Multi-objective optimization of a non-uniform sinusoidal mini-channel heat sink by coupling genetic algorithm and CFD model
[Display omitted] •CFD models are coupled in the evolutionary process to find optimal solutions.•Maximum base temperature is precisely controlled by the genetic algorithm.•Pareto solutions reduce thermal resistance θ by 27.74% or pressure drop Δp by 59.51%.•Base temperature is more uniform as its st...
Saved in:
| Published in | Applied thermal engineering Vol. 257; p. 124198 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.12.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1359-4311 |
| DOI | 10.1016/j.applthermaleng.2024.124198 |
Cover
| Abstract | [Display omitted]
•CFD models are coupled in the evolutionary process to find optimal solutions.•Maximum base temperature is precisely controlled by the genetic algorithm.•Pareto solutions reduce thermal resistance θ by 27.74% or pressure drop Δp by 59.51%.•Base temperature is more uniform as its standard deviation is reduced by 76.98%.•Raising downstream disturbances appropriately is an effective strategy for a low θ.
Wavy mini-channel heat sinks (MCHS) can disrupt the development of the thermal boundary layer, resulting in superior performance compared to straight MCHS. For complete utilization of the coolant, this study proposed and optimized a non-uniform sinusoidal MCHS with varying wavelength or varying amplitude along the flow direction. The optimization for five design variables was accomplished through a multi-objective genetic algorithm, where the thermal resistance θ or the pressure drop Δp were defined as two objectives. The computational fluid dynamics (CFD) software was employed to solve all direct problems encountered during the evolutionary process. Compared to the straight MCHS with different channel widths, the optimal designs achieved reductions of 27.74 % in θ or 59.51 % in Δp. Simultaneously, all the optimal values of the wavelength ratio and amplitude ratio indicate that enhancing the heat transfer performance downstream is more efficient. It was observed that among the five design variables, the number of wave cycles is the most relevant parameter with a Spearman’s correlation up to 0.983. Subsequently, a multiple-criteria decision-making approach was employed to ascertain the best compromise solution to balance the two objectives. Although the θ of the best compromise solution could be higher by 38.57 % than that of the lowest θ solution, the Δp presents a more substantial reduction of 92.45 % after the trade-off. Compared to the straight MCHS with the same Δp, the best compromise solution with varying wavelength reduces the θ and the standard temperature deviation by 26.20 % and 76.98 % respectively, while lowering the average base temperature by 3.07 K. Therefore, the optimal non-uniform wavy MCHS, along with the optimization approach presented, is meaningful for practical applications. |
|---|---|
| AbstractList | [Display omitted]
•CFD models are coupled in the evolutionary process to find optimal solutions.•Maximum base temperature is precisely controlled by the genetic algorithm.•Pareto solutions reduce thermal resistance θ by 27.74% or pressure drop Δp by 59.51%.•Base temperature is more uniform as its standard deviation is reduced by 76.98%.•Raising downstream disturbances appropriately is an effective strategy for a low θ.
Wavy mini-channel heat sinks (MCHS) can disrupt the development of the thermal boundary layer, resulting in superior performance compared to straight MCHS. For complete utilization of the coolant, this study proposed and optimized a non-uniform sinusoidal MCHS with varying wavelength or varying amplitude along the flow direction. The optimization for five design variables was accomplished through a multi-objective genetic algorithm, where the thermal resistance θ or the pressure drop Δp were defined as two objectives. The computational fluid dynamics (CFD) software was employed to solve all direct problems encountered during the evolutionary process. Compared to the straight MCHS with different channel widths, the optimal designs achieved reductions of 27.74 % in θ or 59.51 % in Δp. Simultaneously, all the optimal values of the wavelength ratio and amplitude ratio indicate that enhancing the heat transfer performance downstream is more efficient. It was observed that among the five design variables, the number of wave cycles is the most relevant parameter with a Spearman’s correlation up to 0.983. Subsequently, a multiple-criteria decision-making approach was employed to ascertain the best compromise solution to balance the two objectives. Although the θ of the best compromise solution could be higher by 38.57 % than that of the lowest θ solution, the Δp presents a more substantial reduction of 92.45 % after the trade-off. Compared to the straight MCHS with the same Δp, the best compromise solution with varying wavelength reduces the θ and the standard temperature deviation by 26.20 % and 76.98 % respectively, while lowering the average base temperature by 3.07 K. Therefore, the optimal non-uniform wavy MCHS, along with the optimization approach presented, is meaningful for practical applications. |
| ArticleNumber | 124198 |
| Author | Huang, Si-Min Ge, Ya Lin, Yousheng He, Qing He, Kui Yin, Weixing |
| Author_xml | – sequence: 1 givenname: Ya surname: Ge fullname: Ge, Ya – sequence: 2 givenname: Weixing surname: Yin fullname: Yin, Weixing – sequence: 3 givenname: Yousheng surname: Lin fullname: Lin, Yousheng – sequence: 4 givenname: Kui surname: He fullname: He, Kui – sequence: 5 givenname: Qing surname: He fullname: He, Qing email: heqing@dgut.edu.cn – sequence: 6 givenname: Si-Min orcidid: 0000-0003-3678-9886 surname: Huang fullname: Huang, Si-Min email: huangsm@dgut.edu.cn |
| BookMark | eNqNkDtPIzEUhV2AtDz2P7jYdoI99rykbSAQQGJFA7V1Y99JbtZjjzwOEuyfJ9nQQEV1iqvzXZ3vlB2FGJCxX1LMpJD1xWYG4-jzGtMAHsNqVopSz2SpZdcesROpqq7QSsof7HSaNkLIsm30Cfv3Z-szFXG5QZvpBXkcMw30Bpli4LHnwHePim2gPqaBTxS2UyQHng8UqLBrCAE9XyPk_fEvX75yG7ejp7DiKwyYyXLwq5gorwcOwfH54poP0aE_Z8c9-Al_fuQZe17cPM3viofH2_v55UNhlRK5gKZunXTaSq2ww8ZVLfTSlU1dOamFsI0GJerlsut6Jdq2EzWUNVYShK5KpdQZ-33g2hSnKWFvxkQDpFcjhdnLMxvzWZ7ZyzMHebv61Ze6pfzfT05A_ruQxQGCu6EvhMlMljBYdJR25o2L9D3QO9EPncQ |
| CitedBy_id | crossref_primary_10_1016_j_csite_2025_105936 |
| Cites_doi | 10.1109/EDL.1981.25367 10.1016/j.ijheatmasstransfer.2022.122897 10.1016/j.ijthermalsci.2020.106787 10.1016/j.ijthermalsci.2021.106831 10.1016/j.applthermaleng.2018.11.038 10.1016/j.ijthermalsci.2017.05.013 10.1016/j.ijheatmasstransfer.2016.07.100 10.1016/j.csite.2022.102266 10.1016/j.tsep.2022.101203 10.1016/j.applthermaleng.2023.120452 10.1016/j.ijheatmasstransfer.2004.11.019 10.1016/j.applthermaleng.2017.05.046 10.1016/j.ijthermalsci.2019.106133 10.1007/BF02291658 10.1016/j.asoc.2012.07.005 10.1016/j.apenergy.2018.03.186 10.1016/j.asoc.2015.08.012 10.1016/j.ijthermalsci.2018.01.029 10.1016/j.jqsrt.2008.01.011 10.1016/j.ijheatmasstransfer.2010.02.022 10.1016/j.icheatmasstransfer.2010.09.012 10.2307/1412159 10.1016/j.applthermaleng.2017.03.060 10.1016/j.applthermaleng.2021.117787 10.1109/TVLSI.2018.2834499 10.1016/j.applthermaleng.2022.118127 10.1109/4235.996017 10.1016/j.applthermaleng.2008.02.002 10.1016/j.ijthermalsci.2021.107229 10.1016/j.ijthermalsci.2011.06.017 10.1016/j.icheatmasstransfer.2021.105805 10.1016/j.icheatmasstransfer.2021.105172 10.1016/j.ijheatmasstransfer.2021.121259 10.1016/j.compfluid.2023.106068 10.1016/j.renene.2022.09.091 10.1007/s00158-018-1967-6 10.1016/j.ijthermalsci.2019.106068 10.1109/TEVC.2004.826067 10.2514/3.12149 10.1016/j.applthermaleng.2022.119917 10.1016/j.ces.2023.119081 10.1016/j.applthermaleng.2020.115379 10.1016/j.rser.2014.09.024 |
| ContentType | Journal Article |
| Copyright | 2024 |
| Copyright_xml | – notice: 2024 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.applthermaleng.2024.124198 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_applthermaleng_2024_124198 S1359431124018660 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FGOYB HZ~ R2- ~HD |
| ID | FETCH-LOGICAL-c330t-a768d1d4c143e9e7d58af1d2765d1400c74a306bb99f3088906a26e51a0452333 |
| IEDL.DBID | .~1 |
| ISSN | 1359-4311 |
| IngestDate | Thu Apr 24 22:55:27 EDT 2025 Wed Oct 01 02:46:20 EDT 2025 Wed Dec 04 16:47:09 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Heat transfer enhancement Multi-objective genetic algorithm Non-uniform wavy channel Heat sink Multi-criteria decision-making |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c330t-a768d1d4c143e9e7d58af1d2765d1400c74a306bb99f3088906a26e51a0452333 |
| ORCID | 0000-0003-3678-9886 |
| ParticipantIDs | crossref_primary_10_1016_j_applthermaleng_2024_124198 crossref_citationtrail_10_1016_j_applthermaleng_2024_124198 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2024_124198 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 2024-12-00 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied thermal engineering |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – sequence: 0 name: Elsevier Ltd |
