Modulation of electronic properties with external fields in silicene-based nanostructures
This work reviews our recent works about the density functional theory(DFT) calculational aspects of electronic properties in silicene-based nanostructures with the modulation of external fields, such as electric field, strain, etc. For the two-dimensional(2D) silicene-based nonostructures, the magn...
Saved in:
Published in | Chinese physics B Vol. 24; no. 8; pp. 67 - 76 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.08.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/24/8/087302 |
Cover
Abstract | This work reviews our recent works about the density functional theory(DFT) calculational aspects of electronic properties in silicene-based nanostructures with the modulation of external fields, such as electric field, strain, etc. For the two-dimensional(2D) silicene-based nonostructures, the magnetic moment of Fe-doped silicene shows a sharp jump at a threshold electric field, which indicates a good switching effect, implying potential applications as a magnetoelectric(ME) diode. With the electric field, the good controllability and sharp switching of the magnetism may offer a potential applications in the ME devices. For the one-dimensional(1D) nanostructures, the silicene nanoribbons with sawtooth edges(SSi NRs) are more stable than the zigzag silicene nanoribbons(ZSiNRs) and show spin-semiconducting features. Under external electric field or uniaxial compressive strain, the gapless spin-semiconductors are gained, which is significant in designing qubits for quantum computing in spintronics. The superlattice structures of silicene-based armchair nanoribbons(ASiSLs) is another example for 1D silicene nanostructures. The band structures of ASi SLs can be modulated by the size and strain of the superlattices. With the stain increased, the related energy gaps of ASi SLs will change, which are significantly different with that of the constituent nanoribbons. The results suggest potential applications in designing quantum wells. |
---|---|
AbstractList | This work reviews our recent works about the density functional theory(DFT) calculational aspects of electronic properties in silicene-based nanostructures with the modulation of external fields, such as electric field, strain, etc. For the two-dimensional(2D) silicene-based nonostructures, the magnetic moment of Fe-doped silicene shows a sharp jump at a threshold electric field, which indicates a good switching effect, implying potential applications as a magnetoelectric(ME) diode. With the electric field, the good controllability and sharp switching of the magnetism may offer a potential applications in the ME devices. For the one-dimensional(1D) nanostructures, the silicene nanoribbons with sawtooth edges(SSi NRs) are more stable than the zigzag silicene nanoribbons(ZSiNRs) and show spin-semiconducting features. Under external electric field or uniaxial compressive strain, the gapless spin-semiconductors are gained, which is significant in designing qubits for quantum computing in spintronics. The superlattice structures of silicene-based armchair nanoribbons(ASiSLs) is another example for 1D silicene nanostructures. The band structures of ASi SLs can be modulated by the size and strain of the superlattices. With the stain increased, the related energy gaps of ASi SLs will change, which are significantly different with that of the constituent nanoribbons. The results suggest potential applications in designing quantum wells. This work reviews our recent works about the density functional theory (DFT) calculational aspects of electronic properties in silicene-based nanostructures with the modulation of external fields, such as electric field, strain, etc. For the two-dimensional (2D) silicene-based nonostructures, the magnetic moment of Fe-doped silicene shows a sharp jump at a threshold electric field, which indicates a good switching effect, implying potential applications as a magnetoelectric (ME) diode. With the electric field, the good controllability and sharp switching of the magnetism may offer a potential applications in the ME devices. For the one-dimensional (1D) nanostructures, the silicene nanoribbons with sawtooth edges (SSiNRs) are more stable than the zigzag silicene nanoribbons (ZSiNRs) and show spin-semiconducting features. Under external electric field or uniaxial compressive strain, the gapless spin-semiconductors are gained, which is significant in designing qubits for quantum computing in spintronics. The superlattice structures of silicene-based armchair nanoribbons (ASiSLs) is another example for 1D silicene nanostructures. The band structures of ASiSLs can be modulated by the size and strain of the superlattices. With the stain increased, the related energy gaps of ASiSLs will change, which are significantly different with that of the constituent nanoribbons. The results suggest potential applications in designing quantum wells. |
Author | 李庚 赵银昌 郑蕊 倪军 吴言宁 |
AuthorAffiliation | State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University;Collaborative Innovation Center of Quantum Matter;School of Physics and Electronic Engineering, Fuyang Normal College |
Author_xml | – sequence: 1 fullname: 李庚 赵银昌 郑蕊 倪军 吴言宁 |
BookMark | eNqFkLFuFDEQhi0UJC6BR0BySbPc2GOvbVGhiABSEA0UVJbPO5sYbeyL7RXw9txxUYo0VDPF_43m_87ZWS6ZGHst4K0Aa7diNGoQoMetVFu7BWsQ5DO2kaDtgBbVGds8Zl6w89Z-AowCJG7Yjy9lWpfQU8m8zJwWir2WnCLf17Kn2hM1_iv1W06_O9UcFj4nWqbGU-YtLSlSpmEXGk08h1xar2vsa6X2kj2fw9Lo1cO8YN-vPny7_DRcf_34-fL99RARoQ-O1IgBdk6gRjftRuUQRw0hBqUUzEAxBhMmM9tpVhGFiFKCcGIS6AxovGBvTncPD9-v1Lq_Sy3SsoRMZW1eGIcSpcFj9N0pGmtprdLsY-r_uvca0uIF-KNQf5Tlj7K8VN76k9ADrZ_Q-5ruQv3zXw4fuNuSb-5TvnkEHRhhjTnUVVY5jcrq8bBZrfAvO-6LKw |
CitedBy_id | crossref_primary_10_7498_aps_64_216701 crossref_primary_10_15407_hftp08_04_416 crossref_primary_10_1016_j_matpr_2022_01_377 crossref_primary_10_1246_bcsj_20160295 |
Cites_doi | 10.1021/nl072591y 10.1038/nature05023 10.1021/jp311836m 10.1038/nmat1849 10.1038/nature05180 10.1021/nl0617033 10.1039/c3nr02826g 10.1016/j.pmatsci.2013.04.003 10.1063/1.4820526 10.1103/PhysRevLett.97.216803 10.1016/j.surfrep.2011.10.001 10.1103/PhysRevLett.111.096803 10.1021/nl0708922 10.1063/1.3419932 10.1063/1.3524215 10.1021/ar400180e 10.1007/s12274-010-0015-7 10.1103/PhysRevLett.108.155501 10.1021/ar3002848 10.1038/nphys2181 10.1126/science.1102896 10.1088/0953-8984/26/34/345303 10.1038/srep03192 10.1103/PhysRevB.84.195430 10.1002/(ISSN)1521-4095 10.1103/PhysRevB.81.125409 10.1088/0022-3727/44/31/312001 10.1039/c3cp44457k 10.1016/j.commatsci.2014.02.025 10.1140/epjb/e2014-41075-82014 10.1038/nature04233 10.1021/jp908829m 10.1103/PhysRevB.78.235435 10.1103/PhysRevLett.110.197402 10.1016/j.susc.2006.09.0302007 10.1103/PhysRevLett.102.236804 10.1039/c2nr00037g 10.1038/ncomms2525 10.1088/1367-2630/14/3/033003 10.1103/PhysRevB.72.205429 10.1103/PhysRevB.79.0414062009 10.1007/s12274-008-8053-0 10.1063/1.3495786 10.1103/PhysRevLett.62.1201 10.1039/C4CP02638A 10.1021/jp911535v 10.1039/c4cp01549e 10.1088/0022-3727/38/8/R01 10.1103/PhysRevB.79.115409 10.1039/c3ra42720j 10.1103/RevModPhys.81.109 10.1126/science.1125925 10.1038/nnano.2007.412 10.1038/nature04235 10.1103/PhysRevB.80.233405 10.1063/1.3211968 10.1142/S1793292012500373 10.1103/PhysRevB.81.205406 10.1063/1.4895036 10.1063/1.3459143 10.1103/PhysRevB.72.195426 10.1103/PhysRevB.85.235429 10.1103/PhysRevLett.107.076802 10.1016/j.cplett.2013.01.029 10.1126/science.1158877 10.1038/nphys384 10.1103/PhysRevLett.77.699 10.1063/1.4896630 10.1063/1.4726276 10.1016/j.physleta.2009.07.031 10.1103/PhysRevB.77.235430 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1088/1674-1056/24/8/087302 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Modulation of electronic properties with external fields in silicene-based nanostructures |
EISSN | 2058-3834 1741-4199 |
EndPage | 76 |
ExternalDocumentID | 10_1088_1674_1056_24_8_087302 90718776504849534856484854 |
GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGP UCJ W28 ~WA -SA -S~ AAYXX ACARI ADEQX AEINN AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c330t-9e463a0b913539db64933650aca4440f0ecca7ad7f8df4c311c220191d1397053 |
ISSN | 1674-1056 |
IngestDate | Fri Sep 05 04:48:40 EDT 2025 Wed Oct 01 03:34:55 EDT 2025 Thu Apr 24 22:51:24 EDT 2025 Wed Feb 14 10:14:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c330t-9e463a0b913539db64933650aca4440f0ecca7ad7f8df4c311c220191d1397053 |
Notes | 11-5639/O4 Li Geng;Zhao Yin-Chang;Zheng Rui;Ni Jun;Wu Yan-Ning;State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University;Collaborative Innovation Center of Quantum Matter;School of Physics and Electronic Engineering, Fuyang Normal College ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1793232735 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1793232735 crossref_citationtrail_10_1088_1674_1056_24_8_087302 crossref_primary_10_1088_1674_1056_24_8_087302 chongqing_primary_90718776504849534856484854 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-08-01 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chinese Physics B |
PublicationYear | 2015 |
References | Ezawa M (29) 2012; 14 45 46 47 48 Fiebig M J (77) 2005; 38 49 Liu H (64) 2014; 26 Stone F G A (8) 1962 51 52 53 10 54 55 12 56 13 57 14 58 15 59 16 17 18 19 DávilaM E (11) 2014; 16 1 Vargiamidis V (44) 2014; 26 2 3 4 5 6 7 9 60 61 62 63 20 21 65 22 66 23 67 24 68 25 69 26 27 28 70 71 72 73 30 74 31 75 32 76 33 78 35 36 37 38 39 Fang D Q (50) 2014; 16 40 41 42 Padova P D (34) 2011; 44 43 |
References_xml | – ident: 31 doi: 10.1021/nl072591y – ident: 76 doi: 10.1038/nature05023 – ident: 65 doi: 10.1021/jp311836m – ident: 5 doi: 10.1038/nmat1849 – ident: 38 doi: 10.1038/nature05180 – ident: 41 doi: 10.1021/nl0617033 – ident: 48 doi: 10.1039/c3nr02826g – ident: 14 doi: 10.1016/j.pmatsci.2013.04.003 – ident: 28 doi: 10.1063/1.4820526 – ident: 39 doi: 10.1103/PhysRevLett.97.216803 – ident: 10 doi: 10.1016/j.surfrep.2011.10.001 – volume: 16 issn: 1367-2630 year: 2014 ident: 11 publication-title: New J. Phys. – ident: 69 doi: 10.1103/PhysRevLett.111.096803 – ident: 40 doi: 10.1021/nl0708922 – ident: 33 doi: 10.1063/1.3419932 – ident: 21 doi: 10.1063/1.3524215 – ident: 27 doi: 10.1021/ar400180e – ident: 73 doi: 10.1007/s12274-010-0015-7 – ident: 19 doi: 10.1103/PhysRevLett.108.155501 – ident: 22 doi: 10.1021/ar3002848 – ident: 53 doi: 10.1038/nphys2181 – ident: 1 doi: 10.1126/science.1102896 – volume: 26 issn: 0953-8984 year: 2014 ident: 44 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/26/34/345303 – ident: 26 doi: 10.1038/srep03192 – ident: 24 doi: 10.1103/PhysRevB.84.195430 – ident: 36 doi: 10.1002/(ISSN)1521-4095 – ident: 72 doi: 10.1103/PhysRevB.81.125409 – volume: 44 issn: 0022-3727 year: 2011 ident: 34 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/44/31/312001 – ident: 74 doi: 10.1039/c3cp44457k – ident: 51 doi: 10.1016/j.commatsci.2014.02.025 – ident: 78 doi: 10.1140/epjb/e2014-41075-82014 – ident: 3 doi: 10.1038/nature04233 – year: 1962 ident: 8 publication-title: Hydrogen Compounds of the Group IV Elements – ident: 57 doi: 10.1021/jp908829m – ident: 61 doi: 10.1103/PhysRevB.78.235435 – ident: 30 doi: 10.1103/PhysRevLett.110.197402 – ident: 35 doi: 10.1016/j.susc.2006.09.0302007 – ident: 7 doi: 10.1103/PhysRevLett.102.236804 – ident: 47 doi: 10.1039/c2nr00037g – ident: 25 doi: 10.1038/ncomms2525 – volume: 14 issn: 1367-2630 year: 2012 ident: 29 publication-title: New J. Phys. doi: 10.1088/1367-2630/14/3/033003 – ident: 62 doi: 10.1103/PhysRevB.72.205429 – ident: 55 doi: 10.1103/PhysRevB.79.0414062009 – ident: 70 doi: 10.1007/s12274-008-8053-0 – ident: 9 doi: 10.1063/1.3495786 – ident: 66 doi: 10.1103/PhysRevLett.62.1201 – ident: 67 doi: 10.1007/s12274-008-8053-0 – ident: 54 doi: 10.1039/C4CP02638A – ident: 58 doi: 10.1021/jp911535v – ident: 68 doi: 10.1039/c4cp01549e – volume: 38 start-page: R123 issn: 0022-3727 year: 2005 ident: 77 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/38/8/R01 – ident: 12 doi: 10.1103/PhysRevB.79.115409 – ident: 63 doi: 10.1039/c3ra42720j – ident: 13 doi: 10.1103/RevModPhys.81.109 – ident: 4 doi: 10.1126/science.1125925 – ident: 75 doi: 10.1038/nnano.2007.412 – ident: 15 doi: 10.1038/nature04235 – ident: 71 doi: 10.1103/PhysRevB.80.233405 – ident: 42 doi: 10.1063/1.3211968 – ident: 46 doi: 10.1142/S1793292012500373 – ident: 56 doi: 10.1103/PhysRevB.81.205406 – volume: 16 issn: 1367-2630 year: 2014 ident: 50 publication-title: New J. Phys. – volume: 26 issn: 0953-8984 year: 2014 ident: 64 publication-title: J. Phys.: Condens. Matter – ident: 18 doi: 10.1063/1.4895036 – ident: 32 doi: 10.1063/1.3459143 – ident: 37 doi: 10.1103/PhysRevB.72.195426 – ident: 17 doi: 10.1103/PhysRevB.85.235429 – ident: 6 doi: 10.1103/RevModPhys.81.109 – ident: 23 doi: 10.1103/PhysRevLett.107.076802 – ident: 49 doi: 10.1016/j.cplett.2013.01.029 – ident: 16 doi: 10.1126/science.1158877 – ident: 2 doi: 10.1038/nphys384 – ident: 60 doi: 10.1103/PhysRevLett.77.699 – ident: 20 doi: 10.1063/1.3419932 – ident: 43 doi: 10.1063/1.4896630 – ident: 45 doi: 10.1063/1.4726276 – ident: 59 doi: 10.1016/j.physleta.2009.07.031 – ident: 52 doi: 10.1103/PhysRevB.77.235430 |
SSID | ssj0061023 ssib054405859 ssib000804704 |
Score | 2.0466437 |
SecondaryResourceType | review_article |
Snippet | This work reviews our recent works about the density functional theory(DFT) calculational aspects of electronic properties in silicene-based nanostructures... This work reviews our recent works about the density functional theory (DFT) calculational aspects of electronic properties in silicene-based nanostructures... |
SourceID | proquest crossref chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 67 |
SubjectTerms | effect;spin-semiconductor;quantum electric Electric fields Electric potential Electronic properties field;magnetoelectric Modulation Nanostructure Qubits (quantum computing) Strain Two dimensional well |
Title | Modulation of electronic properties with external fields in silicene-based nanostructures |
URI | http://lib.cqvip.com/qk/85823A/201508/90718776504849534856484854.html https://www.proquest.com/docview/1793232735 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 2058-3834 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061023 issn: 1674-1056 databaseCode: IOP dateStart: 20080101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1da9UwNOhE8GU4P_A6lQi-ze62TdqkjyLKFKZDNnBPIW1TVxjp3L33Zb9-5yRNP2RM530IJZec0J6T85XzQci7pNSCJSUH26QRES_jItKZbCIwDfJa4M9leB9-yw9O-Nef2eSi3WWXrMv96urGvJL_wSrMAV4xS_YOmB2AwgQ8A35hBAzD-E84PuzqvvsW6nyTjjYX6GK_xFqp3tEaaj3vuYA1FwK7as-BR1gToRyr96y2na8lu7nswwpD_YIz16Wy94GsJm2aW-9U72Wf9z47z-tpayOXtjD-YTxP-bFpx5sQnxVip46HJBvC3gKvzAUHLu7rggdm6hOie6KRE84ogZWkN_Js4HPoPgjQMEWFw-CSE4ZV80rZf0iwIa7Q3ahLqRCYQmAq5UoqD-Y-eZCKPMc2F1--HwVxnWPtCrTKw_4hzUvK5TC3TPlSLj0YLMJx1tlfv0G1mCszc1nuFJTjx2S7tyzoB08mO-SesU_IwyOPtafkdCQW2jV0JBY6EgtFYqHhZaknFtpaOicWOieWZ-Tk86fjjwdR31cjqhiL11FheM50XBbY86Soy5wXjIGmrivNOZzZGI-10LVoZN3wiiVJlQIBFEmN5gJw7edky3bWvMCMfyNBxxSZECUXdalZrNGiZmBnsCozC_J--FjqwtdPUQWotVII2JFLDG_mMsvhSWZ8QXj4nqrqa9Rjq5RzdStmF2R_WBY2-cuCtwFZCtgp3pFpa7rNSqG8AiNDsOzlXYHukkfjMXlFtgAN5jVorOvyjaO4azDGixQ |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulation+of+electronic+properties+with+external+fields+in+silicene-based+nanostructures&rft.jtitle=Chinese+physics+B&rft.au=Li%2C+Geng&rft.au=Zhao%2C+Yin-Chang&rft.au=Zheng%2C+Rui&rft.au=Ni%2C+Jun&rft.date=2015-08-01&rft.issn=1674-1056&rft.volume=24&rft.issue=8&rft.spage=87302&rft_id=info:doi/10.1088%2F1674-1056%2F24%2F8%2F087302&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_24_8_087302 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |