Density Increase of Upper Quantum Dots in Dual InGaN Quantum-Dot Layers

Single and dual layers of InGaN quantum dots (QDs) are grown by metal organic chemical vapor deposition. In the former, the density, average height and diameter of QDs are 1.3 x 10 super(9)cm super(-2), 0.93 nm and 65.1 nm, respectively. The latter is grown under the same conditions and possesses a...

Full description

Saved in:
Bibliographic Details
Published inChinese physics letters Vol. 28; no. 12; pp. 128101 - 1-128101-3
Main Authors Lv, Wen-Bin (文彬吕), Wang, Lai (莱汪), Wang, Jia-Xing (嘉星王), Hao, Zhi-Biao (智彪郝), Luo, Yi (毅罗)
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.12.2011
Subjects
Online AccessGet full text
ISSN0256-307X
1741-3540
DOI10.1088/0256-307X/28/12/128101

Cover

Abstract Single and dual layers of InGaN quantum dots (QDs) are grown by metal organic chemical vapor deposition. In the former, the density, average height and diameter of QDs are 1.3 x 10 super(9)cm super(-2), 0.93 nm and 65.1 nm, respectively. The latter is grown under the same conditions and possesses a 20 nm low-temperature grown GaN barrier between two layers. The density, average height and diameter of QDs in the upper layer are 2.6 x 10 super(10) cm super(-2), 4.6 nm and 81.3 nm, respectively. Two reasons are proposed to explain the QD density increase in the upper layer. First, the strain accumulation in the upper layer is higher, leading to a stronger three-dimensional growth. Second, the GaN barrier beneath the upper layer is so rough it induces growth QDs
AbstractList Single and dual layers of InGaN quantum dots (QDs) are grown by metal organic chemical vapor deposition. In the former, the density, average height and diameter of QDs are 1.3 x 10 super(9)cm super(-2), 0.93 nm and 65.1 nm, respectively. The latter is grown under the same conditions and possesses a 20 nm low-temperature grown GaN barrier between two layers. The density, average height and diameter of QDs in the upper layer are 2.6 x 10 super(10) cm super(-2), 4.6 nm and 81.3 nm, respectively. Two reasons are proposed to explain the QD density increase in the upper layer. First, the strain accumulation in the upper layer is higher, leading to a stronger three-dimensional growth. Second, the GaN barrier beneath the upper layer is so rough it induces growth QDs
Author Luo, Yi (毅罗)
Hao, Zhi-Biao (智彪郝)
Lv, Wen-Bin (文彬吕)
Wang, Lai (莱汪)
Wang, Jia-Xing (嘉星王)
Author_xml – sequence: 1
  fullname: Lv, Wen-Bin (文彬吕)
– sequence: 2
  fullname: Wang, Lai (莱汪)
– sequence: 3
  fullname: Wang, Jia-Xing (嘉星王)
– sequence: 4
  fullname: Hao, Zhi-Biao (智彪郝)
– sequence: 5
  fullname: Luo, Yi (毅罗)
BookMark eNqNkE9LAzEQxYNUsK1-BcnRy9pM_uym4EVarUJRBAveQrqbQGSbrEn20G_vlqoHLwoDc3i_N_N4EzTywRuELoFcA5FyRqgoC0aqtxmVM6DDSCBwgsZQcSiY4GSExj_QGZqk9E4IgAQYo9XS-OTyHj_6OhqdDA4Wb7rORPzSa5_7HV6GnLDzeNnrdsBW-ulbKgYJr_XexHSOTq1uk7n42lO0ub97XTwU6-fV4-J2XdSMkVwIIoYQjFfcGm1Z3VgruGiquSi3jRhigwG5nUNdbRvDy4ZaCtbauSyhMrzRbIqujne7GD56k7LauVSbttXehD4pKCkhkgOTA1oe0TqGlKKxqotup-NeAVGH5tShFHUoRVGpgKpjc4Px5pexdllnF3yO2rV_2-Fod6H778tPlkSDGA
CitedBy_id crossref_primary_10_1186_1556_276X_7_617
crossref_primary_10_1088_0256_307X_29_9_097804
crossref_primary_10_7498_aps_61_237804
Cites_doi 10.1016/S0167-577X(03)00293-3
10.1063/1.2767217
10.1109/LPT.2010.2046030
10.1063/1.2939568
10.1002/pssc.200880913
10.1016/j.tsf.2005.08.388
10.1063/1.3460921
10.1063/1.2976324
10.1016/S0022-0248(02)02130-9
10.1088/0957-4484/17/6/028
10.1088/0256-307X/28/6/067304
10.1063/1.2712804
10.1103/PhysRevLett.75.2542
10.1063/1.123824
ContentType Journal Article
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1088/0256-307X/28/12/128101
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1741-3540
EndPage 1-128101-3
ExternalDocumentID 10_1088_0256_307X_28_12_128101
GroupedDBID 02
042
1JI
1WK
29B
4.4
5B3
5GY
5VR
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AALHV
AAPBV
ABHWH
ABPTK
ABQJV
ACGFS
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CDYEO
CJUJL
CS3
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FEDTE
HAK
HVGLF
IHE
IOP
IZVLO
KNG
KOT
LAP
M45
MGA
N5L
N9A
NS0
NT-
NT.
P2P
Q02
R4D
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
UCJ
UNR
W28
XPP
-SA
-S~
02O
AAJKP
AATNI
AAYXX
ABJNI
ACAFW
ACARI
ACHIP
ADEQX
AEINN
AERVB
AGQPQ
AKPSB
AOAED
ARNYC
CAJEA
CEBXE
CITATION
CRLBU
IJHAN
JCGBZ
PJBAE
Q--
T37
TGP
U1G
U5K
~02
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c330t-5053073474feaf3cdff545d7956bd51011e18b91c7bde46d2f21fff98617e4da3
IEDL.DBID IOP
ISSN 0256-307X
IngestDate Thu Oct 02 06:05:20 EDT 2025
Thu Apr 24 22:59:57 EDT 2025
Wed Oct 01 02:18:32 EDT 2025
Tue Nov 10 14:15:09 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-5053073474feaf3cdff545d7956bd51011e18b91c7bde46d2f21fff98617e4da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1620084138
PQPubID 23500
ParticipantIDs crossref_citationtrail_10_1088_0256_307X_28_12_128101
proquest_miscellaneous_1620084138
iop_primary_10_1088_0256_307X_28_12_128101
crossref_primary_10_1088_0256_307X_28_12_128101
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-12-01
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics letters
PublicationYear 2011
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 11
12
14
Tian P (9) 2011; 28
Yao H H (13) 2006; 17
1
2
3
4
5
6
7
8
10
References_xml – ident: 12
  doi: 10.1016/S0167-577X(03)00293-3
– ident: 2
  doi: 10.1063/1.2767217
– ident: 8
  doi: 10.1109/LPT.2010.2046030
– ident: 10
  doi: 10.1063/1.2939568
– ident: 11
  doi: 10.1002/pssc.200880913
– ident: 6
  doi: 10.1016/j.tsf.2005.08.388
– ident: 4
  doi: 10.1063/1.3460921
– ident: 1
  doi: 10.1063/1.2976324
– ident: 14
  doi: 10.1016/S0022-0248(02)02130-9
– volume: 17
  start-page: 1713
  issn: 0957-4484
  year: 2006
  ident: 13
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/17/6/028
– volume: 28
  start-page: 067304
  issn: 0256-307X
  year: 2011
  ident: 9
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/28/6/067304
– ident: 3
  doi: 10.1063/1.2712804
– ident: 7
  doi: 10.1103/PhysRevLett.75.2542
– ident: 5
  doi: 10.1063/1.123824
SSID ssj0011811
Score 1.9401048
Snippet Single and dual layers of InGaN quantum dots (QDs) are grown by metal organic chemical vapor deposition. In the former, the density, average height and...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 128101
SubjectTerms Barriers
Density
Gallium nitrides
Indium gallium nitrides
Metal organic chemical vapor deposition
Quantum dots
Strain
Three dimensional
Title Density Increase of Upper Quantum Dots in Dual InGaN Quantum-Dot Layers
URI http://iopscience.iop.org/0256-307X/28/12/128101
https://www.proquest.com/docview/1620084138
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1741-3540
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011811
  issn: 0256-307X
  databaseCode: IOP
  dateStart: 19840101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5zIPjiXZw3IvgkdFvadM0exblN0enAwd5Cc4OhtmVrH_TXe5KtA5ngfCukSenXnpwvOd_JQehKtVQg4zD0dFtSj1IFJtXU1COiHSnVjARz4vGnQas_og_jcFxBZRHESZotZv46XLpIvnXKdodk3PBZg_gNG_pxCVvW-duMveeXZdgA3JUrkVd2KVOCYZX3-zA_vNEGPHJlSnZ-pruDhmW2zlxe8lYvclGXX6uHN679Crtoe0E68c38L9lDFZ3so00n_pSzA9TrWBV7_olhsrAadY1Tg0dZpqd4WADyxQfupPkMTxLcKWCc-6QXD8omD5rwY2yZ-yEade9eb_veosCCJ4OgmXvAfqyJ04gaHZtAKmMAUxXBmkkoa6xEEybaREZCadpSvvGJMabNgPZoquLgCFWTNNHHCAtYZzPgUgQYJQXSJXQMXEGxUBIigbTVUFgCzeXi9HFbBOOduyg4Y9yCxC1I3Gec-HwOUg01lv2y-fkbf_a4BtzXvvmy_Nwc7MoGS-JEp8WMk5ZVhoCLZyf_GfAUbbldZyd4OUPVfFroc6Atubhwv-o3URrbGw
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBdpysZetu6jLN3WqdCngmPLlmP5sTTNx9amKSyQN2F9wdhmm8Z-6P76nWQ7sI6ylr4Z5BP2Sbr7SffTHULHaqQimcWxp1NJPUoVLKlAU4-INFEqSARz5PHLxWi2ol_W8bqHzrd3YYqyNf1DeGwSBTcqbAlxzLde2h6ZrP2Q-ST0bSwoIH6pzA7ajaM4tYUM5lfLbTABnJgrnNfJdReF7-3rLx-1A9_xj6F23mfyqmGJbFzSQks6-TGsKzGUv--kdHzyj-2hly0-xaeN0GvU0_kb9MzxROXmLZqOLeG9usVgVyydXePC4FVZ6ht8XcMg1b_wuKg2-HuOxzX0M8-n2aJr8qAJX2QW5L9Dq8n5t7OZ19Zi8GQUBZUHQMlaA5pQozMTSWUMYC-VwPZKKLuuiSZMpEQmQmk6UqEJiTEmZYCQNFVZtI_6eZHr9wgL2JIzgF0EwCcFfCZ0BrBCsVgSIgHfDVDcaZ_LNlG5rZfxk7uAOWPcKopbRfGQcRLyRlED5G_lyiZVx38lTmAsHvzyUTcHOCxBG1fJcl3UG05GlkQCaIAdPKbDz-j5cjzhF_PF1w_ohTurdjSZj6hf3dT6E4CdShy6qfwHx0LrCQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Density+Increase+of+Upper+Quantum+Dots+in+Dual+InGaN+Quantum-Dot+Layers&rft.jtitle=Chinese+physics+letters&rft.au=Lv%2C+Wen-Bin+%28%E6%96%87%E5%BD%AC%E5%90%95%29&rft.au=Wang%2C+Lai+%28%E8%8E%B1%E6%B1%AA%29&rft.au=Wang%2C+Jia-Xing+%28%E5%98%89%E6%98%9F%E7%8E%8B%29&rft.au=Hao%2C+Zhi-Biao+%28%E6%99%BA%E5%BD%AA%E9%83%9D%29&rft.date=2011-12-01&rft.pub=IOP+Publishing&rft.issn=0256-307X&rft.eissn=1741-3540&rft.volume=28&rft.spage=128101&rft_id=info:doi/10.1088%2F0256-307X%2F28%2F12%2F128101&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0256_307X_28_12_128101
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-307X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-307X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-307X&client=summon