A weak Galerkin finite element method for second-order elliptic problems

This paper introduces a finite element method by using a weakly defined gradient operator over generalized functions. The use of weak gradients and their approximations results in a new concept called discrete weak gradients which is expected to play an important role in numerical methods for partia...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and applied mathematics Vol. 241; pp. 103 - 115
Main Authors Wang, Junping, Ye, Xiu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.03.2013
Subjects
Online AccessGet full text
ISSN0377-0427
1879-1778
DOI10.1016/j.cam.2012.10.003

Cover

Abstract This paper introduces a finite element method by using a weakly defined gradient operator over generalized functions. The use of weak gradients and their approximations results in a new concept called discrete weak gradients which is expected to play an important role in numerical methods for partial differential equations. This article intends to provide a general framework for managing differential operators on generalized functions. As a demonstrative example, the discrete weak gradient operator is employed as a building block in the design of numerical schemes for a second order elliptic problem, in which the classical gradient operator is replaced by the discrete weak gradient. The resulting numerical scheme is called a weak Galerkin (WG) finite element method. It can be seen that the weak Galerkin method allows the use of totally discontinuous functions in the finite element procedure. For the second order elliptic problem, an optimal order error estimate in both a discrete H1 and L2 norms are established for the corresponding weak Galerkin finite element solutions. A superconvergence is also observed for the weak Galerkin approximation.
AbstractList This paper introduces a finite element method by using a weakly defined gradient operator over generalized functions. The use of weak gradients and their approximations results in a new concept called discrete weak gradients which is expected to play an important role in numerical methods for partial differential equations. This article intends to provide a general framework for managing differential operators on generalized functions. As a demonstrative example, the discrete weak gradient operator is employed as a building block in the design of numerical schemes for a second order elliptic problem, in which the classical gradient operator is replaced by the discrete weak gradient. The resulting numerical scheme is called a weak Galerkin (WG) finite element method. It can be seen that the weak Galerkin method allows the use of totally discontinuous functions in the finite element procedure. For the second order elliptic problem, an optimal order error estimate in both a discrete H 1 and L 2 norms are established for the corresponding weak Galerkin finite element solutions. A superconvergence is also observed for the weak Galerkin approximation.
This paper introduces a finite element method by using a weakly defined gradient operator over generalized functions. The use of weak gradients and their approximations results in a new concept called discrete weak gradients which is expected to play an important role in numerical methods for partial differential equations. This article intends to provide a general framework for managing differential operators on generalized functions. As a demonstrative example, the discrete weak gradient operator is employed as a building block in the design of numerical schemes for a second order elliptic problem, in which the classical gradient operator is replaced by the discrete weak gradient. The resulting numerical scheme is called a weak Galerkin (WG) finite element method. It can be seen that the weak Galerkin method allows the use of totally discontinuous functions in the finite element procedure. For the second order elliptic problem, an optimal order error estimate in both a discrete H1 and L2 norms are established for the corresponding weak Galerkin finite element solutions. A superconvergence is also observed for the weak Galerkin approximation.
Author Wang, Junping
Ye, Xiu
Author_xml – sequence: 1
  givenname: Junping
  surname: Wang
  fullname: Wang, Junping
  email: jwang@nsf.gov
  organization: Division of Mathematical Sciences, National Science Foundation, Arlington, VA 22230, United States
– sequence: 2
  givenname: Xiu
  surname: Ye
  fullname: Ye, Xiu
  email: xxye@ualr.edu
  organization: Department of Mathematics, University of Arkansas at Little Rock, Little Rock, AR 72204, United States
BookMark eNp9kEFPAyEQhYnRxLb6A7zt0cuusNAF4qlptDVp4kXPhGVnI-0uVKAa_7009eSh4TCBed_M403RpfMOELojuCKYNA_byuixqjGp873CmF6gCRFcloRzcYkmmHJeYlbzazSNcYsxbiRhE7ReFN-gd8VKDxB21hW9dTZBAQOM4FIxQvrwXdH7UEQw3nWlDx2E3B_sPllT7INvszbeoKteDxFu_-oMvT8_vS3X5eZ19bJcbEpDKU5lw_omuwPeGzAMzxvI_nQraIOh7Wg-Qstesr4VLTXSiEZgoB2WotVCtozO0P1pbl78eYCY1GijyXa0A3-IilAmWT0XVGQpP0lN8DEG6JWxSSfrXQraDopgdcxObVXOTh2zOz5ld5kk_8h9sKMOP2eZxxMD-fdfFoKKxoIz0NkAJqnO2zP0L1xXiSk
CitedBy_id crossref_primary_10_1007_s10915_020_01239_4
crossref_primary_10_1016_j_cma_2014_09_009
crossref_primary_10_1016_j_cma_2018_10_022
crossref_primary_10_1016_j_amc_2015_11_046
crossref_primary_10_1016_j_aml_2024_109268
crossref_primary_10_1016_j_apnum_2024_09_019
crossref_primary_10_1016_j_cnsns_2023_107709
crossref_primary_10_1016_j_apnum_2024_09_017
crossref_primary_10_1080_00207179_2016_1144236
crossref_primary_10_1016_j_jcp_2018_04_033
crossref_primary_10_1016_j_camwa_2022_08_022
crossref_primary_10_1016_j_jcp_2016_08_024
crossref_primary_10_1007_s00211_020_01129_9
crossref_primary_10_1016_j_cam_2022_114195
crossref_primary_10_1007_s40314_023_02438_z
crossref_primary_10_1016_j_cam_2023_115344
crossref_primary_10_1016_j_ijft_2024_100755
crossref_primary_10_1007_s11075_019_00751_5
crossref_primary_10_1007_s42967_021_00180_z
crossref_primary_10_1016_j_cam_2023_115345
crossref_primary_10_1016_j_matcom_2024_02_001
crossref_primary_10_46753_pjaa_2023_v010i01_001
crossref_primary_10_1016_j_cam_2018_08_044
crossref_primary_10_1002_zamm_202200207
crossref_primary_10_1080_00036811_2015_1118625
crossref_primary_10_1080_00207160_2018_1445230
crossref_primary_10_1155_2017_7912845
crossref_primary_10_1155_2020_8796345
crossref_primary_10_1016_j_cam_2024_115757
crossref_primary_10_1016_j_apnum_2018_12_005
crossref_primary_10_1016_j_cam_2018_07_037
crossref_primary_10_1007_s10915_024_02580_8
crossref_primary_10_1016_j_cnsns_2023_107810
crossref_primary_10_1016_j_camwa_2023_10_023
crossref_primary_10_1016_j_cam_2024_115754
crossref_primary_10_1016_j_cam_2024_115995
crossref_primary_10_26599_RSM_2024_9435358
crossref_primary_10_1016_j_matcom_2024_09_017
crossref_primary_10_1016_j_cam_2016_03_017
crossref_primary_10_1016_j_matcom_2023_01_044
crossref_primary_10_1016_j_apnum_2024_10_004
crossref_primary_10_1016_j_cam_2016_04_031
crossref_primary_10_1016_j_procs_2017_05_148
crossref_primary_10_1016_j_cma_2019_03_018
crossref_primary_10_1016_j_cam_2022_115024
crossref_primary_10_1016_j_cam_2024_115983
crossref_primary_10_1007_s40314_022_02058_z
crossref_primary_10_1016_j_cam_2022_114179
crossref_primary_10_1007_s10092_023_00541_5
crossref_primary_10_1016_j_jcp_2014_04_017
crossref_primary_10_1007_s10915_014_9945_7
crossref_primary_10_1080_00036811_2018_1504031
crossref_primary_10_1137_20M1322170
crossref_primary_10_1007_s40314_020_1117_9
crossref_primary_10_1016_j_apnum_2017_08_009
crossref_primary_10_1016_j_cam_2023_115531
crossref_primary_10_1002_mma_3440
crossref_primary_10_1007_s10915_015_0021_8
crossref_primary_10_1016_j_camwa_2023_11_013
crossref_primary_10_1137_17M1126618
crossref_primary_10_1016_j_camwa_2019_10_027
crossref_primary_10_1016_j_aml_2024_109227
crossref_primary_10_1016_j_cma_2024_117375
crossref_primary_10_1016_j_amc_2022_127346
crossref_primary_10_1016_j_cam_2021_113525
crossref_primary_10_1016_j_cam_2021_113767
crossref_primary_10_1016_j_cam_2020_113228
crossref_primary_10_1080_10236198_2023_2291154
crossref_primary_10_1016_j_cam_2021_113645
crossref_primary_10_1016_j_cam_2015_02_001
crossref_primary_10_1016_j_cam_2016_11_047
crossref_primary_10_1016_j_cam_2015_03_043
crossref_primary_10_1016_j_aml_2021_107033
crossref_primary_10_1016_j_jcp_2019_109064
crossref_primary_10_1016_j_amc_2018_02_034
crossref_primary_10_1016_j_cam_2024_115918
crossref_primary_10_1016_j_camwa_2018_05_011
crossref_primary_10_1515_jnma_2024_0005
crossref_primary_10_1016_j_amc_2022_127471
crossref_primary_10_1016_j_cam_2021_113770
crossref_primary_10_1515_cmam_2016_0012
crossref_primary_10_1016_j_cam_2018_09_041
crossref_primary_10_1016_j_cam_2020_113373
crossref_primary_10_1016_j_apnum_2018_11_002
crossref_primary_10_1002_num_22918
crossref_primary_10_1016_j_apnum_2025_02_015
crossref_primary_10_1016_j_cam_2020_113376
crossref_primary_10_1016_j_cam_2023_115511
crossref_primary_10_1002_num_22923
crossref_primary_10_1007_s10915_022_01986_6
crossref_primary_10_1016_j_cam_2014_06_024
crossref_primary_10_1137_17M1152528
crossref_primary_10_1016_j_amc_2018_10_064
crossref_primary_10_1016_j_amc_2022_127589
crossref_primary_10_1016_j_cam_2018_09_049
crossref_primary_10_1016_j_camwa_2023_09_023
crossref_primary_10_1016_j_cam_2024_115823
crossref_primary_10_1016_j_cam_2024_115822
crossref_primary_10_1080_17455030_2023_2193852
crossref_primary_10_1016_j_cam_2023_115404
crossref_primary_10_1007_s42967_024_00444_4
crossref_primary_10_1016_j_cam_2021_113784
crossref_primary_10_1186_s13660_017_1461_5
crossref_primary_10_1016_j_apnum_2021_05_021
crossref_primary_10_1007_s40314_021_01521_7
crossref_primary_10_1016_j_cam_2018_08_022
crossref_primary_10_1007_s10092_022_00459_4
crossref_primary_10_1016_j_cam_2018_08_023
crossref_primary_10_1007_s42967_020_00097_z
crossref_primary_10_1016_j_cam_2024_115819
crossref_primary_10_4208_cicp_scpde14_19s
crossref_primary_10_1007_s10444_017_9526_z
crossref_primary_10_1142_S0218202522500051
crossref_primary_10_1515_jnma_2021_0128
crossref_primary_10_1016_j_jcp_2018_02_013
crossref_primary_10_1007_s42967_020_00071_9
crossref_primary_10_1016_j_cma_2017_06_036
crossref_primary_10_3934_math_2023788
crossref_primary_10_1016_j_camwa_2017_06_002
crossref_primary_10_1007_s11425_019_1855_y
crossref_primary_10_1007_s10092_017_0242_3
crossref_primary_10_1007_s10915_013_9770_4
crossref_primary_10_1016_j_cam_2016_10_029
crossref_primary_10_1002_num_22146
crossref_primary_10_1007_s40819_019_0621_3
crossref_primary_10_1002_num_22147
crossref_primary_10_1515_jnma_2021_0012
crossref_primary_10_1007_s40314_022_01883_6
crossref_primary_10_1016_j_cnsns_2022_106999
crossref_primary_10_3934_math_20241549
crossref_primary_10_1137_16M1083244
crossref_primary_10_1016_j_cam_2024_116412
crossref_primary_10_1016_j_cma_2017_06_020
crossref_primary_10_1137_15M1040244
crossref_primary_10_1016_j_apnum_2023_05_009
crossref_primary_10_1016_j_camwa_2024_09_011
crossref_primary_10_1007_s10915_023_02390_4
crossref_primary_10_1093_imanum_drab057
crossref_primary_10_1016_j_apnum_2025_01_016
crossref_primary_10_1016_j_apnum_2021_10_014
crossref_primary_10_1016_j_cma_2018_08_025
crossref_primary_10_1016_j_jocs_2024_102241
crossref_primary_10_1007_s10915_024_02562_w
crossref_primary_10_1007_s11425_022_2097_8
crossref_primary_10_1016_j_camwa_2022_06_001
crossref_primary_10_1016_j_cnsns_2024_108349
crossref_primary_10_1016_j_cam_2017_11_011
crossref_primary_10_1016_j_cam_2024_116324
crossref_primary_10_1016_j_cam_2017_11_010
crossref_primary_10_1007_s00211_017_0940_4
crossref_primary_10_1007_s10915_013_9771_3
crossref_primary_10_1016_j_apnum_2021_01_016
crossref_primary_10_1007_s40314_023_02580_8
crossref_primary_10_1016_j_camwa_2023_08_008
crossref_primary_10_1016_j_cam_2018_05_021
crossref_primary_10_3934_era_2022118
crossref_primary_10_1002_mma_8519
crossref_primary_10_1007_s11075_021_01209_3
crossref_primary_10_1016_j_cam_2016_01_004
crossref_primary_10_1515_cmam_2022_0087
crossref_primary_10_1002_num_22050
crossref_primary_10_1016_j_camwa_2023_09_049
crossref_primary_10_1002_num_22053
crossref_primary_10_1016_j_camwa_2022_10_012
crossref_primary_10_1016_j_amc_2023_128315
crossref_primary_10_1007_s10444_015_9415_2
crossref_primary_10_1016_j_apnum_2024_06_009
crossref_primary_10_1016_j_apnum_2024_06_004
crossref_primary_10_1016_j_camwa_2022_10_019
crossref_primary_10_1515_jnma_2023_0014
crossref_primary_10_3934_math_2020274
crossref_primary_10_1016_j_apnum_2022_03_017
crossref_primary_10_3934_era_2020042
crossref_primary_10_1016_j_camwa_2023_08_017
crossref_primary_10_1007_s10444_016_9471_2
crossref_primary_10_1002_num_23027
crossref_primary_10_1016_j_aml_2017_11_017
crossref_primary_10_1002_num_23031
crossref_primary_10_1016_j_camwa_2017_07_013
crossref_primary_10_1007_s11075_021_01079_9
crossref_primary_10_1080_02286203_2023_2191586
crossref_primary_10_1016_j_amc_2023_128496
crossref_primary_10_1002_num_23165
crossref_primary_10_1007_s10915_022_01857_0
crossref_primary_10_1007_s10915_024_02651_w
crossref_primary_10_1016_j_cam_2014_08_003
crossref_primary_10_1007_s10915_018_0877_5
crossref_primary_10_1016_j_apnum_2024_08_013
crossref_primary_10_1137_19M1283604
crossref_primary_10_1007_s11075_024_01751_w
crossref_primary_10_1016_j_cam_2023_115269
crossref_primary_10_1016_j_cam_2019_112375
crossref_primary_10_1016_j_aml_2023_108806
crossref_primary_10_1016_j_matcom_2024_11_019
crossref_primary_10_1002_num_23169
crossref_primary_10_1080_01630563_2018_1549074
crossref_primary_10_3934_nhm_2024021
crossref_primary_10_1080_17455030_2022_2152905
crossref_primary_10_1007_s40314_024_02745_z
crossref_primary_10_1016_j_apnum_2022_10_013
crossref_primary_10_1007_s10915_018_0712_z
crossref_primary_10_12677_AAM_2021_101008
crossref_primary_10_1016_j_apnum_2020_09_002
crossref_primary_10_1016_j_cam_2019_112586
crossref_primary_10_1016_j_cam_2023_115353
crossref_primary_10_1051_m2an_2025010
crossref_primary_10_1016_j_amc_2020_125524
crossref_primary_10_1007_s40314_022_02090_z
crossref_primary_10_1016_j_apnum_2017_11_006
crossref_primary_10_1016_j_cam_2021_113928
crossref_primary_10_1016_j_jcp_2013_04_042
crossref_primary_10_1016_j_jlumin_2013_09_002
crossref_primary_10_1016_j_cam_2019_112584
crossref_primary_10_1016_j_cam_2021_113926
crossref_primary_10_3934_math_2021030
crossref_primary_10_1016_j_cma_2021_114366
crossref_primary_10_1007_s11464_018_0730_z
crossref_primary_10_1016_j_apnum_2022_04_012
crossref_primary_10_1007_s11425_019_1809_7
crossref_primary_10_1016_j_camwa_2023_07_019
crossref_primary_10_1016_j_camwa_2025_01_013
crossref_primary_10_1007_s10915_024_02552_y
crossref_primary_10_1016_j_cam_2019_112479
crossref_primary_10_1016_j_camwa_2017_07_047
crossref_primary_10_3934_era_2020120
crossref_primary_10_1016_j_amc_2016_01_018
crossref_primary_10_1051_m2an_2023066
crossref_primary_10_1016_j_camwa_2021_03_008
crossref_primary_10_1016_j_cam_2018_06_035
crossref_primary_10_1137_18M1233303
crossref_primary_10_3934_era_2020126
crossref_primary_10_1007_s10915_020_01345_3
crossref_primary_10_1016_j_camwa_2023_07_025
crossref_primary_10_1137_18M1212276
crossref_primary_10_3934_dcdsb_2020196
crossref_primary_10_1016_j_cam_2022_114407
crossref_primary_10_1016_j_cnsns_2024_108408
crossref_primary_10_1007_s12190_014_0778_1
crossref_primary_10_1051_m2an_2024064
crossref_primary_10_1016_j_cam_2022_114883
crossref_primary_10_1002_num_22549
crossref_primary_10_1016_j_apnum_2023_11_003
crossref_primary_10_3934_era_2024232
crossref_primary_10_4208_cicp_scpde14_44s
crossref_primary_10_1016_j_amc_2021_126436
crossref_primary_10_1016_j_jcp_2020_109399
crossref_primary_10_1016_j_apnum_2020_05_012
crossref_primary_10_1016_j_apnum_2019_10_013
crossref_primary_10_1137_17M1153595
crossref_primary_10_1016_j_camwa_2023_06_011
crossref_primary_10_3934_dcdsb_2020184
crossref_primary_10_1007_s11075_024_01752_9
crossref_primary_10_1016_j_cam_2024_116376
crossref_primary_10_1137_15M1041055
crossref_primary_10_1016_j_cam_2019_112699
crossref_primary_10_3934_math_20231588
crossref_primary_10_1002_fld_4959
crossref_primary_10_1007_s11425_021_1947_0
crossref_primary_10_1137_18M1171515
crossref_primary_10_1016_j_cam_2019_112693
crossref_primary_10_1016_j_camwa_2014_03_021
crossref_primary_10_1007_s10915_018_0837_0
crossref_primary_10_1016_j_cam_2017_09_018
crossref_primary_10_1016_j_cam_2017_09_017
crossref_primary_10_1007_s12190_023_01943_y
crossref_primary_10_1016_j_cam_2017_09_019
crossref_primary_10_1016_j_cma_2015_07_013
crossref_primary_10_1016_j_camwa_2015_04_016
crossref_primary_10_1016_j_cam_2022_114743
crossref_primary_10_1615_IntJMultCompEng_2023046768
crossref_primary_10_1016_j_cam_2022_114744
crossref_primary_10_1137_15M1008117
crossref_primary_10_1007_s10915_016_0296_4
crossref_primary_10_1016_j_cam_2021_114029
crossref_primary_10_1016_j_camwa_2015_04_012
crossref_primary_10_1007_s11075_023_01721_8
crossref_primary_10_1007_s11425_016_0354_8
crossref_primary_10_1016_j_amc_2013_11_065
crossref_primary_10_1007_s10092_021_00449_y
crossref_primary_10_1002_num_22201
crossref_primary_10_1002_num_22564
crossref_primary_10_1007_s10915_023_02151_3
crossref_primary_10_11948_2156_907X_20180137
crossref_primary_10_1002_num_22446
crossref_primary_10_4208_cicp_OA_2016_0121
crossref_primary_10_1007_s10915_016_0176_y
crossref_primary_10_1016_j_camwa_2020_07_011
crossref_primary_10_1016_j_cam_2017_10_042
crossref_primary_10_1016_j_cma_2021_113879
crossref_primary_10_1016_j_amc_2019_124731
crossref_primary_10_1016_j_cam_2022_114732
crossref_primary_10_1007_s10208_024_09648_9
crossref_primary_10_1016_j_cam_2022_114979
crossref_primary_10_11948_20220112
crossref_primary_10_1016_j_cma_2020_113343
crossref_primary_10_1016_j_camwa_2017_07_009
crossref_primary_10_1007_s10444_021_09856_9
crossref_primary_10_1016_j_apnum_2024_12_006
crossref_primary_10_1016_j_apnum_2018_08_003
crossref_primary_10_1016_j_cam_2022_114726
crossref_primary_10_1137_140993971
crossref_primary_10_3390_axioms13020084
crossref_primary_10_1016_j_cnsns_2024_108449
crossref_primary_10_3934_dcdsb_2020277
crossref_primary_10_1016_j_cam_2020_112816
crossref_primary_10_1016_j_jcp_2018_01_001
crossref_primary_10_1016_j_camwa_2021_11_014
crossref_primary_10_1016_j_cam_2017_01_021
crossref_primary_10_3934_era_2020078
crossref_primary_10_1016_j_cam_2016_01_025
crossref_primary_10_1016_j_apnum_2023_04_015
crossref_primary_10_1016_j_apnum_2018_01_021
crossref_primary_10_1007_s11425_017_9341_1
crossref_primary_10_47836_mjms_18_3_09
crossref_primary_10_1007_s00211_023_01366_8
crossref_primary_10_1016_j_cam_2018_04_015
crossref_primary_10_3934_dcdsb_2021112
crossref_primary_10_1016_j_cnsns_2024_108578
crossref_primary_10_4208_cicp_251112_211013a
crossref_primary_10_1137_19M1266320
crossref_primary_10_1007_s40314_023_02553_x
crossref_primary_10_1007_s42967_023_00330_5
crossref_primary_10_1002_num_22473
crossref_primary_10_1016_j_camwa_2024_07_027
crossref_primary_10_1007_s40314_019_0807_7
crossref_primary_10_1002_num_22114
crossref_primary_10_1007_s10915_023_02436_7
crossref_primary_10_1002_num_22361
crossref_primary_10_1007_s10444_022_09961_3
crossref_primary_10_1007_s10915_020_01387_7
crossref_primary_10_1016_j_cam_2018_10_016
crossref_primary_10_1016_j_cam_2018_10_018
crossref_primary_10_1016_j_matcom_2022_04_023
crossref_primary_10_3934_era_2020096
crossref_primary_10_1016_j_camwa_2024_02_032
crossref_primary_10_1137_17M1145677
crossref_primary_10_3934_era_2020097
crossref_primary_10_1007_s11075_024_01904_x
crossref_primary_10_1155_2014_102940
crossref_primary_10_1002_num_22242
crossref_primary_10_1007_s11831_025_10222_x
crossref_primary_10_1002_num_22127
crossref_primary_10_1007_s11425_015_5030_4
crossref_primary_10_1016_j_camwa_2019_03_010
crossref_primary_10_1155_2016_2685659
crossref_primary_10_1007_s10915_023_02448_3
crossref_primary_10_1007_s10543_019_00764_5
crossref_primary_10_1137_140999268
crossref_primary_10_1002_num_23102
crossref_primary_10_1016_j_jcp_2014_07_001
crossref_primary_10_1002_num_22257
crossref_primary_10_1016_j_matcom_2021_07_018
crossref_primary_10_1137_21M1412050
crossref_primary_10_1063_5_0218131
crossref_primary_10_1007_s12190_014_0850_x
crossref_primary_10_1016_j_jcp_2024_113497
crossref_primary_10_1016_j_apnum_2020_07_010
crossref_primary_10_1016_j_cam_2020_113038
crossref_primary_10_1016_j_cam_2021_113677
crossref_primary_10_1007_s40314_020_1134_8
crossref_primary_10_1016_j_camwa_2024_10_007
crossref_primary_10_1002_num_21855
crossref_primary_10_11948_20190218
crossref_primary_10_1007_s11425_015_0522_3
crossref_primary_10_1016_j_rinam_2020_100097
crossref_primary_10_1051_m2an_2015067
crossref_primary_10_1051_m2an_2016034
crossref_primary_10_1137_19M1276601
crossref_primary_10_1016_j_camwa_2022_09_005
crossref_primary_10_1002_nme_7509
crossref_primary_10_3934_dcdsb_2020340
crossref_primary_10_1016_j_cam_2014_05_014
crossref_primary_10_1016_j_cam_2020_113021
crossref_primary_10_1016_j_camwa_2023_01_034
crossref_primary_10_1016_j_camwa_2023_04_028
crossref_primary_10_1016_j_cam_2024_116099
crossref_primary_10_1007_s12044_019_0518_4
crossref_primary_10_2298_FIL2313351T
crossref_primary_10_1007_s11464_014_0358_6
crossref_primary_10_1016_j_apnum_2024_11_016
crossref_primary_10_1137_19M1294046
crossref_primary_10_1002_num_22959
crossref_primary_10_1007_s10915_018_0796_5
crossref_primary_10_1016_j_apnum_2021_05_005
crossref_primary_10_1016_j_cam_2023_115619
crossref_primary_10_1007_s10444_023_10013_7
crossref_primary_10_1016_j_camwa_2022_09_018
crossref_primary_10_1016_j_cam_2019_04_024
crossref_primary_10_1016_j_apnum_2023_02_019
crossref_primary_10_1016_j_cnsns_2024_107934
crossref_primary_10_1093_imanum_drw003
crossref_primary_10_1016_j_cam_2019_04_026
crossref_primary_10_1016_j_cam_2015_12_015
crossref_primary_10_1002_num_22969
crossref_primary_10_1016_j_cam_2018_09_007
crossref_primary_10_1002_num_22960
crossref_primary_10_1051_m2an_2015088
crossref_primary_10_1002_num_22722
crossref_primary_10_1002_num_22964
crossref_primary_10_1016_j_jmaa_2018_04_005
crossref_primary_10_1016_j_cam_2022_114698
crossref_primary_10_1016_j_amc_2022_127683
crossref_primary_10_1016_j_camwa_2023_01_014
crossref_primary_10_1016_j_procs_2016_05_485
crossref_primary_10_3233_JCM215771
crossref_primary_10_1515_cmam_2018_0013
crossref_primary_10_1016_j_apnum_2021_08_007
crossref_primary_10_1088_1742_6596_1530_1_012065
crossref_primary_10_1007_s42967_022_00201_5
crossref_primary_10_1016_j_aml_2018_10_023
crossref_primary_10_1016_j_camwa_2020_05_015
crossref_primary_10_1002_num_22973
crossref_primary_10_1051_m2an_2015096
crossref_primary_10_1016_j_cam_2022_114567
crossref_primary_10_1007_s10915_014_9964_4
crossref_primary_10_1016_j_amc_2021_126487
crossref_primary_10_1093_imanum_drv012
crossref_primary_10_1016_j_cam_2022_114563
crossref_primary_10_1016_j_cam_2025_116582
crossref_primary_10_1016_j_amc_2019_02_043
crossref_primary_10_1016_j_apnum_2020_12_005
crossref_primary_10_1016_j_apnum_2020_12_003
crossref_primary_10_1007_s10915_018_0673_2
crossref_primary_10_3934_era_2024158
crossref_primary_10_1016_j_jcp_2023_112496
crossref_primary_10_3390_coatings11121483
crossref_primary_10_1007_s10915_017_0496_6
crossref_primary_10_11948_2018_1452
crossref_primary_10_1016_j_cam_2022_114311
crossref_primary_10_1016_j_camwa_2018_04_024
crossref_primary_10_1016_j_camwa_2021_08_002
crossref_primary_10_1016_j_cma_2018_04_006
crossref_primary_10_1016_j_cam_2017_08_022
crossref_primary_10_1007_s13369_022_06925_z
crossref_primary_10_1016_j_cnsns_2024_107881
crossref_primary_10_1016_j_camwa_2024_10_030
crossref_primary_10_1016_j_camwa_2024_11_023
crossref_primary_10_15672_hujms_1117320
crossref_primary_10_1016_j_apnum_2020_12_012
crossref_primary_10_1007_s11075_022_01420_w
crossref_primary_10_1002_num_21786
crossref_primary_10_1016_j_cam_2014_03_028
crossref_primary_10_1016_j_finel_2024_104124
crossref_primary_10_1007_s10444_023_10010_w
crossref_primary_10_1016_j_cam_2022_114304
crossref_primary_10_1016_j_camwa_2017_01_007
crossref_primary_10_1142_S0219876218500755
crossref_primary_10_1016_j_amc_2015_11_064
crossref_primary_10_1007_s00211_025_01463_w
crossref_primary_10_1002_num_22529
crossref_primary_10_1007_s00211_019_01067_1
crossref_primary_10_1007_s10444_021_09909_z
crossref_primary_10_1016_j_cma_2018_05_029
crossref_primary_10_1002_nme_6636
crossref_primary_10_1016_j_camwa_2024_04_023
crossref_primary_10_1007_s10092_018_0282_3
crossref_primary_10_1080_00207160_2022_2057797
crossref_primary_10_1007_s10915_016_0264_z
crossref_primary_10_1002_num_22415
crossref_primary_10_1016_j_camwa_2018_03_007
crossref_primary_10_1016_j_apnum_2024_03_013
crossref_primary_10_1137_20M1380405
Cites_doi 10.1007/BF01389710
10.1007/BF01436561
10.1090/S0025-5718-1977-0431742-5
10.1023/A:1011591328604
10.1137/S0036142900371003
10.1137/070706616
10.1090/S0025-5718-1974-0373326-0
10.1137/090755102
10.1137/S003614290037174X
10.1137/S0036142997316712
10.1016/S0045-7825(98)00359-4
10.1051/m2an/1985190100071
10.1137/0719052
10.1007/BF01396752
10.1137/S0036142901384162
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright_xml – notice: 2012 Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cam.2012.10.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
EndPage 115
ExternalDocumentID 10_1016_j_cam_2012_10_003
S0377042712004220
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
XPP
YQT
ZMT
~02
~G-
29K
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
EJD
FGOYB
G-2
HZ~
NHB
R2-
SEW
WUQ
ZY4
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c330t-64f6003e7fcec4056e778ab8360ebd3d3d8a9f94fb8b3c9c8680e3d098ba89b43
IEDL.DBID IXB
ISSN 0377-0427
IngestDate Sat Sep 27 21:34:23 EDT 2025
Wed Oct 01 05:05:57 EDT 2025
Thu Apr 24 22:58:59 EDT 2025
Fri Feb 23 02:27:52 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords secondary
Mixed finite element methods
Galerkin finite element methods
Second-order elliptic problems
primary
Discrete gradient
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-64f6003e7fcec4056e778ab8360ebd3d3d8a9f94fb8b3c9c8680e3d098ba89b43
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0377042712004220
PQID 1349425838
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1349425838
crossref_citationtrail_10_1016_j_cam_2012_10_003
crossref_primary_10_1016_j_cam_2012_10_003
elsevier_sciencedirect_doi_10_1016_j_cam_2012_10_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-03-15
PublicationDateYYYYMMDD 2013-03-15
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Riviere, Wheeler, Girault (br000040) 1999; 8
Cockburn, Shu (br000095) 1998; 35
Ciarlet (br000005) 1978
Babus˘ka (br000055) 1973; 20
Fraeijs de Veubeke (br000105) 1965
Baumann, Oden (br000030) 1999; 175
Castillo, Cockburn, Perugia, Schotzau (br000085) 2000; 38
Brezzi, Douglas, Marini (br000070) 1985; 47
B.X. Fraeijs de Veubeke, Stress function approach, in: International Congress on the Finite Element Methods in Structural Mechanics, Bournemouth, 1975.
Brezzi (br000060) 1974; 8
Cockburn, Gopalakrishnan, Lazarov (br000090) 2009; 47
Wang (br000080) 1996
Baker (br000015) 1977; 31
Riviere, Wheeler, Girault (br000035) 2001; 39
Brenner, Scott (br000010) 1994
Arnold, Brezzi, Cockburn, Marini (br000025) 2002; 39
Schatz (br000115) 1974; 28
Arnold (br000020) 1982; 19
Brezzi, Fortin (br000065) 1991
Raviart, Thomas (br000045) 1977; vol. 606
Brezzi, Douglas, Durán, Fortin (br000075) 1987; 51
Arnold, Brezzi (br000050) 1985; 19
Jeon, Park (br000100) 2010; 48
Schatz (10.1016/j.cam.2012.10.003_br000115) 1974; 28
Baker (10.1016/j.cam.2012.10.003_br000015) 1977; 31
Raviart (10.1016/j.cam.2012.10.003_br000045) 1977; vol. 606
Riviere (10.1016/j.cam.2012.10.003_br000035) 2001; 39
Babus˘ka (10.1016/j.cam.2012.10.003_br000055) 1973; 20
Brezzi (10.1016/j.cam.2012.10.003_br000075) 1987; 51
Arnold (10.1016/j.cam.2012.10.003_br000025) 2002; 39
Brezzi (10.1016/j.cam.2012.10.003_br000065) 1991
Jeon (10.1016/j.cam.2012.10.003_br000100) 2010; 48
Brenner (10.1016/j.cam.2012.10.003_br000010) 1994
Cockburn (10.1016/j.cam.2012.10.003_br000090) 2009; 47
Cockburn (10.1016/j.cam.2012.10.003_br000095) 1998; 35
10.1016/j.cam.2012.10.003_br000110
Arnold (10.1016/j.cam.2012.10.003_br000020) 1982; 19
Arnold (10.1016/j.cam.2012.10.003_br000050) 1985; 19
Brezzi (10.1016/j.cam.2012.10.003_br000060) 1974; 8
Castillo (10.1016/j.cam.2012.10.003_br000085) 2000; 38
Baumann (10.1016/j.cam.2012.10.003_br000030) 1999; 175
Wang (10.1016/j.cam.2012.10.003_br000080) 1996
Ciarlet (10.1016/j.cam.2012.10.003_br000005) 1978
Riviere (10.1016/j.cam.2012.10.003_br000040) 1999; 8
Brezzi (10.1016/j.cam.2012.10.003_br000070) 1985; 47
Fraeijs de Veubeke (10.1016/j.cam.2012.10.003_br000105) 1965
References_xml – year: 1978
  ident: br000005
  article-title: The Finite Element Method for Elliptic Problems
– volume: 51
  start-page: 237
  year: 1987
  end-page: 250
  ident: br000075
  article-title: Mixed finite elements for second order elliptic problems in three variables
  publication-title: Numer. Math.
– volume: 38
  start-page: 1676
  year: 2000
  end-page: 1706
  ident: br000085
  article-title: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems
  publication-title: SIAM J. Numer. Anal.
– volume: 39
  start-page: 902
  year: 2001
  end-page: 931
  ident: br000035
  article-title: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems
  publication-title: SIAM J. Numer. Anal.
– volume: 39
  start-page: 1749
  year: 2002
  end-page: 1779
  ident: br000025
  article-title: Unified analysis of discontinuous Galerkin methods for elliptic problems
  publication-title: SIAM J. Numer. Anal.
– volume: vol. 606
  year: 1977
  ident: br000045
  article-title: A mixed finite element method for second order elliptic problems
  publication-title: Mathematical Aspects of the Finite Element Method
– volume: 19
  start-page: 7
  year: 1985
  end-page: 32
  ident: br000050
  article-title: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates
  publication-title: RAIRO Modél. Math. Anal. Numér.
– year: 1996
  ident: br000080
  article-title: Mixed finite element methods
  publication-title: Numerical Methods in Scientific and Engineering Computing
– volume: 175
  start-page: 311
  year: 1999
  end-page: 341
  ident: br000030
  article-title: A discontinuous
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 28
  start-page: 959
  year: 1974
  end-page: 962
  ident: br000115
  article-title: An observation concerning Ritz–Galerkin methods with indefinite bilinear forms
  publication-title: Math. Comp.
– year: 1965
  ident: br000105
  article-title: Displacement and equilibrium models in the finite element method
  publication-title: Stress Analysis
– year: 1994
  ident: br000010
  article-title: The Mathematical Theory of Finite Element Methods
– volume: 47
  start-page: 217
  year: 1985
  end-page: 235
  ident: br000070
  article-title: Two families of mixed finite elements for second order elliptic problems
  publication-title: Numer. Math.
– volume: 48
  start-page: 1968
  year: 2010
  end-page: 1983
  ident: br000100
  article-title: A hybrid discontinuous Galerkin method for elliptic problems
  publication-title: SIAM J. Numer. Anal.
– volume: 31
  start-page: 45
  year: 1977
  end-page: 59
  ident: br000015
  article-title: Finite element methods for elliptic equations using nonconforming elements
  publication-title: Math. Comp.
– volume: 19
  start-page: 742
  year: 1982
  end-page: 760
  ident: br000020
  article-title: An interior penalty finite element method with discontinuous elements
  publication-title: SIAM J. Numer. Anal.
– volume: 35
  start-page: 2440
  year: 1998
  end-page: 2463
  ident: br000095
  article-title: The local discontinuous Galerkin method for time-dependent convection–diffusion systems
  publication-title: SIAM J. Numer. Anal.
– volume: 8
  start-page: 129
  year: 1974
  end-page: 151
  ident: br000060
  article-title: On the existence, uniqueness, and approximation of saddle point problems arising from Lagrange multipliers
  publication-title: RAIRO
– volume: 20
  start-page: 179
  year: 1973
  end-page: 192
  ident: br000055
  article-title: The finite element method with Lagrange multipliers
  publication-title: Numer. Math.
– volume: 47
  start-page: 1319
  year: 2009
  end-page: 1365
  ident: br000090
  article-title: Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second-order elliptic problems
  publication-title: SIAM J. Numer. Anal.
– reference: B.X. Fraeijs de Veubeke, Stress function approach, in: International Congress on the Finite Element Methods in Structural Mechanics, Bournemouth, 1975.
– volume: 8
  start-page: 337
  year: 1999
  end-page: 360
  ident: br000040
  article-title: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I
  publication-title: Comput. Geosci.
– year: 1991
  ident: br000065
  article-title: Mixed and Hybrid Finite Elements
– year: 1994
  ident: 10.1016/j.cam.2012.10.003_br000010
– volume: 47
  start-page: 217
  year: 1985
  ident: 10.1016/j.cam.2012.10.003_br000070
  article-title: Two families of mixed finite elements for second order elliptic problems
  publication-title: Numer. Math.
  doi: 10.1007/BF01389710
– year: 1996
  ident: 10.1016/j.cam.2012.10.003_br000080
  article-title: Mixed finite element methods
– volume: 20
  start-page: 179
  year: 1973
  ident: 10.1016/j.cam.2012.10.003_br000055
  article-title: The finite element method with Lagrange multipliers
  publication-title: Numer. Math.
  doi: 10.1007/BF01436561
– volume: 31
  start-page: 45
  year: 1977
  ident: 10.1016/j.cam.2012.10.003_br000015
  article-title: Finite element methods for elliptic equations using nonconforming elements
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1977-0431742-5
– volume: 8
  start-page: 337
  year: 1999
  ident: 10.1016/j.cam.2012.10.003_br000040
  article-title: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I
  publication-title: Comput. Geosci.
  doi: 10.1023/A:1011591328604
– ident: 10.1016/j.cam.2012.10.003_br000110
– volume: 38
  start-page: 1676
  year: 2000
  ident: 10.1016/j.cam.2012.10.003_br000085
  article-title: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142900371003
– volume: 47
  start-page: 1319
  year: 2009
  ident: 10.1016/j.cam.2012.10.003_br000090
  article-title: Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second-order elliptic problems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/070706616
– volume: 28
  start-page: 959
  year: 1974
  ident: 10.1016/j.cam.2012.10.003_br000115
  article-title: An observation concerning Ritz–Galerkin methods with indefinite bilinear forms
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1974-0373326-0
– year: 1991
  ident: 10.1016/j.cam.2012.10.003_br000065
– volume: 48
  start-page: 1968
  year: 2010
  ident: 10.1016/j.cam.2012.10.003_br000100
  article-title: A hybrid discontinuous Galerkin method for elliptic problems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/090755102
– volume: 39
  start-page: 902
  year: 2001
  ident: 10.1016/j.cam.2012.10.003_br000035
  article-title: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S003614290037174X
– year: 1978
  ident: 10.1016/j.cam.2012.10.003_br000005
– volume: 35
  start-page: 2440
  year: 1998
  ident: 10.1016/j.cam.2012.10.003_br000095
  article-title: The local discontinuous Galerkin method for time-dependent convection–diffusion systems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142997316712
– volume: 175
  start-page: 311
  year: 1999
  ident: 10.1016/j.cam.2012.10.003_br000030
  article-title: A discontinuous hp finite element method for convection–diffusion problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(98)00359-4
– volume: 19
  start-page: 7
  issue: 1
  year: 1985
  ident: 10.1016/j.cam.2012.10.003_br000050
  article-title: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates
  publication-title: RAIRO Modél. Math. Anal. Numér.
  doi: 10.1051/m2an/1985190100071
– volume: 19
  start-page: 742
  issue: 4
  year: 1982
  ident: 10.1016/j.cam.2012.10.003_br000020
  article-title: An interior penalty finite element method with discontinuous elements
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0719052
– volume: 51
  start-page: 237
  year: 1987
  ident: 10.1016/j.cam.2012.10.003_br000075
  article-title: Mixed finite elements for second order elliptic problems in three variables
  publication-title: Numer. Math.
  doi: 10.1007/BF01396752
– volume: 39
  start-page: 1749
  year: 2002
  ident: 10.1016/j.cam.2012.10.003_br000025
  article-title: Unified analysis of discontinuous Galerkin methods for elliptic problems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142901384162
– year: 1965
  ident: 10.1016/j.cam.2012.10.003_br000105
  article-title: Displacement and equilibrium models in the finite element method
– volume: vol. 606
  year: 1977
  ident: 10.1016/j.cam.2012.10.003_br000045
  article-title: A mixed finite element method for second order elliptic problems
– volume: 8
  start-page: 129
  year: 1974
  ident: 10.1016/j.cam.2012.10.003_br000060
  article-title: On the existence, uniqueness, and approximation of saddle point problems arising from Lagrange multipliers
  publication-title: RAIRO
SSID ssj0006914
Score 2.575665
Snippet This paper introduces a finite element method by using a weakly defined gradient operator over generalized functions. The use of weak gradients and their...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103
SubjectTerms Approximation
Discrete gradient
Finite element method
Galerkin finite element methods
Galerkin methods
Mathematical analysis
Mathematical models
Mixed finite element methods
Norms
Operators
Optimization
Second-order elliptic problems
Title A weak Galerkin finite element method for second-order elliptic problems
URI https://dx.doi.org/10.1016/j.cam.2012.10.003
https://www.proquest.com/docview/1349425838
Volume 241
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection (subscription)
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20210930
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: ACRLP
  dateStart: 19950220
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20210430
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AIKHN
  dateStart: 19950220
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Open Access Journals (Elsevier)
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20211005
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: IXB
  dateStart: 19750301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AKRWK
  dateStart: 19750301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9zvuiD-InzY0TwScjWNl2aPs7hnIp70cHeSpImMJVtuA3f_Nu9S9uBgj5IoQ8hKeF6_d2ld_c7Qi5NGAXK6JQJzS0DpVBMgeFhxkaCW-cw9oPZFkMxGMX34864RnpVLQymVZbYX2C6R-typF1Ksz2fTNpPAU8S7BQRRp7ICs_tPE58Ed_4eo3GIi34vWEyw9lVZNPneBmFxehh1PIJXvw32_QDpb3p6e-SndJnpN1iW3ukZqf7ZPtxTbi6OCCDLv2w6pXeAt7j32_qJuhMUltkh9OiUTQFD5Uu8AicM8-5SZGOE0DD0LKxzOKQjPo3z70BK5skMMN5sGQiduCzcJs4Yw14X8ImiVQaazOszjlcUqUujZ2WmpvUSCEDy_MglVrJVMf8iNSns6k9JjRIo1zmuTFgr2LpuE6cyoUwsTNwt6pBgko8mSkZxLGRxVtWpYq9ZCDRDCWKQ7CtBrlaL5kX9Bl_TY4rmWffdCADeP9r2UX1fjL4NjDgoaZ2tlpkSL0I6ie5PPnfo0_JVuTbX3AWds5Iffm-sufghCx1k2y0PsMm2ezePQyGTa9zXxYk3JM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9je1AfxE-cnxF8EuLapkvTxzHUzn28uMHeQpImMJVuuA3_fS_9GCi4Byn0ISQlXK-_u_TufofQnfYDT2oVE6aoIaAUkkgwPESbgFFjrYv9uGyLEUsm4cu0Pa2hblUL49IqS-wvMD1H63KkVUqztZjNWq8ejSLXKcIPciIrOLc3wjZgch01Or1-MtoAMosLim-YT9yCKriZp3lp6erR_eAhz_Gif5mnX0CdW5-nA7Rfuo24U-zsENVMdoT2hhvO1eUxSjr4y8h3_AyQ736AYztz_iQ2RYI4LnpFY3BS8dKdglOS025ix8gJuKFx2VtmeYImT4_jbkLKPglEU-qtCAstuC3URFYbDQ4YM1HEpXLlGUalFC4uYxuHVnFFdaw5456hqRdzJXmsQnqK6tk8M2cIe3GQ8jTVGkxWyC1VkZUpYzq0Gu5GNpFXiUfokkTc9bL4EFW22JsAiQonUTcE22qi-82SRcGgsW1yWMlc_FADAQi_bdlt9X4EfB4u5iEzM18vhWNfBA3klJ__79E3aCcZDwdi0Bv1L9BukHfDoMRvX6L66nNtrsAnWanrUue-AWfT3jY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+weak+Galerkin+finite+element+method+for+second-order+elliptic+problems&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Wang%2C+Junping&rft.au=Ye%2C+Xiu&rft.date=2013-03-15&rft.issn=0377-0427&rft.volume=241&rft.spage=103&rft.epage=115&rft_id=info:doi/10.1016%2Fj.cam.2012.10.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon