Distortion Robust Relative Radiometric Normalization of Multitemporal and Multisensor Remote Sensing Images Using Image Features

In this article, we propose a novel framework to radiometrically correct unregistered multisensor image pairs based on the extracted feature points with the KAZE detector and the conditional probability (CP) process in the linear model fitting. In this method, the scale, rotation, and illumination i...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 20
Main Authors Moghimi, Armin, Sarmadian, Amin, Mohammadzadeh, Ali, Celik, Turgay, Amani, Meisam, Kusetogullari, Huseyin
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
1558-0644
DOI10.1109/TGRS.2021.3063151

Cover

Abstract In this article, we propose a novel framework to radiometrically correct unregistered multisensor image pairs based on the extracted feature points with the KAZE detector and the conditional probability (CP) process in the linear model fitting. In this method, the scale, rotation, and illumination invariant radiometric control set samples (SRII-RCSS) are first extracted by the blockwise KAZE strategy. They are then distributed uniformly over both textured and texture-less land use/land cover (LULC) using grid interpolation and a set of nearest-neighbors. Subsequently, SRII-RCSS are scored by a similarity measure, and the histogram of the scores is then used to refine SRII-RCSS. The normalized subject image is produced by adjusting the subject image to the reference image using the CP-based linear regression (CPLR) based on the optimal SRII-RCSS. The registered normalized image is finally generated by registration of the normalized subject image to the reference image through a two-pass registration method, namely affine-B-spline and, then, it is enhanced by updating the normalization coefficient of CPLR based on the SRII-RCSS. In this study, eight multitemporal data sets acquired by inter/intra satellite sensors were used in tests to comprehensively assess the efficiency of the proposed method. Experimental results show that the proposed method outperforms the existing state-of-the-art relative radiometric normalization (RRN) methods both qualitatively and quantitatively, indicating its capability for RRN of unregistered multisensor image pairs.
AbstractList In this article, we propose a novel framework to radiometrically correct unregistered multisensor image pairs based on the extracted feature points with the KAZE detector and the conditional probability (CP) process in the linear model fitting. In this method, the scale, rotation, and illumination invariant radiometric control set samples (SRII-RCSS) are first extracted by the blockwise KAZE strategy. They are then distributed uniformly over both textured and texture-less land use/land cover (LULC) using grid interpolation and a set of nearest-neighbors. Subsequently, SRII-RCSS are scored by a similarity measure, and the histogram of the scores is then used to refine SRII-RCSS. The normalized subject image is produced by adjusting the subject image to the reference image using the CP-based linear regression (CPLR) based on the optimal SRII-RCSS. The registered normalized image is finally generated by registration of the normalized subject image to the reference image through a two-pass registration method, namely affine-B-spline and, then, it is enhanced by updating the normalization coefficient of CPLR based on the SRII-RCSS. In this study, eight multitemporal data sets acquired by inter/intra satellite sensors were used in tests to comprehensively assess the efficiency of the proposed method. Experimental results show that the proposed method outperforms the existing state-of-the-art relative radiometric normalization (RRN) methods both qualitatively and quantitatively, indicating its capability for RRN of unregistered multisensor image pairs.
