0200
  article-title: Principal component analysis
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
  doi: 10.1002/wics.101
– volume: 14
  start-page: 643
  issue: 5–6
  year: 2000
  ident: 10.1016/j.saa.2022.121631_b0225
  article-title: Application of genetic algorithm–PLS for feature selection in spectral data sets
  publication-title: J. Chemom.
  doi: 10.1002/1099-128X(200009/12)14:5/6<643::AID-CEM621>3.0.CO;2-E
– volume: 43
  start-page: 772
  issue: 5
  year: 1989
  ident: 10.1016/j.saa.2022.121631_b0190
  article-title: Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702894202201
– year: 2005
  ident: 10.1016/j.saa.2022.121631_b0160
  article-title: Comparison of SVM and LS-SVM for Regression
– volume: 86
  start-page: 1127
  issue: 11
  year: 2017
  ident: 10.1016/j.saa.2022.121631_b0085
  article-title: Artificial intelligence in synthetic chemistry: achievements and prospects
  publication-title: Russ. Chem. Rev.
  doi: 10.1070/RCR4746
– volume: 8
  start-page: 169
  issue: 2
  year: 1994
  ident: 10.1016/j.saa.2022.121631_b0135
  article-title: Comments on the PLS kernel algorithm
  publication-title: J. Chemom.
  doi: 10.1002/cem.1180080208
– volume: 26
  start-page: 345
  issue: 6
  year: 2012
  ident: 10.1016/j.saa.2022.121631_b0060
  article-title: Genetic algorithms in chemometrics
  publication-title: J. Chemom.
  doi: 10.1002/cem.2426
– volume: 37
  start-page: 255
  issue: 2
  year: 1997
  ident: 10.1016/j.saa.2022.121631_b0205
  article-title: Two data sets of near infrared spectra
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(97)00038-5
– volume: 35
  start-page: 147
  issue: 2
  year: 2019
  ident: 10.1016/j.saa.2022.121631_b0045
  article-title: Artificial intelligence & future warfare: implications for international security
  publication-title: Defense & Security Analysis
  doi: 10.1080/14751798.2019.1600800
– volume: 24
  start-page: 728
  issue: 11–12
  year: 2010
  ident: 10.1016/j.saa.2022.121631_b0235
  article-title: Variable selection in regression—a tutorial
  publication-title: J. Chemom.
  doi: 10.1002/cem.1360
– year: 2021
  ident: 10.1016/j.saa.2022.121631_b0025
  article-title: Applications of artificial intelligence in business management, e-commerce and finance
  publication-title: Mater. Today:. Proc.
– volume: 3
  start-page: 461
  issue: 4
  year: 1991
  ident: 10.1016/j.saa.2022.121631_b0150
  article-title: Neural network classifiers estimate Bayesian a posteriori probabilities
  publication-title: Neural Comput.
  doi: 10.1162/neco.1991.3.4.461
– volume: 67
  start-page: 736
  issue: 4
  year: 2005
  ident: 10.1016/j.saa.2022.121631_b0210
  article-title: A method for calibration and validation subset partitioning
  publication-title: Talanta
  doi: 10.1016/j.talanta.2005.03.025
– volume: 16
  start-page: 265
  issue: 3
  year: 2008
  ident: 10.1016/j.saa.2022.121631_b0220
  article-title: Incorporating chemical band-assignment in near infrared spectroscopy regression models
  publication-title: J. Near Infrared Spectrosc.
  doi: 10.1255/jnirs.786
– volume: 7
  start-page: 738
  issue: 6
  year: 2021
  ident: 10.1016/j.saa.2022.121631_b0015
  article-title: Smart manufacturing and intelligent manufacturing: A comparative review
  publication-title: Engineering
  doi: 10.1016/j.eng.2020.07.017
– volume: 2
  start-page: 174
  issue: 1
  year: 2018
  ident: 10.1016/j.saa.2022.121631_b0010
  article-title: The application of medical artificial intelligence technology in rural areas of developing countries
  publication-title: Health equity
  doi: 10.1089/heq.2018.0037
– start-page: 63
  year: 2004
  ident: 10.1016/j.saa.2022.121631_b0145
  article-title: Gaussian processes in machine learning
– volume: 132
  start-page: 133
  year: 2014
  ident: 10.1016/j.saa.2022.121631_b0070
  article-title: Wheat flour characterization using NIR and spectral filter based on Ant Colony Optimization
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2014.01.012
– start-page: 77
  year: 2009
  ident: 10.1016/j.saa.2022.121631_b0080
– volume: 9
  start-page: 30898
  year: 2021
  ident: 10.1016/j.saa.2022.121631_b0030
  article-title: Artificial intelligence applied to stock market trading: A review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3058133
– volume: 73
  start-page: 169
  issue: 2
  year: 2004
  ident: 10.1016/j.saa.2022.121631_b0155
  article-title: Comparing support vector machines to PLS for spectral regression applications
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2004.01.002
– start-page: 827
  year: 2014
  ident: 10.1016/j.saa.2022.121631_b0165
  article-title: Research on kernel function of support vector machine
– volume: 107
  start-page: 50
  issue: 1
  year: 2011
  ident: 10.1016/j.saa.2022.121631_b0095
  article-title: Parallel genetic algorithm co-optimization of spectral pre-processing and wavelength selection for PLS regression
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2011.01.008
– volume: 152
  start-page: 118
  year: 2016
  ident: 10.1016/j.saa.2022.121631_b0105
  article-title: An improved changeable size moving window partial least square applied for molecular spectroscopy
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2016.02.001
– volume: 24
  start-page: 291
  issue: 3
  year: 2019
  ident: 10.1016/j.saa.2022.121631_b0050
  article-title: Artificial intelligence, ethics and human values: the cases of military drones and companion robots
  publication-title: Artificial life and robotics
  doi: 10.1007/s10015-019-00525-1
– volume: 1000
  start-page: 109
  year: 2018
  ident: 10.1016/j.saa.2022.121631_b0110
  article-title: Novel near-infrared spectrum analysis tool: Synergy adaptive moving window model based on immune clone algorithm
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2017.11.028
– year: 2019
  ident: 10.1016/j.saa.2022.121631_b0040
  article-title: General Board Game Playing for Education and Research in Generic AI Game Learning
– volume: 44
  start-page: e1609
  issue: 9
  year: 2016
  ident: 10.1016/j.saa.2022.121631_b0100
  article-title: A Novel Interval Integer Genetic Algorithm Used for Simultaneously Selecting Wavelengths and Pre-processing Methods
  publication-title: Chin. J. Anal. Chem.
  doi: 10.1016/S1872-2040(16)60928-3
– volume: 36
  start-page: 117
  issue: 2
  year: 2011
  ident: 10.1016/j.saa.2022.121631_b0125
  article-title: A review of clonal selection algorithm and its applications
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-011-9206-1
– volume: 1
  start-page: 211
  issue: Jun
  year: 2001
  ident: 10.1016/j.saa.2022.121631_b0140
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J. Mach. Learn. Res.
– volume: 36
  start-page: 1627
  issue: 8
  year: 1964
  ident: 10.1016/j.saa.2022.121631_b0180
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
  doi: 10.1021/ac60214a047
– volume: 142
  issue: 11
  year: 2020
  ident: 10.1016/j.saa.2022.121631_b0020
  article-title: Artificial intelligence in advanced manufacturing: Current status and future outlook
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4047855
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 10.1016/j.saa.2022.121631_b0120
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1018628609742
– volume: 28
  start-page: 1201
  issue: 10
  year: 2009
  ident: 10.1016/j.saa.2022.121631_b0195
  article-title: Review of the most common pre-processing techniques for near-infrared spectra
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2009.07.007
– ident: 10.1016/j.saa.2022.121631_b0035
  doi: 10.1609/aaai.v34i02.5533
– volume: 88
  start-page: 178
  issue: 2
  year: 2008
  ident: 10.1016/j.saa.2022.121631_b0075
  article-title: Artificial neural networks in chemometrics History, examples and perspectives
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2007.11.008
– volume: 403
  start-page: 11
  issue: 1
  year: 2008
  ident: 10.1016/j.saa.2022.121631_b0130
  article-title: Theoretical advances in artificial immune systems
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2008.02.011
– volume: 41
  start-page: 195
  issue: 2
  year: 1998
  ident: 10.1016/j.saa.2022.121631_b0230
  article-title: Genetic algorithms applied to feature selection in PLS regression: how and when to use them
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(98)00051-3
– volume: 131
  start-page: 129
  issue: 2
  year: 2018
  ident: 10.1016/j.saa.2022.121631_b0005
  article-title: Artificial intelligence in medical practice: the question to the answer?
  publication-title: Am. J. Med.
  doi: 10.1016/j.amjmed.2017.10.035
– volume: 23
  start-page: 32
  issue: 1
  year: 2010
  ident: 10.1016/j.saa.2022.121631_b0215
  article-title: Sorting variables by using informative vectors as a strategy for feature selection in multivariate regression
  publication-title: J. Chemom.
  doi: 10.1002/cem.1192
SSID ssj0001820
Score 2.3904836
Snippet [Display omitted] •It proposes a new convenient and efficient method for near-infrared spectroscopy base on AI algorithm.•It solves the problem of optimizing...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 121631
SubjectTerms Diesel fuel
Gasoline
Immune clone algorithm
Near-infrared spectrum
Optimization calculation
Support vector machine
Title A powerful tool for near-infrared spectroscopy: Synergy adaptive moving window algorithm based on the immune support vector machine
URI https://dx.doi.org/10.1016/j.saa.2022.121631
Volume 282
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1386-1425
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001820
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 1386-1425
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001820
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 1386-1425
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001820
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 1386-1425
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001820
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS-RAEG1EEb2Iurv4TR08LfROTCedHm_DoIwKXlTwFjrdHXdkJgkzGcWLF_-4VT2JH7DrwWNCN4Suol5V59Urxg6z2EYG_Ygntis56bNzZXLJEduxjlNYE2lPkL2Ug5vo_Da-XWD9theGaJVN7J_HdB-tmzed5jQ71XDYuToSCrElxASCcM7LbpP6F_r0n-d3mgcJlPuiS0lOq9s_m57jNdUkPRSGpLEgxdG_sekD3pyus7UmUYTe_Fs22IIrNtlKv53PtsmWPXnTTH-wlx5UNOwsn42gLssRYCIKBbowR_eZEMMcfEMlCVeW1dMxXD35jj_QVlcU7mDs7xXgEQv08hH06K6cDOu_YyCMs1AWgGkiDKmVxMF0VlHODg_-vh_Gno3pfrKb05Pr_oA3wxW4ESKoeWZtaAWp3SktVBQ5o2WSZzoSLrfGKWcDGSiXK60VZuChjVUWREJjwhTkNtHiF1ssysJtMSB7YywQmRNY7GnVNYj6NpGJEVbmcXebBe2xpqZRHqcBGKO0pZjdp2iJlCyRzi2xzX6_banmshtfLY5aW6WffCdFWPj_tp3vbdtlq_TkKS3xHlusJzO3j4lJnR14zztgS72zi8HlK92041w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAEB2CQ0kvJU1bmn7OoafCYkUrrda9GZPgNKkvSSA3sdpdtQ62JGy5Ief-8c6spdBCk0OvkgaEZph5s3rzBuBTkbrEUhyJzI2UYH12oW2pBNV26uM09UQmEGRnanqVfL1Or3dg0s_CMK2yy_3bnB6ydXdl2H3NYTOfDy-OpKbaEhOA4DrHstu7SUo5eQC749Oz6ew-IbNGeei7tBJs0P_cDDSvtWH1oThmmQUlj_5dnv4oOSf78KzDijjevs5z2PHVAexN-hVtB_Ak8Dft-gX8GmPD-87KzQLbul4gYVGsKIoFRdCKSeYYZipZu7Ju7r7gxV0Y-kPjTMMZD5fhaAFvqUevb9EsvtereftjiVzmHNYVElLEOU-TeFxvGobt-DMc-eMyEDL9S7g6Ob6cTEW3X0FYKaNWFM7FTrLgnTZSJ4m3RmVlYRLpS2e99i5SkfalNkYTCI9dqosokYYwU1S6zMhXMKjqyr8GZJdTOpCFl9TvGT2yVPhdpjIrnSrT0SFE_WfNbSc-zjswFnnPMrvJyRM5eyLfeuIQPt-bNFvljcceTnpf5X-FT06V4WGzN_9n9hH2ppffzvPz09nZW3jKdwLDJX0Hg3a18e8Jp7TFhy4OfwOdaeYH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+powerful+tool+for+near-infrared+spectroscopy%3A+Synergy+adaptive+moving+window+algorithm+based+on+the+immune+support+vector+machine&rft.jtitle=Spectrochimica+acta.+Part+A%2C+Molecular+and+biomolecular+spectroscopy&rft.au=Wang%2C+Shenghao&rft.au=Zhang%2C+Peng&rft.au=Chang%2C+Jing&rft.au=Fang%2C+Zeping&rft.date=2022-12-05&rft.pub=Elsevier+B.V&rft.issn=1386-1425&rft.volume=282&rft_id=info:doi/10.1016%2Fj.saa.2022.121631&rft.externalDocID=S1386142522007806
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-1425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-1425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-1425&client=summon