Modulation of electronic properties with external fields in silicene-based nanostructures

This work reviews our recent works about the density functional theory(DFT) calculational aspects of electronic properties in silicene-based nanostructures with the modulation of external fields, such as electric field, strain, etc. For the two-dimensional(2D) silicene-based nonostructures, the magn...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 24; no. 8; pp. 67 - 76
Main Author 李庚 赵银昌 郑蕊 倪军 吴言宁
Format Journal Article
LanguageEnglish
Published 01.08.2015
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/24/8/087302

Cover

Abstract This work reviews our recent works about the density functional theory(DFT) calculational aspects of electronic properties in silicene-based nanostructures with the modulation of external fields, such as electric field, strain, etc. For the two-dimensional(2D) silicene-based nonostructures, the magnetic moment of Fe-doped silicene shows a sharp jump at a threshold electric field, which indicates a good switching effect, implying potential applications as a magnetoelectric(ME) diode. With the electric field, the good controllability and sharp switching of the magnetism may offer a potential applications in the ME devices. For the one-dimensional(1D) nanostructures, the silicene nanoribbons with sawtooth edges(SSi NRs) are more stable than the zigzag silicene nanoribbons(ZSiNRs) and show spin-semiconducting features. Under external electric field or uniaxial compressive strain, the gapless spin-semiconductors are gained, which is significant in designing qubits for quantum computing in spintronics. The superlattice structures of silicene-based armchair nanoribbons(ASiSLs) is another example for 1D silicene nanostructures. The band structures of ASi SLs can be modulated by the size and strain of the superlattices. With the stain increased, the related energy gaps of ASi SLs will change, which are significantly different with that of the constituent nanoribbons. The results suggest potential applications in designing quantum wells.
AbstractList This work reviews our recent works about the density functional theory(DFT) calculational aspects of electronic properties in silicene-based nanostructures with the modulation of external fields, such as electric field, strain, etc. For the two-dimensional(2D) silicene-based nonostructures, the magnetic moment of Fe-doped silicene shows a sharp jump at a threshold electric field, which indicates a good switching effect, implying potential applications as a magnetoelectric(ME) diode. With the electric field, the good controllability and sharp switching of the magnetism may offer a potential applications in the ME devices. For the one-dimensional(1D) nanostructures, the silicene nanoribbons with sawtooth edges(SSi NRs) are more stable than the zigzag silicene nanoribbons(ZSiNRs) and show spin-semiconducting features. Under external electric field or uniaxial compressive strain, the gapless spin-semiconductors are gained, which is significant in designing qubits for quantum computing in spintronics. The superlattice structures of silicene-based armchair nanoribbons(ASiSLs) is another example for 1D silicene nanostructures. The band structures of ASi SLs can be modulated by the size and strain of the superlattices. With the stain increased, the related energy gaps of ASi SLs will change, which are significantly different with that of the constituent nanoribbons. The results suggest potential applications in designing quantum wells.
This work reviews our recent works about the density functional theory (DFT) calculational aspects of electronic properties in silicene-based nanostructures with the modulation of external fields, such as electric field, strain, etc. For the two-dimensional (2D) silicene-based nonostructures, the magnetic moment of Fe-doped silicene shows a sharp jump at a threshold electric field, which indicates a good switching effect, implying potential applications as a magnetoelectric (ME) diode. With the electric field, the good controllability and sharp switching of the magnetism may offer a potential applications in the ME devices. For the one-dimensional (1D) nanostructures, the silicene nanoribbons with sawtooth edges (SSiNRs) are more stable than the zigzag silicene nanoribbons (ZSiNRs) and show spin-semiconducting features. Under external electric field or uniaxial compressive strain, the gapless spin-semiconductors are gained, which is significant in designing qubits for quantum computing in spintronics. The superlattice structures of silicene-based armchair nanoribbons (ASiSLs) is another example for 1D silicene nanostructures. The band structures of ASiSLs can be modulated by the size and strain of the superlattices. With the stain increased, the related energy gaps of ASiSLs will change, which are significantly different with that of the constituent nanoribbons. The results suggest potential applications in designing quantum wells.
Author 李庚 赵银昌 郑蕊 倪军 吴言宁
AuthorAffiliation State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University;Collaborative Innovation Center of Quantum Matter;School of Physics and Electronic Engineering, Fuyang Normal College
Author_xml – sequence: 1
  fullname: 李庚 赵银昌 郑蕊 倪军 吴言宁
BookMark eNqFkLFuFDEQhi0UJC6BR0BySbPc2GOvbVGhiABSEA0UVJbPO5sYbeyL7RXw9txxUYo0VDPF_43m_87ZWS6ZGHst4K0Aa7diNGoQoMetVFu7BWsQ5DO2kaDtgBbVGds8Zl6w89Z-AowCJG7Yjy9lWpfQU8m8zJwWir2WnCLf17Kn2hM1_iv1W06_O9UcFj4nWqbGU-YtLSlSpmEXGk08h1xar2vsa6X2kj2fw9Lo1cO8YN-vPny7_DRcf_34-fL99RARoQ-O1IgBdk6gRjftRuUQRw0hBqUUzEAxBhMmM9tpVhGFiFKCcGIS6AxovGBvTncPD9-v1Lq_Sy3SsoRMZW1eGIcSpcFj9N0pGmtprdLsY-r_uvca0uIF-KNQf5Tlj7K8VN76k9ADrZ_Q-5ruQv3zXw4fuNuSb-5TvnkEHRhhjTnUVVY5jcrq8bBZrfAvO-6LKw
CitedBy_id crossref_primary_10_7498_aps_64_216701
crossref_primary_10_15407_hftp08_04_416
crossref_primary_10_1016_j_matpr_2022_01_377
crossref_primary_10_1246_bcsj_20160295
Cites_doi 10.1021/nl072591y
10.1038/nature05023
10.1021/jp311836m
10.1038/nmat1849
10.1038/nature05180
10.1021/nl0617033
10.1039/c3nr02826g
10.1016/j.pmatsci.2013.04.003
10.1063/1.4820526
10.1103/PhysRevLett.97.216803
10.1016/j.surfrep.2011.10.001
10.1103/PhysRevLett.111.096803
10.1021/nl0708922
10.1063/1.3419932
10.1063/1.3524215
10.1021/ar400180e
10.1007/s12274-010-0015-7
10.1103/PhysRevLett.108.155501
10.1021/ar3002848
10.1038/nphys2181
10.1126/science.1102896
10.1088/0953-8984/26/34/345303
10.1038/srep03192
10.1103/PhysRevB.84.195430
10.1002/(ISSN)1521-4095
10.1103/PhysRevB.81.125409
10.1088/0022-3727/44/31/312001
10.1039/c3cp44457k
10.1016/j.commatsci.2014.02.025
10.1140/epjb/e2014-41075-82014
10.1038/nature04233
10.1021/jp908829m
10.1103/PhysRevB.78.235435
10.1103/PhysRevLett.110.197402
10.1016/j.susc.2006.09.0302007
10.1103/PhysRevLett.102.236804
10.1039/c2nr00037g
10.1038/ncomms2525
10.1088/1367-2630/14/3/033003
10.1103/PhysRevB.72.205429
10.1103/PhysRevB.79.0414062009
10.1007/s12274-008-8053-0
10.1063/1.3495786
10.1103/PhysRevLett.62.1201
10.1039/C4CP02638A
10.1021/jp911535v
10.1039/c4cp01549e
10.1088/0022-3727/38/8/R01
10.1103/PhysRevB.79.115409
10.1039/c3ra42720j
10.1103/RevModPhys.81.109
10.1126/science.1125925
10.1038/nnano.2007.412
10.1038/nature04235
10.1103/PhysRevB.80.233405
10.1063/1.3211968
10.1142/S1793292012500373
10.1103/PhysRevB.81.205406
10.1063/1.4895036
10.1063/1.3459143
10.1103/PhysRevB.72.195426
10.1103/PhysRevB.85.235429
10.1103/PhysRevLett.107.076802
10.1016/j.cplett.2013.01.029
10.1126/science.1158877
10.1038/nphys384
10.1103/PhysRevLett.77.699
10.1063/1.4896630
10.1063/1.4726276
10.1016/j.physleta.2009.07.031
10.1103/PhysRevB.77.235430
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1088/1674-1056/24/8/087302
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Modulation of electronic properties with external fields in silicene-based nanostructures
EISSN 2058-3834
1741-4199
EndPage 76
ExternalDocumentID 10_1088_1674_1056_24_8_087302
90718776504849534856484854
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AEINN
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c330t-9e463a0b913539db64933650aca4440f0ecca7ad7f8df4c311c220191d1397053
ISSN 1674-1056
IngestDate Fri Sep 05 04:48:40 EDT 2025
Wed Oct 01 03:34:55 EDT 2025
Thu Apr 24 22:51:24 EDT 2025
Wed Feb 14 10:14:50 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-9e463a0b913539db64933650aca4440f0ecca7ad7f8df4c311c220191d1397053
Notes 11-5639/O4
Li Geng;Zhao Yin-Chang;Zheng Rui;Ni Jun;Wu Yan-Ning;State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University;Collaborative Innovation Center of Quantum Matter;School of Physics and Electronic Engineering, Fuyang Normal College
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1793232735
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1793232735
crossref_citationtrail_10_1088_1674_1056_24_8_087302
crossref_primary_10_1088_1674_1056_24_8_087302
chongqing_primary_90718776504849534856484854
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-08-01
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics B
PublicationYear 2015
References Ezawa M (29) 2012; 14
45
46
47
48
Fiebig M J (77) 2005; 38
49
Liu H (64) 2014; 26
Stone F G A (8) 1962
51
52
53
10
54
55
12
56
13
57
14
58
15
59
16
17
18
19
DávilaM E (11) 2014; 16
1
Vargiamidis V (44) 2014; 26
2
3
4
5
6
7
9
60
61
62
63
20
21
65
22
66
23
67
24
68
25
69
26
27
28
70
71
72
73
30
74
31
75
32
76
33
78
35
36
37
38
39
Fang D Q (50) 2014; 16
40
41
42
Padova P D (34) 2011; 44
43
References_xml – ident: 31
  doi: 10.1021/nl072591y
– ident: 76
  doi: 10.1038/nature05023
– ident: 65
  doi: 10.1021/jp311836m
– ident: 5
  doi: 10.1038/nmat1849
– ident: 38
  doi: 10.1038/nature05180
– ident: 41
  doi: 10.1021/nl0617033
– ident: 48
  doi: 10.1039/c3nr02826g
– ident: 14
  doi: 10.1016/j.pmatsci.2013.04.003
– ident: 28
  doi: 10.1063/1.4820526
– ident: 39
  doi: 10.1103/PhysRevLett.97.216803
– ident: 10
  doi: 10.1016/j.surfrep.2011.10.001
– volume: 16
  issn: 1367-2630
  year: 2014
  ident: 11
  publication-title: New J. Phys.
– ident: 69
  doi: 10.1103/PhysRevLett.111.096803
– ident: 40
  doi: 10.1021/nl0708922
– ident: 33
  doi: 10.1063/1.3419932
– ident: 21
  doi: 10.1063/1.3524215
– ident: 27
  doi: 10.1021/ar400180e
– ident: 73
  doi: 10.1007/s12274-010-0015-7
– ident: 19
  doi: 10.1103/PhysRevLett.108.155501
– ident: 22
  doi: 10.1021/ar3002848
– ident: 53
  doi: 10.1038/nphys2181
– ident: 1
  doi: 10.1126/science.1102896
– volume: 26
  issn: 0953-8984
  year: 2014
  ident: 44
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/26/34/345303
– ident: 26
  doi: 10.1038/srep03192
– ident: 24
  doi: 10.1103/PhysRevB.84.195430
– ident: 36
  doi: 10.1002/(ISSN)1521-4095
– ident: 72
  doi: 10.1103/PhysRevB.81.125409
– volume: 44
  issn: 0022-3727
  year: 2011
  ident: 34
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/44/31/312001
– ident: 74
  doi: 10.1039/c3cp44457k
– ident: 51
  doi: 10.1016/j.commatsci.2014.02.025
– ident: 78
  doi: 10.1140/epjb/e2014-41075-82014
– ident: 3
  doi: 10.1038/nature04233
– year: 1962
  ident: 8
  publication-title: Hydrogen Compounds of the Group IV Elements
– ident: 57
  doi: 10.1021/jp908829m
– ident: 61
  doi: 10.1103/PhysRevB.78.235435
– ident: 30
  doi: 10.1103/PhysRevLett.110.197402
– ident: 35
  doi: 10.1016/j.susc.2006.09.0302007
– ident: 7
  doi: 10.1103/PhysRevLett.102.236804
– ident: 47
  doi: 10.1039/c2nr00037g
– ident: 25
  doi: 10.1038/ncomms2525
– volume: 14
  issn: 1367-2630
  year: 2012
  ident: 29
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/3/033003
– ident: 62
  doi: 10.1103/PhysRevB.72.205429
– ident: 55
  doi: 10.1103/PhysRevB.79.0414062009
– ident: 70
  doi: 10.1007/s12274-008-8053-0
– ident: 9
  doi: 10.1063/1.3495786
– ident: 66
  doi: 10.1103/PhysRevLett.62.1201
– ident: 67
  doi: 10.1007/s12274-008-8053-0
– ident: 54
  doi: 10.1039/C4CP02638A
– ident: 58
  doi: 10.1021/jp911535v
– ident: 68
  doi: 10.1039/c4cp01549e
– volume: 38
  start-page: R123
  issn: 0022-3727
  year: 2005
  ident: 77
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/38/8/R01
– ident: 12
  doi: 10.1103/PhysRevB.79.115409
– ident: 63
  doi: 10.1039/c3ra42720j
– ident: 13
  doi: 10.1103/RevModPhys.81.109
– ident: 4
  doi: 10.1126/science.1125925
– ident: 75
  doi: 10.1038/nnano.2007.412
– ident: 15
  doi: 10.1038/nature04235
– ident: 71
  doi: 10.1103/PhysRevB.80.233405
– ident: 42
  doi: 10.1063/1.3211968
– ident: 46
  doi: 10.1142/S1793292012500373
– ident: 56
  doi: 10.1103/PhysRevB.81.205406
– volume: 16
  issn: 1367-2630
  year: 2014
  ident: 50
  publication-title: New J. Phys.
– volume: 26
  issn: 0953-8984
  year: 2014
  ident: 64
  publication-title: J. Phys.: Condens. Matter
– ident: 18
  doi: 10.1063/1.4895036
– ident: 32
  doi: 10.1063/1.3459143
– ident: 37
  doi: 10.1103/PhysRevB.72.195426
– ident: 17
  doi: 10.1103/PhysRevB.85.235429
– ident: 6
  doi: 10.1103/RevModPhys.81.109
– ident: 23
  doi: 10.1103/PhysRevLett.107.076802
– ident: 49
  doi: 10.1016/j.cplett.2013.01.029
– ident: 16
  doi: 10.1126/science.1158877
– ident: 2
  doi: 10.1038/nphys384
– ident: 60
  doi: 10.1103/PhysRevLett.77.699
– ident: 20
  doi: 10.1063/1.3419932
– ident: 43
  doi: 10.1063/1.4896630
– ident: 45
  doi: 10.1063/1.4726276
– ident: 59
  doi: 10.1016/j.physleta.2009.07.031
– ident: 52
  doi: 10.1103/PhysRevB.77.235430
SSID ssj0061023
ssib054405859
ssib000804704
Score 2.0466437
SecondaryResourceType review_article
Snippet This work reviews our recent works about the density functional theory(DFT) calculational aspects of electronic properties in silicene-based nanostructures...
This work reviews our recent works about the density functional theory (DFT) calculational aspects of electronic properties in silicene-based nanostructures...
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 67
SubjectTerms effect;spin-semiconductor;quantum
electric
Electric fields
Electric potential
Electronic properties
field;magnetoelectric
Modulation
Nanostructure
Qubits (quantum computing)
Strain
Two dimensional
well
Title Modulation of electronic properties with external fields in silicene-based nanostructures
URI http://lib.cqvip.com/qk/85823A/201508/90718776504849534856484854.html
https://www.proquest.com/docview/1793232735
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 2058-3834
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061023
  issn: 1674-1056
  databaseCode: IOP
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1da9UwNOhE8GU4P_A6lQi-ze62TdqkjyLKFKZDNnBPIW1TVxjp3L33Zb9-5yRNP2RM530IJZec0J6T85XzQci7pNSCJSUH26QRES_jItKZbCIwDfJa4M9leB9-yw9O-Nef2eSi3WWXrMv96urGvJL_wSrMAV4xS_YOmB2AwgQ8A35hBAzD-E84PuzqvvsW6nyTjjYX6GK_xFqp3tEaaj3vuYA1FwK7as-BR1gToRyr96y2na8lu7nswwpD_YIz16Wy94GsJm2aW-9U72Wf9z47z-tpayOXtjD-YTxP-bFpx5sQnxVip46HJBvC3gKvzAUHLu7rggdm6hOie6KRE84ogZWkN_Js4HPoPgjQMEWFw-CSE4ZV80rZf0iwIa7Q3ahLqRCYQmAq5UoqD-Y-eZCKPMc2F1--HwVxnWPtCrTKw_4hzUvK5TC3TPlSLj0YLMJx1tlfv0G1mCszc1nuFJTjx2S7tyzoB08mO-SesU_IwyOPtafkdCQW2jV0JBY6EgtFYqHhZaknFtpaOicWOieWZ-Tk86fjjwdR31cjqhiL11FheM50XBbY86Soy5wXjIGmrivNOZzZGI-10LVoZN3wiiVJlQIBFEmN5gJw7edky3bWvMCMfyNBxxSZECUXdalZrNGiZmBnsCozC_J--FjqwtdPUQWotVII2JFLDG_mMsvhSWZ8QXj4nqrqa9Rjq5RzdStmF2R_WBY2-cuCtwFZCtgp3pFpa7rNSqG8AiNDsOzlXYHukkfjMXlFtgAN5jVorOvyjaO4azDGixQ
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulation+of+electronic+properties+with+external+fields+in+silicene-based+nanostructures&rft.jtitle=Chinese+physics+B&rft.au=Li%2C+Geng&rft.au=Zhao%2C+Yin-Chang&rft.au=Zheng%2C+Rui&rft.au=Ni%2C+Jun&rft.date=2015-08-01&rft.issn=1674-1056&rft.volume=24&rft.issue=8&rft.spage=87302&rft_id=info:doi/10.1088%2F1674-1056%2F24%2F8%2F087302&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_24_8_087302
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg