An approach for the thermal analysis of internal combustion engines’ exhaust valves
•Exhaust valve is subject to thermal loading due to high temperature and pressure.•Exhaust valve is subdivided to several zones to isolate the effect of each part.•Heat transfer for each subdivision is evaluated during engine operating cycle.•Temperature maps through valves allows identifying region...
Saved in:
Published in | Applied thermal engineering Vol. 102; pp. 1095 - 1108 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
05.06.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1359-4311 |
DOI | 10.1016/j.applthermaleng.2016.03.105 |
Cover
Abstract | •Exhaust valve is subject to thermal loading due to high temperature and pressure.•Exhaust valve is subdivided to several zones to isolate the effect of each part.•Heat transfer for each subdivision is evaluated during engine operating cycle.•Temperature maps through valves allows identifying region exposed to maximum temperature.
Intake and exhaust valves are important components of internal combustion engines, which are used to control the inflow and outflow of gases. Such valves are subject to thermal loading due to high temperature and pressure inside the cylinder that must tolerate the limit of material temperature for a sustainable and optimal operation. The present study constitutes a contribution to predict the temperature maps of intake and exhaust valves considering the real conditions of an engine operation. An adequate subdivision of the valve is used to better assess the effect of each part of the cylinder head. Therefore, the instantaneous heat transfer coefficient and adiabatic wall temperature for each subdivision are evaluated during the four-stroke of an engine. The average values of these parameters are calculated and introduced as boundary conditions in a finite element model implemented in the commercial code Ansys-CFX. To facilitate the simulations runs of the proposed model, APDL (ANSYS Parametric Design Language) code is developed to extract the thermal map. As an application, this methodology is used to highlight the temperature maps and to show the region of extreme temperature and heat flux in the aim of avoiding any damage. |
---|---|
AbstractList | •Exhaust valve is subject to thermal loading due to high temperature and pressure.•Exhaust valve is subdivided to several zones to isolate the effect of each part.•Heat transfer for each subdivision is evaluated during engine operating cycle.•Temperature maps through valves allows identifying region exposed to maximum temperature.
Intake and exhaust valves are important components of internal combustion engines, which are used to control the inflow and outflow of gases. Such valves are subject to thermal loading due to high temperature and pressure inside the cylinder that must tolerate the limit of material temperature for a sustainable and optimal operation. The present study constitutes a contribution to predict the temperature maps of intake and exhaust valves considering the real conditions of an engine operation. An adequate subdivision of the valve is used to better assess the effect of each part of the cylinder head. Therefore, the instantaneous heat transfer coefficient and adiabatic wall temperature for each subdivision are evaluated during the four-stroke of an engine. The average values of these parameters are calculated and introduced as boundary conditions in a finite element model implemented in the commercial code Ansys-CFX. To facilitate the simulations runs of the proposed model, APDL (ANSYS Parametric Design Language) code is developed to extract the thermal map. As an application, this methodology is used to highlight the temperature maps and to show the region of extreme temperature and heat flux in the aim of avoiding any damage. |
Author | Cerdoun, Mahfoudh Ghenaiet, Adel Carcasci, Carlo |
Author_xml | – sequence: 1 givenname: Mahfoudh surname: Cerdoun fullname: Cerdoun, Mahfoudh organization: Laboratory of Thermal Power Systems, Applied Mechanics, Ecole Militaire Polytechnique, BP17 Bordj-el-Bahri, 16046 Algiers, Algeria – sequence: 2 givenname: Carlo orcidid: 0000-0003-1293-0814 surname: Carcasci fullname: Carcasci, Carlo organization: Department of Industrial Engineering, University of Florence, Via Santa Marta, 3, Florence, Italy – sequence: 3 givenname: Adel surname: Ghenaiet fullname: Ghenaiet, Adel organization: Laboratory of Energetics and Conversion Systems, Faculty of Mechanical Engineering, University of Sciences and Technology, Houari Boumediene, BP32 El-Alia, Bab-Ezzouar, 16111 Algiers, Algeria |
BookMark | eNqNkMFOAjEQhnvAREDfoQevu7bbbVkTL0hETUi8yLlpu1MpWVrSrkRuvoav55NYAhc9cZrM_Pm_mflHaOCDB4RuKCkpoeJ2XarttutXEDeqA_9eVnlaEpZVPkBDyvhdUTNKL9EopTUhtGom9RAtpx5nYwzKrLANEWcCPlGw8qrbJ5dwsNj5HmLusQkb_ZF6FzzOa5yH9PP1jeFzpfIU71S3g3SFLqzqElyf6hgt549vs-di8fr0MpsuCsMY6QstuAZNuK6bllllDRVKVJUWmlhaGS0aYxhlwohWMdNUthWMG1ZXrNHthAMbo4cj18SQUgQrjevV4bY-KtdJSuQhHLmWf8ORh3AkYVnlGXL_D7KNbqPi_lz7_GiH_OjOQZTJOPAGWhfB9LIN7jzQL1FBktA |
CitedBy_id | crossref_primary_10_1088_1742_6596_2051_1_012018 crossref_primary_10_1016_j_applthermaleng_2021_117870 crossref_primary_10_1016_j_applthermaleng_2023_120548 crossref_primary_10_1177_1468087417725221 crossref_primary_10_1088_1742_6596_2129_1_012097 crossref_primary_10_1016_j_matchemphys_2023_128762 crossref_primary_10_1016_j_proci_2024_105356 crossref_primary_10_1177_0954406221996394 crossref_primary_10_1016_j_ijfatigue_2018_04_010 crossref_primary_10_1007_s11831_019_09361_9 crossref_primary_10_1016_j_applthermaleng_2020_115977 crossref_primary_10_3390_met13071247 crossref_primary_10_1177_14680874241265759 crossref_primary_10_1016_j_ijheatmasstransfer_2019_119005 crossref_primary_10_1016_j_applthermaleng_2023_120240 crossref_primary_10_1016_j_applthermaleng_2024_123370 crossref_primary_10_1515_jnet_2024_0052 crossref_primary_10_4271_2021_01_1142 crossref_primary_10_56083_RCV3N9_147 crossref_primary_10_1016_j_matpr_2020_06_550 crossref_primary_10_1016_j_icheatmasstransfer_2024_108133 crossref_primary_10_1088_1742_6596_2523_1_012047 |
Cites_doi | 10.4271/650019 10.1115/IMECE2013-64610 10.1243/09544070JAUTO202 10.2514/3.60 10.4271/670931 10.4271/972995 10.4271/960273 10.1016/S0035-3159(96)80018-3 10.4271/700501 10.1016/0017-9310(69)90011-8 10.4271/2009-01-1122 10.1115/1.2824065 10.1115/1.3450685 10.1243/JMES_JOUR_1970_012_038_02 10.1016/j.apenergy.2010.09.018 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.applthermaleng.2016.03.105 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 1108 |
ExternalDocumentID | 10_1016_j_applthermaleng_2016_03_105 S1359431116304094 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FGOYB HZ~ R2- SEW SSH |
ID | FETCH-LOGICAL-c330t-b65beb05b48d3fafc16a622b6b0f12cb68cc3136c6da3c82fd635c34238bd75e3 |
IEDL.DBID | AIKHN |
ISSN | 1359-4311 |
IngestDate | Thu Apr 24 23:07:37 EDT 2025 Tue Jul 01 02:27:16 EDT 2025 Fri Feb 23 02:33:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Exhaust valves Temperature maps Internal combustion engine Unsteady heat transfer HTC |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-b65beb05b48d3fafc16a622b6b0f12cb68cc3136c6da3c82fd635c34238bd75e3 |
ORCID | 0000-0003-1293-0814 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1016_j_applthermaleng_2016_03_105 crossref_primary_10_1016_j_applthermaleng_2016_03_105 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2016_03_105 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-06-05 |
PublicationDateYYYYMMDD | 2016-06-05 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-05 day: 05 |
PublicationDecade | 2010 |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | G.C. Mavropoulos, C.D. Rakopoulos, D.T. Hountalas, Experimental Investigation of Instantaneous Cyclic Heat Transfer in the Combustion Chamber and Exhaust Manifold of a DI Diesel Engine Under Transient Operating Conditions, SAE paper 2009-01-1122. Woschni (b0045) 1967; 182 Wallace (b0085) 1967; 182 Song, Yovanovich (b0110) 1988; 2 Annand (b0055) 1963; 177 Cooper, Mikic, Yovanovich (b0100) 1969; 12 P.J. Shayler, M.J.F. Colechin, A. Scarisbrick, Heat Transfer Measurements in the Intake Port of a Spark Ignition Engine, SAE Paper 960273, 1996. Kastner, Williams, White (b0035) 1963–1964; 178 A. Stotter, K. Woolley, E. Ip, Exhaust Valve Temperature – A Theoretical and Experimental Investigation, SAE Technical Paper 650019, 1965 Annand, Lanary (b0030) 1970; 12 G. Woschni, A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine, SAE Paper 670931, 1967. A.H. Gibson, H. Wright Baker, Exhaust-valve and cylinder-head temperatures in high-speed petrol engines, Proc. Inst. Mech. Eng. Carcasci, Facchini (b0115) 1996; 35 P.W. Dittus, L.M. Boelter, University of California, Berkeley, Publications on Engineering, vol. 2, 1930, pp. 44. B.S. Han, Y.J. Chung, Y.J. Kwon, S. Lee, Empirical Formula for Instantaneous Heat Transfer Coefficient in Spark Ignition Engines, SAE Paper 972995, 1997. Y. Wang, B. Semlitsch, M. Mihaescu, L. Fuchs, Flow structures and losses in the exhaust port of an internal combustion engine, in: ASME 2013 International Mechanical Engineering Congress & Exposition, 2013, San Diego, California, USA, 2013. Churchill, Bernstein (b0095) 1977; 99 . M.A. Zipkin, J.C. Sander, Correlation of Exhaust Valve Temperature with Engine Operating Condition and Valve Design in an Air Cooled Cylinder, NASA report n° 813, 1945. Sridhar, Yovanovich (b0105) 1996; 118 G.T. Engh, C. Chiang, Correlation of Convective Heat Transfer for Steady Intake Flow Through a Poppet Valve, SEA Paper 700501, 1970. Finol, Robinson (b0050) 2006; 220 Heywood (b0005) 1988 Eichelberg (b0070) 1939; 148 Mavropoulos (b0015) 2011; 88 Wallace (10.1016/j.applthermaleng.2016.03.105_b0085) 1967; 182 Annand (10.1016/j.applthermaleng.2016.03.105_b0030) 1970; 12 Mavropoulos (10.1016/j.applthermaleng.2016.03.105_b0015) 2011; 88 Annand (10.1016/j.applthermaleng.2016.03.105_b0055) 1963; 177 10.1016/j.applthermaleng.2016.03.105_b0025 Finol (10.1016/j.applthermaleng.2016.03.105_b0050) 2006; 220 Sridhar (10.1016/j.applthermaleng.2016.03.105_b0105) 1996; 118 10.1016/j.applthermaleng.2016.03.105_b0020 Woschni (10.1016/j.applthermaleng.2016.03.105_b0045) 1967; 182 10.1016/j.applthermaleng.2016.03.105_b0075 10.1016/j.applthermaleng.2016.03.105_b0040 10.1016/j.applthermaleng.2016.03.105_b0010 10.1016/j.applthermaleng.2016.03.105_b0065 Song (10.1016/j.applthermaleng.2016.03.105_b0110) 1988; 2 10.1016/j.applthermaleng.2016.03.105_b0120 Carcasci (10.1016/j.applthermaleng.2016.03.105_b0115) 1996; 35 Eichelberg (10.1016/j.applthermaleng.2016.03.105_b0070) 1939; 148 Heywood (10.1016/j.applthermaleng.2016.03.105_b0005) 1988 10.1016/j.applthermaleng.2016.03.105_b0060 Churchill (10.1016/j.applthermaleng.2016.03.105_b0095) 1977; 99 Kastner (10.1016/j.applthermaleng.2016.03.105_b0035) 1963; 178 10.1016/j.applthermaleng.2016.03.105_b0080 10.1016/j.applthermaleng.2016.03.105_b0090 Cooper (10.1016/j.applthermaleng.2016.03.105_b0100) 1969; 12 |
References_xml | – volume: 220 start-page: 1765 year: 2006 end-page: 1781 ident: b0050 article-title: Thermal modelling of modern engines: A review of empirical correlations to estimate the in-cylinder heat transfer coefficient publication-title: Proc. Inst. Mech. Eng., Part D: J. Automob. Eng. – volume: 182 start-page: 134 year: 1967 end-page: 158 ident: b0085 article-title: High-output medium-speed diesel engine air and exhaust system flow losses publication-title: Proc. Inst. Mech. Eng., Conf. Proc. – volume: 178 start-page: 955 year: 1963–1964 end-page: 978 ident: b0035 article-title: Poppet inlet valve characteristics and their influence on the induction process publication-title: Proc. Inst. Mech. Eng., Part 1 – volume: 148 start-page: 463 year: 1939 end-page: 466 ident: b0070 article-title: Some investigations on old combustion engine problems publication-title: Engineering – volume: 88 start-page: 867 year: 2011 end-page: 881 ident: b0015 article-title: Experimental study of the interactions between long and short-term unsteady heat transfer responses on the in-cylinder and exhaust manifold diesel engine surfaces publication-title: Appl. Energy – reference: Y. Wang, B. Semlitsch, M. Mihaescu, L. Fuchs, Flow structures and losses in the exhaust port of an internal combustion engine, in: ASME 2013 International Mechanical Engineering Congress & Exposition, 2013, San Diego, California, USA, 2013. – volume: 12 start-page: 1517 year: 1969 end-page: 1520 ident: b0100 article-title: Thermal contact conductance publication-title: Int. J. Heat Mass Transf. – volume: 118 start-page: 3 year: 1996 end-page: 9 ident: b0105 article-title: Elastoplastic contact conductance model for isotropic conforming rough surfaces and comparison with experiments publication-title: J. Heat Transfer – reference: A.H. Gibson, H. Wright Baker, Exhaust-valve and cylinder-head temperatures in high-speed petrol engines, Proc. Inst. Mech. Eng. – reference: G.T. Engh, C. Chiang, Correlation of Convective Heat Transfer for Steady Intake Flow Through a Poppet Valve, SEA Paper 700501, 1970. – volume: 99 start-page: 300 year: 1977 end-page: 306 ident: b0095 article-title: A correlating equation for forced convection from gases and liquids to a circular cylinder in cross flow publication-title: J. Heat Trans. ASME. Ser. C – volume: 182 start-page: 71 year: 1967 end-page: 78 ident: b0045 article-title: Electronic calculation of the time curve of pressure, temperature and mass flow rate in the cylinder of a diesel engine publication-title: Proc. Inst. Mech. Eng., Conf. Proc. – reference: P.W. Dittus, L.M. Boelter, University of California, Berkeley, Publications on Engineering, vol. 2, 1930, pp. 44. – year: 1988 ident: b0005 article-title: Internal Combustion Engine Fundamentals – reference: M.A. Zipkin, J.C. Sander, Correlation of Exhaust Valve Temperature with Engine Operating Condition and Valve Design in an Air Cooled Cylinder, NASA report n° 813, 1945. – reference: G. Woschni, A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine, SAE Paper 670931, 1967. – volume: 12 year: 1970 ident: b0030 article-title: Heat transfer measurements on a simple model representing a poppet exhaust valve in an out flowing stream publication-title: J. Mech. Eng. Sci. – reference: G.C. Mavropoulos, C.D. Rakopoulos, D.T. Hountalas, Experimental Investigation of Instantaneous Cyclic Heat Transfer in the Combustion Chamber and Exhaust Manifold of a DI Diesel Engine Under Transient Operating Conditions, SAE paper 2009-01-1122. – reference: B.S. Han, Y.J. Chung, Y.J. Kwon, S. Lee, Empirical Formula for Instantaneous Heat Transfer Coefficient in Spark Ignition Engines, SAE Paper 972995, 1997. – reference: . – volume: 35 start-page: 257 year: 1996 end-page: 268 ident: b0115 article-title: A numerical procedure to design internal cooling of gas turbine stator blades publication-title: Revue Générale de Thermique (Int. J. of Therm. Sci.) – volume: 177 start-page: 973 year: 1963 end-page: 990 ident: b0055 article-title: Heat transfer in the cylinders of reciprocating internal combustion engines publication-title: Proc. Inst. Mech. Eng. – reference: P.J. Shayler, M.J.F. Colechin, A. Scarisbrick, Heat Transfer Measurements in the Intake Port of a Spark Ignition Engine, SAE Paper 960273, 1996. – volume: 2 start-page: 43 year: 1988 end-page: 47 ident: b0110 article-title: Relative contact pressure: dependence upon surface roughness and Vickers micro-hardness publication-title: J. Thermophys. Heat Transfer – reference: A. Stotter, K. Woolley, E. Ip, Exhaust Valve Temperature – A Theoretical and Experimental Investigation, SAE Technical Paper 650019, 1965, – volume: 182 start-page: 134 issue: 4 year: 1967 ident: 10.1016/j.applthermaleng.2016.03.105_b0085 article-title: High-output medium-speed diesel engine air and exhaust system flow losses publication-title: Proc. Inst. Mech. Eng., Conf. Proc. – ident: 10.1016/j.applthermaleng.2016.03.105_b0040 doi: 10.4271/650019 – volume: 178 start-page: 955 issue: 36 year: 1963 ident: 10.1016/j.applthermaleng.2016.03.105_b0035 article-title: Poppet inlet valve characteristics and their influence on the induction process publication-title: Proc. Inst. Mech. Eng., Part 1 – ident: 10.1016/j.applthermaleng.2016.03.105_b0080 doi: 10.1115/IMECE2013-64610 – ident: 10.1016/j.applthermaleng.2016.03.105_b0025 – volume: 220 start-page: 1765 year: 2006 ident: 10.1016/j.applthermaleng.2016.03.105_b0050 article-title: Thermal modelling of modern engines: A review of empirical correlations to estimate the in-cylinder heat transfer coefficient publication-title: Proc. Inst. Mech. Eng., Part D: J. Automob. Eng. doi: 10.1243/09544070JAUTO202 – volume: 2 start-page: 43 issue: 1 year: 1988 ident: 10.1016/j.applthermaleng.2016.03.105_b0110 article-title: Relative contact pressure: dependence upon surface roughness and Vickers micro-hardness publication-title: J. Thermophys. Heat Transfer doi: 10.2514/3.60 – ident: 10.1016/j.applthermaleng.2016.03.105_b0065 doi: 10.4271/670931 – ident: 10.1016/j.applthermaleng.2016.03.105_b0060 doi: 10.4271/972995 – ident: 10.1016/j.applthermaleng.2016.03.105_b0075 doi: 10.4271/960273 – volume: 35 start-page: 257 issue: 412 year: 1996 ident: 10.1016/j.applthermaleng.2016.03.105_b0115 article-title: A numerical procedure to design internal cooling of gas turbine stator blades publication-title: Revue Générale de Thermique (Int. J. of Therm. Sci.) doi: 10.1016/S0035-3159(96)80018-3 – ident: 10.1016/j.applthermaleng.2016.03.105_b0120 doi: 10.4271/700501 – volume: 182 start-page: 71 issue: 12 year: 1967 ident: 10.1016/j.applthermaleng.2016.03.105_b0045 article-title: Electronic calculation of the time curve of pressure, temperature and mass flow rate in the cylinder of a diesel engine publication-title: Proc. Inst. Mech. Eng., Conf. Proc. – year: 1988 ident: 10.1016/j.applthermaleng.2016.03.105_b0005 – volume: 12 start-page: 1517 year: 1969 ident: 10.1016/j.applthermaleng.2016.03.105_b0100 article-title: Thermal contact conductance publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(69)90011-8 – ident: 10.1016/j.applthermaleng.2016.03.105_b0010 doi: 10.4271/2009-01-1122 – ident: 10.1016/j.applthermaleng.2016.03.105_b0090 – ident: 10.1016/j.applthermaleng.2016.03.105_b0020 – volume: 118 start-page: 3 issue: 1 year: 1996 ident: 10.1016/j.applthermaleng.2016.03.105_b0105 article-title: Elastoplastic contact conductance model for isotropic conforming rough surfaces and comparison with experiments publication-title: J. Heat Transfer doi: 10.1115/1.2824065 – volume: 99 start-page: 300 year: 1977 ident: 10.1016/j.applthermaleng.2016.03.105_b0095 article-title: A correlating equation for forced convection from gases and liquids to a circular cylinder in cross flow publication-title: J. Heat Trans. ASME. Ser. C doi: 10.1115/1.3450685 – volume: 12 issue: 3 year: 1970 ident: 10.1016/j.applthermaleng.2016.03.105_b0030 article-title: Heat transfer measurements on a simple model representing a poppet exhaust valve in an out flowing stream publication-title: J. Mech. Eng. Sci. doi: 10.1243/JMES_JOUR_1970_012_038_02 – volume: 88 start-page: 867 issue: 3 year: 2011 ident: 10.1016/j.applthermaleng.2016.03.105_b0015 article-title: Experimental study of the interactions between long and short-term unsteady heat transfer responses on the in-cylinder and exhaust manifold diesel engine surfaces publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.09.018 – volume: 177 start-page: 973 issue: 36 year: 1963 ident: 10.1016/j.applthermaleng.2016.03.105_b0055 article-title: Heat transfer in the cylinders of reciprocating internal combustion engines publication-title: Proc. Inst. Mech. Eng. – volume: 148 start-page: 463 issue: I,II year: 1939 ident: 10.1016/j.applthermaleng.2016.03.105_b0070 article-title: Some investigations on old combustion engine problems publication-title: Engineering |
SSID | ssj0012874 |
Score | 2.2627573 |
Snippet | •Exhaust valve is subject to thermal loading due to high temperature and pressure.•Exhaust valve is subdivided to several zones to isolate the effect of each... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1095 |
SubjectTerms | Exhaust valves HTC Internal combustion engine Temperature maps Unsteady heat transfer |
Title | An approach for the thermal analysis of internal combustion engines’ exhaust valves |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2016.03.105 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB76ANGD-MT6KDl4XbvZbNItHqQUS1XsRQu9LUk2i5W6LbaKJ_Fv-Pf8JWbabGnBQ8HjPjLJzoaZL8nMNwDnFmErkSrucRH5XigD6UUm4p60riypG58ajrnD913R6YW3fd4vQCvPhcGwSmf75zZ9Zq3dnZrTZm08GNQeKOMN6_6oRRQ-rlKKUA5YQ_ASlJs3d53u4jABKd1n6y7e8LDBhh3iIswLz4kRar1IrFyCsV4CWU8p1rP7y1MteZ_2Dmw72Eia85HtQsFke7C1RCa4D71mRnKGcGKhKLH9EdcnkY57hIxSMphvAg6J_WaFxbxGGTEzSZOfr29iPp6QC4jYKfhuJgfQa18_tjqeK5rgacb8qacEV0b5XIVRwlKZaiqkCAIllJ_SQCsRac0oE1okkukoSBMLOTTyAEYqqXPDDqGUjTJzBIRJ66sSSpV9J6R11vC5sQChrkNMgUpVBS5zBcXaMYpjYYthnIeOPcer6o1RvbHP7FNeAb5oPZ4za6zZ7ir_F_HKTImtE1hLwvG_JZzAJl7NQsb4KZSmr2_mzIKTqapC8eKTVt0U_AUNeukS |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVKkVgOiFWU1QeuoXEcO6k4oKqiKtD2Qiv1ZtmOI4pKWtGCOCF-g9_jS_BkqVqJAxLXeM3E8jw7b94gdGERtuKxYg7joev40pNOaELmSOvKosC4xDCIHe50eavv3w3YoIQaRSwM0CrzvT_b09PdOn9Sza1ZnQyH1QdCWc26P2IRhQunlBW06jMaAK_v8mPO8yAg6J6euljNgeprdoJzkhf8JQag9SwhbwkwvThonhLIZvebn1rwPc1ttJWDRlzP5rWDSibZRZsLUoJ7qF9PcKEPji0QxXY8nI-JZa48gscxHmZXgCNs31hBKq9xgk3a0_T78wub90dQAsJ2Ab6Z6T7qN296jZaTp0xwNKXuzFGcKaNcpvwworGMNeGSe57iyo2JpxUPtaaEcs0jSXXoxZEFHBpUAEMVBczQA1ROxok5RJhK66kiQpSt45OA1lxmLDwItA8BULGqoKvCQELneuKQ1mIkCuLYk1g2rwDzCpfaUlZBbN56kulq_LHddfEtxNI6EdYF_KmHo3_3cI7WW71OW7Rvu_fHaANKUvIYO0Hl2curObUwZabO0mX4Aw4A6d0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+approach+for+the+thermal+analysis+of+internal+combustion+engines%E2%80%99+exhaust+valves&rft.jtitle=Applied+thermal+engineering&rft.au=Cerdoun%2C+Mahfoudh&rft.au=Carcasci%2C+Carlo&rft.au=Ghenaiet%2C+Adel&rft.date=2016-06-05&rft.issn=1359-4311&rft.volume=102&rft.spage=1095&rft.epage=1108&rft_id=info:doi/10.1016%2Fj.applthermaleng.2016.03.105&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2016_03_105 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |