An approach for the thermal analysis of internal combustion engines’ exhaust valves

•Exhaust valve is subject to thermal loading due to high temperature and pressure.•Exhaust valve is subdivided to several zones to isolate the effect of each part.•Heat transfer for each subdivision is evaluated during engine operating cycle.•Temperature maps through valves allows identifying region...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 102; pp. 1095 - 1108
Main Authors Cerdoun, Mahfoudh, Carcasci, Carlo, Ghenaiet, Adel
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 05.06.2016
Subjects
Online AccessGet full text
ISSN1359-4311
DOI10.1016/j.applthermaleng.2016.03.105

Cover

Abstract •Exhaust valve is subject to thermal loading due to high temperature and pressure.•Exhaust valve is subdivided to several zones to isolate the effect of each part.•Heat transfer for each subdivision is evaluated during engine operating cycle.•Temperature maps through valves allows identifying region exposed to maximum temperature. Intake and exhaust valves are important components of internal combustion engines, which are used to control the inflow and outflow of gases. Such valves are subject to thermal loading due to high temperature and pressure inside the cylinder that must tolerate the limit of material temperature for a sustainable and optimal operation. The present study constitutes a contribution to predict the temperature maps of intake and exhaust valves considering the real conditions of an engine operation. An adequate subdivision of the valve is used to better assess the effect of each part of the cylinder head. Therefore, the instantaneous heat transfer coefficient and adiabatic wall temperature for each subdivision are evaluated during the four-stroke of an engine. The average values of these parameters are calculated and introduced as boundary conditions in a finite element model implemented in the commercial code Ansys-CFX. To facilitate the simulations runs of the proposed model, APDL (ANSYS Parametric Design Language) code is developed to extract the thermal map. As an application, this methodology is used to highlight the temperature maps and to show the region of extreme temperature and heat flux in the aim of avoiding any damage.
AbstractList •Exhaust valve is subject to thermal loading due to high temperature and pressure.•Exhaust valve is subdivided to several zones to isolate the effect of each part.•Heat transfer for each subdivision is evaluated during engine operating cycle.•Temperature maps through valves allows identifying region exposed to maximum temperature. Intake and exhaust valves are important components of internal combustion engines, which are used to control the inflow and outflow of gases. Such valves are subject to thermal loading due to high temperature and pressure inside the cylinder that must tolerate the limit of material temperature for a sustainable and optimal operation. The present study constitutes a contribution to predict the temperature maps of intake and exhaust valves considering the real conditions of an engine operation. An adequate subdivision of the valve is used to better assess the effect of each part of the cylinder head. Therefore, the instantaneous heat transfer coefficient and adiabatic wall temperature for each subdivision are evaluated during the four-stroke of an engine. The average values of these parameters are calculated and introduced as boundary conditions in a finite element model implemented in the commercial code Ansys-CFX. To facilitate the simulations runs of the proposed model, APDL (ANSYS Parametric Design Language) code is developed to extract the thermal map. As an application, this methodology is used to highlight the temperature maps and to show the region of extreme temperature and heat flux in the aim of avoiding any damage.
Author Cerdoun, Mahfoudh
Ghenaiet, Adel
Carcasci, Carlo
Author_xml – sequence: 1
  givenname: Mahfoudh
  surname: Cerdoun
  fullname: Cerdoun, Mahfoudh
  organization: Laboratory of Thermal Power Systems, Applied Mechanics, Ecole Militaire Polytechnique, BP17 Bordj-el-Bahri, 16046 Algiers, Algeria
– sequence: 2
  givenname: Carlo
  orcidid: 0000-0003-1293-0814
  surname: Carcasci
  fullname: Carcasci, Carlo
  organization: Department of Industrial Engineering, University of Florence, Via Santa Marta, 3, Florence, Italy
– sequence: 3
  givenname: Adel
  surname: Ghenaiet
  fullname: Ghenaiet, Adel
  organization: Laboratory of Energetics and Conversion Systems, Faculty of Mechanical Engineering, University of Sciences and Technology, Houari Boumediene, BP32 El-Alia, Bab-Ezzouar, 16111 Algiers, Algeria
BookMark eNqNkMFOAjEQhnvAREDfoQevu7bbbVkTL0hETUi8yLlpu1MpWVrSrkRuvoav55NYAhc9cZrM_Pm_mflHaOCDB4RuKCkpoeJ2XarttutXEDeqA_9eVnlaEpZVPkBDyvhdUTNKL9EopTUhtGom9RAtpx5nYwzKrLANEWcCPlGw8qrbJ5dwsNj5HmLusQkb_ZF6FzzOa5yH9PP1jeFzpfIU71S3g3SFLqzqElyf6hgt549vs-di8fr0MpsuCsMY6QstuAZNuK6bllllDRVKVJUWmlhaGS0aYxhlwohWMdNUthWMG1ZXrNHthAMbo4cj18SQUgQrjevV4bY-KtdJSuQhHLmWf8ORh3AkYVnlGXL_D7KNbqPi_lz7_GiH_OjOQZTJOPAGWhfB9LIN7jzQL1FBktA
CitedBy_id crossref_primary_10_1088_1742_6596_2051_1_012018
crossref_primary_10_1016_j_applthermaleng_2021_117870
crossref_primary_10_1016_j_applthermaleng_2023_120548
crossref_primary_10_1177_1468087417725221
crossref_primary_10_1088_1742_6596_2129_1_012097
crossref_primary_10_1016_j_matchemphys_2023_128762
crossref_primary_10_1016_j_proci_2024_105356
crossref_primary_10_1177_0954406221996394
crossref_primary_10_1016_j_ijfatigue_2018_04_010
crossref_primary_10_1007_s11831_019_09361_9
crossref_primary_10_1016_j_applthermaleng_2020_115977
crossref_primary_10_3390_met13071247
crossref_primary_10_1177_14680874241265759
crossref_primary_10_1016_j_ijheatmasstransfer_2019_119005
crossref_primary_10_1016_j_applthermaleng_2023_120240
crossref_primary_10_1016_j_applthermaleng_2024_123370
crossref_primary_10_1515_jnet_2024_0052
crossref_primary_10_4271_2021_01_1142
crossref_primary_10_56083_RCV3N9_147
crossref_primary_10_1016_j_matpr_2020_06_550
crossref_primary_10_1016_j_icheatmasstransfer_2024_108133
crossref_primary_10_1088_1742_6596_2523_1_012047
Cites_doi 10.4271/650019
10.1115/IMECE2013-64610
10.1243/09544070JAUTO202
10.2514/3.60
10.4271/670931
10.4271/972995
10.4271/960273
10.1016/S0035-3159(96)80018-3
10.4271/700501
10.1016/0017-9310(69)90011-8
10.4271/2009-01-1122
10.1115/1.2824065
10.1115/1.3450685
10.1243/JMES_JOUR_1970_012_038_02
10.1016/j.apenergy.2010.09.018
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.applthermaleng.2016.03.105
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 1108
ExternalDocumentID 10_1016_j_applthermaleng_2016_03_105
S1359431116304094
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FGOYB
HZ~
R2-
SEW
SSH
ID FETCH-LOGICAL-c330t-b65beb05b48d3fafc16a622b6b0f12cb68cc3136c6da3c82fd635c34238bd75e3
IEDL.DBID AIKHN
ISSN 1359-4311
IngestDate Thu Apr 24 23:07:37 EDT 2025
Tue Jul 01 02:27:16 EDT 2025
Fri Feb 23 02:33:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Exhaust valves
Temperature maps
Internal combustion engine
Unsteady heat transfer
HTC
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-b65beb05b48d3fafc16a622b6b0f12cb68cc3136c6da3c82fd635c34238bd75e3
ORCID 0000-0003-1293-0814
PageCount 14
ParticipantIDs crossref_citationtrail_10_1016_j_applthermaleng_2016_03_105
crossref_primary_10_1016_j_applthermaleng_2016_03_105
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2016_03_105
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-05
PublicationDateYYYYMMDD 2016-06-05
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-05
  day: 05
PublicationDecade 2010
PublicationTitle Applied thermal engineering
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References G.C. Mavropoulos, C.D. Rakopoulos, D.T. Hountalas, Experimental Investigation of Instantaneous Cyclic Heat Transfer in the Combustion Chamber and Exhaust Manifold of a DI Diesel Engine Under Transient Operating Conditions, SAE paper 2009-01-1122.
Woschni (b0045) 1967; 182
Wallace (b0085) 1967; 182
Song, Yovanovich (b0110) 1988; 2
Annand (b0055) 1963; 177
Cooper, Mikic, Yovanovich (b0100) 1969; 12
P.J. Shayler, M.J.F. Colechin, A. Scarisbrick, Heat Transfer Measurements in the Intake Port of a Spark Ignition Engine, SAE Paper 960273, 1996.
Kastner, Williams, White (b0035) 1963–1964; 178
A. Stotter, K. Woolley, E. Ip, Exhaust Valve Temperature – A Theoretical and Experimental Investigation, SAE Technical Paper 650019, 1965
Annand, Lanary (b0030) 1970; 12
G. Woschni, A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine, SAE Paper 670931, 1967.
A.H. Gibson, H. Wright Baker, Exhaust-valve and cylinder-head temperatures in high-speed petrol engines, Proc. Inst. Mech. Eng.
Carcasci, Facchini (b0115) 1996; 35
P.W. Dittus, L.M. Boelter, University of California, Berkeley, Publications on Engineering, vol. 2, 1930, pp. 44.
B.S. Han, Y.J. Chung, Y.J. Kwon, S. Lee, Empirical Formula for Instantaneous Heat Transfer Coefficient in Spark Ignition Engines, SAE Paper 972995, 1997.
Y. Wang, B. Semlitsch, M. Mihaescu, L. Fuchs, Flow structures and losses in the exhaust port of an internal combustion engine, in: ASME 2013 International Mechanical Engineering Congress & Exposition, 2013, San Diego, California, USA, 2013.
Churchill, Bernstein (b0095) 1977; 99
.
M.A. Zipkin, J.C. Sander, Correlation of Exhaust Valve Temperature with Engine Operating Condition and Valve Design in an Air Cooled Cylinder, NASA report n° 813, 1945.
Sridhar, Yovanovich (b0105) 1996; 118
G.T. Engh, C. Chiang, Correlation of Convective Heat Transfer for Steady Intake Flow Through a Poppet Valve, SEA Paper 700501, 1970.
Finol, Robinson (b0050) 2006; 220
Heywood (b0005) 1988
Eichelberg (b0070) 1939; 148
Mavropoulos (b0015) 2011; 88
Wallace (10.1016/j.applthermaleng.2016.03.105_b0085) 1967; 182
Annand (10.1016/j.applthermaleng.2016.03.105_b0030) 1970; 12
Mavropoulos (10.1016/j.applthermaleng.2016.03.105_b0015) 2011; 88
Annand (10.1016/j.applthermaleng.2016.03.105_b0055) 1963; 177
10.1016/j.applthermaleng.2016.03.105_b0025
Finol (10.1016/j.applthermaleng.2016.03.105_b0050) 2006; 220
Sridhar (10.1016/j.applthermaleng.2016.03.105_b0105) 1996; 118
10.1016/j.applthermaleng.2016.03.105_b0020
Woschni (10.1016/j.applthermaleng.2016.03.105_b0045) 1967; 182
10.1016/j.applthermaleng.2016.03.105_b0075
10.1016/j.applthermaleng.2016.03.105_b0040
10.1016/j.applthermaleng.2016.03.105_b0010
10.1016/j.applthermaleng.2016.03.105_b0065
Song (10.1016/j.applthermaleng.2016.03.105_b0110) 1988; 2
10.1016/j.applthermaleng.2016.03.105_b0120
Carcasci (10.1016/j.applthermaleng.2016.03.105_b0115) 1996; 35
Eichelberg (10.1016/j.applthermaleng.2016.03.105_b0070) 1939; 148
Heywood (10.1016/j.applthermaleng.2016.03.105_b0005) 1988
10.1016/j.applthermaleng.2016.03.105_b0060
Churchill (10.1016/j.applthermaleng.2016.03.105_b0095) 1977; 99
Kastner (10.1016/j.applthermaleng.2016.03.105_b0035) 1963; 178
10.1016/j.applthermaleng.2016.03.105_b0080
10.1016/j.applthermaleng.2016.03.105_b0090
Cooper (10.1016/j.applthermaleng.2016.03.105_b0100) 1969; 12
References_xml – volume: 220
  start-page: 1765
  year: 2006
  end-page: 1781
  ident: b0050
  article-title: Thermal modelling of modern engines: A review of empirical correlations to estimate the in-cylinder heat transfer coefficient
  publication-title: Proc. Inst. Mech. Eng., Part D: J. Automob. Eng.
– volume: 182
  start-page: 134
  year: 1967
  end-page: 158
  ident: b0085
  article-title: High-output medium-speed diesel engine air and exhaust system flow losses
  publication-title: Proc. Inst. Mech. Eng., Conf. Proc.
– volume: 178
  start-page: 955
  year: 1963–1964
  end-page: 978
  ident: b0035
  article-title: Poppet inlet valve characteristics and their influence on the induction process
  publication-title: Proc. Inst. Mech. Eng., Part 1
– volume: 148
  start-page: 463
  year: 1939
  end-page: 466
  ident: b0070
  article-title: Some investigations on old combustion engine problems
  publication-title: Engineering
– volume: 88
  start-page: 867
  year: 2011
  end-page: 881
  ident: b0015
  article-title: Experimental study of the interactions between long and short-term unsteady heat transfer responses on the in-cylinder and exhaust manifold diesel engine surfaces
  publication-title: Appl. Energy
– reference: Y. Wang, B. Semlitsch, M. Mihaescu, L. Fuchs, Flow structures and losses in the exhaust port of an internal combustion engine, in: ASME 2013 International Mechanical Engineering Congress & Exposition, 2013, San Diego, California, USA, 2013.
– volume: 12
  start-page: 1517
  year: 1969
  end-page: 1520
  ident: b0100
  article-title: Thermal contact conductance
  publication-title: Int. J. Heat Mass Transf.
– volume: 118
  start-page: 3
  year: 1996
  end-page: 9
  ident: b0105
  article-title: Elastoplastic contact conductance model for isotropic conforming rough surfaces and comparison with experiments
  publication-title: J. Heat Transfer
– reference: A.H. Gibson, H. Wright Baker, Exhaust-valve and cylinder-head temperatures in high-speed petrol engines, Proc. Inst. Mech. Eng.
– reference: G.T. Engh, C. Chiang, Correlation of Convective Heat Transfer for Steady Intake Flow Through a Poppet Valve, SEA Paper 700501, 1970.
– volume: 99
  start-page: 300
  year: 1977
  end-page: 306
  ident: b0095
  article-title: A correlating equation for forced convection from gases and liquids to a circular cylinder in cross flow
  publication-title: J. Heat Trans. ASME. Ser. C
– volume: 182
  start-page: 71
  year: 1967
  end-page: 78
  ident: b0045
  article-title: Electronic calculation of the time curve of pressure, temperature and mass flow rate in the cylinder of a diesel engine
  publication-title: Proc. Inst. Mech. Eng., Conf. Proc.
– reference: P.W. Dittus, L.M. Boelter, University of California, Berkeley, Publications on Engineering, vol. 2, 1930, pp. 44.
– year: 1988
  ident: b0005
  article-title: Internal Combustion Engine Fundamentals
– reference: M.A. Zipkin, J.C. Sander, Correlation of Exhaust Valve Temperature with Engine Operating Condition and Valve Design in an Air Cooled Cylinder, NASA report n° 813, 1945.
– reference: G. Woschni, A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine, SAE Paper 670931, 1967.
– volume: 12
  year: 1970
  ident: b0030
  article-title: Heat transfer measurements on a simple model representing a poppet exhaust valve in an out flowing stream
  publication-title: J. Mech. Eng. Sci.
– reference: G.C. Mavropoulos, C.D. Rakopoulos, D.T. Hountalas, Experimental Investigation of Instantaneous Cyclic Heat Transfer in the Combustion Chamber and Exhaust Manifold of a DI Diesel Engine Under Transient Operating Conditions, SAE paper 2009-01-1122.
– reference: B.S. Han, Y.J. Chung, Y.J. Kwon, S. Lee, Empirical Formula for Instantaneous Heat Transfer Coefficient in Spark Ignition Engines, SAE Paper 972995, 1997.
– reference: .
– volume: 35
  start-page: 257
  year: 1996
  end-page: 268
  ident: b0115
  article-title: A numerical procedure to design internal cooling of gas turbine stator blades
  publication-title: Revue Générale de Thermique (Int. J. of Therm. Sci.)
– volume: 177
  start-page: 973
  year: 1963
  end-page: 990
  ident: b0055
  article-title: Heat transfer in the cylinders of reciprocating internal combustion engines
  publication-title: Proc. Inst. Mech. Eng.
– reference: P.J. Shayler, M.J.F. Colechin, A. Scarisbrick, Heat Transfer Measurements in the Intake Port of a Spark Ignition Engine, SAE Paper 960273, 1996.
– volume: 2
  start-page: 43
  year: 1988
  end-page: 47
  ident: b0110
  article-title: Relative contact pressure: dependence upon surface roughness and Vickers micro-hardness
  publication-title: J. Thermophys. Heat Transfer
– reference: A. Stotter, K. Woolley, E. Ip, Exhaust Valve Temperature – A Theoretical and Experimental Investigation, SAE Technical Paper 650019, 1965,
– volume: 182
  start-page: 134
  issue: 4
  year: 1967
  ident: 10.1016/j.applthermaleng.2016.03.105_b0085
  article-title: High-output medium-speed diesel engine air and exhaust system flow losses
  publication-title: Proc. Inst. Mech. Eng., Conf. Proc.
– ident: 10.1016/j.applthermaleng.2016.03.105_b0040
  doi: 10.4271/650019
– volume: 178
  start-page: 955
  issue: 36
  year: 1963
  ident: 10.1016/j.applthermaleng.2016.03.105_b0035
  article-title: Poppet inlet valve characteristics and their influence on the induction process
  publication-title: Proc. Inst. Mech. Eng., Part 1
– ident: 10.1016/j.applthermaleng.2016.03.105_b0080
  doi: 10.1115/IMECE2013-64610
– ident: 10.1016/j.applthermaleng.2016.03.105_b0025
– volume: 220
  start-page: 1765
  year: 2006
  ident: 10.1016/j.applthermaleng.2016.03.105_b0050
  article-title: Thermal modelling of modern engines: A review of empirical correlations to estimate the in-cylinder heat transfer coefficient
  publication-title: Proc. Inst. Mech. Eng., Part D: J. Automob. Eng.
  doi: 10.1243/09544070JAUTO202
– volume: 2
  start-page: 43
  issue: 1
  year: 1988
  ident: 10.1016/j.applthermaleng.2016.03.105_b0110
  article-title: Relative contact pressure: dependence upon surface roughness and Vickers micro-hardness
  publication-title: J. Thermophys. Heat Transfer
  doi: 10.2514/3.60
– ident: 10.1016/j.applthermaleng.2016.03.105_b0065
  doi: 10.4271/670931
– ident: 10.1016/j.applthermaleng.2016.03.105_b0060
  doi: 10.4271/972995
– ident: 10.1016/j.applthermaleng.2016.03.105_b0075
  doi: 10.4271/960273
– volume: 35
  start-page: 257
  issue: 412
  year: 1996
  ident: 10.1016/j.applthermaleng.2016.03.105_b0115
  article-title: A numerical procedure to design internal cooling of gas turbine stator blades
  publication-title: Revue Générale de Thermique (Int. J. of Therm. Sci.)
  doi: 10.1016/S0035-3159(96)80018-3
– ident: 10.1016/j.applthermaleng.2016.03.105_b0120
  doi: 10.4271/700501
– volume: 182
  start-page: 71
  issue: 12
  year: 1967
  ident: 10.1016/j.applthermaleng.2016.03.105_b0045
  article-title: Electronic calculation of the time curve of pressure, temperature and mass flow rate in the cylinder of a diesel engine
  publication-title: Proc. Inst. Mech. Eng., Conf. Proc.
– year: 1988
  ident: 10.1016/j.applthermaleng.2016.03.105_b0005
– volume: 12
  start-page: 1517
  year: 1969
  ident: 10.1016/j.applthermaleng.2016.03.105_b0100
  article-title: Thermal contact conductance
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(69)90011-8
– ident: 10.1016/j.applthermaleng.2016.03.105_b0010
  doi: 10.4271/2009-01-1122
– ident: 10.1016/j.applthermaleng.2016.03.105_b0090
– ident: 10.1016/j.applthermaleng.2016.03.105_b0020
– volume: 118
  start-page: 3
  issue: 1
  year: 1996
  ident: 10.1016/j.applthermaleng.2016.03.105_b0105
  article-title: Elastoplastic contact conductance model for isotropic conforming rough surfaces and comparison with experiments
  publication-title: J. Heat Transfer
  doi: 10.1115/1.2824065
– volume: 99
  start-page: 300
  year: 1977
  ident: 10.1016/j.applthermaleng.2016.03.105_b0095
  article-title: A correlating equation for forced convection from gases and liquids to a circular cylinder in cross flow
  publication-title: J. Heat Trans. ASME. Ser. C
  doi: 10.1115/1.3450685
– volume: 12
  issue: 3
  year: 1970
  ident: 10.1016/j.applthermaleng.2016.03.105_b0030
  article-title: Heat transfer measurements on a simple model representing a poppet exhaust valve in an out flowing stream
  publication-title: J. Mech. Eng. Sci.
  doi: 10.1243/JMES_JOUR_1970_012_038_02
– volume: 88
  start-page: 867
  issue: 3
  year: 2011
  ident: 10.1016/j.applthermaleng.2016.03.105_b0015
  article-title: Experimental study of the interactions between long and short-term unsteady heat transfer responses on the in-cylinder and exhaust manifold diesel engine surfaces
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.09.018
– volume: 177
  start-page: 973
  issue: 36
  year: 1963
  ident: 10.1016/j.applthermaleng.2016.03.105_b0055
  article-title: Heat transfer in the cylinders of reciprocating internal combustion engines
  publication-title: Proc. Inst. Mech. Eng.
– volume: 148
  start-page: 463
  issue: I,II
  year: 1939
  ident: 10.1016/j.applthermaleng.2016.03.105_b0070
  article-title: Some investigations on old combustion engine problems
  publication-title: Engineering
SSID ssj0012874
Score 2.2627573
Snippet •Exhaust valve is subject to thermal loading due to high temperature and pressure.•Exhaust valve is subdivided to several zones to isolate the effect of each...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1095
SubjectTerms Exhaust valves
HTC
Internal combustion engine
Temperature maps
Unsteady heat transfer
Title An approach for the thermal analysis of internal combustion engines’ exhaust valves
URI https://dx.doi.org/10.1016/j.applthermaleng.2016.03.105
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB76ANGD-MT6KDl4XbvZbNItHqQUS1XsRQu9LUk2i5W6LbaKJ_Fv-Pf8JWbabGnBQ8HjPjLJzoaZL8nMNwDnFmErkSrucRH5XigD6UUm4p60riypG58ajrnD913R6YW3fd4vQCvPhcGwSmf75zZ9Zq3dnZrTZm08GNQeKOMN6_6oRRQ-rlKKUA5YQ_ASlJs3d53u4jABKd1n6y7e8LDBhh3iIswLz4kRar1IrFyCsV4CWU8p1rP7y1MteZ_2Dmw72Eia85HtQsFke7C1RCa4D71mRnKGcGKhKLH9EdcnkY57hIxSMphvAg6J_WaFxbxGGTEzSZOfr29iPp6QC4jYKfhuJgfQa18_tjqeK5rgacb8qacEV0b5XIVRwlKZaiqkCAIllJ_SQCsRac0oE1okkukoSBMLOTTyAEYqqXPDDqGUjTJzBIRJ66sSSpV9J6R11vC5sQChrkNMgUpVBS5zBcXaMYpjYYthnIeOPcer6o1RvbHP7FNeAb5oPZ4za6zZ7ir_F_HKTImtE1hLwvG_JZzAJl7NQsb4KZSmr2_mzIKTqapC8eKTVt0U_AUNeukS
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVKkVgOiFWU1QeuoXEcO6k4oKqiKtD2Qiv1ZtmOI4pKWtGCOCF-g9_jS_BkqVqJAxLXeM3E8jw7b94gdGERtuKxYg7joev40pNOaELmSOvKosC4xDCIHe50eavv3w3YoIQaRSwM0CrzvT_b09PdOn9Sza1ZnQyH1QdCWc26P2IRhQunlBW06jMaAK_v8mPO8yAg6J6euljNgeprdoJzkhf8JQag9SwhbwkwvThonhLIZvebn1rwPc1ttJWDRlzP5rWDSibZRZsLUoJ7qF9PcKEPji0QxXY8nI-JZa48gscxHmZXgCNs31hBKq9xgk3a0_T78wub90dQAsJ2Ab6Z6T7qN296jZaTp0xwNKXuzFGcKaNcpvwworGMNeGSe57iyo2JpxUPtaaEcs0jSXXoxZEFHBpUAEMVBczQA1ROxok5RJhK66kiQpSt45OA1lxmLDwItA8BULGqoKvCQELneuKQ1mIkCuLYk1g2rwDzCpfaUlZBbN56kulq_LHddfEtxNI6EdYF_KmHo3_3cI7WW71OW7Rvu_fHaANKUvIYO0Hl2curObUwZabO0mX4Aw4A6d0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+approach+for+the+thermal+analysis+of+internal+combustion+engines%E2%80%99+exhaust+valves&rft.jtitle=Applied+thermal+engineering&rft.au=Cerdoun%2C+Mahfoudh&rft.au=Carcasci%2C+Carlo&rft.au=Ghenaiet%2C+Adel&rft.date=2016-06-05&rft.issn=1359-4311&rft.volume=102&rft.spage=1095&rft.epage=1108&rft_id=info:doi/10.1016%2Fj.applthermaleng.2016.03.105&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2016_03_105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon