On shifted Jacobi spectral approximations for solving fractional differential equations

► A new formula of fractional-order derivatives of shifted Jacobi polynomials is proved. ► A Jacobi spectral tau approximation for solving linear FDEs with constant coefficients is proposed. ► A quadrature tau approximation is shown for linear FDEs with variable coefficients. ► A Jacobi collocation...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and computation Vol. 219; no. 15; pp. 8042 - 8056
Main Authors Doha, E.H., Bhrawy, A.H., Baleanu, D., Ezz-Eldien, S.S.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.04.2013
Subjects
Online AccessGet full text
ISSN0096-3003
1873-5649
DOI10.1016/j.amc.2013.01.051

Cover

Abstract ► A new formula of fractional-order derivatives of shifted Jacobi polynomials is proved. ► A Jacobi spectral tau approximation for solving linear FDEs with constant coefficients is proposed. ► A quadrature tau approximation is shown for linear FDEs with variable coefficients. ► A Jacobi collocation method for nonlinear multi-order FDEs is introduced. ► The advantages of using the proposed algorithms are discussed. In this paper, a new formula of Caputo fractional-order derivatives of shifted Jacobi polynomials of any degree in terms of shifted Jacobi polynomials themselves is proved. We discuss a direct solution technique for linear multi-order fractional differential equations (FDEs) subject to nonhomogeneous initial conditions using a shifted Jacobi tau approximation. A quadrature shifted Jacobi tau (Q-SJT) approximation is introduced for the solution of linear multi-order FDEs with variable coefficients. We also propose a shifted Jacobi collocation technique for solving nonlinear multi-order fractional initial value problems. The advantages of using the proposed techniques are discussed and we compare them with other existing methods. We investigate some illustrative examples of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques.
AbstractList ► A new formula of fractional-order derivatives of shifted Jacobi polynomials is proved. ► A Jacobi spectral tau approximation for solving linear FDEs with constant coefficients is proposed. ► A quadrature tau approximation is shown for linear FDEs with variable coefficients. ► A Jacobi collocation method for nonlinear multi-order FDEs is introduced. ► The advantages of using the proposed algorithms are discussed. In this paper, a new formula of Caputo fractional-order derivatives of shifted Jacobi polynomials of any degree in terms of shifted Jacobi polynomials themselves is proved. We discuss a direct solution technique for linear multi-order fractional differential equations (FDEs) subject to nonhomogeneous initial conditions using a shifted Jacobi tau approximation. A quadrature shifted Jacobi tau (Q-SJT) approximation is introduced for the solution of linear multi-order FDEs with variable coefficients. We also propose a shifted Jacobi collocation technique for solving nonlinear multi-order fractional initial value problems. The advantages of using the proposed techniques are discussed and we compare them with other existing methods. We investigate some illustrative examples of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques.
In this paper, a new formula of Caputo fractional-order derivatives of shifted Jacobi polynomials of any degree in terms of shifted Jacobi polynomials themselves is proved. We discuss a direct solution technique for linear multi-order fractional differential equations (FDEs) subject to nonhomogeneous initial conditions using a shifted Jacobi tau approximation. A quadrature shifted Jacobi tau (Q-SJT) approximation is introduced for the solution of linear multi-order FDEs with variable coefficients. We also propose a shifted Jacobi collocation technique for solving nonlinear multi-order fractional initial value problems. The advantages of using the proposed techniques are discussed and we compare them with other existing methods. We investigate some illustrative examples of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques.
Author Baleanu, D.
Doha, E.H.
Ezz-Eldien, S.S.
Bhrawy, A.H.
Author_xml – sequence: 1
  givenname: E.H.
  surname: Doha
  fullname: Doha, E.H.
  email: eiddoha@frcu.eun.eg
  organization: Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt
– sequence: 2
  givenname: A.H.
  surname: Bhrawy
  fullname: Bhrawy, A.H.
  email: alibhrawy@yahoo.co.uk
  organization: Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
– sequence: 3
  givenname: D.
  surname: Baleanu
  fullname: Baleanu, D.
  email: dumitru@cankaya.edu.tr
  organization: Department of Mathematics and Computer Science, Faculty of Arts and Science, Cankaya University, Ankara, Turkey
– sequence: 4
  givenname: S.S.
  surname: Ezz-Eldien
  fullname: Ezz-Eldien, S.S.
  email: s_sezeldien@yahoo.com
  organization: Department of Basic Science, Institute of Information Technology, Modern Academy, Cairo, Egypt
BookMark eNp9kD1PwzAQhi1UJErhB7BlZEm4q52kEROq-FSlLiBGy7Ev4CqNWzut4N_jEiaGejn59D6nu-ecjTrXEWNXCBkCFjerTK11NgXkGWAGOZ6wMc5KnuaFqEZsDFAVKQfgZ-w8hBUAlAWKMXtfdkn4tE1PJnlR2tU2CRvSvVdtojYb777sWvXWdSFpnE-Ca_e2-0gar_ShG1PGNg156nobP7TdDekLdtqoNtDlX52wt4f71_lTulg-Ps_vFqnmHPqUG4Jc1SAK4gQoKNfGVEqJ-LDhoq5nyKtaVVqhyBFVJWbG5EbX1RQKyvmEXQ9z46rbHYVerm3Q1LaqI7cLEosS-YwLrGK0HKLauxA8NVLb_nfbeK1tJYI8qJQrGVXKg0oJKKPKSOI_cuOjFv99lLkdGIrX7y15GbSlTpOxPvqVxtkj9A9QeY-v
CitedBy_id crossref_primary_10_1186_1687_1847_2014_231
crossref_primary_10_3390_fractalfract7030240
crossref_primary_10_1016_j_cam_2016_04_003
crossref_primary_10_1109_TFUZZ_2016_2554156
crossref_primary_10_1142_S0218348X22402307
crossref_primary_10_3934_math_2022730
crossref_primary_10_1016_j_cam_2015_01_021
crossref_primary_10_1140_epjp_i2014_14260_6
crossref_primary_10_1016_j_amc_2014_08_031
crossref_primary_10_1007_s10092_014_0132_x
crossref_primary_10_1002_mma_5545
crossref_primary_10_1016_j_camwa_2023_03_017
crossref_primary_10_1007_s00009_015_0563_x
crossref_primary_10_1080_00207160_2015_1119270
crossref_primary_10_1016_j_amc_2016_02_044
crossref_primary_10_1177_1077546316688608
crossref_primary_10_1016_j_apm_2015_06_012
crossref_primary_10_1007_s40314_023_02475_8
crossref_primary_10_1155_2013_741278
crossref_primary_10_1007_s40314_023_02287_w
crossref_primary_10_3934_math_2022789
crossref_primary_10_1155_2013_760542
crossref_primary_10_1016_j_jocs_2020_101220
crossref_primary_10_1080_00036811_2016_1167879
crossref_primary_10_1007_s11071_015_2232_9
crossref_primary_10_1186_s13662_018_1811_8
crossref_primary_10_1177_1077546315573916
crossref_primary_10_1155_2013_304739
crossref_primary_10_2298_FIL2330383A
crossref_primary_10_3390_app8060960
crossref_primary_10_1155_2013_546502
crossref_primary_10_1177_1077546314543727
crossref_primary_10_1155_2013_176730
crossref_primary_10_1007_s40314_017_0522_1
crossref_primary_10_1016_j_cnsns_2015_06_028
crossref_primary_10_1142_S1793524518501152
crossref_primary_10_1007_s11042_020_10356_z
crossref_primary_10_1186_s13662_016_0929_9
crossref_primary_10_1016_j_renene_2014_09_045
crossref_primary_10_1155_2014_706296
crossref_primary_10_3390_fractalfract7110777
crossref_primary_10_1155_2014_626275
crossref_primary_10_1002_mma_4463
crossref_primary_10_1155_2013_413529
crossref_primary_10_1155_2014_295936
crossref_primary_10_1007_s40819_021_01115_1
crossref_primary_10_1016_j_joems_2016_10_002
crossref_primary_10_1155_2013_306746
crossref_primary_10_1002_mma_3619
crossref_primary_10_1007_s10092_015_0160_1
Cites_doi 10.1016/j.jmaa.2011.12.055
10.1016/j.amc.2010.03.063
10.1016/j.amc.2012.10.082
10.1016/j.aml.2011.06.016
10.1007/BF02259906
10.1016/j.aml.2010.02.007
10.1016/j.apm.2011.12.031
10.1088/1751-8113/43/38/385209
10.1016/S0096-3003(03)00739-2
10.1115/1.3167615
10.1049/ip-vis:20000273
10.1016/j.aml.2010.04.049
10.1016/j.camwa.2010.09.044
10.1155/2011/687363
10.1186/1687-2770-2012-62
10.1186/1687-1847-2012-204
10.1016/j.cnsns.2011.04.025
10.1016/j.apm.2011.05.011
10.2478/s13540-013-0002-2
10.1016/j.cam.2012.08.018
10.1002/mma.1545
10.1016/j.camwa.2011.07.024
10.1016/S0096-3003(01)00167-9
10.1155/2012/542401
10.1016/j.camwa.2009.08.030
10.2478/s13540-012-0028-x
10.1088/0305-4470/37/3/010
10.3182/20130204-3-FR-4032.00208
10.1016/j.cnsns.2007.09.014
10.1016/j.jat.2004.03.008
10.1016/j.camwa.2009.07.006
10.1016/j.chaos.2006.06.041
10.1142/8180
10.1016/j.sigpro.2006.02.007
10.1016/j.camwa.2010.10.045
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Copyright_xml – notice: 2013 Elsevier Inc.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.amc.2013.01.051
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 8056
ExternalDocumentID 10_1016_j_amc_2013_01_051
S009630031300091X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
SEW
TAE
VH1
VOH
WUQ
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c330t-3de05ab046e3e014e5cdd9aa44441f34bb8139ba9ca14511a948dd5dcb9206e53
IEDL.DBID .~1
ISSN 0096-3003
IngestDate Sat Sep 27 18:14:38 EDT 2025
Thu Apr 24 23:10:27 EDT 2025
Wed Oct 01 04:43:31 EDT 2025
Fri Feb 23 02:27:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Multi-term fractional differential equations
Shifted Jacobi polynomials
Jacobi–Gauss–Lobatto quadrature
Caputo derivative
Spectral methods
Nonlinear fractional initial value problems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-3de05ab046e3e014e5cdd9aa44441f34bb8139ba9ca14511a948dd5dcb9206e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671383419
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_1671383419
crossref_citationtrail_10_1016_j_amc_2013_01_051
crossref_primary_10_1016_j_amc_2013_01_051
elsevier_sciencedirect_doi_10_1016_j_amc_2013_01_051
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied mathematics and computation
PublicationYear 2013
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Diethelm, Ford (b0055) 2004; 154
D.Y. Liu, T.M. Laleg-Kirati, O. Gibaru, Fractional order differentiation by integration: an application to fractional linear systems, in: 6th IFAC Workshop on Fractional Differentiation and its Applications, 2013.
Doha, Bhrawy, Ezz-Eldien (b0070) 2011; 62
Szegö (b0225) 1985; 23
Bagley, Torvik (b0010) 1984; 51
Odibat, Momani (b0185) 2008; 36
Zhang, Liu, Wu, Lu (b0245) 2013; 219
Kumer, Agrawal (b0145) 2006; 84
Liu, Meerschaert, McGough, Zhuang, Liu (b0160) 2013; 16
Guo (b0085) 1998
Yuzbasi (b0240) 2012
Baleanu, Diethelm, Scalas, Trujillo (b0025) 2012
Yanga, Xiao, Su (b0230) 2010; 60
Ansari, Refahi Sheikhani, Saberi Najafi (b0005) 2012; 35
Baleanu, Mustafa, Agarwal (b0015) 2010; 23
Baleanu, Mustafa, Agarwal (b0020) 2010; 43
Guo, Wang (b0090) 2004; 128
Oldham, Spanier (b0190) 1974
Kadem, Baleanu (b0130) 2010; 59
Khan, Diblik, Faraz, Smarda (b0135) 2012; 2012
Fornberg (b0080) 1998
Deng, Ma (b0050) 2010; 23
Bhrawy, Alofi, Ezz-Eldien (b0030) 2011; 24
Canuto, Hussaini, Quarteroni, Zang (b0045) 1988
Heydari, Hooshmandasl, Maalek Ghaini, Mohammadi (b0105) 2012; 2012
Ortiz, Samara (b0200) 1983; 31
Kilbas, Srivastava, Trujillo (b0140) 2006
Sabatier, Nguyen, Farges, Deletage, Moreau, Guillemard, Bavoux (b0235) 2011; 2011
Ortigueira (b0195) 2000; 147
Doha, Bhrawy, Ezz-Eldien (b0065) 2011; 35
Miller, Ross (b0180) 1993
Hilfer (b0110) 2000
Doha, Bhrawy, Ezzeldeen (b0075) 2012; 36
Li, Zeng, Liu (b0155) 2012; 15
Luke (b0170) 1969; vol. 2
Jiang, Ding (b0120) 2013; 238
Doha (b0060) 2004; 37
Jiang, Liu, Turner, Burrage (b0125) 2012; 389
Magin (b0175) 2006
Hashim, Abdulaziz, Momani (b0100) 2009; 14
Bhrawy, Alghamdi (b0040) 2012; 2012
Li, Zhao (b0150) 2010; 216
Shawagfeh (b0220) 2002; 131
Jaradat, Awawdeh, Rawashdeh (b0115) 2010; 26
Bhrawy, Alofi (b0035) 2012; 17
Podlubny (b0210) 1999
Petras (b0205) 2011
Saadatmandi, Dehghan (b0215) 2010; 59
Gupta, Singh (b0095) 2011; 61
Bhrawy (10.1016/j.amc.2013.01.051_b0040) 2012; 2012
Ortiz (10.1016/j.amc.2013.01.051_b0200) 1983; 31
Fornberg (10.1016/j.amc.2013.01.051_b0080) 1998
10.1016/j.amc.2013.01.051_b0165
Podlubny (10.1016/j.amc.2013.01.051_b0210) 1999
Li (10.1016/j.amc.2013.01.051_b0150) 2010; 216
Baleanu (10.1016/j.amc.2013.01.051_b0020) 2010; 43
Miller (10.1016/j.amc.2013.01.051_b0180) 1993
Diethelm (10.1016/j.amc.2013.01.051_b0055) 2004; 154
Szegö (10.1016/j.amc.2013.01.051_b0225) 1985; 23
Kadem (10.1016/j.amc.2013.01.051_b0130) 2010; 59
Odibat (10.1016/j.amc.2013.01.051_b0185) 2008; 36
Heydari (10.1016/j.amc.2013.01.051_b0105) 2012; 2012
Jiang (10.1016/j.amc.2013.01.051_b0125) 2012; 389
Liu (10.1016/j.amc.2013.01.051_b0160) 2013; 16
Zhang (10.1016/j.amc.2013.01.051_b0245) 2013; 219
Bhrawy (10.1016/j.amc.2013.01.051_b0030) 2011; 24
Canuto (10.1016/j.amc.2013.01.051_b0045) 1988
Hashim (10.1016/j.amc.2013.01.051_b0100) 2009; 14
Jaradat (10.1016/j.amc.2013.01.051_b0115) 2010; 26
Ortigueira (10.1016/j.amc.2013.01.051_b0195) 2000; 147
Guo (10.1016/j.amc.2013.01.051_b0090) 2004; 128
Baleanu (10.1016/j.amc.2013.01.051_b0025) 2012
Doha (10.1016/j.amc.2013.01.051_b0065) 2011; 35
Guo (10.1016/j.amc.2013.01.051_b0085) 1998
Jiang (10.1016/j.amc.2013.01.051_b0120) 2013; 238
Bhrawy (10.1016/j.amc.2013.01.051_b0035) 2012; 17
Li (10.1016/j.amc.2013.01.051_b0155) 2012; 15
Ansari (10.1016/j.amc.2013.01.051_b0005) 2012; 35
Shawagfeh (10.1016/j.amc.2013.01.051_b0220) 2002; 131
Doha (10.1016/j.amc.2013.01.051_b0070) 2011; 62
Magin (10.1016/j.amc.2013.01.051_b0175) 2006
Yanga (10.1016/j.amc.2013.01.051_b0230) 2010; 60
Yuzbasi (10.1016/j.amc.2013.01.051_b0240) 2012
Gupta (10.1016/j.amc.2013.01.051_b0095) 2011; 61
Hilfer (10.1016/j.amc.2013.01.051_b0110) 2000
Kumer (10.1016/j.amc.2013.01.051_b0145) 2006; 84
Doha (10.1016/j.amc.2013.01.051_b0060) 2004; 37
Doha (10.1016/j.amc.2013.01.051_b0075) 2012; 36
Baleanu (10.1016/j.amc.2013.01.051_b0015) 2010; 23
Sabatier (10.1016/j.amc.2013.01.051_b0235) 2011; 2011
Luke (10.1016/j.amc.2013.01.051_b0170) 1969; vol. 2
Khan (10.1016/j.amc.2013.01.051_b0135) 2012; 2012
Deng (10.1016/j.amc.2013.01.051_b0050) 2010; 23
Petras (10.1016/j.amc.2013.01.051_b0205) 2011
Kilbas (10.1016/j.amc.2013.01.051_b0140) 2006
Saadatmandi (10.1016/j.amc.2013.01.051_b0215) 2010; 59
Bagley (10.1016/j.amc.2013.01.051_b0010) 1984; 51
Oldham (10.1016/j.amc.2013.01.051_b0190) 1974
References_xml – volume: 17
  start-page: 62
  year: 2012
  end-page: 70
  ident: b0035
  article-title: A Jacobi–Gauss collocation method for solving nonlinear Lane–Emden type equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 23
  start-page: 1129
  year: 2010
  end-page: 1132
  ident: b0015
  article-title: An existence result for a superlinear fractional differential equation
  publication-title: Appl. Math. Lett.
– year: 2012
  ident: b0025
  article-title: Fractional calculus models and numerical methods
  publication-title: Series on Complexity, Nonlinearity and Chaos
– volume: 16
  start-page: 9
  year: 2013
  end-page: 25
  ident: b0160
  article-title: Numerical methods for solving the multi-term time-fractional wave-diffusion equations
  publication-title: Fract. Calc. Appl. Anal.
– volume: 36
  start-page: 167
  year: 2008
  end-page: 174
  ident: b0185
  article-title: Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order
  publication-title: Chaos Solitons Fract.
– volume: 147
  start-page: 71
  year: 2000
  end-page: 78
  ident: b0195
  article-title: Introduction to fraction linear systems. Part 2: discrete-time case
  publication-title: IEE Proceedings Vision, Image, Signal Processing
– volume: vol. 2
  year: 1969
  ident: b0170
  publication-title: The Special Functions and Their Approximations
– volume: 36
  start-page: 4931
  year: 2012
  end-page: 4943
  ident: b0075
  article-title: A new Jacobi operational matrix: an application for solving fractional differential equation
  publication-title: Appl. Math. Modell.
– year: 1974
  ident: b0190
  article-title: The Fractional Calculus
– volume: 15
  start-page: 383
  year: 2012
  end-page: 406
  ident: b0155
  article-title: Spectral approximations to the fractional integral and derivative
  publication-title: Fract. Calc. Appl. Anal.
– volume: 35
  start-page: 119
  year: 2012
  end-page: 123
  ident: b0005
  article-title: Solution to system of partial fractional differential equations using the fractional exponential operators
  publication-title: Math. Methods Appl. Sci.
– year: 2000
  ident: b0110
  article-title: Applications of Fractional Calculus in Physics
– year: 1993
  ident: b0180
  article-title: An Introduction to the Fractional Calaulus and Fractional Differential Equations
– volume: 60
  start-page: 2871
  year: 2010
  end-page: 2879
  ident: b0230
  article-title: Convergence of the variational iteration method for solving multi-order fractional differential equations
  publication-title: Comput. Math. Appl.
– volume: 219
  start-page: 4680
  year: 2013
  end-page: 4691
  ident: b0245
  article-title: The iterative solutions of nonlinear fractional differential equations
  publication-title: Appl. Math. Comput.
– volume: 31
  start-page: 95
  year: 1983
  end-page: 103
  ident: b0200
  article-title: Numerical solutions of differential eigenvalues problems with with an operational approach to the Tau method
  publication-title: Computing
– volume: 131
  start-page: 517
  year: 2002
  end-page: 529
  ident: b0220
  article-title: Analytical approximate solutions for nonlinear fractional differential equations
  publication-title: Appl. Math. Comput.
– volume: 14
  start-page: 674
  year: 2009
  end-page: 684
  ident: b0100
  article-title: Homotopy analysis method for fractional IVPs
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– year: 2006
  ident: b0175
  article-title: Fractional Calculus in Bioengineering
– year: 2011
  ident: b0205
  article-title: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation
– volume: 24
  start-page: 2146
  year: 2011
  end-page: 2152
  ident: b0030
  article-title: A quadrature tau method for variable coefficients fractional differential equations
  publication-title: Appl. Math. Lett.
– reference: D.Y. Liu, T.M. Laleg-Kirati, O. Gibaru, Fractional order differentiation by integration: an application to fractional linear systems, in: 6th IFAC Workshop on Fractional Differentiation and its Applications, 2013.
– volume: 59
  start-page: 1326
  year: 2010
  end-page: 1336
  ident: b0215
  article-title: A new operational matrix for solving fractional-order differential equations
  publication-title: Comput. Math. Appl.
– volume: 154
  start-page: 621
  year: 2004
  end-page: 640
  ident: b0055
  article-title: Multi-order fractional differential equations and their numerical solutions
  publication-title: Appl. Math. Comput.
– volume: 35
  start-page: 5662
  year: 2011
  end-page: 5672
  ident: b0065
  article-title: Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations
  publication-title: Appl. Math. Modell.
– volume: 37
  start-page: 657
  year: 2004
  end-page: 675
  ident: b0060
  article-title: On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials
  publication-title: J. Phys. A: Math. Gen.
– volume: 51
  start-page: 294
  year: 1984
  end-page: 298
  ident: b0010
  article-title: On the appearance of the fractional derivative in the behaviour of real materials
  publication-title: J. Appl. Mech.
– volume: 23
  year: 1985
  ident: b0225
  article-title: Orthogonal polynomials
  publication-title: Am. Math. Soc. Colloq. Pub.
– volume: 2011
  year: 2011
  ident: b0235
  article-title: Fractional models for thermal modeling and temperature estimation of a transistor junction
  publication-title: Adv. Difference Equ.
– volume: 128
  start-page: 1
  year: 2004
  end-page: 41
  ident: b0090
  article-title: Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces
  publication-title: J. Approximation Theory
– year: 1988
  ident: b0045
  article-title: Spectral Methods in Fluid Dynamics
– volume: 23
  start-page: 676
  year: 2010
  end-page: 680
  ident: b0050
  article-title: Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations
  publication-title: Appl. Math. Lett.
– volume: 61
  start-page: 250
  year: 2011
  end-page: 254
  ident: b0095
  article-title: Homotopy perturbation method for fractional Fornberg–Whitham equation
  publication-title: Comput. Math. Appl.
– year: 1998
  ident: b0080
  article-title: A Practical Guide to Pseudospectral Methods
– volume: 2012
  start-page: 19
  year: 2012
  ident: b0105
  article-title: Wavelet collocation method for solving multi-order fractional differential equations
  publication-title: J. Appl. Math.
– volume: 2012
  start-page: 204
  year: 2012
  ident: b0135
  article-title: An efficient new perturbative Laplace method for space–time fractional telegraph equations
  publication-title: Adv. Difference Equ.
– volume: 43
  start-page: 385209
  year: 2010
  ident: b0020
  article-title: On the solution set for a class of sequential fractional differential equations
  publication-title: J. Phys. A: Math. Theory
– year: 1999
  ident: b0210
  article-title: Fractional Differential Equations
– volume: 62
  start-page: 2364
  year: 2011
  end-page: 2373
  ident: b0070
  article-title: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order
  publication-title: Comput. Math. Appl.
– year: 2012
  ident: b0240
  article-title: Numerical solution of the Bagley–Torvik equation by the Bessel collocation method
  publication-title: Math. Methods Appl. Sci.
– volume: 59
  start-page: 1865
  year: 2010
  end-page: 1873
  ident: b0130
  article-title: Fractional radiative transfer equation within Chebyshev spectral approach
  publication-title: Comput. Math. Appl.
– volume: 84
  start-page: 2602
  year: 2006
  end-page: 2610
  ident: b0145
  article-title: An approximate method for numerical solution of fractional differential equations
  publication-title: Signal Process.
– volume: 238
  start-page: 51
  year: 2013
  end-page: 67
  ident: b0120
  article-title: Waveform relaxation methods for fractional differential equations with the Caputo derivatives
  publication-title: J. Comput. Appl. Math.
– volume: 2012
  start-page: 62
  year: 2012
  ident: b0040
  article-title: A shifted Jacobi–Gauss–Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals
  publication-title: Boundary Value Prob.
– year: 1998
  ident: b0085
  article-title: Spectral Methods and Their Applications
– year: 2006
  ident: b0140
  article-title: Theory and Applications of Fractional Differential Equations
– volume: 216
  start-page: 2276
  year: 2010
  end-page: 2285
  ident: b0150
  article-title: Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations
  publication-title: Appl. Math. Comput.
– volume: 389
  start-page: 1117
  year: 2012
  end-page: 1127
  ident: b0125
  article-title: Analytical solutions for the multi-term time–space Caputo–Riesz fractional advection–diffusion equations on a finite domain
  publication-title: J. Math. Anal. Appl.
– volume: 26
  start-page: 305
  year: 2010
  end-page: 320
  ident: b0115
  article-title: An analytical scheme for multi-order fractional differential equations
  publication-title: Tamsui Oxford J. Math. Sci.
– volume: 389
  start-page: 1117
  year: 2012
  ident: 10.1016/j.amc.2013.01.051_b0125
  article-title: Analytical solutions for the multi-term time–space Caputo–Riesz fractional advection–diffusion equations on a finite domain
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2011.12.055
– volume: vol. 2
  year: 1969
  ident: 10.1016/j.amc.2013.01.051_b0170
– year: 1998
  ident: 10.1016/j.amc.2013.01.051_b0080
– volume: 216
  start-page: 2276
  year: 2010
  ident: 10.1016/j.amc.2013.01.051_b0150
  article-title: Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2010.03.063
– volume: 219
  start-page: 4680
  year: 2013
  ident: 10.1016/j.amc.2013.01.051_b0245
  article-title: The iterative solutions of nonlinear fractional differential equations
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2012.10.082
– year: 2012
  ident: 10.1016/j.amc.2013.01.051_b0240
  article-title: Numerical solution of the Bagley–Torvik equation by the Bessel collocation method
  publication-title: Math. Methods Appl. Sci.
– volume: 23
  year: 1985
  ident: 10.1016/j.amc.2013.01.051_b0225
  article-title: Orthogonal polynomials
  publication-title: Am. Math. Soc. Colloq. Pub.
– volume: 24
  start-page: 2146
  year: 2011
  ident: 10.1016/j.amc.2013.01.051_b0030
  article-title: A quadrature tau method for variable coefficients fractional differential equations
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2011.06.016
– volume: 31
  start-page: 95
  year: 1983
  ident: 10.1016/j.amc.2013.01.051_b0200
  article-title: Numerical solutions of differential eigenvalues problems with with an operational approach to the Tau method
  publication-title: Computing
  doi: 10.1007/BF02259906
– volume: 23
  start-page: 676
  year: 2010
  ident: 10.1016/j.amc.2013.01.051_b0050
  article-title: Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2010.02.007
– volume: 36
  start-page: 4931
  year: 2012
  ident: 10.1016/j.amc.2013.01.051_b0075
  article-title: A new Jacobi operational matrix: an application for solving fractional differential equation
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2011.12.031
– volume: 43
  start-page: 385209
  year: 2010
  ident: 10.1016/j.amc.2013.01.051_b0020
  article-title: On the solution set for a class of sequential fractional differential equations
  publication-title: J. Phys. A: Math. Theory
  doi: 10.1088/1751-8113/43/38/385209
– volume: 154
  start-page: 621
  year: 2004
  ident: 10.1016/j.amc.2013.01.051_b0055
  article-title: Multi-order fractional differential equations and their numerical solutions
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(03)00739-2
– volume: 26
  start-page: 305
  year: 2010
  ident: 10.1016/j.amc.2013.01.051_b0115
  article-title: An analytical scheme for multi-order fractional differential equations
  publication-title: Tamsui Oxford J. Math. Sci.
– volume: 51
  start-page: 294
  year: 1984
  ident: 10.1016/j.amc.2013.01.051_b0010
  article-title: On the appearance of the fractional derivative in the behaviour of real materials
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3167615
– volume: 147
  start-page: 71
  year: 2000
  ident: 10.1016/j.amc.2013.01.051_b0195
  article-title: Introduction to fraction linear systems. Part 2: discrete-time case
  publication-title: IEE Proceedings Vision, Image, Signal Processing
  doi: 10.1049/ip-vis:20000273
– volume: 23
  start-page: 1129
  year: 2010
  ident: 10.1016/j.amc.2013.01.051_b0015
  article-title: An existence result for a superlinear fractional differential equation
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2010.04.049
– volume: 60
  start-page: 2871
  year: 2010
  ident: 10.1016/j.amc.2013.01.051_b0230
  article-title: Convergence of the variational iteration method for solving multi-order fractional differential equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2010.09.044
– volume: 2011
  year: 2011
  ident: 10.1016/j.amc.2013.01.051_b0235
  article-title: Fractional models for thermal modeling and temperature estimation of a transistor junction
  publication-title: Adv. Difference Equ.
  doi: 10.1155/2011/687363
– year: 1999
  ident: 10.1016/j.amc.2013.01.051_b0210
– year: 2006
  ident: 10.1016/j.amc.2013.01.051_b0140
– volume: 2012
  start-page: 62
  year: 2012
  ident: 10.1016/j.amc.2013.01.051_b0040
  article-title: A shifted Jacobi–Gauss–Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals
  publication-title: Boundary Value Prob.
  doi: 10.1186/1687-2770-2012-62
– volume: 2012
  start-page: 204
  year: 2012
  ident: 10.1016/j.amc.2013.01.051_b0135
  article-title: An efficient new perturbative Laplace method for space–time fractional telegraph equations
  publication-title: Adv. Difference Equ.
  doi: 10.1186/1687-1847-2012-204
– volume: 17
  start-page: 62
  year: 2012
  ident: 10.1016/j.amc.2013.01.051_b0035
  article-title: A Jacobi–Gauss collocation method for solving nonlinear Lane–Emden type equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2011.04.025
– year: 1993
  ident: 10.1016/j.amc.2013.01.051_b0180
– volume: 35
  start-page: 5662
  year: 2011
  ident: 10.1016/j.amc.2013.01.051_b0065
  article-title: Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2011.05.011
– year: 1974
  ident: 10.1016/j.amc.2013.01.051_b0190
– volume: 16
  start-page: 9
  year: 2013
  ident: 10.1016/j.amc.2013.01.051_b0160
  article-title: Numerical methods for solving the multi-term time-fractional wave-diffusion equations
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.2478/s13540-013-0002-2
– year: 2006
  ident: 10.1016/j.amc.2013.01.051_b0175
– year: 2000
  ident: 10.1016/j.amc.2013.01.051_b0110
– volume: 238
  start-page: 51
  year: 2013
  ident: 10.1016/j.amc.2013.01.051_b0120
  article-title: Waveform relaxation methods for fractional differential equations with the Caputo derivatives
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2012.08.018
– volume: 35
  start-page: 119
  year: 2012
  ident: 10.1016/j.amc.2013.01.051_b0005
  article-title: Solution to system of partial fractional differential equations using the fractional exponential operators
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.1545
– volume: 62
  start-page: 2364
  year: 2011
  ident: 10.1016/j.amc.2013.01.051_b0070
  article-title: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.07.024
– volume: 131
  start-page: 517
  year: 2002
  ident: 10.1016/j.amc.2013.01.051_b0220
  article-title: Analytical approximate solutions for nonlinear fractional differential equations
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(01)00167-9
– volume: 2012
  start-page: 19
  year: 2012
  ident: 10.1016/j.amc.2013.01.051_b0105
  article-title: Wavelet collocation method for solving multi-order fractional differential equations
  publication-title: J. Appl. Math.
  doi: 10.1155/2012/542401
– year: 1988
  ident: 10.1016/j.amc.2013.01.051_b0045
– volume: 59
  start-page: 1865
  year: 2010
  ident: 10.1016/j.amc.2013.01.051_b0130
  article-title: Fractional radiative transfer equation within Chebyshev spectral approach
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.08.030
– volume: 15
  start-page: 383
  year: 2012
  ident: 10.1016/j.amc.2013.01.051_b0155
  article-title: Spectral approximations to the fractional integral and derivative
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.2478/s13540-012-0028-x
– year: 2011
  ident: 10.1016/j.amc.2013.01.051_b0205
– volume: 37
  start-page: 657
  year: 2004
  ident: 10.1016/j.amc.2013.01.051_b0060
  article-title: On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/37/3/010
– ident: 10.1016/j.amc.2013.01.051_b0165
  doi: 10.3182/20130204-3-FR-4032.00208
– volume: 14
  start-page: 674
  year: 2009
  ident: 10.1016/j.amc.2013.01.051_b0100
  article-title: Homotopy analysis method for fractional IVPs
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2007.09.014
– year: 1998
  ident: 10.1016/j.amc.2013.01.051_b0085
– volume: 128
  start-page: 1
  year: 2004
  ident: 10.1016/j.amc.2013.01.051_b0090
  article-title: Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces
  publication-title: J. Approximation Theory
  doi: 10.1016/j.jat.2004.03.008
– volume: 59
  start-page: 1326
  year: 2010
  ident: 10.1016/j.amc.2013.01.051_b0215
  article-title: A new operational matrix for solving fractional-order differential equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.07.006
– volume: 36
  start-page: 167
  year: 2008
  ident: 10.1016/j.amc.2013.01.051_b0185
  article-title: Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order
  publication-title: Chaos Solitons Fract.
  doi: 10.1016/j.chaos.2006.06.041
– year: 2012
  ident: 10.1016/j.amc.2013.01.051_b0025
  article-title: Fractional calculus models and numerical methods
  doi: 10.1142/8180
– volume: 84
  start-page: 2602
  year: 2006
  ident: 10.1016/j.amc.2013.01.051_b0145
  article-title: An approximate method for numerical solution of fractional differential equations
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2006.02.007
– volume: 61
  start-page: 250
  year: 2011
  ident: 10.1016/j.amc.2013.01.051_b0095
  article-title: Homotopy perturbation method for fractional Fornberg–Whitham equation
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2010.10.045
SSID ssj0007614
Score 2.360854
Snippet ► A new formula of fractional-order derivatives of shifted Jacobi polynomials is proved. ► A Jacobi spectral tau approximation for solving linear FDEs with...
In this paper, a new formula of Caputo fractional-order derivatives of shifted Jacobi polynomials of any degree in terms of shifted Jacobi polynomials...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8042
SubjectTerms Approximation
Caputo derivative
Derivatives
Differential equations
Initial value problems
Jacobi–Gauss–Lobatto quadrature
Mathematical analysis
Mathematical models
Multi-term fractional differential equations
Nonlinear fractional initial value problems
Nonlinearity
Shifted Jacobi polynomials
Spectra
Spectral methods
Title On shifted Jacobi spectral approximations for solving fractional differential equations
URI https://dx.doi.org/10.1016/j.amc.2013.01.051
https://www.proquest.com/docview/1671383419
Volume 219
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GBE8CXXpktbmOIZjTjYvDncLSZtiZXZz3cCTf7vv9WOi4A72VEpSykv6y_sl7_0eIVfWjf1IM4Y796Ejbo0EHLQAhoh9QMakCJEoDkd-fywGE29SI90qFwbDKkvsLzA9R-vySau0ZmueJJjjK1EviuOBDKx6E8xgFz6G9d18fod5AE0vlJglxngxXp1s5jFe-g1VDF2eK3d67l9r0y-Uzpee3h7ZLX1G2ik-a5_UbHpAdoZrwdXskDw_pjR7SWLwH-kAQM4kNM-hXEC_XDb8IylyFDMKXiqFCYcbCTReFHkN0KqqlAJ__JTa90IBPDsi497dU7fvlDUTnJBztnR4ZJmnDbBeyy3QH-uFUSS1FnC5MRfGBODzGS1DjTV6XS1FEEVeFBrZZr71-DGpp7PUnhAaAFlpG6Nd09ZCS24C6we-QI2-GO5tg7DKWiosBcWxrsVUVZFjrwoMrNDAirkKDNwg1-su80JNY1NjUQ2B-jElFKD9pm6X1XAp-FXw_EOndrbKlOsDIw9QwO70f68-I9vtvBoGBu6ck_pysbIX4JMsTTOfdE2y1bl_6I--AFeN4Ig
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSD-MS3K3gSSpPsJmaPpVjqo_XSYm_LbrLBSE1rU8Gf70weBQU9mFMIuyHMbr6db3fmG4Ar6yZBrB2Hdu6jprgxEnHQIhgS9iEZkyIiotgfBL2RuB_74xXo1LkwFFZZYX-J6QVaV09alTVbszSlHF9JelGcDmRw1RuvwprwEZMbsNa-e-gNloCMTL0UY5YU5uXw-nCzCPPSbyRk6PJCvNN3f1uefgB1sfp0t2GrchtZu_yyHVix2S5s9peaq_kePD9lLH9JE3Qh2T3inElZkUY5x36FcvhnWqYp5gwdVYZzjvYSWDIvUxuwVV0sBX_6CbPvpQh4vg-j7u2w02tWZROaEefOoslj6_jaIPG13CIDsn4Ux1JrgZebcGFMiG6f0TLSVKbX1VKEcezHkZGeE1ifH0Ajm2b2EFiIfMUzRrvG00JLbkIbhIEgmb4E7-0ROLW1VFRpilNpi4mqg8deFRpYkYGV4yo08BFcL7vMSkGNvxqLegjUt1mhEPD_6nZZD5fCv4WOQHRmpx-5cgMk5SFp2B3_79UXsN4b9h_V493g4QQ2vKI4BsXxnEJjMf-wZ-iiLMx5NQW_AAI-4zM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+shifted+Jacobi+spectral+approximations+for+solving+fractional+differential+equations&rft.jtitle=Applied+mathematics+and+computation&rft.au=Doha%2C+E.H.&rft.au=Bhrawy%2C+A.H.&rft.au=Baleanu%2C+D.&rft.au=Ezz-Eldien%2C+S.S.&rft.date=2013-04-01&rft.issn=0096-3003&rft.volume=219&rft.issue=15&rft.spage=8042&rft.epage=8056&rft_id=info:doi/10.1016%2Fj.amc.2013.01.051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2013_01_051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon