An experimental study on gas–liquid two-phase countercurrent flow limitations of vertical pipes

•The countercurrent flow limitation (CCFL) of vertical pipes was experimentally studied.•The effects of pipe diameter and pipe length on the CCFL were determined by experiment.•The existing CCFL correlation models were examined based on the experimental result.•A novel dimensionless group (Kuk0.5μk*...

Full description

Saved in:
Bibliographic Details
Published inExperimental thermal and fluid science Vol. 141; p. 110789
Main Authors Ma, Youfu, Zeng, Shanshan, Shao, Jie, Zhou, Tuo, Lyu, Junfu, Li, Jingfen, Lu, Peng
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.02.2023
Subjects
Online AccessGet full text
ISSN0894-1777
1879-2286
DOI10.1016/j.expthermflusci.2022.110789

Cover

Abstract •The countercurrent flow limitation (CCFL) of vertical pipes was experimentally studied.•The effects of pipe diameter and pipe length on the CCFL were determined by experiment.•The existing CCFL correlation models were examined based on the experimental result.•A novel dimensionless group (Kuk0.5μk*0.1) was proposed for correlating diameter effect.•A new correlation predicting the diameter and length effects accurately was advanced. The gas–liquid two-phase countercurrent flow limitation (CCFL) of vertical pipes is an important subject of concern in various industries. Predicting the CCFL of vertical pipes, i.e. the flow rate relationship between the gas and liquid phases under CCFL conditions, has not yet been clearly determined on effects of the structural parameters of the pipe. In this study, a visualization experiment on the CCFL of vertical pipes was performed by using air and water as the two phases. The effects of pipe diameter and pipe length were tested in the ranges of 25–100 mm and 0.50–2.0 m, respectively. Based on the experimental result, the flow behaviors of the CCFL in vertical pipes were analyzed, and four existing CCFL correlation models were examined in their capabilities to correlate the effects of pipe diameter and pipe length. The result shows that the flow patterns in vertical pipes are essentially annular flows and annular-mist flows under CCFL conditions, and the flow behaviors on gas–liquid interface present different features as the pipe differed in diameters. Examination of the available CCFL models indicates that none of them has reached a satisfactory correlation on the effects of pipe diameter and pipe length. Consequently, based on a reasonable fluid mechanics analysis, a novel CCFL correlation model that can correlate the effects of pipe diameter and pipe length was advanced. This model provides a reasonable and accurate prediction of the CCFL of vertical pipes when the pipe varies in structural parameters, which is of great significance to the safe and efficient operation of the related equipment in nuclear power generation, natural gas extraction and chemical industries.
AbstractList •The countercurrent flow limitation (CCFL) of vertical pipes was experimentally studied.•The effects of pipe diameter and pipe length on the CCFL were determined by experiment.•The existing CCFL correlation models were examined based on the experimental result.•A novel dimensionless group (Kuk0.5μk*0.1) was proposed for correlating diameter effect.•A new correlation predicting the diameter and length effects accurately was advanced. The gas–liquid two-phase countercurrent flow limitation (CCFL) of vertical pipes is an important subject of concern in various industries. Predicting the CCFL of vertical pipes, i.e. the flow rate relationship between the gas and liquid phases under CCFL conditions, has not yet been clearly determined on effects of the structural parameters of the pipe. In this study, a visualization experiment on the CCFL of vertical pipes was performed by using air and water as the two phases. The effects of pipe diameter and pipe length were tested in the ranges of 25–100 mm and 0.50–2.0 m, respectively. Based on the experimental result, the flow behaviors of the CCFL in vertical pipes were analyzed, and four existing CCFL correlation models were examined in their capabilities to correlate the effects of pipe diameter and pipe length. The result shows that the flow patterns in vertical pipes are essentially annular flows and annular-mist flows under CCFL conditions, and the flow behaviors on gas–liquid interface present different features as the pipe differed in diameters. Examination of the available CCFL models indicates that none of them has reached a satisfactory correlation on the effects of pipe diameter and pipe length. Consequently, based on a reasonable fluid mechanics analysis, a novel CCFL correlation model that can correlate the effects of pipe diameter and pipe length was advanced. This model provides a reasonable and accurate prediction of the CCFL of vertical pipes when the pipe varies in structural parameters, which is of great significance to the safe and efficient operation of the related equipment in nuclear power generation, natural gas extraction and chemical industries.
ArticleNumber 110789
Author Lyu, Junfu
Shao, Jie
Li, Jingfen
Zeng, Shanshan
Ma, Youfu
Zhou, Tuo
Lu, Peng
Author_xml – sequence: 1
  givenname: Youfu
  surname: Ma
  fullname: Ma, Youfu
  email: imayoufu@163.com
  organization: Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
– sequence: 2
  givenname: Shanshan
  surname: Zeng
  fullname: Zeng, Shanshan
  organization: Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
– sequence: 3
  givenname: Jie
  surname: Shao
  fullname: Shao, Jie
  organization: Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
– sequence: 4
  givenname: Tuo
  surname: Zhou
  fullname: Zhou, Tuo
  organization: Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
– sequence: 5
  givenname: Junfu
  surname: Lyu
  fullname: Lyu, Junfu
  organization: Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
– sequence: 6
  givenname: Jingfen
  surname: Li
  fullname: Li, Jingfen
  organization: Shanghai Marine Diesel Engine Research Institute, Shanghai 201108, China
– sequence: 7
  givenname: Peng
  surname: Lu
  fullname: Lu, Peng
  organization: Shanghai Marine Diesel Engine Research Institute, Shanghai 201108, China
BookMark eNqNkLFOwzAURS1UJErhHzywJthOEzsSS6koIFVigdlynWfqKo2D7bR04x_4Q76EVO0CU6e3vHt077lEg8Y1gNANJSkltLhdpfDZxiX4tam7oG3KCGMppYSL8gwNqeBlwpgoBmhIRDlOKOf8Al2GsCKECEbJEKlJg3sIeLuGJqoah9hVO-wa_K7Cz9d3bT86W-G4dUm7VAGwdl0TwevO-z6ATe22uLZrG1W0rgnYGbwBH63uWa1tIVyhc6PqANfHO0Jvs4fX6VMyf3l8nk7mic4yEpMxLZQpF0XBhM6LfEEyXpoF06BLAsrwsuJUZJAxYcaVHpdK5CQ3QBf92MzwIhuh-wNXexeCByP1sVT0ytaSErmXJlfyrzS5lyYP0nrI3T9I25tRfndqfHaIQz90Y8HL_gMaDZX1oKOsnD0N9AvFD5lJ
CitedBy_id crossref_primary_10_32604_fhmt_2023_044433
crossref_primary_10_1016_j_expthermflusci_2023_111102
crossref_primary_10_3390_en16031487
crossref_primary_10_1016_j_jtice_2023_104706
crossref_primary_10_3811_jjmf_2024_020
Cites_doi 10.1016/S0301-9322(00)00045-8
10.1080/00223131.2014.990533
10.1016/j.nucengdes.2019.110223
10.1016/S0301-9322(99)00097-X
10.1115/1.4039438
10.1016/j.nucengdes.2018.01.014
10.3811/jjmf.28.345
10.3811/jjmf.30.392
10.1016/j.nucengdes.2020.110645
10.1016/0894-1777(92)90119-P
10.1016/j.nucengdes.2020.110951
10.1016/0009-2509(66)80009-X
10.1016/S0301-9322(99)00098-1
10.1016/0301-9322(83)90093-9
10.1016/j.nucengdes.2020.111020
10.1016/0301-9322(77)90027-1
10.1016/0017-9310(81)90188-5
10.1016/0029-5493(92)90186-Y
10.1016/0301-9322(95)00076-3
10.1016/0301-9322(85)90022-9
10.3811/jjmf.31.152
10.1016/0301-9322(92)90063-M
10.1016/j.net.2020.12.019
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.expthermflusci.2022.110789
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2286
ExternalDocumentID 10_1016_j_expthermflusci_2022_110789
S0894177722001856
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
ZMT
~G-
29G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SET
SEW
SSH
UHS
VH1
WUQ
XPP
ID FETCH-LOGICAL-c330t-416af9b6628c565b0379fb2cec90eaf79d7183e328f4dc49a8505fe1b0783f763
IEDL.DBID .~1
ISSN 0894-1777
IngestDate Tue Jul 01 00:38:33 EDT 2025
Thu Apr 24 23:02:21 EDT 2025
Fri Feb 23 02:36:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords CCFL
Gas–liquid flow
Correlation
Vertical pipe
Prediction model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-416af9b6628c565b0379fb2cec90eaf79d7183e328f4dc49a8505fe1b0783f763
ParticipantIDs crossref_citationtrail_10_1016_j_expthermflusci_2022_110789
crossref_primary_10_1016_j_expthermflusci_2022_110789
elsevier_sciencedirect_doi_10_1016_j_expthermflusci_2022_110789
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Experimental thermal and fluid science
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Jayanti, Hewitt (b0110) 1992; 18
Glaeser, Rohatgi (b0170) 2019; 354
Kusunoki, Murase, Takata, Tomiyama (b0115) 2014; 28
Mcquillan, Whalley, Hewitt (b0100) 1985; 11
Wallis (b0125) 1969
Suzuki, Ueda (b0095) 1977; 3
Ma, Shao, Lyu, Peng (b0120) 2020; 364
Bankoff, Lee (b0160) 1986
Kusunoki, Murase, Fujii, Nozue, Hayashi, Hosokawa, Tomiyama (b0050) 2015; 52
Hewitt, Lacey, Nicholls (b0090) 1965
G.F. Hewitt, Influence of end conditions, tube inclination and physical properties on flooding in gas–liquid flows, UKAEA Report HTFS-RS222, Harwell, England, 1977.
Murase, Kusunoki, Nishida, Goda, Tomiyama (b0060) 2018; 4
Yan, Sun, Sun (b0015) 1993; 14
Takaki, Goda, Hayashi, Murase, Tomiyama (b0080) 2021; 371
Zapke, Kröger (b0140) 2000; 26
Murase, Kusunoki, Yamamoto, Goda, Tomiyama (b0165) 2017; 31
Pushkina, Sorokin (b0130) 1969; 1
No, Lee, Song (b0175) 2005; 37
Alekseev, Poberezkin, Gerasimov (b0040) 1972; 4
Wan, Sun, Deng, Pan, Ding (b0150) 2021; 53
Clift, Pritchard, Nedderman (b0185) 1966; 21
Zapke, Kröger (b0025) 1996; 22
Glaeser (b0010) 1992; 133
Wu, Firouzi, Rufford, Towler (b0085) 2019; 9
Goda, Hayashi, Murase, Hosokawa, Tomiyama (b0070) 2019; 353
Bankoff, Tankin, Yuen, Hsieh (b0145) 1981; 24
Zapke, Kröger (b0135) 2000; 26
Peng (b0005) 1993; 14
Huang, Gu (b0020) 1989; 5
Vijayan, Jayanti, Balakrishnan (b0030) 2001; 27
Dulker, Smith (b0190) 1979
Goda, Kurimoto, Hayashi, Murase, Tomiyama (b0075) 2021; 373
K.H. Sun, T. Ueda, Flooding correlations for BWR bundle upper tie plates and bottom side-entry orifices. In: Veziroglu T.N. (Ed.), Proceedings of Multiphase Flow and Transfer Symposium Workshop. Miami Beach, Florida, (1979) 1615–1635.
Goda, Hayashi, Kirkland, Murase, Tomiyama (b0065) 2018; 328
Bharathan, Wallis (b0155) 1983; 9
Hewitt, Wallis (b0035) 1963
Yamamoto, Murase, Hayashi, Hosokawa, Tomiyama (b0055) 2016; 30
Zhang, Seynhaeve, Giot (b0180) 1992; 6
10.1016/j.expthermflusci.2022.110789_b0105
Clift (10.1016/j.expthermflusci.2022.110789_b0185) 1966; 21
Alekseev (10.1016/j.expthermflusci.2022.110789_b0040) 1972; 4
Murase (10.1016/j.expthermflusci.2022.110789_b0165) 2017; 31
Wallis (10.1016/j.expthermflusci.2022.110789_b0125) 1969
Bharathan (10.1016/j.expthermflusci.2022.110789_b0155) 1983; 9
Kusunoki (10.1016/j.expthermflusci.2022.110789_b0050) 2015; 52
10.1016/j.expthermflusci.2022.110789_b0045
Suzuki (10.1016/j.expthermflusci.2022.110789_b0095) 1977; 3
Zhang (10.1016/j.expthermflusci.2022.110789_b0180) 1992; 6
No (10.1016/j.expthermflusci.2022.110789_b0175) 2005; 37
Yamamoto (10.1016/j.expthermflusci.2022.110789_b0055) 2016; 30
Takaki (10.1016/j.expthermflusci.2022.110789_b0080) 2021; 371
Wan (10.1016/j.expthermflusci.2022.110789_b0150) 2021; 53
Ma (10.1016/j.expthermflusci.2022.110789_b0120) 2020; 364
Goda (10.1016/j.expthermflusci.2022.110789_b0075) 2021; 373
Bankoff (10.1016/j.expthermflusci.2022.110789_b0145) 1981; 24
Dulker (10.1016/j.expthermflusci.2022.110789_b0190) 1979
Vijayan (10.1016/j.expthermflusci.2022.110789_b0030) 2001; 27
Huang (10.1016/j.expthermflusci.2022.110789_b0020) 1989; 5
Zapke (10.1016/j.expthermflusci.2022.110789_b0135) 2000; 26
Hewitt (10.1016/j.expthermflusci.2022.110789_b0090) 1965
Hewitt (10.1016/j.expthermflusci.2022.110789_b0035) 1963
Goda (10.1016/j.expthermflusci.2022.110789_b0065) 2018; 328
Jayanti (10.1016/j.expthermflusci.2022.110789_b0110) 1992; 18
Zapke (10.1016/j.expthermflusci.2022.110789_b0140) 2000; 26
Pushkina (10.1016/j.expthermflusci.2022.110789_b0130) 1969; 1
Bankoff (10.1016/j.expthermflusci.2022.110789_b0160) 1986
Yan (10.1016/j.expthermflusci.2022.110789_b0015) 1993; 14
Glaeser (10.1016/j.expthermflusci.2022.110789_b0010) 1992; 133
Kusunoki (10.1016/j.expthermflusci.2022.110789_b0115) 2014; 28
Murase (10.1016/j.expthermflusci.2022.110789_b0060) 2018; 4
Wu (10.1016/j.expthermflusci.2022.110789_b0085) 2019; 9
Mcquillan (10.1016/j.expthermflusci.2022.110789_b0100) 1985; 11
Zapke (10.1016/j.expthermflusci.2022.110789_b0025) 1996; 22
Glaeser (10.1016/j.expthermflusci.2022.110789_b0170) 2019; 354
Peng (10.1016/j.expthermflusci.2022.110789_b0005) 1993; 14
Goda (10.1016/j.expthermflusci.2022.110789_b0070) 2019; 353
References_xml – year: 1963
  ident: b0035
  article-title: Flooding and associated phenomena in falling film flow in a vertical tube, UKAEA Report
  publication-title: AERE R-4022
– volume: 4
  start-page: 159
  year: 1972
  end-page: 163
  ident: b0040
  article-title: Determination of flooding rages in regular packings
  publication-title: Heat Trans. Soviet Res.
– volume: 5
  start-page: 513
  year: 1989
  end-page: 520
  ident: b0020
  article-title: Flooding in vertical tubes
  publication-title: CIESC J.
– volume: 27
  start-page: 797
  year: 2001
  end-page: 816
  ident: b0030
  article-title: Effect of tube diameter on flooding
  publication-title: Int. J. Multiph. Flow
– year: 1969
  ident: b0125
  article-title: One-dimensional two-phase flow
– volume: 53
  start-page: 1821
  year: 2021
  end-page: 1833
  ident: b0150
  article-title: Experimental study on air-water countercurrent flow limitation in a vertical tube based on measurement of film thickness behavior
  publication-title: Nucl. Eng. Technol.
– volume: 37
  year: 2005
  ident: b0175
  article-title: An experimental study on air/water countercurrent flow limitation in upper plenum with multi-hole plate
  publication-title: Nucl. Eng. Technol.
– volume: 26
  start-page: 1457
  year: 2000
  end-page: 1468
  ident: b0140
  article-title: Countercurrent gas–liquid flow in inclined and vertical ducts. Part II: the validity of the Froude-Ohnesorge number correlation for flooding
  publication-title: Int. J. Multiph. Flow
– volume: 373
  year: 2021
  ident: b0075
  article-title: Effects of fluid properties on interfacial and wall friction factors under counter-current flow limitation in a vertical pipe with sharp-edged lower end
  publication-title: Nucl. Eng. Des.
– reference: K.H. Sun, T. Ueda, Flooding correlations for BWR bundle upper tie plates and bottom side-entry orifices. In: Veziroglu T.N. (Ed.), Proceedings of Multiphase Flow and Transfer Symposium Workshop. Miami Beach, Florida, (1979) 1615–1635.
– volume: 9
  start-page: 349
  year: 1983
  end-page: 366
  ident: b0155
  article-title: Air-water countercurrent annular flow
  publication-title: Int. J. Multiph. Flow
– volume: 4
  year: 2018
  ident: b0060
  article-title: Correlation of interfacial friction coefficients for predicting countercurrent flow limitation at a sharp-edged lower end of vertical pipes
  publication-title: J. Nucl. Eng. Radiat. Sci.
– volume: 24
  start-page: 1381
  year: 1981
  end-page: 1395
  ident: b0145
  article-title: Countercurrent flow of air/water and steam/water through a horizontal perforated plate
  publication-title: Int. J. Heat Mass Transf.
– volume: 6
  start-page: 755
  year: 1992
  end-page: 769
  ident: b0180
  article-title: Experiments on the hydrodynamics of air-water countercurrent flow through vertical short multitube geometries
  publication-title: Exp. Therm. Fluid Sci.
– volume: 353
  year: 2019
  ident: b0070
  article-title: Experimental study on interfacial and wall friction factors under counter-current flow limitation in vertical pipes with sharp-edged lower ends
  publication-title: Nucl. Eng. Des.
– year: 1979
  ident: b0190
  article-title: Two-phase interactions in countercurrent flow: studies of the flooding mechanism
  publication-title: NUREG/CR-0617. Nuclear Regulatory Commission, Washington.
– year: 1965
  ident: b0090
  article-title: Transitions in film flow in a vertical flow, UKAEA Report AERE-R4614
– volume: 1
  start-page: 56
  year: 1969
  end-page: 64
  ident: b0130
  article-title: Breakdown of liquid film motion in vertical tubes
  publication-title: Heat Transf. Sov. Res.
– volume: 31
  start-page: 152
  year: 2017
  end-page: 161
  ident: b0165
  article-title: Effects of fluid properties on countercurrent flow limitation in vertical pipes
  publication-title: Jpn. J. Multiph. Flow
– volume: 14
  start-page: 238
  year: 1993
  end-page: 243
  ident: b0015
  article-title: Effects of diameter and air inlet on flooding
  publication-title: Nucl. Power Eng.
– volume: 9
  year: 2019
  ident: b0085
  article-title: Characteristics of counter-current gas-liquid two-phase flow and its limitations in vertical annuli
  publication-title: Exp. Therm. Fluid Sci.
– volume: 3
  start-page: 517
  year: 1977
  end-page: 532
  ident: b0095
  article-title: Behaviour of liquid films and flooding in counter-current two-phase flow. Part I, flow in circular tubes
  publication-title: Int. J. Multiph. Flow
– volume: 328
  start-page: 182
  year: 2018
  end-page: 187
  ident: b0065
  article-title: Semi-empirical correlation for counter-current flow limitation at the upper or lower end of sharp-edged vertical pipes
  publication-title: Nucl. Eng. Des.
– volume: 354
  year: 2019
  ident: b0170
  article-title: Scaling ability of the counter-current flow limitation (CCFL) correlations for application to reactor thermal hydraulics
  publication-title: Nucl. Eng. Des.
– volume: 371
  year: 2021
  ident: b0080
  article-title: Flow characteristics in vertical circular pipes with the square top end under flooding conditions
  publication-title: Nucl. Eng. Des.
– volume: 18
  start-page: 847
  year: 1992
  end-page: 860
  ident: b0110
  article-title: Prediction of the slug-to-churn flow transition in vertical two-phase
  publication-title: Int. J. Multiph. Flow
– volume: 133
  start-page: 259
  year: 1992
  end-page: 283
  ident: b0010
  article-title: Downcomer and tie plate countercurrent flow in the Upper Plenum Test Facility (UPTF)
  publication-title: Nucl. Eng. Des.
– volume: 364
  year: 2020
  ident: b0120
  article-title: Experimental study on the effect of diameter on gas–liquid CCFL characteristics of horizontal circular pipes
  publication-title: Nucl. Eng. Des.
– volume: 11
  start-page: 741
  year: 1985
  end-page: 760
  ident: b0100
  article-title: Flooding in vertical two-phase flow
  publication-title: Int. J. Multiph. Flow
– volume: 14
  start-page: 556
  year: 1993
  end-page: 560
  ident: b0005
  article-title: A summarization of countercurrent flow limitation experiment studies
  publication-title: Nucl. Power Eng.
– volume: 21
  start-page: 87
  year: 1966
  end-page: 95
  ident: b0185
  article-title: The effect of viscosity on the flooding conditions in wetted wall columns
  publication-title: Chem. Eng. Sci.
– volume: 22
  start-page: 461
  year: 1996
  end-page: 472
  ident: b0025
  article-title: The influence of fluid properties and inlet geometry on flooding in vertical and inclined tubes
  publication-title: Int. J. Multiph. Flow
– volume: 28
  start-page: 345
  year: 2014
  end-page: 354
  ident: b0115
  article-title: Numerical simulations of counter-current flow limitation at lower end of a vertical pipe simulating lower part of steam generator U-tubes
  publication-title: Jpn. J. Multiph. Flow
– volume: 30
  start-page: 392
  year: 2016
  end-page: 401
  ident: b0055
  article-title: Counter-current flow limitation inside vertical pipes
  publication-title: Jpn. J. Multiph. Flow
– reference: G.F. Hewitt, Influence of end conditions, tube inclination and physical properties on flooding in gas–liquid flows, UKAEA Report HTFS-RS222, Harwell, England, 1977.
– year: 1986
  ident: b0160
  article-title: A critical review of the flooding literature
– volume: 52
  start-page: 887
  year: 2015
  end-page: 896
  ident: b0050
  article-title: Effects of fluid properties on CCFL characteristics at a vertical pipe lower end
  publication-title: J. Nucl. Sci. Technol.
– volume: 26
  start-page: 1439
  year: 2000
  end-page: 1455
  ident: b0135
  article-title: Countercurrent gas–liquid flow in inclined and vertical ducts. Part I: flow patterns, pressure drop characteristics and flooding
  publication-title: Int. J. Multiph. Flow
– volume: 14
  start-page: 556
  issue: 6
  year: 1993
  ident: 10.1016/j.expthermflusci.2022.110789_b0005
  article-title: A summarization of countercurrent flow limitation experiment studies
  publication-title: Nucl. Power Eng.
– volume: 27
  start-page: 797
  issue: 5
  year: 2001
  ident: 10.1016/j.expthermflusci.2022.110789_b0030
  article-title: Effect of tube diameter on flooding
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/S0301-9322(00)00045-8
– volume: 52
  start-page: 887
  issue: 6
  year: 2015
  ident: 10.1016/j.expthermflusci.2022.110789_b0050
  article-title: Effects of fluid properties on CCFL characteristics at a vertical pipe lower end
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/00223131.2014.990533
– volume: 353
  year: 2019
  ident: 10.1016/j.expthermflusci.2022.110789_b0070
  article-title: Experimental study on interfacial and wall friction factors under counter-current flow limitation in vertical pipes with sharp-edged lower ends
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2019.110223
– volume: 26
  start-page: 1439
  issue: 9
  year: 2000
  ident: 10.1016/j.expthermflusci.2022.110789_b0135
  article-title: Countercurrent gas–liquid flow in inclined and vertical ducts. Part I: flow patterns, pressure drop characteristics and flooding
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/S0301-9322(99)00097-X
– volume: 4
  issue: 3
  year: 2018
  ident: 10.1016/j.expthermflusci.2022.110789_b0060
  article-title: Correlation of interfacial friction coefficients for predicting countercurrent flow limitation at a sharp-edged lower end of vertical pipes
  publication-title: J. Nucl. Eng. Radiat. Sci.
  doi: 10.1115/1.4039438
– volume: 9
  issue: 109
  year: 2019
  ident: 10.1016/j.expthermflusci.2022.110789_b0085
  article-title: Characteristics of counter-current gas-liquid two-phase flow and its limitations in vertical annuli
  publication-title: Exp. Therm. Fluid Sci.
– ident: 10.1016/j.expthermflusci.2022.110789_b0105
– volume: 354
  issue: 14
  year: 2019
  ident: 10.1016/j.expthermflusci.2022.110789_b0170
  article-title: Scaling ability of the counter-current flow limitation (CCFL) correlations for application to reactor thermal hydraulics
  publication-title: Nucl. Eng. Des.
– volume: 328
  start-page: 182
  year: 2018
  ident: 10.1016/j.expthermflusci.2022.110789_b0065
  article-title: Semi-empirical correlation for counter-current flow limitation at the upper or lower end of sharp-edged vertical pipes
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2018.01.014
– volume: 28
  start-page: 345
  issue: 3
  year: 2014
  ident: 10.1016/j.expthermflusci.2022.110789_b0115
  article-title: Numerical simulations of counter-current flow limitation at lower end of a vertical pipe simulating lower part of steam generator U-tubes
  publication-title: Jpn. J. Multiph. Flow
  doi: 10.3811/jjmf.28.345
– year: 1979
  ident: 10.1016/j.expthermflusci.2022.110789_b0190
  article-title: Two-phase interactions in countercurrent flow: studies of the flooding mechanism
  publication-title: NUREG/CR-0617. Nuclear Regulatory Commission, Washington.
– volume: 30
  start-page: 392
  issue: 4
  year: 2016
  ident: 10.1016/j.expthermflusci.2022.110789_b0055
  article-title: Counter-current flow limitation inside vertical pipes
  publication-title: Jpn. J. Multiph. Flow
  doi: 10.3811/jjmf.30.392
– volume: 364
  year: 2020
  ident: 10.1016/j.expthermflusci.2022.110789_b0120
  article-title: Experimental study on the effect of diameter on gas–liquid CCFL characteristics of horizontal circular pipes
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2020.110645
– volume: 6
  start-page: 755
  issue: 5
  year: 1992
  ident: 10.1016/j.expthermflusci.2022.110789_b0180
  article-title: Experiments on the hydrodynamics of air-water countercurrent flow through vertical short multitube geometries
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/0894-1777(92)90119-P
– year: 1969
  ident: 10.1016/j.expthermflusci.2022.110789_b0125
– volume: 371
  year: 2021
  ident: 10.1016/j.expthermflusci.2022.110789_b0080
  article-title: Flow characteristics in vertical circular pipes with the square top end under flooding conditions
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2020.110951
– volume: 21
  start-page: 87
  issue: 1
  year: 1966
  ident: 10.1016/j.expthermflusci.2022.110789_b0185
  article-title: The effect of viscosity on the flooding conditions in wetted wall columns
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(66)80009-X
– volume: 26
  start-page: 1457
  issue: 9
  year: 2000
  ident: 10.1016/j.expthermflusci.2022.110789_b0140
  article-title: Countercurrent gas–liquid flow in inclined and vertical ducts. Part II: the validity of the Froude-Ohnesorge number correlation for flooding
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/S0301-9322(99)00098-1
– volume: 9
  start-page: 349
  issue: 4
  year: 1983
  ident: 10.1016/j.expthermflusci.2022.110789_b0155
  article-title: Air-water countercurrent annular flow
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/0301-9322(83)90093-9
– volume: 1
  start-page: 56
  year: 1969
  ident: 10.1016/j.expthermflusci.2022.110789_b0130
  article-title: Breakdown of liquid film motion in vertical tubes
  publication-title: Heat Transf. Sov. Res.
– volume: 373
  year: 2021
  ident: 10.1016/j.expthermflusci.2022.110789_b0075
  article-title: Effects of fluid properties on interfacial and wall friction factors under counter-current flow limitation in a vertical pipe with sharp-edged lower end
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2020.111020
– volume: 14
  start-page: 238
  issue: 3
  year: 1993
  ident: 10.1016/j.expthermflusci.2022.110789_b0015
  article-title: Effects of diameter and air inlet on flooding
  publication-title: Nucl. Power Eng.
– year: 1965
  ident: 10.1016/j.expthermflusci.2022.110789_b0090
– volume: 4
  start-page: 159
  year: 1972
  ident: 10.1016/j.expthermflusci.2022.110789_b0040
  article-title: Determination of flooding rages in regular packings
  publication-title: Heat Trans. Soviet Res.
– year: 1986
  ident: 10.1016/j.expthermflusci.2022.110789_b0160
– volume: 3
  start-page: 517
  issue: 6
  year: 1977
  ident: 10.1016/j.expthermflusci.2022.110789_b0095
  article-title: Behaviour of liquid films and flooding in counter-current two-phase flow. Part I, flow in circular tubes
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/0301-9322(77)90027-1
– ident: 10.1016/j.expthermflusci.2022.110789_b0045
– volume: 24
  start-page: 1381
  issue: 8
  year: 1981
  ident: 10.1016/j.expthermflusci.2022.110789_b0145
  article-title: Countercurrent flow of air/water and steam/water through a horizontal perforated plate
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(81)90188-5
– volume: 5
  start-page: 513
  year: 1989
  ident: 10.1016/j.expthermflusci.2022.110789_b0020
  article-title: Flooding in vertical tubes
  publication-title: CIESC J.
– volume: 133
  start-page: 259
  issue: 2
  year: 1992
  ident: 10.1016/j.expthermflusci.2022.110789_b0010
  article-title: Downcomer and tie plate countercurrent flow in the Upper Plenum Test Facility (UPTF)
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/0029-5493(92)90186-Y
– volume: 22
  start-page: 461
  issue: 3
  year: 1996
  ident: 10.1016/j.expthermflusci.2022.110789_b0025
  article-title: The influence of fluid properties and inlet geometry on flooding in vertical and inclined tubes
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/0301-9322(95)00076-3
– year: 1963
  ident: 10.1016/j.expthermflusci.2022.110789_b0035
  article-title: Flooding and associated phenomena in falling film flow in a vertical tube, UKAEA Report
  publication-title: AERE R-4022
– volume: 11
  start-page: 741
  issue: 6
  year: 1985
  ident: 10.1016/j.expthermflusci.2022.110789_b0100
  article-title: Flooding in vertical two-phase flow
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/0301-9322(85)90022-9
– volume: 37
  issue: 6
  year: 2005
  ident: 10.1016/j.expthermflusci.2022.110789_b0175
  article-title: An experimental study on air/water countercurrent flow limitation in upper plenum with multi-hole plate
  publication-title: Nucl. Eng. Technol.
– volume: 31
  start-page: 152
  issue: 2
  year: 2017
  ident: 10.1016/j.expthermflusci.2022.110789_b0165
  article-title: Effects of fluid properties on countercurrent flow limitation in vertical pipes
  publication-title: Jpn. J. Multiph. Flow
  doi: 10.3811/jjmf.31.152
– volume: 18
  start-page: 847
  issue: 6
  year: 1992
  ident: 10.1016/j.expthermflusci.2022.110789_b0110
  article-title: Prediction of the slug-to-churn flow transition in vertical two-phase
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/0301-9322(92)90063-M
– volume: 53
  start-page: 1821
  issue: 6
  year: 2021
  ident: 10.1016/j.expthermflusci.2022.110789_b0150
  article-title: Experimental study on air-water countercurrent flow limitation in a vertical tube based on measurement of film thickness behavior
  publication-title: Nucl. Eng. Technol.
  doi: 10.1016/j.net.2020.12.019
SSID ssj0008210
Score 2.398726
Snippet •The countercurrent flow limitation (CCFL) of vertical pipes was experimentally studied.•The effects of pipe diameter and pipe length on the CCFL were...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110789
SubjectTerms CCFL
Correlation
Gas–liquid flow
Prediction model
Vertical pipe
Title An experimental study on gas–liquid two-phase countercurrent flow limitations of vertical pipes
URI https://dx.doi.org/10.1016/j.expthermflusci.2022.110789
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008210
  issn: 0894-1777
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008210
  issn: 0894-1777
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-2286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008210
  issn: 0894-1777
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-2286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008210
  issn: 0894-1777
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008210
  issn: 0894-1777
  databaseCode: AKRWK
  dateStart: 19880101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SQfQgPrE-Sg69xrbJPhI8SCmWqtiLCr0tm2yiK-vuqi31JP4H_6G_xMnu1lbwIHhdkmyYCTNfdr_5BqEmk20WUaoI9RQjEP0Ekb6SxIWLG9dKe46y1chXQ29w61yM3NES6s1qYSytsor9ZUwvonX1pFVZs5XHceu6zYXT8QEdWloQd63stlX_gjN9_DaneXBaKBLYwcSOXkHNOcdLv-YWZj2aZAKvgNsipZYX79um77-lqYXU099A6xVmxN1yW5toSadbaG1BSXAbhd0UL4r140I2FmcpvgtfPt8_kvhpEkd4PM1Ifg-JCxc9IvSzKuWZsEmyKU5ssVP5BQ9nBhedmsGFOI9z_bKDbvtnN70BqbonEMVYe0wAaYVGSM-jXAFqA5_4wkiqtBJtHRpfRJCWmGaUGydSjgg5gCGjO9L-2DMQdnZRLc1SvYcwXKq45C4PqZBO5MFYAT4MlaOo5oyJOjqZGStQ1UZth4skmHHIHoKfpg6sqYPS1HXkfs_OS4mNP847nfkl-HFkAsgGf1ph_98rHKBV23--pHEfotr4eaKPAKWMZaM4hg203D2_HAy_ANSM7bE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5tF6mlhwraIigvH7hau9h52OqhWq1Au93HpSDtLYoduwSFJMCuliP_of-wv4RxkqWLxAGp18jjWDPWN98k8wA44arLE8Y0ZYHmFNFPUhVqRX0M3ITRJvC0q0aeTIPBpfdz5s9a0F_Vwri0ygb7a0yv0Lp50mm02SnTtPOrK6R3GiI7dGlBwg_ewYbnIya3YaM3HA2mz4AsWNWUwK2nTuA9nPxL8zIPpWNaNzZb4FswYGTMpcaHbu77a55qzfucb8GnhjaSXn2ybWiZ_DN8XGsm-AXiXk7W-_WTqnMsKXLyO77_-_gnS28XaULmy4KWV-i7SDUmwtzpukMTsVmxJJmrd6o_4pHCkmpYM1qRlGlp7r_C5fnZRX9AmwEKVHPenVMkW7GVKgiY0Ejc0CyhtIppo2XXxDaUCXombjgT1ku0J2OBfMiaU-X-7VlEnh1o50VudoFgXCWU8EXMpPKSANdKNGOsPc2M4FzuwfeVsiLdHNQNuciiVRrZdfRS1ZFTdVSreg_8Z-my7rLxRrkfK7tEL25NhA7hTTt8--8djuHD4GIyjsbD6WgfNt04-jqr-wDa87uFOUTSMldHzaV8At658Fw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+experimental+study+on+gas%E2%80%93liquid+two-phase+countercurrent+flow+limitations+of+vertical+pipes&rft.jtitle=Experimental+thermal+and+fluid+science&rft.au=Ma%2C+Youfu&rft.au=Zeng%2C+Shanshan&rft.au=Shao%2C+Jie&rft.au=Zhou%2C+Tuo&rft.date=2023-02-01&rft.issn=0894-1777&rft.volume=141&rft.spage=110789&rft_id=info:doi/10.1016%2Fj.expthermflusci.2022.110789&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_expthermflusci_2022_110789
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1777&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1777&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1777&client=summon