Distortion Robust Relative Radiometric Normalization of Multitemporal and Multisensor Remote Sensing Images Using Image Features
In this article, we propose a novel framework to radiometrically correct unregistered multisensor image pairs based on the extracted feature points with the KAZE detector and the conditional probability (CP) process in the linear model fitting. In this method, the scale, rotation, and illumination i...
Saved in:
| Published in | IEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 20 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0196-2892 1558-0644 1558-0644 |
| DOI | 10.1109/TGRS.2021.3063151 |
Cover
| Abstract | In this article, we propose a novel framework to radiometrically correct unregistered multisensor image pairs based on the extracted feature points with the KAZE detector and the conditional probability (CP) process in the linear model fitting. In this method, the scale, rotation, and illumination invariant radiometric control set samples (SRII-RCSS) are first extracted by the blockwise KAZE strategy. They are then distributed uniformly over both textured and texture-less land use/land cover (LULC) using grid interpolation and a set of nearest-neighbors. Subsequently, SRII-RCSS are scored by a similarity measure, and the histogram of the scores is then used to refine SRII-RCSS. The normalized subject image is produced by adjusting the subject image to the reference image using the CP-based linear regression (CPLR) based on the optimal SRII-RCSS. The registered normalized image is finally generated by registration of the normalized subject image to the reference image through a two-pass registration method, namely affine-B-spline and, then, it is enhanced by updating the normalization coefficient of CPLR based on the SRII-RCSS. In this study, eight multitemporal data sets acquired by inter/intra satellite sensors were used in tests to comprehensively assess the efficiency of the proposed method. Experimental results show that the proposed method outperforms the existing state-of-the-art relative radiometric normalization (RRN) methods both qualitatively and quantitatively, indicating its capability for RRN of unregistered multisensor image pairs. |
|---|---|
| AbstractList | In this article, we propose a novel framework to radiometrically correct unregistered multisensor image pairs based on the extracted feature points with the KAZE detector and the conditional probability (CP) process in the linear model fitting. In this method, the scale, rotation, and illumination invariant radiometric control set samples (SRII-RCSS) are first extracted by the blockwise KAZE strategy. They are then distributed uniformly over both textured and texture-less land use/land cover (LULC) using grid interpolation and a set of nearest-neighbors. Subsequently, SRII-RCSS are scored by a similarity measure, and the histogram of the scores is then used to refine SRII-RCSS. The normalized subject image is produced by adjusting the subject image to the reference image using the CP-based linear regression (CPLR) based on the optimal SRII-RCSS. The registered normalized image is finally generated by registration of the normalized subject image to the reference image through a two-pass registration method, namely affine-B-spline and, then, it is enhanced by updating the normalization coefficient of CPLR based on the SRII-RCSS. In this study, eight multitemporal data sets acquired by inter/intra satellite sensors were used in tests to comprehensively assess the efficiency of the proposed method. Experimental results show that the proposed method outperforms the existing state-of-the-art relative radiometric normalization (RRN) methods both qualitatively and quantitatively, indicating its capability for RRN of unregistered multisensor image pairs. In this article, we propose a novel framework to radiometrically correct unregistered multisensor image pairs based on the extracted feature points with the KAZE detector and the conditional probability (CP) process in the linear model fitting. In this method, the scale, rotation, and illumination invariant radiometric control set samples (SRII-RCSS) are first extracted by the blockwise KAZE strategy. They are then distributed uniformly over both textured and texture-less land use/land cover (LULC) using grid interpolation and a set of nearest-neighbors. Subsequently, SRII-RCSS are scored by a similarity measure, and the histogram of the scores is then used to refine SRII-RCSS. The normalized subject image is produced by adjusting the subject image to the reference image using the CP-based linear regression (CPLR) based on the optimal SRII-RCSS. The registered normalized image is finally generated by registration of the normalized subject image to the reference image through a two-pass registration method, namely affine-B-spline and, then, it is enhanced by updating the normalization coefficient of CPLR based on the SRII-RCSS. In this study, eight multitemporal data sets acquired by inter/intra satellite sensors were used in tests to comprehensively assess the efficiency of the proposed method. Experimental results show that the proposed method outperforms the existing state-of-the-art relative radiometric normalization (RRN) methods both qualitatively and quantitatively, indicating its capability for RRN of unregistered multisensor image pairs. IEEE |
| Author | Mohammadzadeh, Ali Celik, Turgay Amani, Meisam Sarmadian, Amin Kusetogullari, Huseyin Moghimi, Armin |
| Author_xml | – sequence: 1 givenname: Armin orcidid: 0000-0002-0455-4882 surname: Moghimi fullname: Moghimi, Armin email: moghimi.armin@gmail.com organization: Department of Photogrammetry and Remote Sensing, Geomatics Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran – sequence: 2 givenname: Amin surname: Sarmadian fullname: Sarmadian, Amin email: sarmadian.amin@gmail.com organization: Department of Photogrammetry and Remote Sensing, Geomatics Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran – sequence: 3 givenname: Ali orcidid: 0000-0003-3329-5063 surname: Mohammadzadeh fullname: Mohammadzadeh, Ali email: almoh2@gmail.com organization: Department of Photogrammetry and Remote Sensing, Geomatics Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran – sequence: 4 givenname: Turgay orcidid: 0000-0001-6925-6010 surname: Celik fullname: Celik, Turgay email: celikturgay@gmail.com organization: School of Electrical and Information Engineering, Wits Institute of Data Science, University of the Witwatersrand, Johannesburg, South Africa – sequence: 5 givenname: Meisam orcidid: 0000-0002-9495-4010 surname: Amani fullname: Amani, Meisam email: meisam.amani69@gmail.com organization: Wood Environment and Infrastructure Solutions, Aberdeen, Canada – sequence: 6 givenname: Huseyin orcidid: 0000-0001-5762-6678 surname: Kusetogullari fullname: Kusetogullari, Huseyin email: huseyinkusetogullari@gmail.com organization: Department of Computer Science, Blekinge Institute of Technology, Karlskrona, Sweden |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:bth-21295$$DView record from Swedish Publication Index |
| BookMark | eNp9kU1v1DAQhi1UJLYtPwBxscSVbD3-TI5Vv6VSpG3L1XKyk8VVEi-2A4JTf3qzTQGJA6fRO3re0cy8-2RvCAMS8g7YEoBVR3cXq9slZxyWgmkBCl6RBShVFkxLuUcWDCpd8LLib8h-Sg-MgVRgFuTx1KccYvZhoKtQjynTFXYu--9IV27tQ485-obehNi7zv9yz2Ro6aexyz5jvw3RddQN67mTcEghTjP6kJHeTsoPG3rVuw0mev9X0HN0eYyYDsnr1nUJ377UA3J_fnZ3cllcf764Ojm-LhohWC60kwhyDa2UrZC6Nqw2teKlkJJBWQmDDlEqUVbIW-EEb0RT1Q51ZRywdSsOyMd5bvqB27G22-h7F3_a4Lw99V-ObYgbW-evlgOv1IR_mPFtDN9GTNk-hDEO04aWa2ZKo5WCiTIz1cSQUsTWNj4_vyhH5zsLzO7Ssbt07C4d-5LO5IR_nL8X-p_n_ezxiPiHn243SnPxBCOrn00 |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_JSTARS_2022_3208577 crossref_primary_10_1007_s12145_022_00885_6 crossref_primary_10_1007_s40098_024_00907_8 crossref_primary_10_1109_JSTARS_2021_3131489 crossref_primary_10_1007_s12145_021_00757_5 crossref_primary_10_4236_eng_2023_152007 crossref_primary_10_1080_01431161_2021_1995075 crossref_primary_10_3390_rs14081777 crossref_primary_10_3390_rs15245752 crossref_primary_10_1016_j_srs_2023_100095 crossref_primary_10_1109_TGRS_2024_3391175 crossref_primary_10_1080_01431161_2022_2102951 crossref_primary_10_3390_app13042525 crossref_primary_10_1080_10106049_2022_2060316 crossref_primary_10_1080_2150704X_2023_2242589 crossref_primary_10_3390_rs15215129 crossref_primary_10_1016_j_jag_2024_103911 crossref_primary_10_1080_01431161_2022_2114112 crossref_primary_10_1080_22797254_2022_2161419 crossref_primary_10_1109_TGRS_2022_3165940 crossref_primary_10_3390_rs16224337 crossref_primary_10_3390_rs14235987 crossref_primary_10_1007_s12665_023_10864_9 crossref_primary_10_3390_rs13193990 crossref_primary_10_1016_j_asr_2025_01_001 crossref_primary_10_1109_JSTARS_2021_3069919 crossref_primary_10_1080_15481603_2023_2259559 crossref_primary_10_1109_LGRS_2023_3298505 crossref_primary_10_3390_rs13163125 crossref_primary_10_1109_JSTARS_2023_3251646 crossref_primary_10_3390_s24072272 |
| Cites_doi | 10.1109/JSTARS.2018.2871373 10.3390/app9214543 10.1016/j.asr.2007.06.064 10.1016/j.isprsjprs.2018.11.007 10.1109/LGRS.2020.3031398 10.1109/LGRS.2011.2163491 10.1016/j.cageo.2014.08.007 10.1016/j.envsoft.2020.104631 10.1016/0034-4257(88)90019-3 10.1080/01431161.2018.1528402 10.1109/JSTARS.2020.3021052 10.1109/2945.620490 10.1080/01431168608948958 10.2747/1548-1603.49.5.755 10.1145/358669.358692 10.1109/42.796284 10.1016/j.isprsjprs.2015.09.009 10.5589/m06-028 10.1016/j.rse.2007.07.013 10.1109/83.506761 10.1007/978-3-662-03978-6 10.1007/11744023_32 10.5194/isprs-archives-XLII-3-W10-863-2020 10.1007/s12517-017-3072-3 10.1016/j.isprsjprs.2015.05.002 10.1109/TGRS.2013.2295263 10.1080/01431161.2016.1213922 10.1023/b:visi.0000029664.99615.94 10.3390/rs6010157 10.1016/j.isprsjprs.2014.02.001 10.3390/rs9111163 10.1007/978-3-642-33783-3_16 10.1109/TGRS.2017.2657582 10.1016/j.isprsjprs.2015.05.003 10.1080/19475705.2014.895964 10.1109/MGRS.2019.2921780 10.1016/j.apm.2013.01.006 10.1016/j.rse.2003.10.024 10.1016/s0034-4257(97)00162-4 10.1007/978-3-540-88693-8_8 10.1109/LGRS.2009.2025059 10.1109/TGRS.2020.2995394 10.1016/0034-4257(91)90062-B |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M ADTPV AOWAS DF3 |
| DOI | 10.1109/TGRS.2021.3063151 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace SwePub SwePub Articles SWEPUB Blekinge Tekniska Högskola |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 20 |
| ExternalDocumentID | oai_DiVA_org_bth_21295 10_1109_TGRS_2021_3063151 9377562 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Sichuan Provincial Science and Technology Project grantid: 2019JDJQ0023 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M ADTPV AOWAS DF3 |
| ID | FETCH-LOGICAL-c330t-6a4e14d1f44f346b70b7b528344018937eaee45389e2f3a32c3c9bae697a10df3 |
| IEDL.DBID | RIE |
| ISSN | 0196-2892 1558-0644 |
| IngestDate | Wed Oct 01 06:59:04 EDT 2025 Mon Jun 30 08:34:02 EDT 2025 Thu Apr 24 23:09:51 EDT 2025 Wed Oct 01 02:20:05 EDT 2025 Wed Aug 27 05:11:51 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c330t-6a4e14d1f44f346b70b7b528344018937eaee45389e2f3a32c3c9bae697a10df3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5762-6678 0000-0003-3329-5063 0000-0002-0455-4882 0000-0001-6925-6010 0000-0002-9495-4010 |
| PQID | 2607876551 |
| PQPubID | 85465 |
| PageCount | 20 |
| ParticipantIDs | crossref_citationtrail_10_1109_TGRS_2021_3063151 swepub_primary_oai_DiVA_org_bth_21295 crossref_primary_10_1109_TGRS_2021_3063151 ieee_primary_9377562 proquest_journals_2607876551 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 2022 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Lo (ref11) ref24 ref46 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 Yang (ref4) 2000; 66 ref28 ref27 ref8 ref7 ref9 ref3 ref6 Elvidge (ref29) 1995; 61 ref5 ref40 Chavez (ref47) 1991; 57 |
| References_xml | – ident: ref33 doi: 10.1109/JSTARS.2018.2871373 – volume: 57 start-page: 295 issue: 3 year: 1991 ident: ref47 article-title: Comparison of three different methods to merge multiresolution and multispectral data- Landsat TM and SPOT panchromatic publication-title: Photogramm. Eng. Remote Sens. – ident: ref14 doi: 10.3390/app9214543 – ident: ref44 doi: 10.1016/j.asr.2007.06.064 – ident: ref23 doi: 10.1016/j.isprsjprs.2018.11.007 – ident: ref32 doi: 10.1109/LGRS.2020.3031398 – ident: ref39 doi: 10.1109/LGRS.2011.2163491 – ident: ref24 doi: 10.1016/j.cageo.2014.08.007 – ident: ref6 doi: 10.1016/j.envsoft.2020.104631 – ident: ref16 doi: 10.1016/0034-4257(88)90019-3 – ident: ref41 doi: 10.1080/01431161.2018.1528402 – ident: ref2 doi: 10.1109/JSTARS.2020.3021052 – ident: ref45 doi: 10.1109/2945.620490 – ident: ref3 doi: 10.1080/01431168608948958 – start-page: 1184 volume-title: Proc. ASPRS/RTI Annu. Conv. ident: ref11 article-title: Some practical considerations of relative radiometric normalization of multidate Landsat MSS data for land use change detection – ident: ref26 doi: 10.2747/1548-1603.49.5.755 – ident: ref38 doi: 10.1145/358669.358692 – ident: ref46 doi: 10.1109/42.796284 – ident: ref9 doi: 10.1016/j.isprsjprs.2015.09.009 – ident: ref12 doi: 10.5589/m06-028 – ident: ref22 doi: 10.1016/j.rse.2007.07.013 – ident: ref42 doi: 10.1109/83.506761 – ident: ref17 doi: 10.1007/978-3-662-03978-6 – volume: 61 start-page: 1255 issue: 10 year: 1995 ident: ref29 article-title: Relative radiometric normalization of Landsat multispectral scanner (MSS) data using a automatic scattergram-controlled regression publication-title: Photogramm. Eng. Remote Sens. – ident: ref37 doi: 10.1007/11744023_32 – ident: ref30 doi: 10.5194/isprs-archives-XLII-3-W10-863-2020 – ident: ref31 doi: 10.1007/s12517-017-3072-3 – ident: ref1 doi: 10.1016/j.isprsjprs.2015.05.002 – ident: ref25 doi: 10.1109/TGRS.2013.2295263 – ident: ref19 doi: 10.1080/01431161.2016.1213922 – ident: ref36 doi: 10.1023/b:visi.0000029664.99615.94 – ident: ref43 doi: 10.3390/rs6010157 – volume: 66 start-page: 967 issue: 8 year: 2000 ident: ref4 article-title: Relative radiometric normalization performance for change detection from multi-date satellite images publication-title: Photogramm. Eng. Remote Sens. – ident: ref40 doi: 10.1016/j.isprsjprs.2014.02.001 – ident: ref28 doi: 10.3390/rs9111163 – ident: ref34 doi: 10.1007/978-3-642-33783-3_16 – ident: ref8 doi: 10.1109/TGRS.2017.2657582 – ident: ref27 doi: 10.1016/j.isprsjprs.2015.05.003 – ident: ref10 doi: 10.1080/19475705.2014.895964 – ident: ref5 doi: 10.1109/MGRS.2019.2921780 – ident: ref18 doi: 10.1016/j.apm.2013.01.006 – ident: ref20 doi: 10.1016/j.rse.2003.10.024 – ident: ref21 doi: 10.1016/s0034-4257(97)00162-4 – ident: ref35 doi: 10.1007/978-3-540-88693-8_8 – ident: ref7 doi: 10.1109/LGRS.2009.2025059 – ident: ref15 doi: 10.1109/TGRS.2020.2995394 – ident: ref13 doi: 10.1016/0034-4257(91)90062-B |
| SSID | ssj0014517 |
| Score | 2.5276208 |
| Snippet | In this article, we propose a novel framework to radiometrically correct unregistered multisensor image pairs based on the extracted feature points with the... |
| SourceID | swepub proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Change detection Conditional probabilities Conditional probability Data acquisition feature detection Feature extraction feature matching Histograms Illumination invariant Image enhancement image matching Image sensors Interpolation Land cover Land use Land use/land cover Linear regression Multi sensor images Multi-temporal data Multisensor remote sensing Probability theory Radiometry Registration methods relative radiometric normalization Remote sensing rotation invariant Satellite broadcasting scale invariant Sensors Statistical analysis Textures |
| Title | Distortion Robust Relative Radiometric Normalization of Multitemporal and Multisensor Remote Sensing Images Using Image Features |
| URI | https://ieeexplore.ieee.org/document/9377562 https://www.proquest.com/docview/2607876551 https://urn.kb.se/resolve?urn=urn:nbn:se:bth-21295 |
| Volume | 60 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 1558-0644 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwELVKJSQ4UGhBXSjIB7ggsk1ix4mPFaUUpPaw7aLeLNuxoWJJUJNw4NRPZ8bxhhYhxC2JbCvRm4zf2DPPhLzkjtm6TtOksL5KuK2rxAjGEuFlKTPPeR3U-U9OxfGSf7woLjbIm6kWxjkXks_cHC_DXn7d2gGXyvZhKi0LdLh3ykqMtVrTjgEvslgaLRIIIvK4g5mlcv_8_eIMIsE8mwM_ZlmR3ZqDwqEqt_nlTc3QMM8cbZGT9RuO6SVf50Nv5vbnH-KN__sJD8mDSDjpwWghj8iGa7bJ_RsyhNvkbkgDtd0OuT4MqiEIFl20Zuh6OmbL_XB0oWss1UdFf3qKTHcVSzhp6-lYxzvKXK2oburxSQdBcnsFY4BBOHqGyfLNZ_rhGzixji5_31BkogNE_o_J8ujd-dvjJJ7RkFjG0j4RmrsMAAVUPePClKkpDQrGcAjckAs57RwHrypd7plmuWVWGu2ELHWW1p49IZtN27hdQstcaO-F9aw23GIkVgK_qEQlRZ5rkc5IukZN2ShgjudorFQIZFKpEGiFQKsI9Iy8nrp8H9U7_tV4B_GaGkaoZmRvbRoq_t-dgigQPJ0osNer0VymfijYfXj56UAB8Mr0XxSwA1k8_fvoz8i9HAsqwqLOHtnsrwb3HGhOb14E-_4FxIr6nQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWqIgQ98NGCulDAB7ggsk1ix9kcK0rZQncP213UmxU7NiCWBDUJB078dGZsb2gRQtySyLYSvcn4jT3zTMhzbpiuqjiOMm0nEdfVJFKCsUjYIi8Sy3nl1PlnczFd8XcX2cUWeTXUwhhjXPKZGeOl28uvGt3jUtkhTKV5hg73RsY5z3y11rBnwLMkFEeLCMKINOxhJnFxuHy7OIdYME3GwJBZkiXXZiF3rMp1hnlVNdTNNCd3yWzzjj7B5Mu479RY__hDvvF_P-IeuRMoJz3yNnKfbJl6l-xcESLcJTddIqhu98jPY6cbgnDRRaP6tqM-X-67oYuywmJ91PSnc-S661DESRtLfSWvF7pa07Ku_JMWwuTmEsYAkzD0HNPl64_09Cu4sZauft9Q5KI9xP4PyOrkzfL1NAqnNESasbiLRMlNApACrpZxofJY5QolYziEbsiGTGkMB79amNSykqWa6UKVRhR5mcSVZQ_Jdt3UZp_QPBWltUJbVimuMRbLgWFMxKQQaVqKeETiDWpSBwlzPEljLV0oExcSgZYItAxAj8jLocs3r9_xr8Z7iNfQMEA1Igcb05DhD28lxIHg60SGvV54cxn6oWT38ecPRxKAl6r7JIEfFNmjv4_-jNyaLmdn8ux0_v4xuZ1ieYVb4jkg291lb54A6enUU2frvwADaf3q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distortion+Robust+Relative+Radiometric+Normalization+of+Multitemporal+and+Multisensor+Remote+Sensing+Images+Using+Image+Features&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Moghimi%2C+Armin&rft.au=Sarmadian%2C+Amin&rft.au=Mohammadzadeh%2C+Ali&rft.au=Celik%2C+Turgay&rft.date=2022&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=60&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1109%2FTGRS.2021.3063151&rft.externalDocID=9377562 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |