Multi-objective optimization of a non-uniform sinusoidal mini-channel heat sink by coupling genetic algorithm and CFD model

[Display omitted] •CFD models are coupled in the evolutionary process to find optimal solutions.•Maximum base temperature is precisely controlled by the genetic algorithm.•Pareto solutions reduce thermal resistance θ by 27.74% or pressure drop Δp by 59.51%.•Base temperature is more uniform as its st...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 257; p. 124198
Main Authors Ge, Ya, Yin, Weixing, Lin, Yousheng, He, Kui, He, Qing, Huang, Si-Min
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2024
Subjects
Online AccessGet full text
ISSN1359-4311
DOI10.1016/j.applthermaleng.2024.124198

Cover

Abstract [Display omitted] •CFD models are coupled in the evolutionary process to find optimal solutions.•Maximum base temperature is precisely controlled by the genetic algorithm.•Pareto solutions reduce thermal resistance θ by 27.74% or pressure drop Δp by 59.51%.•Base temperature is more uniform as its standard deviation is reduced by 76.98%.•Raising downstream disturbances appropriately is an effective strategy for a low θ. Wavy mini-channel heat sinks (MCHS) can disrupt the development of the thermal boundary layer, resulting in superior performance compared to straight MCHS. For complete utilization of the coolant, this study proposed and optimized a non-uniform sinusoidal MCHS with varying wavelength or varying amplitude along the flow direction. The optimization for five design variables was accomplished through a multi-objective genetic algorithm, where the thermal resistance θ or the pressure drop Δp were defined as two objectives. The computational fluid dynamics (CFD) software was employed to solve all direct problems encountered during the evolutionary process. Compared to the straight MCHS with different channel widths, the optimal designs achieved reductions of 27.74 % in θ or 59.51 % in Δp. Simultaneously, all the optimal values of the wavelength ratio and amplitude ratio indicate that enhancing the heat transfer performance downstream is more efficient. It was observed that among the five design variables, the number of wave cycles is the most relevant parameter with a Spearman’s correlation up to 0.983. Subsequently, a multiple-criteria decision-making approach was employed to ascertain the best compromise solution to balance the two objectives. Although the θ of the best compromise solution could be higher by 38.57 % than that of the lowest θ solution, the Δp presents a more substantial reduction of 92.45 % after the trade-off. Compared to the straight MCHS with the same Δp, the best compromise solution with varying wavelength reduces the θ and the standard temperature deviation by 26.20 % and 76.98 % respectively, while lowering the average base temperature by 3.07 K. Therefore, the optimal non-uniform wavy MCHS, along with the optimization approach presented, is meaningful for practical applications.
AbstractList [Display omitted] •CFD models are coupled in the evolutionary process to find optimal solutions.•Maximum base temperature is precisely controlled by the genetic algorithm.•Pareto solutions reduce thermal resistance θ by 27.74% or pressure drop Δp by 59.51%.•Base temperature is more uniform as its standard deviation is reduced by 76.98%.•Raising downstream disturbances appropriately is an effective strategy for a low θ. Wavy mini-channel heat sinks (MCHS) can disrupt the development of the thermal boundary layer, resulting in superior performance compared to straight MCHS. For complete utilization of the coolant, this study proposed and optimized a non-uniform sinusoidal MCHS with varying wavelength or varying amplitude along the flow direction. The optimization for five design variables was accomplished through a multi-objective genetic algorithm, where the thermal resistance θ or the pressure drop Δp were defined as two objectives. The computational fluid dynamics (CFD) software was employed to solve all direct problems encountered during the evolutionary process. Compared to the straight MCHS with different channel widths, the optimal designs achieved reductions of 27.74 % in θ or 59.51 % in Δp. Simultaneously, all the optimal values of the wavelength ratio and amplitude ratio indicate that enhancing the heat transfer performance downstream is more efficient. It was observed that among the five design variables, the number of wave cycles is the most relevant parameter with a Spearman’s correlation up to 0.983. Subsequently, a multiple-criteria decision-making approach was employed to ascertain the best compromise solution to balance the two objectives. Although the θ of the best compromise solution could be higher by 38.57 % than that of the lowest θ solution, the Δp presents a more substantial reduction of 92.45 % after the trade-off. Compared to the straight MCHS with the same Δp, the best compromise solution with varying wavelength reduces the θ and the standard temperature deviation by 26.20 % and 76.98 % respectively, while lowering the average base temperature by 3.07 K. Therefore, the optimal non-uniform wavy MCHS, along with the optimization approach presented, is meaningful for practical applications.
ArticleNumber 124198
Author Huang, Si-Min
Ge, Ya
Lin, Yousheng
He, Qing
He, Kui
Yin, Weixing
Author_xml – sequence: 1
  givenname: Ya
  surname: Ge
  fullname: Ge, Ya
– sequence: 2
  givenname: Weixing
  surname: Yin
  fullname: Yin, Weixing
– sequence: 3
  givenname: Yousheng
  surname: Lin
  fullname: Lin, Yousheng
– sequence: 4
  givenname: Kui
  surname: He
  fullname: He, Kui
– sequence: 5
  givenname: Qing
  surname: He
  fullname: He, Qing
  email: heqing@dgut.edu.cn
– sequence: 6
  givenname: Si-Min
  orcidid: 0000-0003-3678-9886
  surname: Huang
  fullname: Huang, Si-Min
  email: huangsm@dgut.edu.cn
BookMark eNqNkDtPIzEUhV2AtDz2P7jYdoI99rykbSAQQGJFA7V1Y99JbtZjjzwOEuyfJ9nQQEV1iqvzXZ3vlB2FGJCxX1LMpJD1xWYG4-jzGtMAHsNqVopSz2SpZdcesROpqq7QSsof7HSaNkLIsm30Cfv3Z-szFXG5QZvpBXkcMw30Bpli4LHnwHePim2gPqaBTxS2UyQHng8UqLBrCAE9XyPk_fEvX75yG7ejp7DiKwyYyXLwq5gorwcOwfH54poP0aE_Z8c9-Al_fuQZe17cPM3viofH2_v55UNhlRK5gKZunXTaSq2ww8ZVLfTSlU1dOamFsI0GJerlsut6Jdq2EzWUNVYShK5KpdQZ-33g2hSnKWFvxkQDpFcjhdnLMxvzWZ7ZyzMHebv61Ze6pfzfT05A_ruQxQGCu6EvhMlMljBYdJR25o2L9D3QO9EPncQ
CitedBy_id crossref_primary_10_1016_j_csite_2025_105936
Cites_doi 10.1109/EDL.1981.25367
10.1016/j.ijheatmasstransfer.2022.122897
10.1016/j.ijthermalsci.2020.106787
10.1016/j.ijthermalsci.2021.106831
10.1016/j.applthermaleng.2018.11.038
10.1016/j.ijthermalsci.2017.05.013
10.1016/j.ijheatmasstransfer.2016.07.100
10.1016/j.csite.2022.102266
10.1016/j.tsep.2022.101203
10.1016/j.applthermaleng.2023.120452
10.1016/j.ijheatmasstransfer.2004.11.019
10.1016/j.applthermaleng.2017.05.046
10.1016/j.ijthermalsci.2019.106133
10.1007/BF02291658
10.1016/j.asoc.2012.07.005
10.1016/j.apenergy.2018.03.186
10.1016/j.asoc.2015.08.012
10.1016/j.ijthermalsci.2018.01.029
10.1016/j.jqsrt.2008.01.011
10.1016/j.ijheatmasstransfer.2010.02.022
10.1016/j.icheatmasstransfer.2010.09.012
10.2307/1412159
10.1016/j.applthermaleng.2017.03.060
10.1016/j.applthermaleng.2021.117787
10.1109/TVLSI.2018.2834499
10.1016/j.applthermaleng.2022.118127
10.1109/4235.996017
10.1016/j.applthermaleng.2008.02.002
10.1016/j.ijthermalsci.2021.107229
10.1016/j.ijthermalsci.2011.06.017
10.1016/j.icheatmasstransfer.2021.105805
10.1016/j.icheatmasstransfer.2021.105172
10.1016/j.ijheatmasstransfer.2021.121259
10.1016/j.compfluid.2023.106068
10.1016/j.renene.2022.09.091
10.1007/s00158-018-1967-6
10.1016/j.ijthermalsci.2019.106068
10.1109/TEVC.2004.826067
10.2514/3.12149
10.1016/j.applthermaleng.2022.119917
10.1016/j.ces.2023.119081
10.1016/j.applthermaleng.2020.115379
10.1016/j.rser.2014.09.024
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.applthermaleng.2024.124198
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_applthermaleng_2024_124198
S1359431124018660
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FGOYB
HZ~
R2-
~HD
ID FETCH-LOGICAL-c330t-a768d1d4c143e9e7d58af1d2765d1400c74a306bb99f3088906a26e51a0452333
IEDL.DBID .~1
ISSN 1359-4311
IngestDate Thu Apr 24 22:55:27 EDT 2025
Wed Oct 01 02:46:20 EDT 2025
Wed Dec 04 16:47:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Heat transfer enhancement
Multi-objective genetic algorithm
Non-uniform wavy channel
Heat sink
Multi-criteria decision-making
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-a768d1d4c143e9e7d58af1d2765d1400c74a306bb99f3088906a26e51a0452333
ORCID 0000-0003-3678-9886
ParticipantIDs crossref_primary_10_1016_j_applthermaleng_2024_124198
crossref_citationtrail_10_1016_j_applthermaleng_2024_124198
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2024_124198
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied thermal engineering
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – sequence: 0
