An experimental study on gas–liquid two-phase countercurrent flow limitations of vertical pipes
•The countercurrent flow limitation (CCFL) of vertical pipes was experimentally studied.•The effects of pipe diameter and pipe length on the CCFL were determined by experiment.•The existing CCFL correlation models were examined based on the experimental result.•A novel dimensionless group (Kuk0.5μk*...
Saved in:
Published in | Experimental thermal and fluid science Vol. 141; p. 110789 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0894-1777 1879-2286 |
DOI | 10.1016/j.expthermflusci.2022.110789 |
Cover
Abstract | •The countercurrent flow limitation (CCFL) of vertical pipes was experimentally studied.•The effects of pipe diameter and pipe length on the CCFL were determined by experiment.•The existing CCFL correlation models were examined based on the experimental result.•A novel dimensionless group (Kuk0.5μk*0.1) was proposed for correlating diameter effect.•A new correlation predicting the diameter and length effects accurately was advanced.
The gas–liquid two-phase countercurrent flow limitation (CCFL) of vertical pipes is an important subject of concern in various industries. Predicting the CCFL of vertical pipes, i.e. the flow rate relationship between the gas and liquid phases under CCFL conditions, has not yet been clearly determined on effects of the structural parameters of the pipe. In this study, a visualization experiment on the CCFL of vertical pipes was performed by using air and water as the two phases. The effects of pipe diameter and pipe length were tested in the ranges of 25–100 mm and 0.50–2.0 m, respectively. Based on the experimental result, the flow behaviors of the CCFL in vertical pipes were analyzed, and four existing CCFL correlation models were examined in their capabilities to correlate the effects of pipe diameter and pipe length. The result shows that the flow patterns in vertical pipes are essentially annular flows and annular-mist flows under CCFL conditions, and the flow behaviors on gas–liquid interface present different features as the pipe differed in diameters. Examination of the available CCFL models indicates that none of them has reached a satisfactory correlation on the effects of pipe diameter and pipe length. Consequently, based on a reasonable fluid mechanics analysis, a novel CCFL correlation model that can correlate the effects of pipe diameter and pipe length was advanced. This model provides a reasonable and accurate prediction of the CCFL of vertical pipes when the pipe varies in structural parameters, which is of great significance to the safe and efficient operation of the related equipment in nuclear power generation, natural gas extraction and chemical industries. |
---|---|
AbstractList | •The countercurrent flow limitation (CCFL) of vertical pipes was experimentally studied.•The effects of pipe diameter and pipe length on the CCFL were determined by experiment.•The existing CCFL correlation models were examined based on the experimental result.•A novel dimensionless group (Kuk0.5μk*0.1) was proposed for correlating diameter effect.•A new correlation predicting the diameter and length effects accurately was advanced.
The gas–liquid two-phase countercurrent flow limitation (CCFL) of vertical pipes is an important subject of concern in various industries. Predicting the CCFL of vertical pipes, i.e. the flow rate relationship between the gas and liquid phases under CCFL conditions, has not yet been clearly determined on effects of the structural parameters of the pipe. In this study, a visualization experiment on the CCFL of vertical pipes was performed by using air and water as the two phases. The effects of pipe diameter and pipe length were tested in the ranges of 25–100 mm and 0.50–2.0 m, respectively. Based on the experimental result, the flow behaviors of the CCFL in vertical pipes were analyzed, and four existing CCFL correlation models were examined in their capabilities to correlate the effects of pipe diameter and pipe length. The result shows that the flow patterns in vertical pipes are essentially annular flows and annular-mist flows under CCFL conditions, and the flow behaviors on gas–liquid interface present different features as the pipe differed in diameters. Examination of the available CCFL models indicates that none of them has reached a satisfactory correlation on the effects of pipe diameter and pipe length. Consequently, based on a reasonable fluid mechanics analysis, a novel CCFL correlation model that can correlate the effects of pipe diameter and pipe length was advanced. This model provides a reasonable and accurate prediction of the CCFL of vertical pipes when the pipe varies in structural parameters, which is of great significance to the safe and efficient operation of the related equipment in nuclear power generation, natural gas extraction and chemical industries. |
ArticleNumber | 110789 |
Author | Lyu, Junfu Shao, Jie Li, Jingfen Zeng, Shanshan Ma, Youfu Zhou, Tuo Lu, Peng |
Author_xml | – sequence: 1 givenname: Youfu surname: Ma fullname: Ma, Youfu email: imayoufu@163.com organization: Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China – sequence: 2 givenname: Shanshan surname: Zeng fullname: Zeng, Shanshan organization: Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China – sequence: 3 givenname: Jie surname: Shao fullname: Shao, Jie organization: Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China – sequence: 4 givenname: Tuo surname: Zhou fullname: Zhou, Tuo organization: Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China – sequence: 5 givenname: Junfu surname: Lyu fullname: Lyu, Junfu organization: Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China – sequence: 6 givenname: Jingfen surname: Li fullname: Li, Jingfen organization: Shanghai Marine Diesel Engine Research Institute, Shanghai 201108, China – sequence: 7 givenname: Peng surname: Lu fullname: Lu, Peng organization: Shanghai Marine Diesel Engine Research Institute, Shanghai 201108, China |
BookMark | eNqNkLFOwzAURS1UJErhHzywJthOEzsSS6koIFVigdlynWfqKo2D7bR04x_4Q76EVO0CU6e3vHt077lEg8Y1gNANJSkltLhdpfDZxiX4tam7oG3KCGMppYSL8gwNqeBlwpgoBmhIRDlOKOf8Al2GsCKECEbJEKlJg3sIeLuGJqoah9hVO-wa_K7Cz9d3bT86W-G4dUm7VAGwdl0TwevO-z6ATe22uLZrG1W0rgnYGbwBH63uWa1tIVyhc6PqANfHO0Jvs4fX6VMyf3l8nk7mic4yEpMxLZQpF0XBhM6LfEEyXpoF06BLAsrwsuJUZJAxYcaVHpdK5CQ3QBf92MzwIhuh-wNXexeCByP1sVT0ytaSErmXJlfyrzS5lyYP0nrI3T9I25tRfndqfHaIQz90Y8HL_gMaDZX1oKOsnD0N9AvFD5lJ |
CitedBy_id | crossref_primary_10_32604_fhmt_2023_044433 crossref_primary_10_1016_j_expthermflusci_2023_111102 crossref_primary_10_3390_en16031487 crossref_primary_10_1016_j_jtice_2023_104706 crossref_primary_10_3811_jjmf_2024_020 |
Cites_doi | 10.1016/S0301-9322(00)00045-8 10.1080/00223131.2014.990533 10.1016/j.nucengdes.2019.110223 10.1016/S0301-9322(99)00097-X 10.1115/1.4039438 10.1016/j.nucengdes.2018.01.014 10.3811/jjmf.28.345 10.3811/jjmf.30.392 10.1016/j.nucengdes.2020.110645 10.1016/0894-1777(92)90119-P 10.1016/j.nucengdes.2020.110951 10.1016/0009-2509(66)80009-X 10.1016/S0301-9322(99)00098-1 10.1016/0301-9322(83)90093-9 10.1016/j.nucengdes.2020.111020 10.1016/0301-9322(77)90027-1 10.1016/0017-9310(81)90188-5 10.1016/0029-5493(92)90186-Y 10.1016/0301-9322(95)00076-3 10.1016/0301-9322(85)90022-9 10.3811/jjmf.31.152 10.1016/0301-9322(92)90063-M 10.1016/j.net.2020.12.019 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. |
Copyright_xml | – notice: 2022 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.expthermflusci.2022.110789 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2286 |
ExternalDocumentID | 10_1016_j_expthermflusci_2022_110789 S0894177722001856 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSG SST SSZ T5K TN5 ZMT ~G- 29G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SET SEW SSH UHS VH1 WUQ XPP |
ID | FETCH-LOGICAL-c330t-416af9b6628c565b0379fb2cec90eaf79d7183e328f4dc49a8505fe1b0783f763 |
IEDL.DBID | .~1 |
ISSN | 0894-1777 |
IngestDate | Tue Jul 01 00:38:33 EDT 2025 Thu Apr 24 23:02:21 EDT 2025 Fri Feb 23 02:36:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CCFL Gas–liquid flow Correlation Vertical pipe Prediction model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-416af9b6628c565b0379fb2cec90eaf79d7183e328f4dc49a8505fe1b0783f763 |
ParticipantIDs | crossref_citationtrail_10_1016_j_expthermflusci_2022_110789 crossref_primary_10_1016_j_expthermflusci_2022_110789 elsevier_sciencedirect_doi_10_1016_j_expthermflusci_2022_110789 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 2023-02-00 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Experimental thermal and fluid science |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Jayanti, Hewitt (b0110) 1992; 18 Glaeser, Rohatgi (b0170) 2019; 354 Kusunoki, Murase, Takata, Tomiyama (b0115) 2014; 28 Mcquillan, Whalley, Hewitt (b0100) 1985; 11 Wallis (b0125) 1969 Suzuki, Ueda (b0095) 1977; 3 Ma, Shao, Lyu, Peng (b0120) 2020; 364 Bankoff, Lee (b0160) 1986 Kusunoki, Murase, Fujii, Nozue, Hayashi, Hosokawa, Tomiyama (b0050) 2015; 52 Hewitt, Lacey, Nicholls (b0090) 1965 G.F. Hewitt, Influence of end conditions, tube inclination and physical properties on flooding in gas–liquid flows, UKAEA Report HTFS-RS222, Harwell, England, 1977. Murase, Kusunoki, Nishida, Goda, Tomiyama (b0060) 2018; 4 Yan, Sun, Sun (b0015) 1993; 14 Takaki, Goda, Hayashi, Murase, Tomiyama (b0080) 2021; 371 Zapke, Kröger (b0140) 2000; 26 Murase, Kusunoki, Yamamoto, Goda, Tomiyama (b0165) 2017; 31 Pushkina, Sorokin (b0130) 1969; 1 No, Lee, Song (b0175) 2005; 37 Alekseev, Poberezkin, Gerasimov (b0040) 1972; 4 Wan, Sun, Deng, Pan, Ding (b0150) 2021; 53 Clift, Pritchard, Nedderman (b0185) 1966; 21 Zapke, Kröger (b0025) 1996; 22 Glaeser (b0010) 1992; 133 Wu, Firouzi, Rufford, Towler (b0085) 2019; 9 Goda, Hayashi, Murase, Hosokawa, Tomiyama (b0070) 2019; 353 Bankoff, Tankin, Yuen, Hsieh (b0145) 1981; 24 Zapke, Kröger (b0135) 2000; 26 Peng (b0005) 1993; 14 Huang, Gu (b0020) 1989; 5 Vijayan, Jayanti, Balakrishnan (b0030) 2001; 27 Dulker, Smith (b0190) 1979 Goda, Kurimoto, Hayashi, Murase, Tomiyama (b0075) 2021; 373 K.H. Sun, T. Ueda, Flooding correlations for BWR bundle upper tie plates and bottom side-entry orifices. In: Veziroglu T.N. (Ed.), Proceedings of Multiphase Flow and Transfer Symposium Workshop. Miami Beach, Florida, (1979) 1615–1635. Goda, Hayashi, Kirkland, Murase, Tomiyama (b0065) 2018; 328 Bharathan, Wallis (b0155) 1983; 9 Hewitt, Wallis (b0035) 1963 Yamamoto, Murase, Hayashi, Hosokawa, Tomiyama (b0055) 2016; 30 Zhang, Seynhaeve, Giot (b0180) 1992; 6 10.1016/j.expthermflusci.2022.110789_b0105 Clift (10.1016/j.expthermflusci.2022.110789_b0185) 1966; 21 Alekseev (10.1016/j.expthermflusci.2022.110789_b0040) 1972; 4 Murase (10.1016/j.expthermflusci.2022.110789_b0165) 2017; 31 Wallis (10.1016/j.expthermflusci.2022.110789_b0125) 1969 Bharathan (10.1016/j.expthermflusci.2022.110789_b0155) 1983; 9 Kusunoki (10.1016/j.expthermflusci.2022.110789_b0050) 2015; 52 10.1016/j.expthermflusci.2022.110789_b0045 Suzuki (10.1016/j.expthermflusci.2022.110789_b0095) 1977; 3 Zhang (10.1016/j.expthermflusci.2022.110789_b0180) 1992; 6 No (10.1016/j.expthermflusci.2022.110789_b0175) 2005; 37 Yamamoto (10.1016/j.expthermflusci.2022.110789_b0055) 2016; 30 Takaki (10.1016/j.expthermflusci.2022.110789_b0080) 2021; 371 Wan (10.1016/j.expthermflusci.2022.110789_b0150) 2021; 53 Ma (10.1016/j.expthermflusci.2022.110789_b0120) 2020; 364 Goda (10.1016/j.expthermflusci.2022.110789_b0075) 2021; 373 Bankoff (10.1016/j.expthermflusci.2022.110789_b0145) 1981; 24 Dulker (10.1016/j.expthermflusci.2022.110789_b0190) 1979 Vijayan (10.1016/j.expthermflusci.2022.110789_b0030) 2001; 27 Huang (10.1016/j.expthermflusci.2022.110789_b0020) 1989; 5 Zapke (10.1016/j.expthermflusci.2022.110789_b0135) 2000; 26 Hewitt (10.1016/j.expthermflusci.2022.110789_b0090) 1965 Hewitt (10.1016/j.expthermflusci.2022.110789_b0035) 1963 Goda (10.1016/j.expthermflusci.2022.110789_b0065) 2018; 328 Jayanti (10.1016/j.expthermflusci.2022.110789_b0110) 1992; 18 Zapke (10.1016/j.expthermflusci.2022.110789_b0140) 2000; 26 Pushkina (10.1016/j.expthermflusci.2022.110789_b0130) 1969; 1 Bankoff (10.1016/j.expthermflusci.2022.110789_b0160) 1986 Yan (10.1016/j.expthermflusci.2022.110789_b0015) 1993; 14 Glaeser (10.1016/j.expthermflusci.2022.110789_b0010) 1992; 133 Kusunoki (10.1016/j.expthermflusci.2022.110789_b0115) 2014; 28 Murase (10.1016/j.expthermflusci.2022.110789_b0060) 2018; 4 Wu (10.1016/j.expthermflusci.2022.110789_b0085) 2019; 9 Mcquillan (10.1016/j.expthermflusci.2022.110789_b0100) 1985; 11 Zapke (10.1016/j.expthermflusci.2022.110789_b0025) 1996; 22 Glaeser (10.1016/j.expthermflusci.2022.110789_b0170) 2019; 354 Peng (10.1016/j.expthermflusci.2022.110789_b0005) 1993; 14 Goda (10.1016/j.expthermflusci.2022.110789_b0070) 2019; 353 |
References_xml | – year: 1963 ident: b0035 article-title: Flooding and associated phenomena in falling film flow in a vertical tube, UKAEA Report publication-title: AERE R-4022 – volume: 4 start-page: 159 year: 1972 end-page: 163 ident: b0040 article-title: Determination of flooding rages in regular packings publication-title: Heat Trans. Soviet Res. – volume: 5 start-page: 513 year: 1989 end-page: 520 ident: b0020 article-title: Flooding in vertical tubes publication-title: CIESC J. – volume: 27 start-page: 797 year: 2001 end-page: 816 ident: b0030 article-title: Effect of tube diameter on flooding publication-title: Int. J. Multiph. Flow – year: 1969 ident: b0125 article-title: One-dimensional two-phase flow – volume: 53 start-page: 1821 year: 2021 end-page: 1833 ident: b0150 article-title: Experimental study on air-water countercurrent flow limitation in a vertical tube based on measurement of film thickness behavior publication-title: Nucl. Eng. Technol. – volume: 37 year: 2005 ident: b0175 article-title: An experimental study on air/water countercurrent flow limitation in upper plenum with multi-hole plate publication-title: Nucl. Eng. Technol. – volume: 26 start-page: 1457 year: 2000 end-page: 1468 ident: b0140 article-title: Countercurrent gas–liquid flow in inclined and vertical ducts. Part II: the validity of the Froude-Ohnesorge number correlation for flooding publication-title: Int. J. Multiph. Flow – volume: 373 year: 2021 ident: b0075 article-title: Effects of fluid properties on interfacial and wall friction factors under counter-current flow limitation in a vertical pipe with sharp-edged lower end publication-title: Nucl. Eng. Des. – reference: K.H. Sun, T. Ueda, Flooding correlations for BWR bundle upper tie plates and bottom side-entry orifices. In: Veziroglu T.N. (Ed.), Proceedings of Multiphase Flow and Transfer Symposium Workshop. Miami Beach, Florida, (1979) 1615–1635. – volume: 9 start-page: 349 year: 1983 end-page: 366 ident: b0155 article-title: Air-water countercurrent annular flow publication-title: Int. J. Multiph. Flow – volume: 4 year: 2018 ident: b0060 article-title: Correlation of interfacial friction coefficients for predicting countercurrent flow limitation at a sharp-edged lower end of vertical pipes publication-title: J. Nucl. Eng. Radiat. Sci. – volume: 24 start-page: 1381 year: 1981 end-page: 1395 ident: b0145 article-title: Countercurrent flow of air/water and steam/water through a horizontal perforated plate publication-title: Int. J. Heat Mass Transf. – volume: 6 start-page: 755 year: 1992 end-page: 769 ident: b0180 article-title: Experiments on the hydrodynamics of air-water countercurrent flow through vertical short multitube geometries publication-title: Exp. Therm. Fluid Sci. – volume: 353 year: 2019 ident: b0070 article-title: Experimental study on interfacial and wall friction factors under counter-current flow limitation in vertical pipes with sharp-edged lower ends publication-title: Nucl. Eng. Des. – year: 1979 ident: b0190 article-title: Two-phase interactions in countercurrent flow: studies of the flooding mechanism publication-title: NUREG/CR-0617. Nuclear Regulatory Commission, Washington. – year: 1965 ident: b0090 article-title: Transitions in film flow in a vertical flow, UKAEA Report AERE-R4614 – volume: 1 start-page: 56 year: 1969 end-page: 64 ident: b0130 article-title: Breakdown of liquid film motion in vertical tubes publication-title: Heat Transf. Sov. Res. – volume: 31 start-page: 152 year: 2017 end-page: 161 ident: b0165 article-title: Effects of fluid properties on countercurrent flow limitation in vertical pipes publication-title: Jpn. J. Multiph. Flow – volume: 14 start-page: 238 year: 1993 end-page: 243 ident: b0015 article-title: Effects of diameter and air inlet on flooding publication-title: Nucl. Power Eng. – volume: 9 year: 2019 ident: b0085 article-title: Characteristics of counter-current gas-liquid two-phase flow and its limitations in vertical annuli publication-title: Exp. Therm. Fluid Sci. – volume: 3 start-page: 517 year: 1977 end-page: 532 ident: b0095 article-title: Behaviour of liquid films and flooding in counter-current two-phase flow. Part I, flow in circular tubes publication-title: Int. J. Multiph. Flow – volume: 328 start-page: 182 year: 2018 end-page: 187 ident: b0065 article-title: Semi-empirical correlation for counter-current flow limitation at the upper or lower end of sharp-edged vertical pipes publication-title: Nucl. Eng. Des. – volume: 354 year: 2019 ident: b0170 article-title: Scaling ability of the counter-current flow limitation (CCFL) correlations for application to reactor thermal hydraulics publication-title: Nucl. Eng. Des. – volume: 371 year: 2021 ident: b0080 article-title: Flow characteristics in vertical circular pipes with the square top end under flooding conditions publication-title: Nucl. Eng. Des. – volume: 18 start-page: 847 year: 1992 end-page: 860 ident: b0110 article-title: Prediction of the slug-to-churn flow transition in vertical two-phase publication-title: Int. J. Multiph. Flow – volume: 133 start-page: 259 year: 1992 end-page: 283 ident: b0010 article-title: Downcomer and tie plate countercurrent flow in the Upper Plenum Test Facility (UPTF) publication-title: Nucl. Eng. Des. – volume: 364 year: 2020 ident: b0120 article-title: Experimental study on the effect of diameter on gas–liquid CCFL characteristics of horizontal circular pipes publication-title: Nucl. Eng. Des. – volume: 11 start-page: 741 year: 1985 end-page: 760 ident: b0100 article-title: Flooding in vertical two-phase flow publication-title: Int. J. Multiph. Flow – volume: 14 start-page: 556 year: 1993 end-page: 560 ident: b0005 article-title: A summarization of countercurrent flow limitation experiment studies publication-title: Nucl. Power Eng. – volume: 21 start-page: 87 year: 1966 end-page: 95 ident: b0185 article-title: The effect of viscosity on the flooding conditions in wetted wall columns publication-title: Chem. Eng. Sci. – volume: 22 start-page: 461 year: 1996 end-page: 472 ident: b0025 article-title: The influence of fluid properties and inlet geometry on flooding in vertical and inclined tubes publication-title: Int. J. Multiph. Flow – volume: 28 start-page: 345 year: 2014 end-page: 354 ident: b0115 article-title: Numerical simulations of counter-current flow limitation at lower end of a vertical pipe simulating lower part of steam generator U-tubes publication-title: Jpn. J. Multiph. Flow – volume: 30 start-page: 392 year: 2016 end-page: 401 ident: b0055 article-title: Counter-current flow limitation inside vertical pipes publication-title: Jpn. J. Multiph. Flow – reference: G.F. Hewitt, Influence of end conditions, tube inclination and physical properties on flooding in gas–liquid flows, UKAEA Report HTFS-RS222, Harwell, England, 1977. – year: 1986 ident: b0160 article-title: A critical review of the flooding literature – volume: 52 start-page: 887 year: 2015 end-page: 896 ident: b0050 article-title: Effects of fluid properties on CCFL characteristics at a vertical pipe lower end publication-title: J. Nucl. Sci. Technol. – volume: 26 start-page: 1439 year: 2000 end-page: 1455 ident: b0135 article-title: Countercurrent gas–liquid flow in inclined and vertical ducts. Part I: flow patterns, pressure drop characteristics and flooding publication-title: Int. J. Multiph. Flow – volume: 14 start-page: 556 issue: 6 year: 1993 ident: 10.1016/j.expthermflusci.2022.110789_b0005 article-title: A summarization of countercurrent flow limitation experiment studies publication-title: Nucl. Power Eng. – volume: 27 start-page: 797 issue: 5 year: 2001 ident: 10.1016/j.expthermflusci.2022.110789_b0030 article-title: Effect of tube diameter on flooding publication-title: Int. J. Multiph. Flow doi: 10.1016/S0301-9322(00)00045-8 – volume: 52 start-page: 887 issue: 6 year: 2015 ident: 10.1016/j.expthermflusci.2022.110789_b0050 article-title: Effects of fluid properties on CCFL characteristics at a vertical pipe lower end publication-title: J. Nucl. Sci. Technol. doi: 10.1080/00223131.2014.990533 – volume: 353 year: 2019 ident: 10.1016/j.expthermflusci.2022.110789_b0070 article-title: Experimental study on interfacial and wall friction factors under counter-current flow limitation in vertical pipes with sharp-edged lower ends publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2019.110223 – volume: 26 start-page: 1439 issue: 9 year: 2000 ident: 10.1016/j.expthermflusci.2022.110789_b0135 article-title: Countercurrent gas–liquid flow in inclined and vertical ducts. Part I: flow patterns, pressure drop characteristics and flooding publication-title: Int. J. Multiph. Flow doi: 10.1016/S0301-9322(99)00097-X – volume: 4 issue: 3 year: 2018 ident: 10.1016/j.expthermflusci.2022.110789_b0060 article-title: Correlation of interfacial friction coefficients for predicting countercurrent flow limitation at a sharp-edged lower end of vertical pipes publication-title: J. Nucl. Eng. Radiat. Sci. doi: 10.1115/1.4039438 – volume: 9 issue: 109 year: 2019 ident: 10.1016/j.expthermflusci.2022.110789_b0085 article-title: Characteristics of counter-current gas-liquid two-phase flow and its limitations in vertical annuli publication-title: Exp. Therm. Fluid Sci. – ident: 10.1016/j.expthermflusci.2022.110789_b0105 – volume: 354 issue: 14 year: 2019 ident: 10.1016/j.expthermflusci.2022.110789_b0170 article-title: Scaling ability of the counter-current flow limitation (CCFL) correlations for application to reactor thermal hydraulics publication-title: Nucl. Eng. Des. – volume: 328 start-page: 182 year: 2018 ident: 10.1016/j.expthermflusci.2022.110789_b0065 article-title: Semi-empirical correlation for counter-current flow limitation at the upper or lower end of sharp-edged vertical pipes publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2018.01.014 – volume: 28 start-page: 345 issue: 3 year: 2014 ident: 10.1016/j.expthermflusci.2022.110789_b0115 article-title: Numerical simulations of counter-current flow limitation at lower end of a vertical pipe simulating lower part of steam generator U-tubes publication-title: Jpn. J. Multiph. Flow doi: 10.3811/jjmf.28.345 – year: 1979 ident: 10.1016/j.expthermflusci.2022.110789_b0190 article-title: Two-phase interactions in countercurrent flow: studies of the flooding mechanism publication-title: NUREG/CR-0617. Nuclear Regulatory Commission, Washington. – volume: 30 start-page: 392 issue: 4 year: 2016 ident: 10.1016/j.expthermflusci.2022.110789_b0055 article-title: Counter-current flow limitation inside vertical pipes publication-title: Jpn. J. Multiph. Flow doi: 10.3811/jjmf.30.392 – volume: 364 year: 2020 ident: 10.1016/j.expthermflusci.2022.110789_b0120 article-title: Experimental study on the effect of diameter on gas–liquid CCFL characteristics of horizontal circular pipes publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2020.110645 – volume: 6 start-page: 755 issue: 5 year: 1992 ident: 10.1016/j.expthermflusci.2022.110789_b0180 article-title: Experiments on the hydrodynamics of air-water countercurrent flow through vertical short multitube geometries publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/0894-1777(92)90119-P – year: 1969 ident: 10.1016/j.expthermflusci.2022.110789_b0125 – volume: 371 year: 2021 ident: 10.1016/j.expthermflusci.2022.110789_b0080 article-title: Flow characteristics in vertical circular pipes with the square top end under flooding conditions publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2020.110951 – volume: 21 start-page: 87 issue: 1 year: 1966 ident: 10.1016/j.expthermflusci.2022.110789_b0185 article-title: The effect of viscosity on the flooding conditions in wetted wall columns publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(66)80009-X – volume: 26 start-page: 1457 issue: 9 year: 2000 ident: 10.1016/j.expthermflusci.2022.110789_b0140 article-title: Countercurrent gas–liquid flow in inclined and vertical ducts. Part II: the validity of the Froude-Ohnesorge number correlation for flooding publication-title: Int. J. Multiph. Flow doi: 10.1016/S0301-9322(99)00098-1 – volume: 9 start-page: 349 issue: 4 year: 1983 ident: 10.1016/j.expthermflusci.2022.110789_b0155 article-title: Air-water countercurrent annular flow publication-title: Int. J. Multiph. Flow doi: 10.1016/0301-9322(83)90093-9 – volume: 1 start-page: 56 year: 1969 ident: 10.1016/j.expthermflusci.2022.110789_b0130 article-title: Breakdown of liquid film motion in vertical tubes publication-title: Heat Transf. Sov. Res. – volume: 373 year: 2021 ident: 10.1016/j.expthermflusci.2022.110789_b0075 article-title: Effects of fluid properties on interfacial and wall friction factors under counter-current flow limitation in a vertical pipe with sharp-edged lower end publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2020.111020 – volume: 14 start-page: 238 issue: 3 year: 1993 ident: 10.1016/j.expthermflusci.2022.110789_b0015 article-title: Effects of diameter and air inlet on flooding publication-title: Nucl. Power Eng. – year: 1965 ident: 10.1016/j.expthermflusci.2022.110789_b0090 – volume: 4 start-page: 159 year: 1972 ident: 10.1016/j.expthermflusci.2022.110789_b0040 article-title: Determination of flooding rages in regular packings publication-title: Heat Trans. Soviet Res. – year: 1986 ident: 10.1016/j.expthermflusci.2022.110789_b0160 – volume: 3 start-page: 517 issue: 6 year: 1977 ident: 10.1016/j.expthermflusci.2022.110789_b0095 article-title: Behaviour of liquid films and flooding in counter-current two-phase flow. Part I, flow in circular tubes publication-title: Int. J. Multiph. Flow doi: 10.1016/0301-9322(77)90027-1 – ident: 10.1016/j.expthermflusci.2022.110789_b0045 – volume: 24 start-page: 1381 issue: 8 year: 1981 ident: 10.1016/j.expthermflusci.2022.110789_b0145 article-title: Countercurrent flow of air/water and steam/water through a horizontal perforated plate publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(81)90188-5 – volume: 5 start-page: 513 year: 1989 ident: 10.1016/j.expthermflusci.2022.110789_b0020 article-title: Flooding in vertical tubes publication-title: CIESC J. – volume: 133 start-page: 259 issue: 2 year: 1992 ident: 10.1016/j.expthermflusci.2022.110789_b0010 article-title: Downcomer and tie plate countercurrent flow in the Upper Plenum Test Facility (UPTF) publication-title: Nucl. Eng. Des. doi: 10.1016/0029-5493(92)90186-Y – volume: 22 start-page: 461 issue: 3 year: 1996 ident: 10.1016/j.expthermflusci.2022.110789_b0025 article-title: The influence of fluid properties and inlet geometry on flooding in vertical and inclined tubes publication-title: Int. J. Multiph. Flow doi: 10.1016/0301-9322(95)00076-3 – year: 1963 ident: 10.1016/j.expthermflusci.2022.110789_b0035 article-title: Flooding and associated phenomena in falling film flow in a vertical tube, UKAEA Report publication-title: AERE R-4022 – volume: 11 start-page: 741 issue: 6 year: 1985 ident: 10.1016/j.expthermflusci.2022.110789_b0100 article-title: Flooding in vertical two-phase flow publication-title: Int. J. Multiph. Flow doi: 10.1016/0301-9322(85)90022-9 – volume: 37 issue: 6 year: 2005 ident: 10.1016/j.expthermflusci.2022.110789_b0175 article-title: An experimental study on air/water countercurrent flow limitation in upper plenum with multi-hole plate publication-title: Nucl. Eng. Technol. – volume: 31 start-page: 152 issue: 2 year: 2017 ident: 10.1016/j.expthermflusci.2022.110789_b0165 article-title: Effects of fluid properties on countercurrent flow limitation in vertical pipes publication-title: Jpn. J. Multiph. Flow doi: 10.3811/jjmf.31.152 – volume: 18 start-page: 847 issue: 6 year: 1992 ident: 10.1016/j.expthermflusci.2022.110789_b0110 article-title: Prediction of the slug-to-churn flow transition in vertical two-phase publication-title: Int. J. Multiph. Flow doi: 10.1016/0301-9322(92)90063-M – volume: 53 start-page: 1821 issue: 6 year: 2021 ident: 10.1016/j.expthermflusci.2022.110789_b0150 article-title: Experimental study on air-water countercurrent flow limitation in a vertical tube based on measurement of film thickness behavior publication-title: Nucl. Eng. Technol. doi: 10.1016/j.net.2020.12.019 |
SSID | ssj0008210 |
Score | 2.398726 |
Snippet | •The countercurrent flow limitation (CCFL) of vertical pipes was experimentally studied.•The effects of pipe diameter and pipe length on the CCFL were... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110789 |
SubjectTerms | CCFL Correlation Gas–liquid flow Prediction model Vertical pipe |
Title | An experimental study on gas–liquid two-phase countercurrent flow limitations of vertical pipes |
URI | https://dx.doi.org/10.1016/j.expthermflusci.2022.110789 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008210 issn: 0894-1777 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008210 issn: 0894-1777 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-2286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008210 issn: 0894-1777 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-2286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008210 issn: 0894-1777 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008210 issn: 0894-1777 databaseCode: AKRWK dateStart: 19880101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SQfQgPrE-Sg69xrbJPhI8SCmWqtiLCr0tm2yiK-vuqi31JP4H_6G_xMnu1lbwIHhdkmyYCTNfdr_5BqEmk20WUaoI9RQjEP0Ekb6SxIWLG9dKe46y1chXQ29w61yM3NES6s1qYSytsor9ZUwvonX1pFVZs5XHceu6zYXT8QEdWloQd63stlX_gjN9_DaneXBaKBLYwcSOXkHNOcdLv-YWZj2aZAKvgNsipZYX79um77-lqYXU099A6xVmxN1yW5toSadbaG1BSXAbhd0UL4r140I2FmcpvgtfPt8_kvhpEkd4PM1Ifg-JCxc9IvSzKuWZsEmyKU5ssVP5BQ9nBhedmsGFOI9z_bKDbvtnN70BqbonEMVYe0wAaYVGSM-jXAFqA5_4wkiqtBJtHRpfRJCWmGaUGydSjgg5gCGjO9L-2DMQdnZRLc1SvYcwXKq45C4PqZBO5MFYAT4MlaOo5oyJOjqZGStQ1UZth4skmHHIHoKfpg6sqYPS1HXkfs_OS4mNP847nfkl-HFkAsgGf1ph_98rHKBV23--pHEfotr4eaKPAKWMZaM4hg203D2_HAy_ANSM7bE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5tF6mlhwraIigvH7hau9h52OqhWq1Au93HpSDtLYoduwSFJMCuliP_of-wv4RxkqWLxAGp18jjWDPWN98k8wA44arLE8Y0ZYHmFNFPUhVqRX0M3ITRJvC0q0aeTIPBpfdz5s9a0F_Vwri0ygb7a0yv0Lp50mm02SnTtPOrK6R3GiI7dGlBwg_ewYbnIya3YaM3HA2mz4AsWNWUwK2nTuA9nPxL8zIPpWNaNzZb4FswYGTMpcaHbu77a55qzfucb8GnhjaSXn2ybWiZ_DN8XGsm-AXiXk7W-_WTqnMsKXLyO77_-_gnS28XaULmy4KWV-i7SDUmwtzpukMTsVmxJJmrd6o_4pHCkmpYM1qRlGlp7r_C5fnZRX9AmwEKVHPenVMkW7GVKgiY0Ejc0CyhtIppo2XXxDaUCXombjgT1ku0J2OBfMiaU-X-7VlEnh1o50VudoFgXCWU8EXMpPKSANdKNGOsPc2M4FzuwfeVsiLdHNQNuciiVRrZdfRS1ZFTdVSreg_8Z-my7rLxRrkfK7tEL25NhA7hTTt8--8djuHD4GIyjsbD6WgfNt04-jqr-wDa87uFOUTSMldHzaV8At658Fw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+experimental+study+on+gas%E2%80%93liquid+two-phase+countercurrent+flow+limitations+of+vertical+pipes&rft.jtitle=Experimental+thermal+and+fluid+science&rft.au=Ma%2C+Youfu&rft.au=Zeng%2C+Shanshan&rft.au=Shao%2C+Jie&rft.au=Zhou%2C+Tuo&rft.date=2023-02-01&rft.issn=0894-1777&rft.volume=141&rft.spage=110789&rft_id=info:doi/10.1016%2Fj.expthermflusci.2022.110789&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_expthermflusci_2022_110789 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1777&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1777&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1777&client=summon |