| References | Le, Galal, Alhamrouni, Aly, Abbas, Saidi, Truong, Dahari, Wae-hayee (b0100) 2022; 37 Ge, Xiao, Wang, Lin, Huang (b0145) 2022; 200 Das (b0150) 2012; 12 Ge, Wang, Liu, Liu (b0010) 2019; 148 Wang, Zhu, An, Zhang, Chen, Yang, Zheng, Wang (b0050) 2022; 171 Hwang, Yoon (b0125) 1981 Das, Mishra, Ajith, Uppaluri (b0155) 2008; 109 Tuckerman, Pease (b0005) 1981; 2 Coello, Pulido, Lechuga (b0080) 2004; 8 Chai, Wang (b0020) 2018; 127 Ge, Lin, Tao, He, Chen, Huang (b0160) 2021; 161 Fallahtafti, Rangarajan, Hadad, Arvin, Sikka, Hoang, Mohsenian, Radmard, Schiffres, Sammakia (b0115) 2022; 192 Sui, Teo, Lee, Chew, Shu (b0025) 2010; 53 Menter (b0165) 1994; 32 Lee, Garimella, Liu (b0205) 2005; 48 Naqiuddin, Saw, Yew, Yusof, Poon, Cai, Thiam (b0180) 2018; 222 Krohling, Lourenzutti, Campos (b0215) 2015; 37 Zheng, Liu, Shan, Liu, Liu (b0085) 2017; 122 Srinivasan, Shocker (b0110) 1973; 38 Rahman (b0170) 2023; 267 Hassan, Savaria, Sawan (b0195) 2018; 26 Dixit, Ghosh (b0220) 2015; 41 Xie, Liu, He, Tao (b0185) 2009; 29 Cui, Shi, Yu, Zhang, Liu, Liu (b0120) 2023; 227 Bai, Pan, He, Wang, Tang, Yang (b0060) 2020; 175 Sarmah, Gogoi, Das (b0065) 2017; 119 Mohammed, Gunnasegaran, Shuaib (b0040) 2011; 38 J. Jazzbin, geatpy: The genetic and evolutionary algorithm toolbox with high performance in python, (2020). http://www.geatpy.com/. Nemati, Moghimi, Meyer (b0105) 2021; 122 Kumar, Tiwary, Singh (b0225) 2022; 201 Sui, Lee, Teo (b0030) 2011; 50 Wang, Xiao, Ge, He, Li, Liu, Liu (b0090) 2020; 147 Ge, He, Lin, Yuan, Chen, Huang (b0140) 2022; 207 Pourhammati, Hossainpour (b0070) 2022; 130 Deb, Pratap, Agarwal, Meyarivan (b0075) 2002; 6 Dilgen, Dilgen, Fuhrman, Sigmund, Lazarov (b0175) 2018; 57 Zhu, Li, Wang, Yang, Wang (b0200) 2019; 146 Sikirica, Grbčić, Kranjčević (b0130) 2023; 222 Gao, Hu, Yang, Liang, Wu (b0135) 2022; 29 Du, Hu (b0015) 2023; 280 Peng, Li, Li, Cao, Wu, Zhao (b0035) 2021; 163 Spearman (b0210) 1904; 15 Lin, Zhao, Lu, Wang, Yan (b0055) 2017; 118 Hosseinirad, Khoshvaght-Aliabadi (b0045) 2021; 173 Zhou, Hatami, Song, Jing (b0095) 2016; 103 Nemati (10.1016/j.applthermaleng.2024.124198_b0105) 2021; 122 Menter (10.1016/j.applthermaleng.2024.124198_b0165) 1994; 32 Lee (10.1016/j.applthermaleng.2024.124198_b0205) 2005; 48 Tuckerman (10.1016/j.applthermaleng.2024.124198_b0005) 1981; 2 10.1016/j.applthermaleng.2024.124198_b0190 Le (10.1016/j.applthermaleng.2024.124198_b0100) 2022; 37 Hassan (10.1016/j.applthermaleng.2024.124198_b0195) 2018; 26 Kumar (10.1016/j.applthermaleng.2024.124198_b0225) 2022; 201 Rahman (10.1016/j.applthermaleng.2024.124198_b0170) 2023; 267 Xie (10.1016/j.applthermaleng.2024.124198_b0185) 2009; 29 Hwang (10.1016/j.applthermaleng.2024.124198_b0125) 1981 Zhou (10.1016/j.applthermaleng.2024.124198_b0095) 2016; 103 Zhu (10.1016/j.applthermaleng.2024.124198_b0200) 2019; 146 Lin (10.1016/j.applthermaleng.2024.124198_b0055) 2017; 118 Sikirica (10.1016/j.applthermaleng.2024.124198_b0130) 2023; 222 Wang (10.1016/j.applthermaleng.2024.124198_b0050) 2022; 171 Hosseinirad (10.1016/j.applthermaleng.2024.124198_b0045) 2021; 173 Das (10.1016/j.applthermaleng.2024.124198_b0150) 2012; 12 Deb (10.1016/j.applthermaleng.2024.124198_b0075) 2002; 6 Krohling (10.1016/j.applthermaleng.2024.124198_b0215) 2015; 37 Spearman (10.1016/j.applthermaleng.2024.124198_b0210) 1904; 15 Gao (10.1016/j.applthermaleng.2024.124198_b0135) 2022; 29 Du (10.1016/j.applthermaleng.2024.124198_b0015) 2023; 280 Ge (10.1016/j.applthermaleng.2024.124198_b0160) 2021; 161 Zheng (10.1016/j.applthermaleng.2024.124198_b0085) 2017; 122 Fallahtafti (10.1016/j.applthermaleng.2024.124198_b0115) 2022; 192 Pourhammati (10.1016/j.applthermaleng.2024.124198_b0070) 2022; 130 Sui (10.1016/j.applthermaleng.2024.124198_b0025) 2010; 53 Ge (10.1016/j.applthermaleng.2024.124198_b0140) 2022; 207 Dixit (10.1016/j.applthermaleng.2024.124198_b0220) 2015; 41 Wang (10.1016/j.applthermaleng.2024.124198_b0090) 2020; 147 Sarmah (10.1016/j.applthermaleng.2024.124198_b0065) 2017; 119 Ge (10.1016/j.applthermaleng.2024.124198_b0010) 2019; 148 Peng (10.1016/j.applthermaleng.2024.124198_b0035) 2021; 163 Mohammed (10.1016/j.applthermaleng.2024.124198_b0040) 2011; 38 Dilgen (10.1016/j.applthermaleng.2024.124198_b0175) 2018; 57 Cui (10.1016/j.applthermaleng.2024.124198_b0120) 2023; 227 Naqiuddin (10.1016/j.applthermaleng.2024.124198_b0180) 2018; 222 Das (10.1016/j.applthermaleng.2024.124198_b0155) 2008; 109 Sui (10.1016/j.applthermaleng.2024.124198_b0030) 2011; 50 Coello (10.1016/j.applthermaleng.2024.124198_b0080) 2004; 8 Bai (10.1016/j.applthermaleng.2024.124198_b0060) 2020; 175 Ge (10.1016/j.applthermaleng.2024.124198_b0145) 2022; 200 Chai (10.1016/j.applthermaleng.2024.124198_b0020) 2018; 127 Srinivasan (10.1016/j.applthermaleng.2024.124198_b0110) 1973; 38 |
| References_xml | – volume: 103 start-page: 715 year: 2016 end-page: 724 ident: b0095 article-title: Design of microchannel heat sink with wavy channel and its time-efficient optimization with combined RSM and FVM methods publication-title: Int. J. Heat Mass Transf. – volume: 41 start-page: 1298 year: 2015 end-page: 1311 ident: b0220 article-title: Review of micro- and mini-channel heat sinks and heat exchangers for single phase fluids publication-title: Renew. Sustain. Energy Rev. – volume: 15 start-page: 72 year: 1904 end-page: 101 ident: b0210 article-title: The Proof and measurement of association between two things publication-title: Am. J. Psychol. – volume: 53 start-page: 2760 year: 2010 end-page: 2772 ident: b0025 article-title: Fluid flow and heat transfer in wavy microchannels publication-title: Int. J. Heat Mass Transf. – volume: 222 start-page: 437 year: 2018 end-page: 450 ident: b0180 article-title: Numerical investigation for optimizing segmented micro-channel heat sink by Taguchi-Grey method publication-title: Appl. Energy – volume: 57 start-page: 1905 year: 2018 end-page: 1918 ident: b0175 article-title: Density based topology optimization of turbulent flow heat transfer systems publication-title: Struct Multidisc Optim – volume: 163 year: 2021 ident: b0035 article-title: The experimental study of the heat ransfer performance of a zigzag-serpentine microchannel heat sink publication-title: Int. J. Therm. Sci. – volume: 8 start-page: 256 year: 2004 end-page: 279 ident: b0080 article-title: Handling multiple objectives with particle swarm optimization publication-title: IEEE Trans. Evol. Computat. – volume: 50 start-page: 2473 year: 2011 end-page: 2482 ident: b0030 article-title: An experimental study of flow friction and heat transfer in wavy microchannels with rectangular cross section publication-title: Int. J. Therm. Sci. – volume: 127 start-page: 201 year: 2018 end-page: 212 ident: b0020 article-title: Thermal-hydraulic performance of interrupted microchannel heat sinks with different rib geometries in transverse microchambers publication-title: Int. J. Therm. Sci. – volume: 119 start-page: 98 year: 2017 end-page: 107 ident: b0065 article-title: Estimation of operating parameters of a SOFC integrated combined power cycle using differential evolution based inverse method publication-title: Appl. Therm. Eng. – volume: 130 year: 2022 ident: b0070 article-title: Improving the hydrothermal characteristics of wavy microchannel heat sink by modification of wavelength and wave amplitude publication-title: Int. Commun. Heat Mass Transfer – volume: 26 start-page: 2085 year: 2018 end-page: 2098 ident: b0195 article-title: Electronics and Packaging Intended for Emerging Harsh Environment Applications: A Review publication-title: IEEE Trans. VLSI Syst. – volume: 122 start-page: 642 year: 2017 end-page: 652 ident: b0085 article-title: Sensitivity analysis and multi-objective optimization of a heat exchanger tube with conical strip vortex generators publication-title: Appl. Therm. Eng. – volume: 146 year: 2019 ident: b0200 article-title: Performance comparison of wavy microchannel heat sinks with wavy bottom rib and side rib designs publication-title: Int. J. Therm. Sci. – volume: 118 start-page: 423 year: 2017 end-page: 434 ident: b0055 article-title: Heat transfer enhancement in microchannel heat sink by wavy channel with changing wavelength/amplitude publication-title: Int. J. Therm. Sci. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b0075 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Computat. – volume: 29 start-page: 64 year: 2009 end-page: 74 ident: b0185 article-title: Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink publication-title: Appl. Therm. Eng. – year: 1981 ident: b0125 article-title: Multiple attribute decision making: methods and applications – volume: 29 year: 2022 ident: b0135 article-title: Fluid flow and heat transfer in microchannel heat sinks: Modelling review and recent progress publication-title: Thermal Science and Engineering Progress – volume: 171 year: 2022 ident: b0050 article-title: Heat transfer enhancement of symmetric and parallel wavy microchannel heat sinks with secondary branch design publication-title: Int. J. Therm. Sci. – volume: 32 start-page: 1598 year: 1994 end-page: 1605 ident: b0165 article-title: Two-equation eddy-viscosity turbulence models for engineering applications publication-title: AIAA J. – volume: 222 year: 2023 ident: b0130 article-title: Machine learning based surrogate models for microchannel heat sink optimization publication-title: Appl. Therm. Eng. – volume: 109 start-page: 2060 year: 2008 end-page: 2077 ident: b0155 article-title: An inverse analysis of a transient 2-D conduction–radiation problem using the lattice Boltzmann method and the finite volume method coupled with the genetic algorithm publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 38 start-page: 63 year: 2011 end-page: 68 ident: b0040 article-title: Numerical simulation of heat transfer enhancement in wavy microchannel heat sink publication-title: Int. Commun. Heat Mass Transfer – reference: J. Jazzbin, geatpy: The genetic and evolutionary algorithm toolbox with high performance in python, (2020). http://www.geatpy.com/. – volume: 12 start-page: 3369 year: 2012 end-page: 3378 ident: b0150 article-title: Application of genetic algorithm for unknown parameter estimations in cylindrical fin publication-title: Appl. Soft Comput. – volume: 48 start-page: 1688 year: 2005 end-page: 1704 ident: b0205 article-title: Investigation of heat transfer in rectangular microchannels publication-title: Int. J. Heat Mass Transf. – volume: 2 start-page: 126 year: 1981 end-page: 129 ident: b0005 article-title: High-performance heat sinking for VLSI publication-title: IEEE Electron Device Lett. – volume: 280 year: 2023 ident: b0015 article-title: An overview of heat transfer enhancement methods in microchannel heat sinks publication-title: Chem. Eng. Sci. – volume: 147 year: 2020 ident: b0090 article-title: Optimization design of slotted fins based on exergy destruction minimization coupled with optimization algorithm publication-title: Int. J. Therm. Sci. – volume: 161 year: 2021 ident: b0160 article-title: Shape optimization for a tube bank based on the numerical simulation and multi-objective genetic algorithm publication-title: Int. J. Therm. Sci. – volume: 37 start-page: 217 year: 2015 end-page: 226 ident: b0215 article-title: Ranking and comparing evolutionary algorithms with Hellinger-TOPSIS publication-title: Appl. Soft Comput. – volume: 201 year: 2022 ident: b0225 article-title: Thermofluidic analysis of Al2O3-water nanofluid cooled branched wavy heat sink publication-title: Appl. Therm. Eng. – volume: 207 year: 2022 ident: b0140 article-title: Multi-objective optimization of a mini-channel heat sink with non-uniform fins using genetic algorithm in coupling with CFD models publication-title: Appl. Therm. Eng. – volume: 192 year: 2022 ident: b0115 article-title: Shape optimization of hotspot targeted micro pin fins for heterogeneous integration applications publication-title: Int. J. Heat Mass Transf. – volume: 148 start-page: 120 year: 2019 end-page: 128 ident: b0010 article-title: Optimal shape design of a minichannel heat sink applying multi-objective optimization algorithm and three-dimensional numerical method publication-title: Appl. Therm. Eng. – volume: 122 year: 2021 ident: b0105 article-title: Shape optimisation of wavy mini-channel heat sink publication-title: Int. Commun. Heat Mass Transfer – volume: 38 start-page: 337 year: 1973 end-page: 369 ident: b0110 article-title: Linear programming techniques for multidimensional analysis of preferences publication-title: Psychometrika – volume: 175 year: 2020 ident: b0060 article-title: Numerical investigation on thermal hydraulic performance of supercritical LNG in sinusoidal wavy channel based printed circuit vaporizer publication-title: Appl. Therm. Eng. – volume: 173 year: 2021 ident: b0045 article-title: Proximity effects of straight and wavy fins and their interruptions on performance of heat sinks utilized in battery thermal management publication-title: Int. J. Heat Mass Transf. – volume: 227 year: 2023 ident: b0120 article-title: Optimal parameter design of a slot jet impingement/microchannel heat sink base on multi-objective optimization algorithm publication-title: Appl. Therm. Eng. – volume: 200 start-page: 136 year: 2022 end-page: 145 ident: b0145 article-title: Design of high-performance photovoltaic-thermoelectric hybrid systems using multi-objective genetic algorithm publication-title: Renew. Energy – volume: 37 year: 2022 ident: b0100 article-title: Heat transfer efficiency optimization of a multi-nozzle micro-channel heat sink utilizing response surface methodology publication-title: Case Studies in Thermal Engineering – volume: 267 year: 2023 ident: b0170 article-title: Dual transition scheme on k-equation model publication-title: Comput. Fluids – volume: 2 start-page: 126 year: 1981 ident: 10.1016/j.applthermaleng.2024.124198_b0005 article-title: High-performance heat sinking for VLSI publication-title: IEEE Electron Device Lett. doi: 10.1109/EDL.1981.25367 – volume: 192 year: 2022 ident: 10.1016/j.applthermaleng.2024.124198_b0115 article-title: Shape optimization of hotspot targeted micro pin fins for heterogeneous integration applications publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2022.122897 – volume: 161 year: 2021 ident: 10.1016/j.applthermaleng.2024.124198_b0160 article-title: Shape optimization for a tube bank based on the numerical simulation and multi-objective genetic algorithm publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2020.106787 – volume: 163 year: 2021 ident: 10.1016/j.applthermaleng.2024.124198_b0035 article-title: The experimental study of the heat ransfer performance of a zigzag-serpentine microchannel heat sink publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2021.106831 – volume: 148 start-page: 120 year: 2019 ident: 10.1016/j.applthermaleng.2024.124198_b0010 article-title: Optimal shape design of a minichannel heat sink applying multi-objective optimization algorithm and three-dimensional numerical method publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.11.038 – volume: 118 start-page: 423 year: 2017 ident: 10.1016/j.applthermaleng.2024.124198_b0055 article-title: Heat transfer enhancement in microchannel heat sink by wavy channel with changing wavelength/amplitude publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2017.05.013 – volume: 103 start-page: 715 year: 2016 ident: 10.1016/j.applthermaleng.2024.124198_b0095 article-title: Design of microchannel heat sink with wavy channel and its time-efficient optimization with combined RSM and FVM methods publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.07.100 – volume: 37 year: 2022 ident: 10.1016/j.applthermaleng.2024.124198_b0100 article-title: Heat transfer efficiency optimization of a multi-nozzle micro-channel heat sink utilizing response surface methodology publication-title: Case Studies in Thermal Engineering doi: 10.1016/j.csite.2022.102266 – volume: 29 year: 2022 ident: 10.1016/j.applthermaleng.2024.124198_b0135 article-title: Fluid flow and heat transfer in microchannel heat sinks: Modelling review and recent progress publication-title: Thermal Science and Engineering Progress doi: 10.1016/j.tsep.2022.101203 – volume: 227 year: 2023 ident: 10.1016/j.applthermaleng.2024.124198_b0120 article-title: Optimal parameter design of a slot jet impingement/microchannel heat sink base on multi-objective optimization algorithm publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.120452 – volume: 48 start-page: 1688 year: 2005 ident: 10.1016/j.applthermaleng.2024.124198_b0205 article-title: Investigation of heat transfer in rectangular microchannels publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2004.11.019 – volume: 122 start-page: 642 year: 2017 ident: 10.1016/j.applthermaleng.2024.124198_b0085 article-title: Sensitivity analysis and multi-objective optimization of a heat exchanger tube with conical strip vortex generators publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.05.046 – volume: 147 year: 2020 ident: 10.1016/j.applthermaleng.2024.124198_b0090 article-title: Optimization design of slotted fins based on exergy destruction minimization coupled with optimization algorithm publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2019.106133 – volume: 38 start-page: 337 year: 1973 ident: 10.1016/j.applthermaleng.2024.124198_b0110 article-title: Linear programming techniques for multidimensional analysis of preferences publication-title: Psychometrika doi: 10.1007/BF02291658 – volume: 12 start-page: 3369 year: 2012 ident: 10.1016/j.applthermaleng.2024.124198_b0150 article-title: Application of genetic algorithm for unknown parameter estimations in cylindrical fin publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.07.005 – volume: 222 start-page: 437 year: 2018 ident: 10.1016/j.applthermaleng.2024.124198_b0180 article-title: Numerical investigation for optimizing segmented micro-channel heat sink by Taguchi-Grey method publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.03.186 – volume: 37 start-page: 217 year: 2015 ident: 10.1016/j.applthermaleng.2024.124198_b0215 article-title: Ranking and comparing evolutionary algorithms with Hellinger-TOPSIS publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.08.012 – volume: 127 start-page: 201 year: 2018 ident: 10.1016/j.applthermaleng.2024.124198_b0020 article-title: Thermal-hydraulic performance of interrupted microchannel heat sinks with different rib geometries in transverse microchambers publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2018.01.029 – volume: 109 start-page: 2060 year: 2008 ident: 10.1016/j.applthermaleng.2024.124198_b0155 article-title: An inverse analysis of a transient 2-D conduction–radiation problem using the lattice Boltzmann method and the finite volume method coupled with the genetic algorithm publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2008.01.011 – volume: 53 start-page: 2760 year: 2010 ident: 10.1016/j.applthermaleng.2024.124198_b0025 article-title: Fluid flow and heat transfer in wavy microchannels publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.02.022 – volume: 38 start-page: 63 year: 2011 ident: 10.1016/j.applthermaleng.2024.124198_b0040 article-title: Numerical simulation of heat transfer enhancement in wavy microchannel heat sink publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2010.09.012 – volume: 15 start-page: 72 year: 1904 ident: 10.1016/j.applthermaleng.2024.124198_b0210 article-title: The Proof and measurement of association between two things publication-title: Am. J. Psychol. doi: 10.2307/1412159 – volume: 119 start-page: 98 year: 2017 ident: 10.1016/j.applthermaleng.2024.124198_b0065 article-title: Estimation of operating parameters of a SOFC integrated combined power cycle using differential evolution based inverse method publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.03.060 – volume: 201 year: 2022 ident: 10.1016/j.applthermaleng.2024.124198_b0225 article-title: Thermofluidic analysis of Al2O3-water nanofluid cooled branched wavy heat sink publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.117787 – volume: 26 start-page: 2085 year: 2018 ident: 10.1016/j.applthermaleng.2024.124198_b0195 article-title: Electronics and Packaging Intended for Emerging Harsh Environment Applications: A Review publication-title: IEEE Trans. VLSI Syst. doi: 10.1109/TVLSI.2018.2834499 – volume: 207 year: 2022 ident: 10.1016/j.applthermaleng.2024.124198_b0140 article-title: Multi-objective optimization of a mini-channel heat sink with non-uniform fins using genetic algorithm in coupling with CFD models publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.118127 – volume: 6 start-page: 182 year: 2002 ident: 10.1016/j.applthermaleng.2024.124198_b0075 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Computat. doi: 10.1109/4235.996017 – volume: 29 start-page: 64 year: 2009 ident: 10.1016/j.applthermaleng.2024.124198_b0185 article-title: Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2008.02.002 – year: 1981 ident: 10.1016/j.applthermaleng.2024.124198_b0125 – volume: 171 year: 2022 ident: 10.1016/j.applthermaleng.2024.124198_b0050 article-title: Heat transfer enhancement of symmetric and parallel wavy microchannel heat sinks with secondary branch design publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2021.107229 – volume: 50 start-page: 2473 year: 2011 ident: 10.1016/j.applthermaleng.2024.124198_b0030 article-title: An experimental study of flow friction and heat transfer in wavy microchannels with rectangular cross section publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2011.06.017 – volume: 130 year: 2022 ident: 10.1016/j.applthermaleng.2024.124198_b0070 article-title: Improving the hydrothermal characteristics of wavy microchannel heat sink by modification of wavelength and wave amplitude publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2021.105805 – volume: 122 year: 2021 ident: 10.1016/j.applthermaleng.2024.124198_b0105 article-title: Shape optimisation of wavy mini-channel heat sink publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2021.105172 – volume: 173 year: 2021 ident: 10.1016/j.applthermaleng.2024.124198_b0045 article-title: Proximity effects of straight and wavy fins and their interruptions on performance of heat sinks utilized in battery thermal management publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2021.121259 – volume: 267 year: 2023 ident: 10.1016/j.applthermaleng.2024.124198_b0170 article-title: Dual transition scheme on k-equation model publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2023.106068 – ident: 10.1016/j.applthermaleng.2024.124198_b0190 – volume: 200 start-page: 136 year: 2022 ident: 10.1016/j.applthermaleng.2024.124198_b0145 article-title: Design of high-performance photovoltaic-thermoelectric hybrid systems using multi-objective genetic algorithm publication-title: Renew. Energy doi: 10.1016/j.renene.2022.09.091 – volume: 57 start-page: 1905 year: 2018 ident: 10.1016/j.applthermaleng.2024.124198_b0175 article-title: Density based topology optimization of turbulent flow heat transfer systems publication-title: Struct Multidisc Optim doi: 10.1007/s00158-018-1967-6 – volume: 146 year: 2019 ident: 10.1016/j.applthermaleng.2024.124198_b0200 article-title: Performance comparison of wavy microchannel heat sinks with wavy bottom rib and side rib designs publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2019.106068 – volume: 8 start-page: 256 year: 2004 ident: 10.1016/j.applthermaleng.2024.124198_b0080 article-title: Handling multiple objectives with particle swarm optimization publication-title: IEEE Trans. Evol. Computat. doi: 10.1109/TEVC.2004.826067 – volume: 32 start-page: 1598 year: 1994 ident: 10.1016/j.applthermaleng.2024.124198_b0165 article-title: Two-equation eddy-viscosity turbulence models for engineering applications publication-title: AIAA J. doi: 10.2514/3.12149 – volume: 222 year: 2023 ident: 10.1016/j.applthermaleng.2024.124198_b0130 article-title: Machine learning based surrogate models for microchannel heat sink optimization publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.119917 – volume: 280 year: 2023 ident: 10.1016/j.applthermaleng.2024.124198_b0015 article-title: An overview of heat transfer enhancement methods in microchannel heat sinks publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2023.119081 – volume: 175 year: 2020 ident: 10.1016/j.applthermaleng.2024.124198_b0060 article-title: Numerical investigation on thermal hydraulic performance of supercritical LNG in sinusoidal wavy channel based printed circuit vaporizer publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115379 – volume: 41 start-page: 1298 year: 2015 ident: 10.1016/j.applthermaleng.2024.124198_b0220 article-title: Review of micro- and mini-channel heat sinks and heat exchangers for single phase fluids publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.09.024 |
| SSID | ssj0012874 |
| Score | 2.485141 |
| Snippet | [Display omitted]
•CFD models are coupled in the evolutionary process to find optimal solutions.•Maximum base temperature is precisely controlled by the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 124198 |
| SubjectTerms | Heat sink Heat transfer enhancement Multi-criteria decision-making Multi-objective genetic algorithm Non-uniform wavy channel |
| Title | Multi-objective optimization of a non-uniform sinusoidal mini-channel heat sink by coupling genetic algorithm and CFD model |
| URI | https://dx.doi.org/10.1016/j.applthermaleng.2024.124198 |
| Volume | 257 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1359-4311 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0012874 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection issn: 1359-4311 databaseCode: AIKHN dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0012874 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 1359-4311 databaseCode: ACRLP dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0012874 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 1359-4311 databaseCode: .~1 dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0012874 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1359-4311 databaseCode: AKRWK dateStart: 19960101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012874 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KguhBfGJ9lD143Tbp5tHgQUq1VMVetOAt7FNT26T0cRDB3-5MkhYLHgSPeeyw7Exm5iMz3xBy6bZCYY0RzGhhGWTglkkB35XmgfRaGjBFXoz52A96A-_-xX-pkM6yFwbLKkvfX_j03FuXdxrlaTYmSdJ4crkfQfiDAOUgaxvids8LcYpB_WtV5uEin3sOuvyI4dtbsL9VjRf-JMY8ayxwbAmgxaZXB3kAxH8PUz9CT3eP7JY5I20X29onFZMekJ0fTIKH5DNvpGWZHBYOjGbgCsZljyXNLBUUcD5bpNiINaazJF3MskSDVOQWYdj-m5oRRc-MD9-p_KAqW2C77isFG8NWRypGr9k0mb-NqUg17XRvaD5H54gMurfPnR4r5yowxbkzZwIghna1pyBXMpEJtd8S1tXNMPA14C1HhZ4AJCFlFFmOZVBOIJqB8V2B_Ouc82OyAXs2J4SqQEKGojR3LPdUoIQWkGKEUhlr3cAPq-RqeYyxKknHcfbFKF5Wlw3jdSXEqIS4UEKV-KvVk4J844_rrpcai9eMKYY48ScJp_-WcEa28aqofDknG_PpwlxA_jKXtdxAa2SzfffQ638Dz_L0_A |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EwcdBfOLbPXhdm3SzSYMHkWqpr15swVvYZ422iWh7EMHf7kySFgseBK_Z7LDsTGbmI_PNEHLiNyLprJXMGukYZOCOKQnfleGhChoGMEVRjHnfCdu94OZRPM6R5oQLg2WVle8vfXrhrasnteo2a69pWnvwuYgh_EGA8rBrG-D2hUDUI0Rgp1_TOg8fG7oXqEvEDF9fhANOi7zwLzEmWkOJc0sALtaDUxAISPz3OPUj9rTWyGqVNNKL8lzrZM5mG2TlRyvBTfJZMGlZrp5LD0Zz8AXDimRJc0clBaDPxhkysYb0Pc3G73lqQCo2F2HI_83sgKJrxsUXqj6ozsfI1-1TMDLkOlI56Odv6ehpSGVmaLN1SYtBOluk17rqNtusGqzANOfeiEnAGMY3gYZkycY2MqIhnW_qUSgMAC5PR4EEKKFUHDuOdVBeKOuhFb7EBuyc820yD2e2O4TqUEGKog33HA90qKWRkGNESlvn_FBEu-Rsco2JrrqO4_CLQTIpL3tOZpWQoBKSUgm7REx3v5bdN_6473yisWTGmhIIFH-SsPdvCcdkqd29v0vurju3-2QZV8oymAMyP3ob20NIZkbqqDDWb3hh9pE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+of+a+non-uniform+sinusoidal+mini-channel+heat+sink+by+coupling+genetic+algorithm+and+CFD+model&rft.jtitle=Applied+thermal+engineering&rft.au=Ge%2C+Ya&rft.au=Yin%2C+Weixing&rft.au=Lin%2C+Yousheng&rft.au=He%2C+Kui&rft.date=2024-12-01&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=257&rft_id=info:doi/10.1016%2Fj.applthermaleng.2024.124198&rft.externalDocID=S1359431124018660 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |