A weak Galerkin finite element method for second-order elliptic problems
This paper introduces a finite element method by using a weakly defined gradient operator over generalized functions. The use of weak gradients and their approximations results in a new concept called discrete weak gradients which is expected to play an important role in numerical methods for partia...
Saved in:
Published in | Journal of computational and applied mathematics Vol. 241; pp. 103 - 115 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.03.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0377-0427 1879-1778 |
DOI | 10.1016/j.cam.2012.10.003 |
Cover
Abstract | This paper introduces a finite element method by using a weakly defined gradient operator over generalized functions. The use of weak gradients and their approximations results in a new concept called discrete weak gradients which is expected to play an important role in numerical methods for partial differential equations. This article intends to provide a general framework for managing differential operators on generalized functions. As a demonstrative example, the discrete weak gradient operator is employed as a building block in the design of numerical schemes for a second order elliptic problem, in which the classical gradient operator is replaced by the discrete weak gradient. The resulting numerical scheme is called a weak Galerkin (WG) finite element method. It can be seen that the weak Galerkin method allows the use of totally discontinuous functions in the finite element procedure. For the second order elliptic problem, an optimal order error estimate in both a discrete H1 and L2 norms are established for the corresponding weak Galerkin finite element solutions. A superconvergence is also observed for the weak Galerkin approximation. |
---|---|
AbstractList | This paper introduces a finite element method by using a weakly defined gradient operator over generalized functions. The use of weak gradients and their approximations results in a new concept called discrete weak gradients which is expected to play an important role in numerical methods for partial differential equations. This article intends to provide a general framework for managing differential operators on generalized functions. As a demonstrative example, the discrete weak gradient operator is employed as a building block in the design of numerical schemes for a second order elliptic problem, in which the classical gradient operator is replaced by the discrete weak gradient. The resulting numerical scheme is called a weak Galerkin (WG) finite element method. It can be seen that the weak Galerkin method allows the use of totally discontinuous functions in the finite element procedure. For the second order elliptic problem, an optimal order error estimate in both a discrete H 1 and L 2 norms are established for the corresponding weak Galerkin finite element solutions. A superconvergence is also observed for the weak Galerkin approximation. This paper introduces a finite element method by using a weakly defined gradient operator over generalized functions. The use of weak gradients and their approximations results in a new concept called discrete weak gradients which is expected to play an important role in numerical methods for partial differential equations. This article intends to provide a general framework for managing differential operators on generalized functions. As a demonstrative example, the discrete weak gradient operator is employed as a building block in the design of numerical schemes for a second order elliptic problem, in which the classical gradient operator is replaced by the discrete weak gradient. The resulting numerical scheme is called a weak Galerkin (WG) finite element method. It can be seen that the weak Galerkin method allows the use of totally discontinuous functions in the finite element procedure. For the second order elliptic problem, an optimal order error estimate in both a discrete H1 and L2 norms are established for the corresponding weak Galerkin finite element solutions. A superconvergence is also observed for the weak Galerkin approximation. |
Author | Wang, Junping Ye, Xiu |
Author_xml | – sequence: 1 givenname: Junping surname: Wang fullname: Wang, Junping email: jwang@nsf.gov organization: Division of Mathematical Sciences, National Science Foundation, Arlington, VA 22230, United States – sequence: 2 givenname: Xiu surname: Ye fullname: Ye, Xiu email: xxye@ualr.edu organization: Department of Mathematics, University of Arkansas at Little Rock, Little Rock, AR 72204, United States |
BookMark | eNp9kEFPAyEQhYnRxLb6A7zt0cuusNAF4qlptDVp4kXPhGVnI-0uVKAa_7009eSh4TCBed_M403RpfMOELojuCKYNA_byuixqjGp873CmF6gCRFcloRzcYkmmHJeYlbzazSNcYsxbiRhE7ReFN-gd8VKDxB21hW9dTZBAQOM4FIxQvrwXdH7UEQw3nWlDx2E3B_sPllT7INvszbeoKteDxFu_-oMvT8_vS3X5eZ19bJcbEpDKU5lw_omuwPeGzAMzxvI_nQraIOh7Wg-Qstesr4VLTXSiEZgoB2WotVCtozO0P1pbl78eYCY1GijyXa0A3-IilAmWT0XVGQpP0lN8DEG6JWxSSfrXQraDopgdcxObVXOTh2zOz5ld5kk_8h9sKMOP2eZxxMD-fdfFoKKxoIz0NkAJqnO2zP0L1xXiSk |
CitedBy_id | crossref_primary_10_1007_s10915_020_01239_4 crossref_primary_10_1016_j_cma_2014_09_009 crossref_primary_10_1016_j_cma_2018_10_022 crossref_primary_10_1016_j_amc_2015_11_046 crossref_primary_10_1016_j_aml_2024_109268 crossref_primary_10_1016_j_apnum_2024_09_019 crossref_primary_10_1016_j_cnsns_2023_107709 crossref_primary_10_1016_j_apnum_2024_09_017 crossref_primary_10_1080_00207179_2016_1144236 crossref_primary_10_1016_j_jcp_2018_04_033 crossref_primary_10_1016_j_camwa_2022_08_022 crossref_primary_10_1016_j_jcp_2016_08_024 crossref_primary_10_1007_s00211_020_01129_9 crossref_primary_10_1016_j_cam_2022_114195 crossref_primary_10_1007_s40314_023_02438_z crossref_primary_10_1016_j_cam_2023_115344 crossref_primary_10_1016_j_ijft_2024_100755 crossref_primary_10_1007_s11075_019_00751_5 crossref_primary_10_1007_s42967_021_00180_z crossref_primary_10_1016_j_cam_2023_115345 crossref_primary_10_1016_j_matcom_2024_02_001 crossref_primary_10_46753_pjaa_2023_v010i01_001 crossref_primary_10_1016_j_cam_2018_08_044 crossref_primary_10_1002_zamm_202200207 crossref_primary_10_1080_00036811_2015_1118625 crossref_primary_10_1080_00207160_2018_1445230 crossref_primary_10_1155_2017_7912845 crossref_primary_10_1155_2020_8796345 crossref_primary_10_1016_j_cam_2024_115757 crossref_primary_10_1016_j_apnum_2018_12_005 crossref_primary_10_1016_j_cam_2018_07_037 crossref_primary_10_1007_s10915_024_02580_8 crossref_primary_10_1016_j_cnsns_2023_107810 crossref_primary_10_1016_j_camwa_2023_10_023 crossref_primary_10_1016_j_cam_2024_115754 crossref_primary_10_1016_j_cam_2024_115995 crossref_primary_10_26599_RSM_2024_9435358 crossref_primary_10_1016_j_matcom_2024_09_017 crossref_primary_10_1016_j_cam_2016_03_017 crossref_primary_10_1016_j_matcom_2023_01_044 crossref_primary_10_1016_j_apnum_2024_10_004 crossref_primary_10_1016_j_cam_2016_04_031 crossref_primary_10_1016_j_procs_2017_05_148 crossref_primary_10_1016_j_cma_2019_03_018 crossref_primary_10_1016_j_cam_2022_115024 crossref_primary_10_1016_j_cam_2024_115983 crossref_primary_10_1007_s40314_022_02058_z crossref_primary_10_1016_j_cam_2022_114179 crossref_primary_10_1007_s10092_023_00541_5 crossref_primary_10_1016_j_jcp_2014_04_017 crossref_primary_10_1007_s10915_014_9945_7 crossref_primary_10_1080_00036811_2018_1504031 crossref_primary_10_1137_20M1322170 crossref_primary_10_1007_s40314_020_1117_9 crossref_primary_10_1016_j_apnum_2017_08_009 crossref_primary_10_1016_j_cam_2023_115531 crossref_primary_10_1002_mma_3440 crossref_primary_10_1007_s10915_015_0021_8 crossref_primary_10_1016_j_camwa_2023_11_013 crossref_primary_10_1137_17M1126618 crossref_primary_10_1016_j_camwa_2019_10_027 crossref_primary_10_1016_j_aml_2024_109227 crossref_primary_10_1016_j_cma_2024_117375 crossref_primary_10_1016_j_amc_2022_127346 crossref_primary_10_1016_j_cam_2021_113525 crossref_primary_10_1016_j_cam_2021_113767 crossref_primary_10_1016_j_cam_2020_113228 crossref_primary_10_1080_10236198_2023_2291154 crossref_primary_10_1016_j_cam_2021_113645 crossref_primary_10_1016_j_cam_2015_02_001 crossref_primary_10_1016_j_cam_2016_11_047 crossref_primary_10_1016_j_cam_2015_03_043 crossref_primary_10_1016_j_aml_2021_107033 crossref_primary_10_1016_j_jcp_2019_109064 crossref_primary_10_1016_j_amc_2018_02_034 crossref_primary_10_1016_j_cam_2024_115918 crossref_primary_10_1016_j_camwa_2018_05_011 crossref_primary_10_1515_jnma_2024_0005 crossref_primary_10_1016_j_amc_2022_127471 crossref_primary_10_1016_j_cam_2021_113770 crossref_primary_10_1515_cmam_2016_0012 crossref_primary_10_1016_j_cam_2018_09_041 crossref_primary_10_1016_j_cam_2020_113373 crossref_primary_10_1016_j_apnum_2018_11_002 crossref_primary_10_1002_num_22918 crossref_primary_10_1016_j_apnum_2025_02_015 crossref_primary_10_1016_j_cam_2020_113376 crossref_primary_10_1016_j_cam_2023_115511 crossref_primary_10_1002_num_22923 crossref_primary_10_1007_s10915_022_01986_6 crossref_primary_10_1016_j_cam_2014_06_024 crossref_primary_10_1137_17M1152528 crossref_primary_10_1016_j_amc_2018_10_064 crossref_primary_10_1016_j_amc_2022_127589 crossref_primary_10_1016_j_cam_2018_09_049 crossref_primary_10_1016_j_camwa_2023_09_023 crossref_primary_10_1016_j_cam_2024_115823 crossref_primary_10_1016_j_cam_2024_115822 crossref_primary_10_1080_17455030_2023_2193852 crossref_primary_10_1016_j_cam_2023_115404 crossref_primary_10_1007_s42967_024_00444_4 crossref_primary_10_1016_j_cam_2021_113784 crossref_primary_10_1186_s13660_017_1461_5 crossref_primary_10_1016_j_apnum_2021_05_021 crossref_primary_10_1007_s40314_021_01521_7 crossref_primary_10_1016_j_cam_2018_08_022 crossref_primary_10_1007_s10092_022_00459_4 crossref_primary_10_1016_j_cam_2018_08_023 crossref_primary_10_1007_s42967_020_00097_z crossref_primary_10_1016_j_cam_2024_115819 crossref_primary_10_4208_cicp_scpde14_19s crossref_primary_10_1007_s10444_017_9526_z crossref_primary_10_1142_S0218202522500051 crossref_primary_10_1515_jnma_2021_0128 crossref_primary_10_1016_j_jcp_2018_02_013 crossref_primary_10_1007_s42967_020_00071_9 crossref_primary_10_1016_j_cma_2017_06_036 crossref_primary_10_3934_math_2023788 crossref_primary_10_1016_j_camwa_2017_06_002 crossref_primary_10_1007_s11425_019_1855_y crossref_primary_10_1007_s10092_017_0242_3 crossref_primary_10_1007_s10915_013_9770_4 crossref_primary_10_1016_j_cam_2016_10_029 crossref_primary_10_1002_num_22146 crossref_primary_10_1007_s40819_019_0621_3 crossref_primary_10_1002_num_22147 crossref_primary_10_1515_jnma_2021_0012 crossref_primary_10_1007_s40314_022_01883_6 crossref_primary_10_1016_j_cnsns_2022_106999 crossref_primary_10_3934_math_20241549 crossref_primary_10_1137_16M1083244 crossref_primary_10_1016_j_cam_2024_116412 crossref_primary_10_1016_j_cma_2017_06_020 crossref_primary_10_1137_15M1040244 crossref_primary_10_1016_j_apnum_2023_05_009 crossref_primary_10_1016_j_camwa_2024_09_011 crossref_primary_10_1007_s10915_023_02390_4 crossref_primary_10_1093_imanum_drab057 crossref_primary_10_1016_j_apnum_2025_01_016 crossref_primary_10_1016_j_apnum_2021_10_014 crossref_primary_10_1016_j_cma_2018_08_025 crossref_primary_10_1016_j_jocs_2024_102241 crossref_primary_10_1007_s10915_024_02562_w crossref_primary_10_1007_s11425_022_2097_8 crossref_primary_10_1016_j_camwa_2022_06_001 crossref_primary_10_1016_j_cnsns_2024_108349 crossref_primary_10_1016_j_cam_2017_11_011 crossref_primary_10_1016_j_cam_2024_116324 crossref_primary_10_1016_j_cam_2017_11_010 crossref_primary_10_1007_s00211_017_0940_4 crossref_primary_10_1007_s10915_013_9771_3 crossref_primary_10_1016_j_apnum_2021_01_016 crossref_primary_10_1007_s40314_023_02580_8 crossref_primary_10_1016_j_camwa_2023_08_008 crossref_primary_10_1016_j_cam_2018_05_021 crossref_primary_10_3934_era_2022118 crossref_primary_10_1002_mma_8519 crossref_primary_10_1007_s11075_021_01209_3 crossref_primary_10_1016_j_cam_2016_01_004 crossref_primary_10_1515_cmam_2022_0087 crossref_primary_10_1002_num_22050 crossref_primary_10_1016_j_camwa_2023_09_049 crossref_primary_10_1002_num_22053 crossref_primary_10_1016_j_camwa_2022_10_012 crossref_primary_10_1016_j_amc_2023_128315 crossref_primary_10_1007_s10444_015_9415_2 crossref_primary_10_1016_j_apnum_2024_06_009 crossref_primary_10_1016_j_apnum_2024_06_004 crossref_primary_10_1016_j_camwa_2022_10_019 crossref_primary_10_1515_jnma_2023_0014 crossref_primary_10_3934_math_2020274 crossref_primary_10_1016_j_apnum_2022_03_017 crossref_primary_10_3934_era_2020042 crossref_primary_10_1016_j_camwa_2023_08_017 crossref_primary_10_1007_s10444_016_9471_2 crossref_primary_10_1002_num_23027 crossref_primary_10_1016_j_aml_2017_11_017 crossref_primary_10_1002_num_23031 crossref_primary_10_1016_j_camwa_2017_07_013 crossref_primary_10_1007_s11075_021_01079_9 crossref_primary_10_1080_02286203_2023_2191586 crossref_primary_10_1016_j_amc_2023_128496 crossref_primary_10_1002_num_23165 crossref_primary_10_1007_s10915_022_01857_0 crossref_primary_10_1007_s10915_024_02651_w crossref_primary_10_1016_j_cam_2014_08_003 crossref_primary_10_1007_s10915_018_0877_5 crossref_primary_10_1016_j_apnum_2024_08_013 crossref_primary_10_1137_19M1283604 crossref_primary_10_1007_s11075_024_01751_w crossref_primary_10_1016_j_cam_2023_115269 crossref_primary_10_1016_j_cam_2019_112375 crossref_primary_10_1016_j_aml_2023_108806 crossref_primary_10_1016_j_matcom_2024_11_019 crossref_primary_10_1002_num_23169 crossref_primary_10_1080_01630563_2018_1549074 crossref_primary_10_3934_nhm_2024021 crossref_primary_10_1080_17455030_2022_2152905 crossref_primary_10_1007_s40314_024_02745_z crossref_primary_10_1016_j_apnum_2022_10_013 crossref_primary_10_1007_s10915_018_0712_z crossref_primary_10_12677_AAM_2021_101008 crossref_primary_10_1016_j_apnum_2020_09_002 crossref_primary_10_1016_j_cam_2019_112586 crossref_primary_10_1016_j_cam_2023_115353 crossref_primary_10_1051_m2an_2025010 crossref_primary_10_1016_j_amc_2020_125524 crossref_primary_10_1007_s40314_022_02090_z crossref_primary_10_1016_j_apnum_2017_11_006 crossref_primary_10_1016_j_cam_2021_113928 crossref_primary_10_1016_j_jcp_2013_04_042 crossref_primary_10_1016_j_jlumin_2013_09_002 crossref_primary_10_1016_j_cam_2019_112584 crossref_primary_10_1016_j_cam_2021_113926 crossref_primary_10_3934_math_2021030 crossref_primary_10_1016_j_cma_2021_114366 crossref_primary_10_1007_s11464_018_0730_z crossref_primary_10_1016_j_apnum_2022_04_012 crossref_primary_10_1007_s11425_019_1809_7 crossref_primary_10_1016_j_camwa_2023_07_019 crossref_primary_10_1016_j_camwa_2025_01_013 crossref_primary_10_1007_s10915_024_02552_y crossref_primary_10_1016_j_cam_2019_112479 crossref_primary_10_1016_j_camwa_2017_07_047 crossref_primary_10_3934_era_2020120 crossref_primary_10_1016_j_amc_2016_01_018 crossref_primary_10_1051_m2an_2023066 crossref_primary_10_1016_j_camwa_2021_03_008 crossref_primary_10_1016_j_cam_2018_06_035 crossref_primary_10_1137_18M1233303 crossref_primary_10_3934_era_2020126 crossref_primary_10_1007_s10915_020_01345_3 crossref_primary_10_1016_j_camwa_2023_07_025 crossref_primary_10_1137_18M1212276 crossref_primary_10_3934_dcdsb_2020196 crossref_primary_10_1016_j_cam_2022_114407 crossref_primary_10_1016_j_cnsns_2024_108408 crossref_primary_10_1007_s12190_014_0778_1 crossref_primary_10_1051_m2an_2024064 crossref_primary_10_1016_j_cam_2022_114883 crossref_primary_10_1002_num_22549 crossref_primary_10_1016_j_apnum_2023_11_003 crossref_primary_10_3934_era_2024232 crossref_primary_10_4208_cicp_scpde14_44s crossref_primary_10_1016_j_amc_2021_126436 crossref_primary_10_1016_j_jcp_2020_109399 crossref_primary_10_1016_j_apnum_2020_05_012 crossref_primary_10_1016_j_apnum_2019_10_013 crossref_primary_10_1137_17M1153595 crossref_primary_10_1016_j_camwa_2023_06_011 crossref_primary_10_3934_dcdsb_2020184 crossref_primary_10_1007_s11075_024_01752_9 crossref_primary_10_1016_j_cam_2024_116376 crossref_primary_10_1137_15M1041055 crossref_primary_10_1016_j_cam_2019_112699 crossref_primary_10_3934_math_20231588 crossref_primary_10_1002_fld_4959 crossref_primary_10_1007_s11425_021_1947_0 crossref_primary_10_1137_18M1171515 crossref_primary_10_1016_j_cam_2019_112693 crossref_primary_10_1016_j_camwa_2014_03_021 crossref_primary_10_1007_s10915_018_0837_0 crossref_primary_10_1016_j_cam_2017_09_018 crossref_primary_10_1016_j_cam_2017_09_017 crossref_primary_10_1007_s12190_023_01943_y crossref_primary_10_1016_j_cam_2017_09_019 crossref_primary_10_1016_j_cma_2015_07_013 crossref_primary_10_1016_j_camwa_2015_04_016 crossref_primary_10_1016_j_cam_2022_114743 crossref_primary_10_1615_IntJMultCompEng_2023046768 crossref_primary_10_1016_j_cam_2022_114744 crossref_primary_10_1137_15M1008117 crossref_primary_10_1007_s10915_016_0296_4 crossref_primary_10_1016_j_cam_2021_114029 crossref_primary_10_1016_j_camwa_2015_04_012 crossref_primary_10_1007_s11075_023_01721_8 crossref_primary_10_1007_s11425_016_0354_8 crossref_primary_10_1016_j_amc_2013_11_065 crossref_primary_10_1007_s10092_021_00449_y crossref_primary_10_1002_num_22201 crossref_primary_10_1002_num_22564 crossref_primary_10_1007_s10915_023_02151_3 crossref_primary_10_11948_2156_907X_20180137 crossref_primary_10_1002_num_22446 crossref_primary_10_4208_cicp_OA_2016_0121 crossref_primary_10_1007_s10915_016_0176_y crossref_primary_10_1016_j_camwa_2020_07_011 crossref_primary_10_1016_j_cam_2017_10_042 crossref_primary_10_1016_j_cma_2021_113879 crossref_primary_10_1016_j_amc_2019_124731 crossref_primary_10_1016_j_cam_2022_114732 crossref_primary_10_1007_s10208_024_09648_9 crossref_primary_10_1016_j_cam_2022_114979 crossref_primary_10_11948_20220112 crossref_primary_10_1016_j_cma_2020_113343 crossref_primary_10_1016_j_camwa_2017_07_009 crossref_primary_10_1007_s10444_021_09856_9 crossref_primary_10_1016_j_apnum_2024_12_006 crossref_primary_10_1016_j_apnum_2018_08_003 crossref_primary_10_1016_j_cam_2022_114726 crossref_primary_10_1137_140993971 crossref_primary_10_3390_axioms13020084 crossref_primary_10_1016_j_cnsns_2024_108449 crossref_primary_10_3934_dcdsb_2020277 crossref_primary_10_1016_j_cam_2020_112816 crossref_primary_10_1016_j_jcp_2018_01_001 crossref_primary_10_1016_j_camwa_2021_11_014 crossref_primary_10_1016_j_cam_2017_01_021 crossref_primary_10_3934_era_2020078 crossref_primary_10_1016_j_cam_2016_01_025 crossref_primary_10_1016_j_apnum_2023_04_015 crossref_primary_10_1016_j_apnum_2018_01_021 crossref_primary_10_1007_s11425_017_9341_1 crossref_primary_10_47836_mjms_18_3_09 crossref_primary_10_1007_s00211_023_01366_8 crossref_primary_10_1016_j_cam_2018_04_015 crossref_primary_10_3934_dcdsb_2021112 crossref_primary_10_1016_j_cnsns_2024_108578 crossref_primary_10_4208_cicp_251112_211013a crossref_primary_10_1137_19M1266320 crossref_primary_10_1007_s40314_023_02553_x crossref_primary_10_1007_s42967_023_00330_5 crossref_primary_10_1002_num_22473 crossref_primary_10_1016_j_camwa_2024_07_027 crossref_primary_10_1007_s40314_019_0807_7 crossref_primary_10_1002_num_22114 crossref_primary_10_1007_s10915_023_02436_7 crossref_primary_10_1002_num_22361 crossref_primary_10_1007_s10444_022_09961_3 crossref_primary_10_1007_s10915_020_01387_7 crossref_primary_10_1016_j_cam_2018_10_016 crossref_primary_10_1016_j_cam_2018_10_018 crossref_primary_10_1016_j_matcom_2022_04_023 crossref_primary_10_3934_era_2020096 crossref_primary_10_1016_j_camwa_2024_02_032 crossref_primary_10_1137_17M1145677 crossref_primary_10_3934_era_2020097 crossref_primary_10_1007_s11075_024_01904_x crossref_primary_10_1155_2014_102940 crossref_primary_10_1002_num_22242 crossref_primary_10_1007_s11831_025_10222_x crossref_primary_10_1002_num_22127 crossref_primary_10_1007_s11425_015_5030_4 crossref_primary_10_1016_j_camwa_2019_03_010 crossref_primary_10_1155_2016_2685659 crossref_primary_10_1007_s10915_023_02448_3 crossref_primary_10_1007_s10543_019_00764_5 crossref_primary_10_1137_140999268 crossref_primary_10_1002_num_23102 crossref_primary_10_1016_j_jcp_2014_07_001 crossref_primary_10_1002_num_22257 crossref_primary_10_1016_j_matcom_2021_07_018 crossref_primary_10_1137_21M1412050 crossref_primary_10_1063_5_0218131 crossref_primary_10_1007_s12190_014_0850_x crossref_primary_10_1016_j_jcp_2024_113497 crossref_primary_10_1016_j_apnum_2020_07_010 crossref_primary_10_1016_j_cam_2020_113038 crossref_primary_10_1016_j_cam_2021_113677 crossref_primary_10_1007_s40314_020_1134_8 crossref_primary_10_1016_j_camwa_2024_10_007 crossref_primary_10_1002_num_21855 crossref_primary_10_11948_20190218 crossref_primary_10_1007_s11425_015_0522_3 crossref_primary_10_1016_j_rinam_2020_100097 crossref_primary_10_1051_m2an_2015067 crossref_primary_10_1051_m2an_2016034 crossref_primary_10_1137_19M1276601 crossref_primary_10_1016_j_camwa_2022_09_005 crossref_primary_10_1002_nme_7509 crossref_primary_10_3934_dcdsb_2020340 crossref_primary_10_1016_j_cam_2014_05_014 crossref_primary_10_1016_j_cam_2020_113021 crossref_primary_10_1016_j_camwa_2023_01_034 crossref_primary_10_1016_j_camwa_2023_04_028 crossref_primary_10_1016_j_cam_2024_116099 crossref_primary_10_1007_s12044_019_0518_4 crossref_primary_10_2298_FIL2313351T crossref_primary_10_1007_s11464_014_0358_6 crossref_primary_10_1016_j_apnum_2024_11_016 crossref_primary_10_1137_19M1294046 crossref_primary_10_1002_num_22959 crossref_primary_10_1007_s10915_018_0796_5 crossref_primary_10_1016_j_apnum_2021_05_005 crossref_primary_10_1016_j_cam_2023_115619 crossref_primary_10_1007_s10444_023_10013_7 crossref_primary_10_1016_j_camwa_2022_09_018 crossref_primary_10_1016_j_cam_2019_04_024 crossref_primary_10_1016_j_apnum_2023_02_019 crossref_primary_10_1016_j_cnsns_2024_107934 crossref_primary_10_1093_imanum_drw003 crossref_primary_10_1016_j_cam_2019_04_026 crossref_primary_10_1016_j_cam_2015_12_015 crossref_primary_10_1002_num_22969 crossref_primary_10_1016_j_cam_2018_09_007 crossref_primary_10_1002_num_22960 crossref_primary_10_1051_m2an_2015088 crossref_primary_10_1002_num_22722 crossref_primary_10_1002_num_22964 crossref_primary_10_1016_j_jmaa_2018_04_005 crossref_primary_10_1016_j_cam_2022_114698 crossref_primary_10_1016_j_amc_2022_127683 crossref_primary_10_1016_j_camwa_2023_01_014 crossref_primary_10_1016_j_procs_2016_05_485 crossref_primary_10_3233_JCM215771 crossref_primary_10_1515_cmam_2018_0013 crossref_primary_10_1016_j_apnum_2021_08_007 crossref_primary_10_1088_1742_6596_1530_1_012065 crossref_primary_10_1007_s42967_022_00201_5 crossref_primary_10_1016_j_aml_2018_10_023 crossref_primary_10_1016_j_camwa_2020_05_015 crossref_primary_10_1002_num_22973 crossref_primary_10_1051_m2an_2015096 crossref_primary_10_1016_j_cam_2022_114567 crossref_primary_10_1007_s10915_014_9964_4 crossref_primary_10_1016_j_amc_2021_126487 crossref_primary_10_1093_imanum_drv012 crossref_primary_10_1016_j_cam_2022_114563 crossref_primary_10_1016_j_cam_2025_116582 crossref_primary_10_1016_j_amc_2019_02_043 crossref_primary_10_1016_j_apnum_2020_12_005 crossref_primary_10_1016_j_apnum_2020_12_003 crossref_primary_10_1007_s10915_018_0673_2 crossref_primary_10_3934_era_2024158 crossref_primary_10_1016_j_jcp_2023_112496 crossref_primary_10_3390_coatings11121483 crossref_primary_10_1007_s10915_017_0496_6 crossref_primary_10_11948_2018_1452 crossref_primary_10_1016_j_cam_2022_114311 crossref_primary_10_1016_j_camwa_2018_04_024 crossref_primary_10_1016_j_camwa_2021_08_002 crossref_primary_10_1016_j_cma_2018_04_006 crossref_primary_10_1016_j_cam_2017_08_022 crossref_primary_10_1007_s13369_022_06925_z crossref_primary_10_1016_j_cnsns_2024_107881 crossref_primary_10_1016_j_camwa_2024_10_030 crossref_primary_10_1016_j_camwa_2024_11_023 crossref_primary_10_15672_hujms_1117320 crossref_primary_10_1016_j_apnum_2020_12_012 crossref_primary_10_1007_s11075_022_01420_w crossref_primary_10_1002_num_21786 crossref_primary_10_1016_j_cam_2014_03_028 crossref_primary_10_1016_j_finel_2024_104124 crossref_primary_10_1007_s10444_023_10010_w crossref_primary_10_1016_j_cam_2022_114304 crossref_primary_10_1016_j_camwa_2017_01_007 crossref_primary_10_1142_S0219876218500755 crossref_primary_10_1016_j_amc_2015_11_064 crossref_primary_10_1007_s00211_025_01463_w crossref_primary_10_1002_num_22529 crossref_primary_10_1007_s00211_019_01067_1 crossref_primary_10_1007_s10444_021_09909_z crossref_primary_10_1016_j_cma_2018_05_029 crossref_primary_10_1002_nme_6636 crossref_primary_10_1016_j_camwa_2024_04_023 crossref_primary_10_1007_s10092_018_0282_3 crossref_primary_10_1080_00207160_2022_2057797 crossref_primary_10_1007_s10915_016_0264_z crossref_primary_10_1002_num_22415 crossref_primary_10_1016_j_camwa_2018_03_007 crossref_primary_10_1016_j_apnum_2024_03_013 crossref_primary_10_1137_20M1380405 |
Cites_doi | 10.1007/BF01389710 10.1007/BF01436561 10.1090/S0025-5718-1977-0431742-5 10.1023/A:1011591328604 10.1137/S0036142900371003 10.1137/070706616 10.1090/S0025-5718-1974-0373326-0 10.1137/090755102 10.1137/S003614290037174X 10.1137/S0036142997316712 10.1016/S0045-7825(98)00359-4 10.1051/m2an/1985190100071 10.1137/0719052 10.1007/BF01396752 10.1137/S0036142901384162 |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. |
Copyright_xml | – notice: 2012 Elsevier B.V. |
DBID | 6I. AAFTH AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cam.2012.10.003 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1879-1778 |
EndPage | 115 |
ExternalDocumentID | 10_1016_j_cam_2012_10_003 S0377042712004220 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABAOU ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSW SSZ T5K TN5 UPT XPP YQT ZMT ~02 ~G- 29K AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION D-I EFKBS EJD FGOYB G-2 HZ~ NHB R2- SEW WUQ ZY4 ~HD 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c330t-64f6003e7fcec4056e778ab8360ebd3d3d8a9f94fb8b3c9c8680e3d098ba89b43 |
IEDL.DBID | IXB |
ISSN | 0377-0427 |
IngestDate | Sat Sep 27 21:34:23 EDT 2025 Wed Oct 01 05:05:57 EDT 2025 Thu Apr 24 22:58:59 EDT 2025 Fri Feb 23 02:27:52 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | secondary Mixed finite element methods Galerkin finite element methods Second-order elliptic problems primary Discrete gradient |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-64f6003e7fcec4056e778ab8360ebd3d3d8a9f94fb8b3c9c8680e3d098ba89b43 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0377042712004220 |
PQID | 1349425838 |
PQPubID | 23500 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1349425838 crossref_citationtrail_10_1016_j_cam_2012_10_003 crossref_primary_10_1016_j_cam_2012_10_003 elsevier_sciencedirect_doi_10_1016_j_cam_2012_10_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-03-15 |
PublicationDateYYYYMMDD | 2013-03-15 |
PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Journal of computational and applied mathematics |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Riviere, Wheeler, Girault (br000040) 1999; 8 Cockburn, Shu (br000095) 1998; 35 Ciarlet (br000005) 1978 Babus˘ka (br000055) 1973; 20 Fraeijs de Veubeke (br000105) 1965 Baumann, Oden (br000030) 1999; 175 Castillo, Cockburn, Perugia, Schotzau (br000085) 2000; 38 Brezzi, Douglas, Marini (br000070) 1985; 47 B.X. Fraeijs de Veubeke, Stress function approach, in: International Congress on the Finite Element Methods in Structural Mechanics, Bournemouth, 1975. Brezzi (br000060) 1974; 8 Cockburn, Gopalakrishnan, Lazarov (br000090) 2009; 47 Wang (br000080) 1996 Baker (br000015) 1977; 31 Riviere, Wheeler, Girault (br000035) 2001; 39 Brenner, Scott (br000010) 1994 Arnold, Brezzi, Cockburn, Marini (br000025) 2002; 39 Schatz (br000115) 1974; 28 Arnold (br000020) 1982; 19 Brezzi, Fortin (br000065) 1991 Raviart, Thomas (br000045) 1977; vol. 606 Brezzi, Douglas, Durán, Fortin (br000075) 1987; 51 Arnold, Brezzi (br000050) 1985; 19 Jeon, Park (br000100) 2010; 48 Schatz (10.1016/j.cam.2012.10.003_br000115) 1974; 28 Baker (10.1016/j.cam.2012.10.003_br000015) 1977; 31 Raviart (10.1016/j.cam.2012.10.003_br000045) 1977; vol. 606 Riviere (10.1016/j.cam.2012.10.003_br000035) 2001; 39 Babus˘ka (10.1016/j.cam.2012.10.003_br000055) 1973; 20 Brezzi (10.1016/j.cam.2012.10.003_br000075) 1987; 51 Arnold (10.1016/j.cam.2012.10.003_br000025) 2002; 39 Brezzi (10.1016/j.cam.2012.10.003_br000065) 1991 Jeon (10.1016/j.cam.2012.10.003_br000100) 2010; 48 Brenner (10.1016/j.cam.2012.10.003_br000010) 1994 Cockburn (10.1016/j.cam.2012.10.003_br000090) 2009; 47 Cockburn (10.1016/j.cam.2012.10.003_br000095) 1998; 35 10.1016/j.cam.2012.10.003_br000110 Arnold (10.1016/j.cam.2012.10.003_br000020) 1982; 19 Arnold (10.1016/j.cam.2012.10.003_br000050) 1985; 19 Brezzi (10.1016/j.cam.2012.10.003_br000060) 1974; 8 Castillo (10.1016/j.cam.2012.10.003_br000085) 2000; 38 Baumann (10.1016/j.cam.2012.10.003_br000030) 1999; 175 Wang (10.1016/j.cam.2012.10.003_br000080) 1996 Ciarlet (10.1016/j.cam.2012.10.003_br000005) 1978 Riviere (10.1016/j.cam.2012.10.003_br000040) 1999; 8 Brezzi (10.1016/j.cam.2012.10.003_br000070) 1985; 47 Fraeijs de Veubeke (10.1016/j.cam.2012.10.003_br000105) 1965 |
References_xml | – year: 1978 ident: br000005 article-title: The Finite Element Method for Elliptic Problems – volume: 51 start-page: 237 year: 1987 end-page: 250 ident: br000075 article-title: Mixed finite elements for second order elliptic problems in three variables publication-title: Numer. Math. – volume: 38 start-page: 1676 year: 2000 end-page: 1706 ident: br000085 article-title: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems publication-title: SIAM J. Numer. Anal. – volume: 39 start-page: 902 year: 2001 end-page: 931 ident: br000035 article-title: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems publication-title: SIAM J. Numer. Anal. – volume: 39 start-page: 1749 year: 2002 end-page: 1779 ident: br000025 article-title: Unified analysis of discontinuous Galerkin methods for elliptic problems publication-title: SIAM J. Numer. Anal. – volume: vol. 606 year: 1977 ident: br000045 article-title: A mixed finite element method for second order elliptic problems publication-title: Mathematical Aspects of the Finite Element Method – volume: 19 start-page: 7 year: 1985 end-page: 32 ident: br000050 article-title: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates publication-title: RAIRO Modél. Math. Anal. Numér. – year: 1996 ident: br000080 article-title: Mixed finite element methods publication-title: Numerical Methods in Scientific and Engineering Computing – volume: 175 start-page: 311 year: 1999 end-page: 341 ident: br000030 article-title: A discontinuous publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 28 start-page: 959 year: 1974 end-page: 962 ident: br000115 article-title: An observation concerning Ritz–Galerkin methods with indefinite bilinear forms publication-title: Math. Comp. – year: 1965 ident: br000105 article-title: Displacement and equilibrium models in the finite element method publication-title: Stress Analysis – year: 1994 ident: br000010 article-title: The Mathematical Theory of Finite Element Methods – volume: 47 start-page: 217 year: 1985 end-page: 235 ident: br000070 article-title: Two families of mixed finite elements for second order elliptic problems publication-title: Numer. Math. – volume: 48 start-page: 1968 year: 2010 end-page: 1983 ident: br000100 article-title: A hybrid discontinuous Galerkin method for elliptic problems publication-title: SIAM J. Numer. Anal. – volume: 31 start-page: 45 year: 1977 end-page: 59 ident: br000015 article-title: Finite element methods for elliptic equations using nonconforming elements publication-title: Math. Comp. – volume: 19 start-page: 742 year: 1982 end-page: 760 ident: br000020 article-title: An interior penalty finite element method with discontinuous elements publication-title: SIAM J. Numer. Anal. – volume: 35 start-page: 2440 year: 1998 end-page: 2463 ident: br000095 article-title: The local discontinuous Galerkin method for time-dependent convection–diffusion systems publication-title: SIAM J. Numer. Anal. – volume: 8 start-page: 129 year: 1974 end-page: 151 ident: br000060 article-title: On the existence, uniqueness, and approximation of saddle point problems arising from Lagrange multipliers publication-title: RAIRO – volume: 20 start-page: 179 year: 1973 end-page: 192 ident: br000055 article-title: The finite element method with Lagrange multipliers publication-title: Numer. Math. – volume: 47 start-page: 1319 year: 2009 end-page: 1365 ident: br000090 article-title: Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second-order elliptic problems publication-title: SIAM J. Numer. Anal. – reference: B.X. Fraeijs de Veubeke, Stress function approach, in: International Congress on the Finite Element Methods in Structural Mechanics, Bournemouth, 1975. – volume: 8 start-page: 337 year: 1999 end-page: 360 ident: br000040 article-title: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I publication-title: Comput. Geosci. – year: 1991 ident: br000065 article-title: Mixed and Hybrid Finite Elements – year: 1994 ident: 10.1016/j.cam.2012.10.003_br000010 – volume: 47 start-page: 217 year: 1985 ident: 10.1016/j.cam.2012.10.003_br000070 article-title: Two families of mixed finite elements for second order elliptic problems publication-title: Numer. Math. doi: 10.1007/BF01389710 – year: 1996 ident: 10.1016/j.cam.2012.10.003_br000080 article-title: Mixed finite element methods – volume: 20 start-page: 179 year: 1973 ident: 10.1016/j.cam.2012.10.003_br000055 article-title: The finite element method with Lagrange multipliers publication-title: Numer. Math. doi: 10.1007/BF01436561 – volume: 31 start-page: 45 year: 1977 ident: 10.1016/j.cam.2012.10.003_br000015 article-title: Finite element methods for elliptic equations using nonconforming elements publication-title: Math. Comp. doi: 10.1090/S0025-5718-1977-0431742-5 – volume: 8 start-page: 337 year: 1999 ident: 10.1016/j.cam.2012.10.003_br000040 article-title: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I publication-title: Comput. Geosci. doi: 10.1023/A:1011591328604 – ident: 10.1016/j.cam.2012.10.003_br000110 – volume: 38 start-page: 1676 year: 2000 ident: 10.1016/j.cam.2012.10.003_br000085 article-title: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142900371003 – volume: 47 start-page: 1319 year: 2009 ident: 10.1016/j.cam.2012.10.003_br000090 article-title: Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second-order elliptic problems publication-title: SIAM J. Numer. Anal. doi: 10.1137/070706616 – volume: 28 start-page: 959 year: 1974 ident: 10.1016/j.cam.2012.10.003_br000115 article-title: An observation concerning Ritz–Galerkin methods with indefinite bilinear forms publication-title: Math. Comp. doi: 10.1090/S0025-5718-1974-0373326-0 – year: 1991 ident: 10.1016/j.cam.2012.10.003_br000065 – volume: 48 start-page: 1968 year: 2010 ident: 10.1016/j.cam.2012.10.003_br000100 article-title: A hybrid discontinuous Galerkin method for elliptic problems publication-title: SIAM J. Numer. Anal. doi: 10.1137/090755102 – volume: 39 start-page: 902 year: 2001 ident: 10.1016/j.cam.2012.10.003_br000035 article-title: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems publication-title: SIAM J. Numer. Anal. doi: 10.1137/S003614290037174X – year: 1978 ident: 10.1016/j.cam.2012.10.003_br000005 – volume: 35 start-page: 2440 year: 1998 ident: 10.1016/j.cam.2012.10.003_br000095 article-title: The local discontinuous Galerkin method for time-dependent convection–diffusion systems publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142997316712 – volume: 175 start-page: 311 year: 1999 ident: 10.1016/j.cam.2012.10.003_br000030 article-title: A discontinuous hp finite element method for convection–diffusion problems publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(98)00359-4 – volume: 19 start-page: 7 issue: 1 year: 1985 ident: 10.1016/j.cam.2012.10.003_br000050 article-title: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates publication-title: RAIRO Modél. Math. Anal. Numér. doi: 10.1051/m2an/1985190100071 – volume: 19 start-page: 742 issue: 4 year: 1982 ident: 10.1016/j.cam.2012.10.003_br000020 article-title: An interior penalty finite element method with discontinuous elements publication-title: SIAM J. Numer. Anal. doi: 10.1137/0719052 – volume: 51 start-page: 237 year: 1987 ident: 10.1016/j.cam.2012.10.003_br000075 article-title: Mixed finite elements for second order elliptic problems in three variables publication-title: Numer. Math. doi: 10.1007/BF01396752 – volume: 39 start-page: 1749 year: 2002 ident: 10.1016/j.cam.2012.10.003_br000025 article-title: Unified analysis of discontinuous Galerkin methods for elliptic problems publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142901384162 – year: 1965 ident: 10.1016/j.cam.2012.10.003_br000105 article-title: Displacement and equilibrium models in the finite element method – volume: vol. 606 year: 1977 ident: 10.1016/j.cam.2012.10.003_br000045 article-title: A mixed finite element method for second order elliptic problems – volume: 8 start-page: 129 year: 1974 ident: 10.1016/j.cam.2012.10.003_br000060 article-title: On the existence, uniqueness, and approximation of saddle point problems arising from Lagrange multipliers publication-title: RAIRO |
SSID | ssj0006914 |
Score | 2.575665 |
Snippet | This paper introduces a finite element method by using a weakly defined gradient operator over generalized functions. The use of weak gradients and their... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103 |
SubjectTerms | Approximation Discrete gradient Finite element method Galerkin finite element methods Galerkin methods Mathematical analysis Mathematical models Mixed finite element methods Norms Operators Optimization Second-order elliptic problems |
Title | A weak Galerkin finite element method for second-order elliptic problems |
URI | https://dx.doi.org/10.1016/j.cam.2012.10.003 https://www.proquest.com/docview/1349425838 |
Volume | 241 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1778 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection (subscription) customDbUrl: eissn: 1879-1778 dateEnd: 20210930 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: ACRLP dateStart: 19950220 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-1778 dateEnd: 20210430 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: AIKHN dateStart: 19950220 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1879-1778 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Open Access Journals (Elsevier) customDbUrl: eissn: 1879-1778 dateEnd: 20211005 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: IXB dateStart: 19750301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1778 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: AKRWK dateStart: 19750301 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9zvuiD-InzY0TwScjWNl2aPs7hnIp70cHeSpImMJVtuA3f_Nu9S9uBgj5IoQ8hKeF6_d2ld_c7Qi5NGAXK6JQJzS0DpVBMgeFhxkaCW-cw9oPZFkMxGMX34864RnpVLQymVZbYX2C6R-typF1Ksz2fTNpPAU8S7BQRRp7ICs_tPE58Ed_4eo3GIi34vWEyw9lVZNPneBmFxehh1PIJXvw32_QDpb3p6e-SndJnpN1iW3ukZqf7ZPtxTbi6OCCDLv2w6pXeAt7j32_qJuhMUltkh9OiUTQFD5Uu8AicM8-5SZGOE0DD0LKxzOKQjPo3z70BK5skMMN5sGQiduCzcJs4Yw14X8ImiVQaazOszjlcUqUujZ2WmpvUSCEDy_MglVrJVMf8iNSns6k9JjRIo1zmuTFgr2LpuE6cyoUwsTNwt6pBgko8mSkZxLGRxVtWpYq9ZCDRDCWKQ7CtBrlaL5kX9Bl_TY4rmWffdCADeP9r2UX1fjL4NjDgoaZ2tlpkSL0I6ie5PPnfo0_JVuTbX3AWds5Iffm-sufghCx1k2y0PsMm2ezePQyGTa9zXxYk3JM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9je1AfxE-cnxF8EuLapkvTxzHUzn28uMHeQpImMJVuuA3_fS_9GCi4Byn0ISQlXK-_u_TufofQnfYDT2oVE6aoIaAUkkgwPESbgFFjrYv9uGyLEUsm4cu0Pa2hblUL49IqS-wvMD1H63KkVUqztZjNWq8ejSLXKcIPciIrOLc3wjZgch01Or1-MtoAMosLim-YT9yCKriZp3lp6erR_eAhz_Gif5mnX0CdW5-nA7Rfuo24U-zsENVMdoT2hhvO1eUxSjr4y8h3_AyQ736AYztz_iQ2RYI4LnpFY3BS8dKdglOS025ix8gJuKFx2VtmeYImT4_jbkLKPglEU-qtCAstuC3URFYbDQ4YM1HEpXLlGUalFC4uYxuHVnFFdaw5456hqRdzJXmsQnqK6tk8M2cIe3GQ8jTVGkxWyC1VkZUpYzq0Gu5GNpFXiUfokkTc9bL4EFW22JsAiQonUTcE22qi-82SRcGgsW1yWMlc_FADAQi_bdlt9X4EfB4u5iEzM18vhWNfBA3klJ__79E3aCcZDwdi0Bv1L9BukHfDoMRvX6L66nNtrsAnWanrUue-AWfT3jY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+weak+Galerkin+finite+element+method+for+second-order+elliptic+problems&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Wang%2C+Junping&rft.au=Ye%2C+Xiu&rft.date=2013-03-15&rft.issn=0377-0427&rft.volume=241&rft.spage=103&rft.epage=115&rft_id=info:doi/10.1016%2Fj.cam.2012.10.003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |