A unified approach towards reconstruction of a planar point set

Reconstruction problem in R2 computes a polygon which best approximates the geometric shape induced by a given point set, S. In R2, the input point set can either be a boundary sample or a dot pattern. We present a Delaunay-based, unified method for reconstruction irrespective of the type of the inp...

Full description

Saved in:
Bibliographic Details
Published inComputers & graphics Vol. 51; pp. 90 - 97
Main Authors Methirumangalath, Subhasree, Parakkat, Amal Dev, Muthuganapathy, Ramanathan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2015
Subjects
Online AccessGet full text
ISSN0097-8493
1873-7684
DOI10.1016/j.cag.2015.05.025

Cover

Abstract Reconstruction problem in R2 computes a polygon which best approximates the geometric shape induced by a given point set, S. In R2, the input point set can either be a boundary sample or a dot pattern. We present a Delaunay-based, unified method for reconstruction irrespective of the type of the input point set. From the Delaunay Triangulation (DT) of S, exterior edges are successively removed subject to circle and regularity constraints to compute a resultant boundary which is termed as ec-shape and has been shown to be homeomorphic to a simple closed curve. Theoretical guarantee of the reconstruction has been provided using r-sampling. In practice, our algorithm has been shown to perform well independent of sampling models and this has been illustrated through an extensive comparative study with existing methods for inputs having varying point densities and distributions. The time and space complexities of the algorithm have been shown to be O(nlogn) and O(n) respectively, where n is the number of points in S. [Display omitted] •The algorithm works for boundary samples as well as dot patterns.•Theoretical guarantee has been provided.•Extensive experimentation shows that this approach works well.
AbstractList Reconstruction problem in R2 computes a polygon which best approximates the geometric shape induced by a given point set, S. In R2, the input point set can either be a boundary sample or a dot pattern. We present a Delaunay-based, unified method for reconstruction irrespective of the type of the input point set. From the Delaunay Triangulation (DT) of S, exterior edges are successively removed subject to circle and regularity constraints to compute a resultant boundary which is termed as ec-shape and has been shown to be homeomorphic to a simple closed curve. Theoretical guarantee of the reconstruction has been provided using r-sampling. In practice, our algorithm has been shown to perform well independent of sampling models and this has been illustrated through an extensive comparative study with existing methods for inputs having varying point densities and distributions. The time and space complexities of the algorithm have been shown to be O(nlogn) and O(n) respectively, where n is the number of points in S. [Display omitted] •The algorithm works for boundary samples as well as dot patterns.•Theoretical guarantee has been provided.•Extensive experimentation shows that this approach works well.
Reconstruction problem in [dbl-struck R] super(2) computes a polygon which best approximates the geometric shape induced by a given point set, S. In [dbl-struck R] super(2), the input point set can either be a boundary sample or a dot pattern. We present a Delaunay-based, unified method for reconstruction irrespective of the type of the input point set. From the Delaunay Triangulation (DT) of S, exterior edges are successively removed subject to circle and regularity constraints to compute a resultant boundary which is termed as ec-shape and has been shown to be homeomorphic to a simple closed curve. Theoretical guarantee of the reconstruction has been provided using r-sampling. In practice, our algorithm has been shown to perform well independent of sampling models and this has been illustrated through an extensive comparative study with existing methods for inputs having varying point densities and distributions. The time and space complexities of the algorithm have been shown to be O(n log n) and O(n) respectively, where n is the number of points in S.
Author Muthuganapathy, Ramanathan
Methirumangalath, Subhasree
Parakkat, Amal Dev
Author_xml – sequence: 1
  givenname: Subhasree
  surname: Methirumangalath
  fullname: Methirumangalath, Subhasree
  email: subhasree.rajiv@gmail.com
– sequence: 2
  givenname: Amal Dev
  surname: Parakkat
  fullname: Parakkat, Amal Dev
  email: adp.upasana@gmail.com
– sequence: 3
  givenname: Ramanathan
  surname: Muthuganapathy
  fullname: Muthuganapathy, Ramanathan
  email: emry01@gmail.com
BookMark eNp9kEtLAzEUhYMoWKs_wF2WbqbmMU1mcCGl-ALBja7D9SbRlHYyJqnivzelrlwIB-7mfJdzzgk5HOLgCDnnbMYZV5erGcLbTDA-n7EqMT8gE95p2WjVtYdkwlivm67t5TE5yXnFGBNCtRNyvaDbIfjgLIVxTBHwnZb4BclmmhzGIZe0xRLiQKOnQMc1DJDoGMNQaHbllBx5WGd39nun5OX25nl53zw-3T0sF48NSslKo4F52_ZCdMh72_egUOlXK5RCRI4elW9VKz1orYTvvOJSOaWl7QFka0FOycX-b834sXW5mE3I6NY1jovbbHjlmJZdx6tV762YYs7JeYOhwK5CSRDWhjOzm8ysTJ3M7CYzrErMK8n_kGMKG0jf_zJXe8bV9p_BJZMxuAGdDXW_YmwM_9A_IX6GBw
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3483894
crossref_primary_10_1145_3431817
crossref_primary_10_1016_j_jnca_2017_05_005
crossref_primary_10_1007_s11227_024_06175_w
crossref_primary_10_1111_cgf_142659
crossref_primary_10_1016_j_cag_2022_08_002
crossref_primary_10_1186_s42492_020_00049_7
crossref_primary_10_1111_cgf_13589
crossref_primary_10_1145_3691635
crossref_primary_10_1016_j_cag_2024_104021
crossref_primary_10_1111_cgf_12974
crossref_primary_10_1016_j_cag_2017_05_006
crossref_primary_10_32628_IJSRSET207136
crossref_primary_10_1016_j_cag_2019_04_006
crossref_primary_10_1016_j_cagd_2020_101953
crossref_primary_10_1177_0954410020952922
crossref_primary_10_1016_j_cag_2018_05_015
crossref_primary_10_1007_s00236_023_00443_7
crossref_primary_10_1002_ett_3696
Cites_doi 10.1111/j.1467-8659.2011.02033.x
10.1109/2945.817351
10.1049/iet-cvi.2009.0079
10.1111/1467-8659.00438
10.1145/304893.304972
10.1145/280814.280947
10.1016/j.patcog.2008.03.023
10.1007/BFb0054315
10.1016/j.cad.2014.12.002
10.1145/376957.376986
10.1109/TIT.1983.1056714
10.1007/11863939_6
10.1145/357346.357349
10.1016/S0925-7721(01)00016-5
10.1007/3-540-58808-6
10.1145/2487228.2487237
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cag.2015.05.025
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7684
EndPage 97
ExternalDocumentID 10_1016_j_cag_2015_05_025
S0097849315000722
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABMAC
ABTAH
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
AEBSH
AEKER
AFFNX
AFKWA
AFTJW
AGHFR
AGSOS
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
K-O
KOM
LG9
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
UHS
VH1
VOH
WH7
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
8FD
ACLOT
EFKBS
JQ2
L7M
L~C
L~D
~HD
ID FETCH-LOGICAL-c330t-7a0fd49228c19d99a6c67bd266ccc1cfc6f4643fa7762f8f6136e673d9aa34da3
IEDL.DBID AIKHN
ISSN 0097-8493
IngestDate Sat Sep 27 21:35:19 EDT 2025
Thu Apr 24 22:57:52 EDT 2025
Tue Jul 01 03:26:51 EDT 2025
Fri Feb 23 02:31:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Reconstruction
Delaunay Triangulation
Dot pattern
Boundary sample
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-7a0fd49228c19d99a6c67bd266ccc1cfc6f4643fa7762f8f6136e673d9aa34da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1762073881
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1762073881
crossref_citationtrail_10_1016_j_cag_2015_05_025
crossref_primary_10_1016_j_cag_2015_05_025
elsevier_sciencedirect_doi_10_1016_j_cag_2015_05_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Computers & graphics
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Boissonnat (bib6) 1984; 3
Bollobas (bib16) 1998
Kazhdan, Hoppe (bib19) 2013; 32
Bernardini, Mittleman, Rushmeier, Silva, Taubin (bib15) 1999; 5
Duckham, Kulik, Worboys, Galton (bib9) 2008; 41

Peethambaran, Muthuganapathy (bib4) 2015; 62
Amenta N, Choi S, Kolluri RK. The power crust. In: Proceedings of the sixth ACM symposium on solid modeling and applications, SMA׳01. New York, NY, USA: ACM; 2001. p. 249–66.
Veltkamp RC. Closed object boundaries from scattered points, Lecture notes in computer science, vol. 885. Springer-Verlag; 1994.
CGAL. Computational geometry algorithms library
de Goes, Cohen-Steiner, Alliez, Desbrun (bib8) 2011; 30
Petitjean S, Boyer E. Regular and non-regular point sets: properties and reconstruction. Comput Geom 2001;19(2–3):101–26 (Combinatorial curves and surfaces).
Kazhdan M, Bolitho M, Hoppe, H. Poisson surface reconstruction. In: Proceedings of the fourth eurographics symposium on geometry processing, SGP ׳06. Aire-la-Ville, Switzerland: Eurographics Association; 2006. p. 61–70.
Dey TK, Kumar P. A simple provable algorithm for curve reconstruction, in: SODA׳99; 1999. p. 893–4.
Edelsbrunner H. Shape reconstruction with delaunay complex. In: Lucchesi CL, Moura AV, editors. LATIN, Lecture notes in computer science, vol. 1380. Springer-Verlag; 1998. p. 119–32.
Gheibi, Davoodi, Javad, Panahi, Aghdam, Asgaripour (bib3) 2011; 5
Galton A, Duckham M. What is the region occupied by a set of points? In: Raubal M, Miller HJ, Frank AU, Goodchild MF, editors. GIScience, Lecture notes in computer science, vol. 4197. Springer-Verlag; 2006. p. 81–98.
Amenta N, Bern M, Kamvysselis M. A new Voronoi-based surface reconstruction algorithm. In: Proceedings of the 25th annual conference on computer graphics and interactive techniques, SIGGRAPH ׳98. New York, NY, USA: ACM; 1998. p. 415–21.
Attene, Spagnuolo (bib7) 2000; 19
Edelsbrunner, Kirkpatrick, Seidel (bib5) 1983; 29
Bernardini (10.1016/j.cag.2015.05.025_bib15) 1999; 5
Bollobas (10.1016/j.cag.2015.05.025_bib16) 1998
10.1016/j.cag.2015.05.025_bib2
Duckham (10.1016/j.cag.2015.05.025_bib9) 2008; 41
10.1016/j.cag.2015.05.025_bib1
de Goes (10.1016/j.cag.2015.05.025_bib8) 2011; 30
Gheibi (10.1016/j.cag.2015.05.025_bib3) 2011; 5
Edelsbrunner (10.1016/j.cag.2015.05.025_bib5) 1983; 29
10.1016/j.cag.2015.05.025_bib12
10.1016/j.cag.2015.05.025_bib13
10.1016/j.cag.2015.05.025_bib10
10.1016/j.cag.2015.05.025_bib11
10.1016/j.cag.2015.05.025_bib17
10.1016/j.cag.2015.05.025_bib14
Attene (10.1016/j.cag.2015.05.025_bib7) 2000; 19
10.1016/j.cag.2015.05.025_bib18
Boissonnat (10.1016/j.cag.2015.05.025_bib6) 1984; 3
Kazhdan (10.1016/j.cag.2015.05.025_bib19) 2013; 32
Peethambaran (10.1016/j.cag.2015.05.025_bib4) 2015; 62
References_xml – reference: CGAL. Computational geometry algorithms library, 〈
– volume: 3
  start-page: 266
  year: 1984
  end-page: 286
  ident: bib6
  article-title: Geometric structures for three-dimensional shape representation
  publication-title: ACM Trans Graph
– reference: Amenta N, Bern M, Kamvysselis M. A new Voronoi-based surface reconstruction algorithm. In: Proceedings of the 25th annual conference on computer graphics and interactive techniques, SIGGRAPH ׳98. New York, NY, USA: ACM; 1998. p. 415–21.
– reference: Veltkamp RC. Closed object boundaries from scattered points, Lecture notes in computer science, vol. 885. Springer-Verlag; 1994.
– reference: Amenta N, Choi S, Kolluri RK. The power crust. In: Proceedings of the sixth ACM symposium on solid modeling and applications, SMA׳01. New York, NY, USA: ACM; 2001. p. 249–66.
– reference:
– reference: Petitjean S, Boyer E. Regular and non-regular point sets: properties and reconstruction. Comput Geom 2001;19(2–3):101–26 (Combinatorial curves and surfaces).
– reference: Edelsbrunner H. Shape reconstruction with delaunay complex. In: Lucchesi CL, Moura AV, editors. LATIN, Lecture notes in computer science, vol. 1380. Springer-Verlag; 1998. p. 119–32.
– volume: 5
  start-page: 349
  year: 1999
  end-page: 359
  ident: bib15
  article-title: The ball-pivoting algorithm for surface reconstruction
  publication-title: IEEE Trans Vis Comput Graph
– year: 1998
  ident: bib16
  publication-title: Modern graph theory
– volume: 32
  start-page: 29
  year: 2013
  ident: bib19
  article-title: Screened poisson surface reconstruction
  publication-title: ACM Trans Graph
– reference: Galton A, Duckham M. What is the region occupied by a set of points? In: Raubal M, Miller HJ, Frank AU, Goodchild MF, editors. GIScience, Lecture notes in computer science, vol. 4197. Springer-Verlag; 2006. p. 81–98.
– reference: Kazhdan M, Bolitho M, Hoppe, H. Poisson surface reconstruction. In: Proceedings of the fourth eurographics symposium on geometry processing, SGP ׳06. Aire-la-Ville, Switzerland: Eurographics Association; 2006. p. 61–70.
– volume: 62
  start-page: 164
  year: 2015
  end-page: 175
  ident: bib4
  article-title: A non-parametric approach to shape reconstruction from planar point sets through Delaunay filtering
  publication-title: Comput-Aid Des
– volume: 30
  start-page: 1593
  year: 2011
  end-page: 1602
  ident: bib8
  article-title: An optimal transport approach to robust reconstruction and simplification of 2D shapes
  publication-title: Comput Graph Forum
– volume: 41
  start-page: 3224
  year: 2008
  end-page: 3236
  ident: bib9
  article-title: Efficient generation of simple polygons for characterizing the shape of a set of points in the plane
  publication-title: Pattern Recogn
– volume: 5
  start-page: 97
  year: 2011
  end-page: 106
  ident: bib3
  article-title: Polygonal shape reconstruction in the plane
  publication-title: IET Comput Vis
– volume: 19
  start-page: 457
  year: 2000
  end-page: 465
  ident: bib7
  article-title: Automatic surface reconstruction from point sets in space
  publication-title: Comput Graph Forum
– reference: Dey TK, Kumar P. A simple provable algorithm for curve reconstruction, in: SODA׳99; 1999. p. 893–4.
– volume: 29
  start-page: 551
  year: 1983
  end-page: 558
  ident: bib5
  article-title: On the shape of a set of points in the plane
  publication-title: IEEE Trans Inf Theory
– volume: 30
  start-page: 1593
  year: 2011
  ident: 10.1016/j.cag.2015.05.025_bib8
  article-title: An optimal transport approach to robust reconstruction and simplification of 2D shapes
  publication-title: Comput Graph Forum
  doi: 10.1111/j.1467-8659.2011.02033.x
– volume: 5
  start-page: 349
  year: 1999
  ident: 10.1016/j.cag.2015.05.025_bib15
  article-title: The ball-pivoting algorithm for surface reconstruction
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/2945.817351
– volume: 5
  start-page: 97
  issue: 2
  year: 2011
  ident: 10.1016/j.cag.2015.05.025_bib3
  article-title: Polygonal shape reconstruction in the plane
  publication-title: IET Comput Vis
  doi: 10.1049/iet-cvi.2009.0079
– volume: 19
  start-page: 457
  issue: 3
  year: 2000
  ident: 10.1016/j.cag.2015.05.025_bib7
  article-title: Automatic surface reconstruction from point sets in space
  publication-title: Comput Graph Forum
  doi: 10.1111/1467-8659.00438
– ident: 10.1016/j.cag.2015.05.025_bib11
  doi: 10.1145/304893.304972
– ident: 10.1016/j.cag.2015.05.025_bib17
– ident: 10.1016/j.cag.2015.05.025_bib10
  doi: 10.1145/280814.280947
– volume: 41
  start-page: 3224
  issue: 10
  year: 2008
  ident: 10.1016/j.cag.2015.05.025_bib9
  article-title: Efficient generation of simple polygons for characterizing the shape of a set of points in the plane
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2008.03.023
– ident: 10.1016/j.cag.2015.05.025_bib18
– ident: 10.1016/j.cag.2015.05.025_bib1
  doi: 10.1007/BFb0054315
– volume: 62
  start-page: 164
  year: 2015
  ident: 10.1016/j.cag.2015.05.025_bib4
  article-title: A non-parametric approach to shape reconstruction from planar point sets through Delaunay filtering
  publication-title: Comput-Aid Des
  doi: 10.1016/j.cad.2014.12.002
– ident: 10.1016/j.cag.2015.05.025_bib12
  doi: 10.1145/376957.376986
– volume: 29
  start-page: 551
  issue: 4
  year: 1983
  ident: 10.1016/j.cag.2015.05.025_bib5
  article-title: On the shape of a set of points in the plane
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1983.1056714
– year: 1998
  ident: 10.1016/j.cag.2015.05.025_bib16
– ident: 10.1016/j.cag.2015.05.025_bib2
  doi: 10.1007/11863939_6
– volume: 3
  start-page: 266
  issue: 4
  year: 1984
  ident: 10.1016/j.cag.2015.05.025_bib6
  article-title: Geometric structures for three-dimensional shape representation
  publication-title: ACM Trans Graph
  doi: 10.1145/357346.357349
– ident: 10.1016/j.cag.2015.05.025_bib13
  doi: 10.1016/S0925-7721(01)00016-5
– ident: 10.1016/j.cag.2015.05.025_bib14
  doi: 10.1007/3-540-58808-6
– volume: 32
  start-page: 29
  issue: 3
  year: 2013
  ident: 10.1016/j.cag.2015.05.025_bib19
  article-title: Screened poisson surface reconstruction
  publication-title: ACM Trans Graph
  doi: 10.1145/2487228.2487237
SSID ssj0002264
Score 2.1990852
Snippet Reconstruction problem in R2 computes a polygon which best approximates the geometric shape induced by a given point set, S. In R2, the input point set can...
Reconstruction problem in [dbl-struck R] super(2) computes a polygon which best approximates the geometric shape induced by a given point set, S. In...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 90
SubjectTerms Algorithms
Approximation
Boundaries
Boundary sample
Delaunay Triangulation
Density
Dot pattern
Exteriors
Reconstruction
Regularity
Sampling
Title A unified approach towards reconstruction of a planar point set
URI https://dx.doi.org/10.1016/j.cag.2015.05.025
https://www.proquest.com/docview/1762073881
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe9GD-MT6YgVPQmyS3Ww2JynFUhV6stDbstmHVEoSbHr1tzubR1GRHoRcEjIhO5t8M8N--w1CtymE9Cj1iSd5ojzKQ-ul2lCPhSaNdMxdDuHYFlM2mdHneTTvoFG7F8bRKhvsrzG9QuvmyqDx5qBYLNweX6iAaEICp-kfh4DDvRCiPe-i3vDpZTLdALLbK1qLUQIgg0G7uFnRvJR8cwSvqNLvdA2z_w5Pv4C6ij7jA7TfpI14WL_ZIeqY7AjtfRMTPEYPQ7zOFhZSStwKheOyIsWucFX2bqRicW6xxMVSZvIDF_kiK_HKlCdoNn58HU28pj2CpwjxSy-WvtU0CUOugkQniWSKxamGiKuUCpRVzFLIN6yMAfAstxC4mWEx0YmUhGpJTlE3yzNzhjC3VFprDTMWSuWUSKOtVowETu7O8LCP_NYrQjXa4a6FxVK0JLF3AY4UzpHChyOM-uhuY1LUwhnbbqatq8WP2RcA7NvMbtppEfBXuKUOmZl8vRIBDBnAi_Pg_H-PvkC77qym7V2iLsyQuYL0o0yv0c79Z3DdfGRfIevY7A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ke1AP4hPrcwVPQmiS3Ww2JynF0traUwu9LZt9SKWkxab_39k8iop4EHJKMiE7k3wzy377DUIPKaT0KPWJJ3miPMpD66XaUI-FJo10zF0N4dgWEzaY0Zd5NG-gXr0XxtEqK-wvMb1A6-pMp_JmZ71YuD2-MAOiCQmcpn8cAg63qGtq3USt7nA0mOwA2e0VLcUoAZDBoF7cLGheSr45gldU6He6htm_p6cfQF1kn_4ROqzKRtwt3-wYNUx2gg6-iAmeoqcu3mYLCyUlroXCcV6QYje4mPbupGLxymKJ10uZyQ-8Xi2yHG9MfoZm_edpb-BV7RE8RYife7H0raZJGHIVJDpJJFMsTjVkXKVUoKxilkK9YWUMgGe5hcTNDIuJTqQkVEtyjprZKjMXCHNLpbXWMGNhqpwSabTVipHAyd0ZHraRX3tFqEo73LWwWIqaJPYuwJHCOVL4cIRRGz3uTNalcMZfN9Pa1eJb9AUA-19m93VYBPwVbqlDZma13YgAhgzgxXlw-b9H36G9wfR1LMbDyegK7bsrJYXvGjUhWuYGSpE8va0-tU9CJNrS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+unified+approach+towards+reconstruction+of+a+planar+point+set&rft.jtitle=Computers+%26+graphics&rft.au=Methirumangalath%2C+Subhasree&rft.au=Parakkat%2C+Amal+Dev&rft.au=Muthuganapathy%2C+Ramanathan&rft.date=2015-10-01&rft.issn=0097-8493&rft.volume=51&rft.spage=90&rft.epage=97&rft_id=info:doi/10.1016%2Fj.cag.2015.05.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cag_2015_05_025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0097-8493&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0097-8493&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0097-8493&client=summon