In this article, we propose a novel framework to radiometrically correct unregistered multisensor image pairs based on the extracted feature points with the KAZE detector and the conditional probability (CP) process in the linear model fitting. In this method, the scale, rotation, and illumination invariant radiometric control set samples (SRII-RCSS) are first extracted by the blockwise KAZE strategy. They are then distributed uniformly over both textured and texture-less land use/land cover (LULC) using grid interpolation and a set of nearest-neighbors. Subsequently, SRII-RCSS are scored by a similarity measure, and the histogram of the scores is then used to refine SRII-RCSS. The normalized subject image is produced by adjusting the subject image to the reference image using the CP-based linear regression (CPLR) based on the optimal SRII-RCSS. The registered normalized image is finally generated by registration of the normalized subject image to the reference image through a two-pass registration method, namely affine-B-spline and, then, it is enhanced by updating the normalization coefficient of CPLR based on the SRII-RCSS. In this study, eight multitemporal data sets acquired by inter/intra satellite sensors were used in tests to comprehensively assess the efficiency of the proposed method. Experimental results show that the proposed method outperforms the existing state-of-the-art relative radiometric normalization (RRN) methods both qualitatively and quantitatively, indicating its capability for RRN of unregistered multisensor image pairs. IEEE
Author Mohammadzadeh, Ali
Celik, Turgay
Amani, Meisam
Sarmadian, Amin
Kusetogullari, Huseyin
Moghimi, Armin
Author_xml – sequence: 1
  givenname: Armin
  orcidid: 0000-0002-0455-4882
  surname: Moghimi
  fullname: Moghimi, Armin
  email: moghimi.armin@gmail.com
  organization: Department of Photogrammetry and Remote Sensing, Geomatics Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
– sequence: 2
  givenname: Amin
  surname: Sarmadian
  fullname: Sarmadian, Amin
  email: sarmadian.amin@gmail.com
  organization: Department of Photogrammetry and Remote Sensing, Geomatics Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
– sequence: 3
  givenname: Ali
  orcidid: 0000-0003-3329-5063
  surname: Mohammadzadeh
  fullname: Mohammadzadeh, Ali
  email: almoh2@gmail.com
  organization: Department of Photogrammetry and Remote Sensing, Geomatics Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
– sequence: 4
  givenname: Turgay
  orcidid: 0000-0001-6925-6010
  surname: Celik
  fullname: Celik, Turgay
  email: celikturgay@gmail.com
  organization: School of Electrical and Information Engineering, Wits Institute of Data Science, University of the Witwatersrand, Johannesburg, South Africa
– sequence: 5
  givenname: Meisam
  orcidid: 0000-0002-9495-4010
  surname: Amani
  fullname: Amani, Meisam
  email: meisam.amani69@gmail.com
  organization: Wood Environment and Infrastructure Solutions, Aberdeen, Canada
– sequence: 6
  givenname: Huseyin
  orcidid: 0000-0001-5762-6678
  surname: Kusetogullari
  fullname: Kusetogullari, Huseyin
  email: huseyinkusetogullari@gmail.com
  organization: Department of Computer Science, Blekinge Institute of Technology, Karlskrona, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:bth-21295$$DView record from Swedish Publication Index
BookMark eNp9kU1v1DAQhi1UJLYtPwBxscSVbD3-TI5Vv6VSpG3L1XKyk8VVEi-2A4JTf3qzTQGJA6fRO3re0cy8-2RvCAMS8g7YEoBVR3cXq9slZxyWgmkBCl6RBShVFkxLuUcWDCpd8LLib8h-Sg-MgVRgFuTx1KccYvZhoKtQjynTFXYu--9IV27tQ485-obehNi7zv9yz2Ro6aexyz5jvw3RddQN67mTcEghTjP6kJHeTsoPG3rVuw0mev9X0HN0eYyYDsnr1nUJ377UA3J_fnZ3cllcf764Ojm-LhohWC60kwhyDa2UrZC6Nqw2teKlkJJBWQmDDlEqUVbIW-EEb0RT1Q51ZRywdSsOyMd5bvqB27G22-h7F3_a4Lw99V-ObYgbW-evlgOv1IR_mPFtDN9GTNk-hDEO04aWa2ZKo5WCiTIz1cSQUsTWNj4_vyhH5zsLzO7Ssbt07C4d-5LO5IR_nL8X-p_n_ezxiPiHn243SnPxBCOrn00
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_JSTARS_2022_3208577
crossref_primary_10_1007_s12145_022_00885_6
crossref_primary_10_1007_s40098_024_00907_8
crossref_primary_10_1109_JSTARS_2021_3131489
crossref_primary_10_1007_s12145_021_00757_5
crossref_primary_10_4236_eng_2023_152007
crossref_primary_10_1080_01431161_2021_1995075
crossref_primary_10_3390_rs14081777
crossref_primary_10_3390_rs15245752
crossref_primary_10_1016_j_srs_2023_100095
crossref_primary_10_1109_TGRS_2024_3391175
crossref_primary_10_1080_01431161_2022_2102951
crossref_primary_10_3390_app13042525
crossref_primary_10_1080_10106049_2022_2060316
crossref_primary_10_1080_2150704X_2023_2242589
crossref_primary_10_3390_rs15215129
crossref_primary_10_1016_j_jag_2024_103911
crossref_primary_10_1080_01431161_2022_2114112
crossref_primary_10_1080_22797254_2022_2161419
crossref_primary_10_1109_TGRS_2022_3165940
crossref_primary_10_3390_rs16224337
crossref_primary_10_3390_rs14235987
crossref_primary_10_1007_s12665_023_10864_9
crossref_primary_10_3390_rs13193990
crossref_primary_10_1016_j_asr_2025_01_001
crossref_primary_10_1109_JSTARS_2021_3069919
crossref_primary_10_1080_15481603_2023_2259559
crossref_primary_10_1109_LGRS_2023_3298505
crossref_primary_10_3390_rs13163125
crossref_primary_10_1109_JSTARS_2023_3251646
crossref_primary_10_3390_s24072272
Cites_doi 10.1109/JSTARS.2018.2871373
10.3390/app9214543
10.1016/j.asr.2007.06.064
10.1016/j.isprsjprs.2018.11.007
10.1109/LGRS.2020.3031398
10.1109/LGRS.2011.2163491
10.1016/j.cageo.2014.08.007
10.1016/j.envsoft.2020.104631
10.1016/0034-4257(88)90019-3
10.1080/01431161.2018.1528402
10.1109/JSTARS.2020.3021052
10.1109/2945.620490
10.1080/01431168608948958
10.2747/1548-1603.49.5.755
10.1145/358669.358692
10.1109/42.796284
10.1016/j.isprsjprs.2015.09.009
10.5589/m06-028
10.1016/j.rse.2007.07.013
10.1109/83.506761
10.1007/978-3-662-03978-6
10.1007/11744023_32
10.5194/isprs-archives-XLII-3-W10-863-2020
10.1007/s12517-017-3072-3
10.1016/j.isprsjprs.2015.05.002
10.1109/TGRS.2013.2295263
10.1080/01431161.2016.1213922
10.1023/b:visi.0000029664.99615.94
10.3390/rs6010157
10.1016/j.isprsjprs.2014.02.001
10.3390/rs9111163
10.1007/978-3-642-33783-3_16
10.1109/TGRS.2017.2657582
10.1016/j.isprsjprs.2015.05.003
10.1080/19475705.2014.895964
10.1109/MGRS.2019.2921780
10.1016/j.apm.2013.01.006
10.1016/j.rse.2003.10.024
10.1016/s0034-4257(97)00162-4
10.1007/978-3-540-88693-8_8
10.1109/LGRS.2009.2025059
10.1109/TGRS.2020.2995394
10.1016/0034-4257(91)90062-B
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ADTPV
AOWAS
DF3
DOI 10.1109/TGRS.2021.3063151
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
SwePub
SwePub Articles
SWEPUB Blekinge Tekniska Högskola
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 20
ExternalDocumentID oai_DiVA_org_bth_21295
10_1109_TGRS_2021_3063151
9377562
Genre orig-research
GrantInformation_xml – fundername: Sichuan Provincial Science and Technology Project
  grantid: 2019JDJQ0023
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ADTPV
AOWAS
DF3
ID FETCH-LOGICAL-c330t-6a4e14d1f44f346b70b7b528344018937eaee45389e2f3a32c3c9bae697a10df3
IEDL.DBID RIE
ISSN 0196-2892
1558-0644
IngestDate Wed Oct 01 06:59:04 EDT 2025
Mon Jun 30 08:34:02 EDT 2025
Thu Apr 24 23:09:51 EDT 2025
Wed Oct 01 02:20:05 EDT 2025
Wed Aug 27 05:11:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-6a4e14d1f44f346b70b7b528344018937eaee45389e2f3a32c3c9bae697a10df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5762-6678
0000-0003-3329-5063
0000-0002-0455-4882
0000-0001-6925-6010
0000-0002-9495-4010
PQID 2607876551
PQPubID 85465
PageCount 20
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2021_3063151
swepub_primary_oai_DiVA_org_bth_21295
crossref_primary_10_1109_TGRS_2021_3063151
ieee_primary_9377562
proquest_journals_2607876551
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Lo (ref11)
ref24
ref46
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
Yang (ref4) 2000; 66
ref28
ref27
ref8
ref7
ref9
ref3
ref6
Elvidge (ref29) 1995; 61
ref5
ref40
Chavez (ref47) 1991; 57
References_xml – ident: ref33
  doi: 10.1109/JSTARS.2018.2871373
– volume: 57
  start-page: 295
  issue: 3
  year: 1991
  ident: ref47
  article-title: Comparison of three different methods to merge multiresolution and multispectral data- Landsat TM and SPOT panchromatic
  publication-title: Photogramm. Eng. Remote Sens.
– ident: ref14
  doi: 10.3390/app9214543
– ident: ref44
  doi: 10.1016/j.asr.2007.06.064
– ident: ref23
  doi: 10.1016/j.isprsjprs.2018.11.007
– ident: ref32
  doi: 10.1109/LGRS.2020.3031398
– ident: ref39
  doi: 10.1109/LGRS.2011.2163491
– ident: ref24
  doi: 10.1016/j.cageo.2014.08.007
– ident: ref6
  doi: 10.1016/j.envsoft.2020.104631
– ident: ref16
  doi: 10.1016/0034-4257(88)90019-3
– ident: ref41
  doi: 10.1080/01431161.2018.1528402
– ident: ref2
  doi: 10.1109/JSTARS.2020.3021052
– ident: ref45
  doi: 10.1109/2945.620490
– ident: ref3
  doi: 10.1080/01431168608948958
– start-page: 1184
  volume-title: Proc. ASPRS/RTI Annu. Conv.
  ident: ref11
  article-title: Some practical considerations of relative radiometric normalization of multidate Landsat MSS data for land use change detection
– ident: ref26
  doi: 10.2747/1548-1603.49.5.755
– ident: ref38
  doi: 10.1145/358669.358692
– ident: ref46
  doi: 10.1109/42.796284
– ident: ref9
  doi: 10.1016/j.isprsjprs.2015.09.009
– ident: ref12
  doi: 10.5589/m06-028
– ident: ref22
  doi: 10.1016/j.rse.2007.07.013
– ident: ref42
  doi: 10.1109/83.506761
– ident: ref17
  doi: 10.1007/978-3-662-03978-6
– volume: 61
  start-page: 1255
  issue: 10
  year: 1995
  ident: ref29
  article-title: Relative radiometric normalization of Landsat multispectral scanner (MSS) data using a automatic scattergram-controlled regression
  publication-title: Photogramm. Eng. Remote Sens.
– ident: ref37
  doi: 10.1007/11744023_32
– ident: ref30
  doi: 10.5194/isprs-archives-XLII-3-W10-863-2020
– ident: ref31
  doi: 10.1007/s12517-017-3072-3
– ident: ref1
  doi: 10.1016/j.isprsjprs.2015.05.002
– ident: ref25
  doi: 10.1109/TGRS.2013.2295263
– ident: ref19
  doi: 10.1080/01431161.2016.1213922
– ident: ref36
  doi: 10.1023/b:visi.0000029664.99615.94
– ident: ref43
  doi: 10.3390/rs6010157
– volume: 66
  start-page: 967
  issue: 8
  year: 2000
  ident: ref4
  article-title: Relative radiometric normalization performance for change detection from multi-date satellite images
  publication-title: Photogramm. Eng. Remote Sens.
– ident: ref40
  doi: 10.1016/j.isprsjprs.2014.02.001
– ident: ref28
  doi: 10.3390/rs9111163
– ident: ref34
  doi: 10.1007/978-3-642-33783-3_16
– ident: ref8
  doi: 10.1109/TGRS.2017.2657582
– ident: ref27
  doi: 10.1016/j.isprsjprs.2015.05.003
– ident: ref10
  doi: 10.1080/19475705.2014.895964
– ident: ref5
  doi: 10.1109/MGRS.2019.2921780
– ident: ref18
  doi: 10.1016/j.apm.2013.01.006
– ident: ref20
  doi: 10.1016/j.rse.2003.10.024
– ident: ref21
  doi: 10.1016/s0034-4257(97)00162-4
– ident: ref35
  doi: 10.1007/978-3-540-88693-8_8
– ident: ref7
  doi: 10.1109/LGRS.2009.2025059
– ident: ref15
  doi: 10.1109/TGRS.2020.2995394
– ident: ref13
  doi: 10.1016/0034-4257(91)90062-B
SSID ssj0014517
Score 2.5276208
Snippet In this article, we propose a novel framework to radiometrically correct unregistered multisensor image pairs based on the extracted feature points with the...
SourceID swepub
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Change detection
Conditional probabilities
Conditional probability
Data acquisition
feature detection
Feature extraction
feature matching
Histograms
Illumination invariant
Image enhancement
image matching
Image sensors
Interpolation
Land cover
Land use
Land use/land cover
Linear regression
Multi sensor images
Multi-temporal data
Multisensor remote sensing
Probability theory
Radiometry
Registration methods
relative radiometric normalization
Remote sensing
rotation invariant
Satellite broadcasting
scale invariant
Sensors
Statistical analysis
Textures
Title Distortion Robust Relative Radiometric Normalization of Multitemporal and Multisensor Remote Sensing Images Using Image Features
URI https://ieeexplore.ieee.org/document/9377562
https://www.proquest.com/docview/2607876551
https://urn.kb.se/resolve?urn=urn:nbn:se:bth-21295
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 1558-0644
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwELVKJSQ4UGhBXSjIB7ggsk1ix4mPFaUUpPaw7aLeLNuxoWJJUJNw4NRPZ8bxhhYhxC2JbCvRm4zf2DPPhLzkjtm6TtOksL5KuK2rxAjGEuFlKTPPeR3U-U9OxfGSf7woLjbIm6kWxjkXks_cHC_DXn7d2gGXyvZhKi0LdLh3ykqMtVrTjgEvslgaLRIIIvK4g5mlcv_8_eIMIsE8mwM_ZlmR3ZqDwqEqt_nlTc3QMM8cbZGT9RuO6SVf50Nv5vbnH-KN__sJD8mDSDjpwWghj8iGa7bJ_RsyhNvkbkgDtd0OuT4MqiEIFl20Zuh6OmbL_XB0oWss1UdFf3qKTHcVSzhp6-lYxzvKXK2oburxSQdBcnsFY4BBOHqGyfLNZ_rhGzixji5_31BkogNE_o_J8ujd-dvjJJ7RkFjG0j4RmrsMAAVUPePClKkpDQrGcAjckAs57RwHrypd7plmuWVWGu2ELHWW1p49IZtN27hdQstcaO-F9aw23GIkVgK_qEQlRZ5rkc5IukZN2ShgjudorFQIZFKpEGiFQKsI9Iy8nrp8H9U7_tV4B_GaGkaoZmRvbRoq_t-dgigQPJ0osNer0VymfijYfXj56UAB8Mr0XxSwA1k8_fvoz8i9HAsqwqLOHtnsrwb3HGhOb14E-_4FxIr6nQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWqIgQ98NGCulDAB7ggsk1ix9kcK0rZQncP213UmxU7NiCWBDUJB078dGZsb2gRQtySyLYSvcn4jT3zTMhzbpiuqjiOMm0nEdfVJFKCsUjYIi8Sy3nl1PlnczFd8XcX2cUWeTXUwhhjXPKZGeOl28uvGt3jUtkhTKV5hg73RsY5z3y11rBnwLMkFEeLCMKINOxhJnFxuHy7OIdYME3GwJBZkiXXZiF3rMp1hnlVNdTNNCd3yWzzjj7B5Mu479RY__hDvvF_P-IeuRMoJz3yNnKfbJl6l-xcESLcJTddIqhu98jPY6cbgnDRRaP6tqM-X-67oYuywmJ91PSnc-S661DESRtLfSWvF7pa07Ku_JMWwuTmEsYAkzD0HNPl64_09Cu4sZauft9Q5KI9xP4PyOrkzfL1NAqnNESasbiLRMlNApACrpZxofJY5QolYziEbsiGTGkMB79amNSykqWa6UKVRhR5mcSVZQ_Jdt3UZp_QPBWltUJbVimuMRbLgWFMxKQQaVqKeETiDWpSBwlzPEljLV0oExcSgZYItAxAj8jLocs3r9_xr8Z7iNfQMEA1Igcb05DhD28lxIHg60SGvV54cxn6oWT38ecPRxKAl6r7JIEfFNmjv4_-jNyaLmdn8ux0_v4xuZ1ieYVb4jkg291lb54A6enUU2frvwADaf3q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distortion+Robust+Relative+Radiometric+Normalization+of+Multitemporal+and+Multisensor+Remote+Sensing+Images+Using+Image+Features&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Moghimi%2C+Armin&rft.au=Sarmadian%2C+Amin&rft.au=Mohammadzadeh%2C+Ali&rft.au=Celik%2C+Turgay&rft.date=2022&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=60&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1109%2FTGRS.2021.3063151&rft.externalDocID=9377562
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon