A unified approach towards reconstruction of a planar point set
Reconstruction problem in R2 computes a polygon which best approximates the geometric shape induced by a given point set, S. In R2, the input point set can either be a boundary sample or a dot pattern. We present a Delaunay-based, unified method for reconstruction irrespective of the type of the inp...
Saved in:
Published in | Computers & graphics Vol. 51; pp. 90 - 97 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0097-8493 1873-7684 |
DOI | 10.1016/j.cag.2015.05.025 |
Cover
Abstract | Reconstruction problem in R2 computes a polygon which best approximates the geometric shape induced by a given point set, S. In R2, the input point set can either be a boundary sample or a dot pattern. We present a Delaunay-based, unified method for reconstruction irrespective of the type of the input point set. From the Delaunay Triangulation (DT) of S, exterior edges are successively removed subject to circle and regularity constraints to compute a resultant boundary which is termed as ec-shape and has been shown to be homeomorphic to a simple closed curve. Theoretical guarantee of the reconstruction has been provided using r-sampling. In practice, our algorithm has been shown to perform well independent of sampling models and this has been illustrated through an extensive comparative study with existing methods for inputs having varying point densities and distributions. The time and space complexities of the algorithm have been shown to be O(nlogn) and O(n) respectively, where n is the number of points in S.
[Display omitted]
•The algorithm works for boundary samples as well as dot patterns.•Theoretical guarantee has been provided.•Extensive experimentation shows that this approach works well. |
---|---|
AbstractList | Reconstruction problem in R2 computes a polygon which best approximates the geometric shape induced by a given point set, S. In R2, the input point set can either be a boundary sample or a dot pattern. We present a Delaunay-based, unified method for reconstruction irrespective of the type of the input point set. From the Delaunay Triangulation (DT) of S, exterior edges are successively removed subject to circle and regularity constraints to compute a resultant boundary which is termed as ec-shape and has been shown to be homeomorphic to a simple closed curve. Theoretical guarantee of the reconstruction has been provided using r-sampling. In practice, our algorithm has been shown to perform well independent of sampling models and this has been illustrated through an extensive comparative study with existing methods for inputs having varying point densities and distributions. The time and space complexities of the algorithm have been shown to be O(nlogn) and O(n) respectively, where n is the number of points in S.
[Display omitted]
•The algorithm works for boundary samples as well as dot patterns.•Theoretical guarantee has been provided.•Extensive experimentation shows that this approach works well. Reconstruction problem in [dbl-struck R] super(2) computes a polygon which best approximates the geometric shape induced by a given point set, S. In [dbl-struck R] super(2), the input point set can either be a boundary sample or a dot pattern. We present a Delaunay-based, unified method for reconstruction irrespective of the type of the input point set. From the Delaunay Triangulation (DT) of S, exterior edges are successively removed subject to circle and regularity constraints to compute a resultant boundary which is termed as ec-shape and has been shown to be homeomorphic to a simple closed curve. Theoretical guarantee of the reconstruction has been provided using r-sampling. In practice, our algorithm has been shown to perform well independent of sampling models and this has been illustrated through an extensive comparative study with existing methods for inputs having varying point densities and distributions. The time and space complexities of the algorithm have been shown to be O(n log n) and O(n) respectively, where n is the number of points in S. |
Author | Muthuganapathy, Ramanathan Methirumangalath, Subhasree Parakkat, Amal Dev |
Author_xml | – sequence: 1 givenname: Subhasree surname: Methirumangalath fullname: Methirumangalath, Subhasree email: subhasree.rajiv@gmail.com – sequence: 2 givenname: Amal Dev surname: Parakkat fullname: Parakkat, Amal Dev email: adp.upasana@gmail.com – sequence: 3 givenname: Ramanathan surname: Muthuganapathy fullname: Muthuganapathy, Ramanathan email: emry01@gmail.com |
BookMark | eNp9kEtLAzEUhYMoWKs_wF2WbqbmMU1mcCGl-ALBja7D9SbRlHYyJqnivzelrlwIB-7mfJdzzgk5HOLgCDnnbMYZV5erGcLbTDA-n7EqMT8gE95p2WjVtYdkwlivm67t5TE5yXnFGBNCtRNyvaDbIfjgLIVxTBHwnZb4BclmmhzGIZe0xRLiQKOnQMc1DJDoGMNQaHbllBx5WGd39nun5OX25nl53zw-3T0sF48NSslKo4F52_ZCdMh72_egUOlXK5RCRI4elW9VKz1orYTvvOJSOaWl7QFka0FOycX-b834sXW5mE3I6NY1jovbbHjlmJZdx6tV762YYs7JeYOhwK5CSRDWhjOzm8ysTJ3M7CYzrErMK8n_kGMKG0jf_zJXe8bV9p_BJZMxuAGdDXW_YmwM_9A_IX6GBw |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3483894 crossref_primary_10_1145_3431817 crossref_primary_10_1016_j_jnca_2017_05_005 crossref_primary_10_1007_s11227_024_06175_w crossref_primary_10_1111_cgf_142659 crossref_primary_10_1016_j_cag_2022_08_002 crossref_primary_10_1186_s42492_020_00049_7 crossref_primary_10_1111_cgf_13589 crossref_primary_10_1145_3691635 crossref_primary_10_1016_j_cag_2024_104021 crossref_primary_10_1111_cgf_12974 crossref_primary_10_1016_j_cag_2017_05_006 crossref_primary_10_32628_IJSRSET207136 crossref_primary_10_1016_j_cag_2019_04_006 crossref_primary_10_1016_j_cagd_2020_101953 crossref_primary_10_1177_0954410020952922 crossref_primary_10_1016_j_cag_2018_05_015 crossref_primary_10_1007_s00236_023_00443_7 crossref_primary_10_1002_ett_3696 |
Cites_doi | 10.1111/j.1467-8659.2011.02033.x 10.1109/2945.817351 10.1049/iet-cvi.2009.0079 10.1111/1467-8659.00438 10.1145/304893.304972 10.1145/280814.280947 10.1016/j.patcog.2008.03.023 10.1007/BFb0054315 10.1016/j.cad.2014.12.002 10.1145/376957.376986 10.1109/TIT.1983.1056714 10.1007/11863939_6 10.1145/357346.357349 10.1016/S0925-7721(01)00016-5 10.1007/3-540-58808-6 10.1145/2487228.2487237 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.cag.2015.05.025 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7684 |
EndPage | 97 |
ExternalDocumentID | 10_1016_j_cag_2015_05_025 S0097849315000722 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABMAC ABTAH ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD AEBSH AEKER AFFNX AFKWA AFTJW AGHFR AGSOS AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W K-O KOM LG9 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSV SSW SSZ T5K TN5 UHS VH1 VOH WH7 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 7SC 8FD ACLOT EFKBS JQ2 L7M L~C L~D ~HD |
ID | FETCH-LOGICAL-c330t-7a0fd49228c19d99a6c67bd266ccc1cfc6f4643fa7762f8f6136e673d9aa34da3 |
IEDL.DBID | AIKHN |
ISSN | 0097-8493 |
IngestDate | Sat Sep 27 21:35:19 EDT 2025 Thu Apr 24 22:57:52 EDT 2025 Tue Jul 01 03:26:51 EDT 2025 Fri Feb 23 02:31:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Reconstruction Delaunay Triangulation Dot pattern Boundary sample |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-7a0fd49228c19d99a6c67bd266ccc1cfc6f4643fa7762f8f6136e673d9aa34da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1762073881 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1762073881 crossref_citationtrail_10_1016_j_cag_2015_05_025 crossref_primary_10_1016_j_cag_2015_05_025 elsevier_sciencedirect_doi_10_1016_j_cag_2015_05_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-01 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Computers & graphics |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Boissonnat (bib6) 1984; 3 Bollobas (bib16) 1998 Kazhdan, Hoppe (bib19) 2013; 32 Bernardini, Mittleman, Rushmeier, Silva, Taubin (bib15) 1999; 5 Duckham, Kulik, Worboys, Galton (bib9) 2008; 41 〉 Peethambaran, Muthuganapathy (bib4) 2015; 62 Amenta N, Choi S, Kolluri RK. The power crust. In: Proceedings of the sixth ACM symposium on solid modeling and applications, SMA׳01. New York, NY, USA: ACM; 2001. p. 249–66. Veltkamp RC. Closed object boundaries from scattered points, Lecture notes in computer science, vol. 885. Springer-Verlag; 1994. CGAL. Computational geometry algorithms library de Goes, Cohen-Steiner, Alliez, Desbrun (bib8) 2011; 30 Petitjean S, Boyer E. Regular and non-regular point sets: properties and reconstruction. Comput Geom 2001;19(2–3):101–26 (Combinatorial curves and surfaces). Kazhdan M, Bolitho M, Hoppe, H. Poisson surface reconstruction. In: Proceedings of the fourth eurographics symposium on geometry processing, SGP ׳06. Aire-la-Ville, Switzerland: Eurographics Association; 2006. p. 61–70. Dey TK, Kumar P. A simple provable algorithm for curve reconstruction, in: SODA׳99; 1999. p. 893–4. Edelsbrunner H. Shape reconstruction with delaunay complex. In: Lucchesi CL, Moura AV, editors. LATIN, Lecture notes in computer science, vol. 1380. Springer-Verlag; 1998. p. 119–32. Gheibi, Davoodi, Javad, Panahi, Aghdam, Asgaripour (bib3) 2011; 5 Galton A, Duckham M. What is the region occupied by a set of points? In: Raubal M, Miller HJ, Frank AU, Goodchild MF, editors. GIScience, Lecture notes in computer science, vol. 4197. Springer-Verlag; 2006. p. 81–98. Amenta N, Bern M, Kamvysselis M. A new Voronoi-based surface reconstruction algorithm. In: Proceedings of the 25th annual conference on computer graphics and interactive techniques, SIGGRAPH ׳98. New York, NY, USA: ACM; 1998. p. 415–21. Attene, Spagnuolo (bib7) 2000; 19 Edelsbrunner, Kirkpatrick, Seidel (bib5) 1983; 29 Bernardini (10.1016/j.cag.2015.05.025_bib15) 1999; 5 Bollobas (10.1016/j.cag.2015.05.025_bib16) 1998 10.1016/j.cag.2015.05.025_bib2 Duckham (10.1016/j.cag.2015.05.025_bib9) 2008; 41 10.1016/j.cag.2015.05.025_bib1 de Goes (10.1016/j.cag.2015.05.025_bib8) 2011; 30 Gheibi (10.1016/j.cag.2015.05.025_bib3) 2011; 5 Edelsbrunner (10.1016/j.cag.2015.05.025_bib5) 1983; 29 10.1016/j.cag.2015.05.025_bib12 10.1016/j.cag.2015.05.025_bib13 10.1016/j.cag.2015.05.025_bib10 10.1016/j.cag.2015.05.025_bib11 10.1016/j.cag.2015.05.025_bib17 10.1016/j.cag.2015.05.025_bib14 Attene (10.1016/j.cag.2015.05.025_bib7) 2000; 19 10.1016/j.cag.2015.05.025_bib18 Boissonnat (10.1016/j.cag.2015.05.025_bib6) 1984; 3 Kazhdan (10.1016/j.cag.2015.05.025_bib19) 2013; 32 Peethambaran (10.1016/j.cag.2015.05.025_bib4) 2015; 62 |
References_xml | – reference: CGAL. Computational geometry algorithms library, 〈 – volume: 3 start-page: 266 year: 1984 end-page: 286 ident: bib6 article-title: Geometric structures for three-dimensional shape representation publication-title: ACM Trans Graph – reference: Amenta N, Bern M, Kamvysselis M. A new Voronoi-based surface reconstruction algorithm. In: Proceedings of the 25th annual conference on computer graphics and interactive techniques, SIGGRAPH ׳98. New York, NY, USA: ACM; 1998. p. 415–21. – reference: Veltkamp RC. Closed object boundaries from scattered points, Lecture notes in computer science, vol. 885. Springer-Verlag; 1994. – reference: Amenta N, Choi S, Kolluri RK. The power crust. In: Proceedings of the sixth ACM symposium on solid modeling and applications, SMA׳01. New York, NY, USA: ACM; 2001. p. 249–66. – reference: 〉 – reference: Petitjean S, Boyer E. Regular and non-regular point sets: properties and reconstruction. Comput Geom 2001;19(2–3):101–26 (Combinatorial curves and surfaces). – reference: Edelsbrunner H. Shape reconstruction with delaunay complex. In: Lucchesi CL, Moura AV, editors. LATIN, Lecture notes in computer science, vol. 1380. Springer-Verlag; 1998. p. 119–32. – volume: 5 start-page: 349 year: 1999 end-page: 359 ident: bib15 article-title: The ball-pivoting algorithm for surface reconstruction publication-title: IEEE Trans Vis Comput Graph – year: 1998 ident: bib16 publication-title: Modern graph theory – volume: 32 start-page: 29 year: 2013 ident: bib19 article-title: Screened poisson surface reconstruction publication-title: ACM Trans Graph – reference: Galton A, Duckham M. What is the region occupied by a set of points? In: Raubal M, Miller HJ, Frank AU, Goodchild MF, editors. GIScience, Lecture notes in computer science, vol. 4197. Springer-Verlag; 2006. p. 81–98. – reference: Kazhdan M, Bolitho M, Hoppe, H. Poisson surface reconstruction. In: Proceedings of the fourth eurographics symposium on geometry processing, SGP ׳06. Aire-la-Ville, Switzerland: Eurographics Association; 2006. p. 61–70. – volume: 62 start-page: 164 year: 2015 end-page: 175 ident: bib4 article-title: A non-parametric approach to shape reconstruction from planar point sets through Delaunay filtering publication-title: Comput-Aid Des – volume: 30 start-page: 1593 year: 2011 end-page: 1602 ident: bib8 article-title: An optimal transport approach to robust reconstruction and simplification of 2D shapes publication-title: Comput Graph Forum – volume: 41 start-page: 3224 year: 2008 end-page: 3236 ident: bib9 article-title: Efficient generation of simple polygons for characterizing the shape of a set of points in the plane publication-title: Pattern Recogn – volume: 5 start-page: 97 year: 2011 end-page: 106 ident: bib3 article-title: Polygonal shape reconstruction in the plane publication-title: IET Comput Vis – volume: 19 start-page: 457 year: 2000 end-page: 465 ident: bib7 article-title: Automatic surface reconstruction from point sets in space publication-title: Comput Graph Forum – reference: Dey TK, Kumar P. A simple provable algorithm for curve reconstruction, in: SODA׳99; 1999. p. 893–4. – volume: 29 start-page: 551 year: 1983 end-page: 558 ident: bib5 article-title: On the shape of a set of points in the plane publication-title: IEEE Trans Inf Theory – volume: 30 start-page: 1593 year: 2011 ident: 10.1016/j.cag.2015.05.025_bib8 article-title: An optimal transport approach to robust reconstruction and simplification of 2D shapes publication-title: Comput Graph Forum doi: 10.1111/j.1467-8659.2011.02033.x – volume: 5 start-page: 349 year: 1999 ident: 10.1016/j.cag.2015.05.025_bib15 article-title: The ball-pivoting algorithm for surface reconstruction publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/2945.817351 – volume: 5 start-page: 97 issue: 2 year: 2011 ident: 10.1016/j.cag.2015.05.025_bib3 article-title: Polygonal shape reconstruction in the plane publication-title: IET Comput Vis doi: 10.1049/iet-cvi.2009.0079 – volume: 19 start-page: 457 issue: 3 year: 2000 ident: 10.1016/j.cag.2015.05.025_bib7 article-title: Automatic surface reconstruction from point sets in space publication-title: Comput Graph Forum doi: 10.1111/1467-8659.00438 – ident: 10.1016/j.cag.2015.05.025_bib11 doi: 10.1145/304893.304972 – ident: 10.1016/j.cag.2015.05.025_bib17 – ident: 10.1016/j.cag.2015.05.025_bib10 doi: 10.1145/280814.280947 – volume: 41 start-page: 3224 issue: 10 year: 2008 ident: 10.1016/j.cag.2015.05.025_bib9 article-title: Efficient generation of simple polygons for characterizing the shape of a set of points in the plane publication-title: Pattern Recogn doi: 10.1016/j.patcog.2008.03.023 – ident: 10.1016/j.cag.2015.05.025_bib18 – ident: 10.1016/j.cag.2015.05.025_bib1 doi: 10.1007/BFb0054315 – volume: 62 start-page: 164 year: 2015 ident: 10.1016/j.cag.2015.05.025_bib4 article-title: A non-parametric approach to shape reconstruction from planar point sets through Delaunay filtering publication-title: Comput-Aid Des doi: 10.1016/j.cad.2014.12.002 – ident: 10.1016/j.cag.2015.05.025_bib12 doi: 10.1145/376957.376986 – volume: 29 start-page: 551 issue: 4 year: 1983 ident: 10.1016/j.cag.2015.05.025_bib5 article-title: On the shape of a set of points in the plane publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1983.1056714 – year: 1998 ident: 10.1016/j.cag.2015.05.025_bib16 – ident: 10.1016/j.cag.2015.05.025_bib2 doi: 10.1007/11863939_6 – volume: 3 start-page: 266 issue: 4 year: 1984 ident: 10.1016/j.cag.2015.05.025_bib6 article-title: Geometric structures for three-dimensional shape representation publication-title: ACM Trans Graph doi: 10.1145/357346.357349 – ident: 10.1016/j.cag.2015.05.025_bib13 doi: 10.1016/S0925-7721(01)00016-5 – ident: 10.1016/j.cag.2015.05.025_bib14 doi: 10.1007/3-540-58808-6 – volume: 32 start-page: 29 issue: 3 year: 2013 ident: 10.1016/j.cag.2015.05.025_bib19 article-title: Screened poisson surface reconstruction publication-title: ACM Trans Graph doi: 10.1145/2487228.2487237 |
SSID | ssj0002264 |
Score | 2.1990852 |
Snippet | Reconstruction problem in R2 computes a polygon which best approximates the geometric shape induced by a given point set, S. In R2, the input point set can... Reconstruction problem in [dbl-struck R] super(2) computes a polygon which best approximates the geometric shape induced by a given point set, S. In... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 90 |
SubjectTerms | Algorithms Approximation Boundaries Boundary sample Delaunay Triangulation Density Dot pattern Exteriors Reconstruction Regularity Sampling |
Title | A unified approach towards reconstruction of a planar point set |
URI | https://dx.doi.org/10.1016/j.cag.2015.05.025 https://www.proquest.com/docview/1762073881 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe9GD-MT6YgVPQmyS3Ww2JynFUhV6stDbstmHVEoSbHr1tzubR1GRHoRcEjIhO5t8M8N--w1CtymE9Cj1iSd5ojzKQ-ul2lCPhSaNdMxdDuHYFlM2mdHneTTvoFG7F8bRKhvsrzG9QuvmyqDx5qBYLNweX6iAaEICp-kfh4DDvRCiPe-i3vDpZTLdALLbK1qLUQIgg0G7uFnRvJR8cwSvqNLvdA2z_w5Pv4C6ij7jA7TfpI14WL_ZIeqY7AjtfRMTPEYPQ7zOFhZSStwKheOyIsWucFX2bqRicW6xxMVSZvIDF_kiK_HKlCdoNn58HU28pj2CpwjxSy-WvtU0CUOugkQniWSKxamGiKuUCpRVzFLIN6yMAfAstxC4mWEx0YmUhGpJTlE3yzNzhjC3VFprDTMWSuWUSKOtVowETu7O8LCP_NYrQjXa4a6FxVK0JLF3AY4UzpHChyOM-uhuY1LUwhnbbqatq8WP2RcA7NvMbtppEfBXuKUOmZl8vRIBDBnAi_Pg_H-PvkC77qym7V2iLsyQuYL0o0yv0c79Z3DdfGRfIevY7A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ke1AP4hPrcwVPQmiS3Ww2JynF0traUwu9LZt9SKWkxab_39k8iop4EHJKMiE7k3wzy377DUIPKaT0KPWJJ3miPMpD66XaUI-FJo10zF0N4dgWEzaY0Zd5NG-gXr0XxtEqK-wvMb1A6-pMp_JmZ71YuD2-MAOiCQmcpn8cAg63qGtq3USt7nA0mOwA2e0VLcUoAZDBoF7cLGheSr45gldU6He6htm_p6cfQF1kn_4ROqzKRtwt3-wYNUx2gg6-iAmeoqcu3mYLCyUlroXCcV6QYje4mPbupGLxymKJ10uZyQ-8Xi2yHG9MfoZm_edpb-BV7RE8RYife7H0raZJGHIVJDpJJFMsTjVkXKVUoKxilkK9YWUMgGe5hcTNDIuJTqQkVEtyjprZKjMXCHNLpbXWMGNhqpwSabTVipHAyd0ZHraRX3tFqEo73LWwWIqaJPYuwJHCOVL4cIRRGz3uTNalcMZfN9Pa1eJb9AUA-19m93VYBPwVbqlDZma13YgAhgzgxXlw-b9H36G9wfR1LMbDyegK7bsrJYXvGjUhWuYGSpE8va0-tU9CJNrS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+unified+approach+towards+reconstruction+of+a+planar+point+set&rft.jtitle=Computers+%26+graphics&rft.au=Methirumangalath%2C+Subhasree&rft.au=Parakkat%2C+Amal+Dev&rft.au=Muthuganapathy%2C+Ramanathan&rft.date=2015-10-01&rft.issn=0097-8493&rft.volume=51&rft.spage=90&rft.epage=97&rft_id=info:doi/10.1016%2Fj.cag.2015.05.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cag_2015_05_025 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0097-8493&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0097-8493&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0097-8493&client=summon |