  name: Elsevier Ltd
References Le, Galal, Alhamrouni, Aly, Abbas, Saidi, Truong, Dahari, Wae-hayee (b0100) 2022; 37
Ge, Xiao, Wang, Lin, Huang (b0145) 2022; 200
Das (b0150) 2012; 12
Ge, Wang, Liu, Liu (b0010) 2019; 148
Wang, Zhu, An, Zhang, Chen, Yang, Zheng, Wang (b0050) 2022; 171
Hwang, Yoon (b0125) 1981
Das, Mishra, Ajith, Uppaluri (b0155) 2008; 109
Tuckerman, Pease (b0005) 1981; 2
Coello, Pulido, Lechuga (b0080) 2004; 8
Chai, Wang (b0020) 2018; 127
Ge, Lin, Tao, He, Chen, Huang (b0160) 2021; 161
Fallahtafti, Rangarajan, Hadad, Arvin, Sikka, Hoang, Mohsenian, Radmard, Schiffres, Sammakia (b0115) 2022; 192
Sui, Teo, Lee, Chew, Shu (b0025) 2010; 53
Menter (b0165) 1994; 32
Lee, Garimella, Liu (b0205) 2005; 48
Naqiuddin, Saw, Yew, Yusof, Poon, Cai, Thiam (b0180) 2018; 222
Krohling, Lourenzutti, Campos (b0215) 2015; 37
Zheng, Liu, Shan, Liu, Liu (b0085) 2017; 122
Srinivasan, Shocker (b0110) 1973; 38
Rahman (b0170) 2023; 267
Hassan, Savaria, Sawan (b0195) 2018; 26
Dixit, Ghosh (b0220) 2015; 41
Xie, Liu, He, Tao (b0185) 2009; 29
Cui, Shi, Yu, Zhang, Liu, Liu (b0120) 2023; 227
Bai, Pan, He, Wang, Tang, Yang (b0060) 2020; 175
Sarmah, Gogoi, Das (b0065) 2017; 119
Mohammed, Gunnasegaran, Shuaib (b0040) 2011; 38
J. Jazzbin, geatpy: The genetic and evolutionary algorithm toolbox with high performance in python, (2020). http://www.geatpy.com/.
Nemati, Moghimi, Meyer (b0105) 2021; 122
Kumar, Tiwary, Singh (b0225) 2022; 201
Sui, Lee, Teo (b0030) 2011; 50
Wang, Xiao, Ge, He, Li, Liu, Liu (b0090) 2020; 147
Ge, He, Lin, Yuan, Chen, Huang (b0140) 2022; 207
Pourhammati, Hossainpour (b0070) 2022; 130
Deb, Pratap, Agarwal, Meyarivan (b0075) 2002; 6
Dilgen, Dilgen, Fuhrman, Sigmund, Lazarov (b0175) 2018; 57
Zhu, Li, Wang, Yang, Wang (b0200) 2019; 146
Sikirica, Grbčić, Kranjčević (b0130) 2023; 222
Gao, Hu, Yang, Liang, Wu (b0135) 2022; 29
Du, Hu (b0015) 2023; 280
Peng, Li, Li, Cao, Wu, Zhao (b0035) 2021; 163
Spearman (b0210) 1904; 15
Lin, Zhao, Lu, Wang, Yan (b0055) 2017; 118
Hosseinirad, Khoshvaght-Aliabadi (b0045) 2021; 173
Zhou, Hatami, Song, Jing (b0095) 2016; 103
Nemati (10.1016/j.applthermaleng.2024.124198_b0105) 2021; 122
Menter (10.1016/j.applthermaleng.2024.124198_b0165) 1994; 32
Lee (10.1016/j.applthermaleng.2024.124198_b0205) 2005; 48
Tuckerman (10.1016/j.applthermaleng.2024.124198_b0005) 1981; 2
10.1016/j.applthermaleng.2024.124198_b0190
Le (10.1016/j.applthermaleng.2024.124198_b0100) 2022; 37
Hassan (10.1016/j.applthermaleng.2024.124198_b0195) 2018; 26
Kumar (10.1016/j.applthermaleng.2024.124198_b0225) 2022; 201
Rahman (10.1016/j.applthermaleng.2024.124198_b0170) 2023; 267
Xie (10.1016/j.applthermaleng.2024.124198_b0185) 2009; 29
Hwang (10.1016/j.applthermaleng.2024.124198_b0125) 1981
Zhou (10.1016/j.applthermaleng.2024.124198_b0095) 2016; 103
Zhu (10.1016/j.applthermaleng.2024.124198_b0200) 2019; 146
Lin (10.1016/j.applthermaleng.2024.124198_b0055) 2017; 118
Sikirica (10.1016/j.applthermaleng.2024.124198_b0130) 2023; 222
Wang (10.1016/j.applthermaleng.2024.124198_b0050) 2022; 171
Hosseinirad (10.1016/j.applthermaleng.2024.124198_b0045) 2021; 173
Das (10.1016/j.applthermaleng.2024.124198_b0150) 2012; 12
Deb (10.1016/j.applthermaleng.2024.124198_b0075) 2002; 6
Krohling (10.1016/j.applthermaleng.2024.124198_b0215) 2015; 37
Spearman (10.1016/j.applthermaleng.2024.124198_b0210) 1904; 15
Gao (10.1016/j.applthermaleng.2024.124198_b0135) 2022; 29
Du (10.1016/j.applthermaleng.2024.124198_b0015) 2023; 280
Ge (10.1016/j.applthermaleng.2024.124198_b0160) 2021; 161
Zheng (10.1016/j.applthermaleng.2024.124198_b0085) 2017; 122
Fallahtafti (10.1016/j.applthermaleng.2024.124198_b0115) 2022; 192
Pourhammati (10.1016/j.applthermaleng.2024.124198_b0070) 2022; 130
Sui (10.1016/j.applthermaleng.2024.124198_b0025) 2010; 53
Ge (10.1016/j.applthermaleng.2024.124198_b0140) 2022; 207
Dixit (10.1016/j.applthermaleng.2024.124198_b0220) 2015; 41
Wang (10.1016/j.applthermaleng.2024.124198_b0090) 2020; 147
Sarmah (10.1016/j.applthermaleng.2024.124198_b0065) 2017; 119
Ge (10.1016/j.applthermaleng.2024.124198_b0010) 2019; 148
Peng (10.1016/j.applthermaleng.2024.124198_b0035) 2021; 163
Mohammed (10.1016/j.applthermaleng.2024.124198_b0040) 2011; 38
Dilgen (10.1016/j.applthermaleng.2024.124198_b0175) 2018; 57
Cui (10.1016/j.applthermaleng.2024.124198_b0120) 2023; 227
Naqiuddin (10.1016/j.applthermaleng.2024.124198_b0180) 2018; 222
Das (10.1016/j.applthermaleng.2024.124198_b0155) 2008; 109
Sui (10.1016/j.applthermaleng.2024.124198_b0030) 2011; 50
Coello (10.1016/j.applthermaleng.2024.124198_b0080) 2004; 8
Bai (10.1016/j.applthermaleng.2024.124198_b0060) 2020; 175
Ge (10.1016/j.applthermaleng.2024.124198_b0145) 2022; 200
Chai (10.1016/j.applthermaleng.2024.124198_b0020) 2018; 127
Srinivasan (10.1016/j.applthermaleng.2024.124198_b0110) 1973; 38
References_xml – volume: 103
  start-page: 715
  year: 2016
  end-page: 724
  ident: b0095
  article-title: Design of microchannel heat sink with wavy channel and its time-efficient optimization with combined RSM and FVM methods
  publication-title: Int. J. Heat Mass Transf.
– volume: 41
  start-page: 1298
  year: 2015
  end-page: 1311
  ident: b0220
  article-title: Review of micro- and mini-channel heat sinks and heat exchangers for single phase fluids
  publication-title: Renew. Sustain. Energy Rev.
– volume: 15
  start-page: 72
  year: 1904
  end-page: 101
  ident: b0210
  article-title: The Proof and measurement of association between two things
  publication-title: Am. J. Psychol.
– volume: 53
  start-page: 2760
  year: 2010
  end-page: 2772
  ident: b0025
  article-title: Fluid flow and heat transfer in wavy microchannels
  publication-title: Int. J. Heat Mass Transf.
– volume: 222
  start-page: 437
  year: 2018
  end-page: 450
  ident: b0180
  article-title: Numerical investigation for optimizing segmented micro-channel heat sink by Taguchi-Grey method
  publication-title: Appl. Energy
– volume: 57
  start-page: 1905
  year: 2018
  end-page: 1918
  ident: b0175
  article-title: Density based topology optimization of turbulent flow heat transfer systems
  publication-title: Struct Multidisc Optim
– volume: 163
  year: 2021
  ident: b0035
  article-title: The experimental study of the heat ransfer performance of a zigzag-serpentine microchannel heat sink
  publication-title: Int. J. Therm. Sci.
– volume: 8
  start-page: 256
  year: 2004
  end-page: 279
  ident: b0080
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans. Evol. Computat.
– volume: 50
  start-page: 2473
  year: 2011
  end-page: 2482
  ident: b0030
  article-title: An experimental study of flow friction and heat transfer in wavy microchannels with rectangular cross section
  publication-title: Int. J. Therm. Sci.
– volume: 127
  start-page: 201
  year: 2018
  end-page: 212
  ident: b0020
  article-title: Thermal-hydraulic performance of interrupted microchannel heat sinks with different rib geometries in transverse microchambers
  publication-title: Int. J. Therm. Sci.
– volume: 119
  start-page: 98
  year: 2017
  end-page: 107
  ident: b0065
  article-title: Estimation of operating parameters of a SOFC integrated combined power cycle using differential evolution based inverse method
  publication-title: Appl. Therm. Eng.
– volume: 130
  year: 2022
  ident: b0070
  article-title: Improving the hydrothermal characteristics of wavy microchannel heat sink by modification of wavelength and wave amplitude
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 26
  start-page: 2085
  year: 2018
  end-page: 2098
  ident: b0195
  article-title: Electronics and Packaging Intended for Emerging Harsh Environment Applications: A Review
  publication-title: IEEE Trans. VLSI Syst.
– volume: 122
  start-page: 642
  year: 2017
  end-page: 652
  ident: b0085
  article-title: Sensitivity analysis and multi-objective optimization of a heat exchanger tube with conical strip vortex generators
  publication-title: Appl. Therm. Eng.
– volume: 146
  year: 2019
  ident: b0200
  article-title: Performance comparison of wavy microchannel heat sinks with wavy bottom rib and side rib designs
  publication-title: Int. J. Therm. Sci.
– volume: 118
  start-page: 423
  year: 2017
  end-page: 434
  ident: b0055
  article-title: Heat transfer enhancement in microchannel heat sink by wavy channel with changing wavelength/amplitude
  publication-title: Int. J. Therm. Sci.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0075
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Computat.
– volume: 29
  start-page: 64
  year: 2009
  end-page: 74
  ident: b0185
  article-title: Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink
  publication-title: Appl. Therm. Eng.
– year: 1981
  ident: b0125
  article-title: Multiple attribute decision making: methods and applications
– volume: 29
  year: 2022
  ident: b0135
  article-title: Fluid flow and heat transfer in microchannel heat sinks: Modelling review and recent progress
  publication-title: Thermal Science and Engineering Progress
– volume: 171
  year: 2022
  ident: b0050
  article-title: Heat transfer enhancement of symmetric and parallel wavy microchannel heat sinks with secondary branch design
  publication-title: Int. J. Therm. Sci.
– volume: 32
  start-page: 1598
  year: 1994
  end-page: 1605
  ident: b0165
  article-title: Two-equation eddy-viscosity turbulence models for engineering applications
  publication-title: AIAA J.
– volume: 222
  year: 2023
  ident: b0130
  article-title: Machine learning based surrogate models for microchannel heat sink optimization
  publication-title: Appl. Therm. Eng.
– volume: 109
  start-page: 2060
  year: 2008
  end-page: 2077
  ident: b0155
  article-title: An inverse analysis of a transient 2-D conduction–radiation problem using the lattice Boltzmann method and the finite volume method coupled with the genetic algorithm
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 38
  start-page: 63
  year: 2011
  end-page: 68
  ident: b0040
  article-title: Numerical simulation of heat transfer enhancement in wavy microchannel heat sink
  publication-title: Int. Commun. Heat Mass Transfer
– reference: J. Jazzbin, geatpy: The genetic and evolutionary algorithm toolbox with high performance in python, (2020). http://www.geatpy.com/.
– volume: 12
  start-page: 3369
  year: 2012
  end-page: 3378
  ident: b0150
  article-title: Application of genetic algorithm for unknown parameter estimations in cylindrical fin
  publication-title: Appl. Soft Comput.
– volume: 48
  start-page: 1688
  year: 2005
  end-page: 1704
  ident: b0205
  article-title: Investigation of heat transfer in rectangular microchannels
  publication-title: Int. J. Heat Mass Transf.
– volume: 2
  start-page: 126
  year: 1981
  end-page: 129
  ident: b0005
  article-title: High-performance heat sinking for VLSI
  publication-title: IEEE Electron Device Lett.
– volume: 280
  year: 2023
  ident: b0015
  article-title: An overview of heat transfer enhancement methods in microchannel heat sinks
  publication-title: Chem. Eng. Sci.
– volume: 147
  year: 2020
  ident: b0090
  article-title: Optimization design of slotted fins based on exergy destruction minimization coupled with optimization algorithm
  publication-title: Int. J. Therm. Sci.
– volume: 161
  year: 2021
  ident: b0160
  article-title: Shape optimization for a tube bank based on the numerical simulation and multi-objective genetic algorithm
  publication-title: Int. J. Therm. Sci.
– volume: 37
  start-page: 217
  year: 2015
  end-page: 226
  ident: b0215
  article-title: Ranking and comparing evolutionary algorithms with Hellinger-TOPSIS
  publication-title: Appl. Soft Comput.
– volume: 201
  year: 2022
  ident: b0225
  article-title: Thermofluidic analysis of Al2O3-water nanofluid cooled branched wavy heat sink
  publication-title: Appl. Therm. Eng.
– volume: 207
  year: 2022
  ident: b0140
  article-title: Multi-objective optimization of a mini-channel heat sink with non-uniform fins using genetic algorithm in coupling with CFD models
  publication-title: Appl. Therm. Eng.
– volume: 192
  year: 2022
  ident: b0115
  article-title: Shape optimization of hotspot targeted micro pin fins for heterogeneous integration applications
  publication-title: Int. J. Heat Mass Transf.
– volume: 148
  start-page: 120
  year: 2019
  end-page: 128
  ident: b0010
  article-title: Optimal shape design of a minichannel heat sink applying multi-objective optimization algorithm and three-dimensional numerical method
  publication-title: Appl. Therm. Eng.
– volume: 122
  year: 2021
  ident: b0105
  article-title: Shape optimisation of wavy mini-channel heat sink
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 38
  start-page: 337
  year: 1973
  end-page: 369
  ident: b0110
  article-title: Linear programming techniques for multidimensional analysis of preferences
  publication-title: Psychometrika
– volume: 175
  year: 2020
  ident: b0060
  article-title: Numerical investigation on thermal hydraulic performance of supercritical LNG in sinusoidal wavy channel based printed circuit vaporizer
  publication-title: Appl. Therm. Eng.
– volume: 173
  year: 2021
  ident: b0045
  article-title: Proximity effects of straight and wavy fins and their interruptions on performance of heat sinks utilized in battery thermal management
  publication-title: Int. J. Heat Mass Transf.
– volume: 227
  year: 2023
  ident: b0120
  article-title: Optimal parameter design of a slot jet impingement/microchannel heat sink base on multi-objective optimization algorithm
  publication-title: Appl. Therm. Eng.
– volume: 200
  start-page: 136
  year: 2022
  end-page: 145
  ident: b0145
  article-title: Design of high-performance photovoltaic-thermoelectric hybrid systems using multi-objective genetic algorithm
  publication-title: Renew. Energy
– volume: 37
  year: 2022
  ident: b0100
  article-title: Heat transfer efficiency optimization of a multi-nozzle micro-channel heat sink utilizing response surface methodology
  publication-title: Case Studies in Thermal Engineering
– volume: 267
  year: 2023
  ident: b0170
  article-title: Dual transition scheme on k-equation model
  publication-title: Comput. Fluids
– volume: 2
  start-page: 126
  year: 1981
  ident: 10.1016/j.applthermaleng.2024.124198_b0005
  article-title: High-performance heat sinking for VLSI
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/EDL.1981.25367
– volume: 192
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.124198_b0115
  article-title: Shape optimization of hotspot targeted micro pin fins for heterogeneous integration applications
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2022.122897
– volume: 161
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.124198_b0160
  article-title: Shape optimization for a tube bank based on the numerical simulation and multi-objective genetic algorithm
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2020.106787
– volume: 163
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.124198_b0035
  article-title: The experimental study of the heat ransfer performance of a zigzag-serpentine microchannel heat sink
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2021.106831
– volume: 148
  start-page: 120
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.124198_b0010
  article-title: Optimal shape design of a minichannel heat sink applying multi-objective optimization algorithm and three-dimensional numerical method
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.11.038
– volume: 118
  start-page: 423
  year: 2017
  ident: 10.1016/j.applthermaleng.2024.124198_b0055
  article-title: Heat transfer enhancement in microchannel heat sink by wavy channel with changing wavelength/amplitude
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2017.05.013
– volume: 103
  start-page: 715
  year: 2016
  ident: 10.1016/j.applthermaleng.2024.124198_b0095
  article-title: Design of microchannel heat sink with wavy channel and its time-efficient optimization with combined RSM and FVM methods
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.07.100
– volume: 37
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.124198_b0100
  article-title: Heat transfer efficiency optimization of a multi-nozzle micro-channel heat sink utilizing response surface methodology
  publication-title: Case Studies in Thermal Engineering
  doi: 10.1016/j.csite.2022.102266
– volume: 29
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.124198_b0135
  article-title: Fluid flow and heat transfer in microchannel heat sinks: Modelling review and recent progress
  publication-title: Thermal Science and Engineering Progress
  doi: 10.1016/j.tsep.2022.101203
– volume: 227
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.124198_b0120
  article-title: Optimal parameter design of a slot jet impingement/microchannel heat sink base on multi-objective optimization algorithm
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.120452
– volume: 48
  start-page: 1688
  year: 2005
  ident: 10.1016/j.applthermaleng.2024.124198_b0205
  article-title: Investigation of heat transfer in rectangular microchannels
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2004.11.019
– volume: 122
  start-page: 642
  year: 2017
  ident: 10.1016/j.applthermaleng.2024.124198_b0085
  article-title: Sensitivity analysis and multi-objective optimization of a heat exchanger tube with conical strip vortex generators
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.05.046
– volume: 147
  year: 2020
  ident: 10.1016/j.applthermaleng.2024.124198_b0090
  article-title: Optimization design of slotted fins based on exergy destruction minimization coupled with optimization algorithm
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2019.106133
– volume: 38
  start-page: 337
  year: 1973
  ident: 10.1016/j.applthermaleng.2024.124198_b0110
  article-title: Linear programming techniques for multidimensional analysis of preferences
  publication-title: Psychometrika
  doi: 10.1007/BF02291658
– volume: 12
  start-page: 3369
  year: 2012
  ident: 10.1016/j.applthermaleng.2024.124198_b0150
  article-title: Application of genetic algorithm for unknown parameter estimations in cylindrical fin
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.07.005
– volume: 222
  start-page: 437
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.124198_b0180
  article-title: Numerical investigation for optimizing segmented micro-channel heat sink by Taguchi-Grey method
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.03.186
– volume: 37
  start-page: 217
  year: 2015
  ident: 10.1016/j.applthermaleng.2024.124198_b0215
  article-title: Ranking and comparing evolutionary algorithms with Hellinger-TOPSIS
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.08.012
– volume: 127
  start-page: 201
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.124198_b0020
  article-title: Thermal-hydraulic performance of interrupted microchannel heat sinks with different rib geometries in transverse microchambers
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2018.01.029
– volume: 109
  start-page: 2060
  year: 2008
  ident: 10.1016/j.applthermaleng.2024.124198_b0155
  article-title: An inverse analysis of a transient 2-D conduction–radiation problem using the lattice Boltzmann method and the finite volume method coupled with the genetic algorithm
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2008.01.011
– volume: 53
  start-page: 2760
  year: 2010
  ident: 10.1016/j.applthermaleng.2024.124198_b0025
  article-title: Fluid flow and heat transfer in wavy microchannels
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.02.022
– volume: 38
  start-page: 63
  year: 2011
  ident: 10.1016/j.applthermaleng.2024.124198_b0040
  article-title: Numerical simulation of heat transfer enhancement in wavy microchannel heat sink
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2010.09.012
– volume: 15
  start-page: 72
  year: 1904
  ident: 10.1016/j.applthermaleng.2024.124198_b0210
  article-title: The Proof and measurement of association between two things
  publication-title: Am. J. Psychol.
  doi: 10.2307/1412159
– volume: 119
  start-page: 98
  year: 2017
  ident: 10.1016/j.applthermaleng.2024.124198_b0065
  article-title: Estimation of operating parameters of a SOFC integrated combined power cycle using differential evolution based inverse method
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.03.060
– volume: 201
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.124198_b0225
  article-title: Thermofluidic analysis of Al2O3-water nanofluid cooled branched wavy heat sink
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117787
– volume: 26
  start-page: 2085
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.124198_b0195
  article-title: Electronics and Packaging Intended for Emerging Harsh Environment Applications: A Review
  publication-title: IEEE Trans. VLSI Syst.
  doi: 10.1109/TVLSI.2018.2834499
– volume: 207
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.124198_b0140
  article-title: Multi-objective optimization of a mini-channel heat sink with non-uniform fins using genetic algorithm in coupling with CFD models
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.118127
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.applthermaleng.2024.124198_b0075
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Computat.
  doi: 10.1109/4235.996017
– volume: 29
  start-page: 64
  year: 2009
  ident: 10.1016/j.applthermaleng.2024.124198_b0185
  article-title: Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2008.02.002
– year: 1981
  ident: 10.1016/j.applthermaleng.2024.124198_b0125
– volume: 171
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.124198_b0050
  article-title: Heat transfer enhancement of symmetric and parallel wavy microchannel heat sinks with secondary branch design
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2021.107229
– volume: 50
  start-page: 2473
  year: 2011
  ident: 10.1016/j.applthermaleng.2024.124198_b0030
  article-title: An experimental study of flow friction and heat transfer in wavy microchannels with rectangular cross section
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2011.06.017
– volume: 130
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.124198_b0070
  article-title: Improving the hydrothermal characteristics of wavy microchannel heat sink by modification of wavelength and wave amplitude
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2021.105805
– volume: 122
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.124198_b0105
  article-title: Shape optimisation of wavy mini-channel heat sink
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2021.105172
– volume: 173
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.124198_b0045
  article-title: Proximity effects of straight and wavy fins and their interruptions on performance of heat sinks utilized in battery thermal management
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2021.121259
– volume: 267
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.124198_b0170
  article-title: Dual transition scheme on k-equation model
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2023.106068
– ident: 10.1016/j.applthermaleng.2024.124198_b0190
– volume: 200
  start-page: 136
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.124198_b0145
  article-title: Design of high-performance photovoltaic-thermoelectric hybrid systems using multi-objective genetic algorithm
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.09.091
– volume: 57
  start-page: 1905
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.124198_b0175
  article-title: Density based topology optimization of turbulent flow heat transfer systems
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-018-1967-6
– volume: 146
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.124198_b0200
  article-title: Performance comparison of wavy microchannel heat sinks with wavy bottom rib and side rib designs
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2019.106068
– volume: 8
  start-page: 256
  year: 2004
  ident: 10.1016/j.applthermaleng.2024.124198_b0080
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans. Evol. Computat.
  doi: 10.1109/TEVC.2004.826067
– volume: 32
  start-page: 1598
  year: 1994
  ident: 10.1016/j.applthermaleng.2024.124198_b0165
  article-title: Two-equation eddy-viscosity turbulence models for engineering applications
  publication-title: AIAA J.
  doi: 10.2514/3.12149
– volume: 222
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.124198_b0130
  article-title: Machine learning based surrogate models for microchannel heat sink optimization
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.119917
– volume: 280
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.124198_b0015
  article-title: An overview of heat transfer enhancement methods in microchannel heat sinks
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2023.119081
– volume: 175
  year: 2020
  ident: 10.1016/j.applthermaleng.2024.124198_b0060
  article-title: Numerical investigation on thermal hydraulic performance of supercritical LNG in sinusoidal wavy channel based printed circuit vaporizer
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115379
– volume: 41
  start-page: 1298
  year: 2015
  ident: 10.1016/j.applthermaleng.2024.124198_b0220
  article-title: Review of micro- and mini-channel heat sinks and heat exchangers for single phase fluids
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.09.024
SSID ssj0012874
Score 2.485141
Snippet [Display omitted] •CFD models are coupled in the evolutionary process to find optimal solutions.•Maximum base temperature is precisely controlled by the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 124198
SubjectTerms Heat sink
Heat transfer enhancement
Multi-criteria decision-making
Multi-objective genetic algorithm
Non-uniform wavy channel
Title Multi-objective optimization of a non-uniform sinusoidal mini-channel heat sink by coupling genetic algorithm and CFD model
URI https://dx.doi.org/10.1016/j.applthermaleng.2024.124198
Volume 257
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1359-4311
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0012874
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  issn: 1359-4311
  databaseCode: AIKHN
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0012874
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 1359-4311
  databaseCode: ACRLP
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0012874
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 1359-4311
  databaseCode: .~1
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0012874
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1359-4311
  databaseCode: AKRWK
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012874
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KguhBfGJ9lD143Tbp5tHgQUq1VMVetOAt7FNT26T0cRDB3-5MkhYLHgSPeeyw7Exm5iMz3xBy6bZCYY0RzGhhGWTglkkB35XmgfRaGjBFXoz52A96A-_-xX-pkM6yFwbLKkvfX_j03FuXdxrlaTYmSdJ4crkfQfiDAOUgaxvids8LcYpB_WtV5uEin3sOuvyI4dtbsL9VjRf-JMY8ayxwbAmgxaZXB3kAxH8PUz9CT3eP7JY5I20X29onFZMekJ0fTIKH5DNvpGWZHBYOjGbgCsZljyXNLBUUcD5bpNiINaazJF3MskSDVOQWYdj-m5oRRc-MD9-p_KAqW2C77isFG8NWRypGr9k0mb-NqUg17XRvaD5H54gMurfPnR4r5yowxbkzZwIghna1pyBXMpEJtd8S1tXNMPA14C1HhZ4AJCFlFFmOZVBOIJqB8V2B_Ouc82OyAXs2J4SqQEKGojR3LPdUoIQWkGKEUhlr3cAPq-RqeYyxKknHcfbFKF5Wlw3jdSXEqIS4UEKV-KvVk4J844_rrpcai9eMKYY48ScJp_-WcEa28aqofDknG_PpwlxA_jKXtdxAa2SzfffQ638Dz_L0_A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EwcdBfOLbPXhdm3SzSYMHkWqpr15swVvYZ422iWh7EMHf7kySFgseBK_Z7LDsTGbmI_PNEHLiNyLprJXMGukYZOCOKQnfleGhChoGMEVRjHnfCdu94OZRPM6R5oQLg2WVle8vfXrhrasnteo2a69pWnvwuYgh_EGA8rBrG-D2hUDUI0Rgp1_TOg8fG7oXqEvEDF9fhANOi7zwLzEmWkOJc0sALtaDUxAISPz3OPUj9rTWyGqVNNKL8lzrZM5mG2TlRyvBTfJZMGlZrp5LD0Zz8AXDimRJc0clBaDPxhkysYb0Pc3G73lqQCo2F2HI_83sgKJrxsUXqj6ozsfI1-1TMDLkOlI56Odv6ehpSGVmaLN1SYtBOluk17rqNtusGqzANOfeiEnAGMY3gYZkycY2MqIhnW_qUSgMAC5PR4EEKKFUHDuOdVBeKOuhFb7EBuyc820yD2e2O4TqUEGKog33HA90qKWRkGNESlvn_FBEu-Rsco2JrrqO4_CLQTIpL3tOZpWQoBKSUgm7REx3v5bdN_6473yisWTGmhIIFH-SsPdvCcdkqd29v0vurju3-2QZV8oymAMyP3ob20NIZkbqqDDWb3hh9pE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+of+a+non-uniform+sinusoidal+mini-channel+heat+sink+by+coupling+genetic+algorithm+and+CFD+model&rft.jtitle=Applied+thermal+engineering&rft.au=Ge%2C+Ya&rft.au=Yin%2C+Weixing&rft.au=Lin%2C+Yousheng&rft.au=He%2C+Kui&rft.date=2024-12-01&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=257&rft_id=info:doi/10.1016%2Fj.applthermaleng.2024.124198&rft.externalDocID=S1359431124018660
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon