On shifted Jacobi spectral approximations for solving fractional differential equations
► A new formula of fractional-order derivatives of shifted Jacobi polynomials is proved. ► A Jacobi spectral tau approximation for solving linear FDEs with constant coefficients is proposed. ► A quadrature tau approximation is shown for linear FDEs with variable coefficients. ► A Jacobi collocation...
Saved in:
Published in | Applied mathematics and computation Vol. 219; no. 15; pp. 8042 - 8056 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.04.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0096-3003 1873-5649 |
DOI | 10.1016/j.amc.2013.01.051 |
Cover
Abstract | ► A new formula of fractional-order derivatives of shifted Jacobi polynomials is proved. ► A Jacobi spectral tau approximation for solving linear FDEs with constant coefficients is proposed. ► A quadrature tau approximation is shown for linear FDEs with variable coefficients. ► A Jacobi collocation method for nonlinear multi-order FDEs is introduced. ► The advantages of using the proposed algorithms are discussed.
In this paper, a new formula of Caputo fractional-order derivatives of shifted Jacobi polynomials of any degree in terms of shifted Jacobi polynomials themselves is proved. We discuss a direct solution technique for linear multi-order fractional differential equations (FDEs) subject to nonhomogeneous initial conditions using a shifted Jacobi tau approximation. A quadrature shifted Jacobi tau (Q-SJT) approximation is introduced for the solution of linear multi-order FDEs with variable coefficients. We also propose a shifted Jacobi collocation technique for solving nonlinear multi-order fractional initial value problems. The advantages of using the proposed techniques are discussed and we compare them with other existing methods. We investigate some illustrative examples of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques. |
---|---|
AbstractList | ► A new formula of fractional-order derivatives of shifted Jacobi polynomials is proved. ► A Jacobi spectral tau approximation for solving linear FDEs with constant coefficients is proposed. ► A quadrature tau approximation is shown for linear FDEs with variable coefficients. ► A Jacobi collocation method for nonlinear multi-order FDEs is introduced. ► The advantages of using the proposed algorithms are discussed.
In this paper, a new formula of Caputo fractional-order derivatives of shifted Jacobi polynomials of any degree in terms of shifted Jacobi polynomials themselves is proved. We discuss a direct solution technique for linear multi-order fractional differential equations (FDEs) subject to nonhomogeneous initial conditions using a shifted Jacobi tau approximation. A quadrature shifted Jacobi tau (Q-SJT) approximation is introduced for the solution of linear multi-order FDEs with variable coefficients. We also propose a shifted Jacobi collocation technique for solving nonlinear multi-order fractional initial value problems. The advantages of using the proposed techniques are discussed and we compare them with other existing methods. We investigate some illustrative examples of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques. In this paper, a new formula of Caputo fractional-order derivatives of shifted Jacobi polynomials of any degree in terms of shifted Jacobi polynomials themselves is proved. We discuss a direct solution technique for linear multi-order fractional differential equations (FDEs) subject to nonhomogeneous initial conditions using a shifted Jacobi tau approximation. A quadrature shifted Jacobi tau (Q-SJT) approximation is introduced for the solution of linear multi-order FDEs with variable coefficients. We also propose a shifted Jacobi collocation technique for solving nonlinear multi-order fractional initial value problems. The advantages of using the proposed techniques are discussed and we compare them with other existing methods. We investigate some illustrative examples of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques. |
Author | Baleanu, D. Doha, E.H. Ezz-Eldien, S.S. Bhrawy, A.H. |
Author_xml | – sequence: 1 givenname: E.H. surname: Doha fullname: Doha, E.H. email: eiddoha@frcu.eun.eg organization: Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt – sequence: 2 givenname: A.H. surname: Bhrawy fullname: Bhrawy, A.H. email: alibhrawy@yahoo.co.uk organization: Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia – sequence: 3 givenname: D. surname: Baleanu fullname: Baleanu, D. email: dumitru@cankaya.edu.tr organization: Department of Mathematics and Computer Science, Faculty of Arts and Science, Cankaya University, Ankara, Turkey – sequence: 4 givenname: S.S. surname: Ezz-Eldien fullname: Ezz-Eldien, S.S. email: s_sezeldien@yahoo.com organization: Department of Basic Science, Institute of Information Technology, Modern Academy, Cairo, Egypt |
BookMark | eNp9kD1PwzAQhi1UJErhB7BlZEm4q52kEROq-FSlLiBGy7Ev4CqNWzut4N_jEiaGejn59D6nu-ecjTrXEWNXCBkCFjerTK11NgXkGWAGOZ6wMc5KnuaFqEZsDFAVKQfgZ-w8hBUAlAWKMXtfdkn4tE1PJnlR2tU2CRvSvVdtojYb777sWvXWdSFpnE-Ca_e2-0gar_ShG1PGNg156nobP7TdDekLdtqoNtDlX52wt4f71_lTulg-Ps_vFqnmHPqUG4Jc1SAK4gQoKNfGVEqJ-LDhoq5nyKtaVVqhyBFVJWbG5EbX1RQKyvmEXQ9z46rbHYVerm3Q1LaqI7cLEosS-YwLrGK0HKLauxA8NVLb_nfbeK1tJYI8qJQrGVXKg0oJKKPKSOI_cuOjFv99lLkdGIrX7y15GbSlTpOxPvqVxtkj9A9QeY-v |
CitedBy_id | crossref_primary_10_1186_1687_1847_2014_231 crossref_primary_10_3390_fractalfract7030240 crossref_primary_10_1016_j_cam_2016_04_003 crossref_primary_10_1109_TFUZZ_2016_2554156 crossref_primary_10_1142_S0218348X22402307 crossref_primary_10_3934_math_2022730 crossref_primary_10_1016_j_cam_2015_01_021 crossref_primary_10_1140_epjp_i2014_14260_6 crossref_primary_10_1016_j_amc_2014_08_031 crossref_primary_10_1007_s10092_014_0132_x crossref_primary_10_1002_mma_5545 crossref_primary_10_1016_j_camwa_2023_03_017 crossref_primary_10_1007_s00009_015_0563_x crossref_primary_10_1080_00207160_2015_1119270 crossref_primary_10_1016_j_amc_2016_02_044 crossref_primary_10_1177_1077546316688608 crossref_primary_10_1016_j_apm_2015_06_012 crossref_primary_10_1007_s40314_023_02475_8 crossref_primary_10_1155_2013_741278 crossref_primary_10_1007_s40314_023_02287_w crossref_primary_10_3934_math_2022789 crossref_primary_10_1155_2013_760542 crossref_primary_10_1016_j_jocs_2020_101220 crossref_primary_10_1080_00036811_2016_1167879 crossref_primary_10_1007_s11071_015_2232_9 crossref_primary_10_1186_s13662_018_1811_8 crossref_primary_10_1177_1077546315573916 crossref_primary_10_1155_2013_304739 crossref_primary_10_2298_FIL2330383A crossref_primary_10_3390_app8060960 crossref_primary_10_1155_2013_546502 crossref_primary_10_1177_1077546314543727 crossref_primary_10_1155_2013_176730 crossref_primary_10_1007_s40314_017_0522_1 crossref_primary_10_1016_j_cnsns_2015_06_028 crossref_primary_10_1142_S1793524518501152 crossref_primary_10_1007_s11042_020_10356_z crossref_primary_10_1186_s13662_016_0929_9 crossref_primary_10_1016_j_renene_2014_09_045 crossref_primary_10_1155_2014_706296 crossref_primary_10_3390_fractalfract7110777 crossref_primary_10_1155_2014_626275 crossref_primary_10_1002_mma_4463 crossref_primary_10_1155_2013_413529 crossref_primary_10_1155_2014_295936 crossref_primary_10_1007_s40819_021_01115_1 crossref_primary_10_1016_j_joems_2016_10_002 crossref_primary_10_1155_2013_306746 crossref_primary_10_1002_mma_3619 crossref_primary_10_1007_s10092_015_0160_1 |
Cites_doi | 10.1016/j.jmaa.2011.12.055 10.1016/j.amc.2010.03.063 10.1016/j.amc.2012.10.082 10.1016/j.aml.2011.06.016 10.1007/BF02259906 10.1016/j.aml.2010.02.007 10.1016/j.apm.2011.12.031 10.1088/1751-8113/43/38/385209 10.1016/S0096-3003(03)00739-2 10.1115/1.3167615 10.1049/ip-vis:20000273 10.1016/j.aml.2010.04.049 10.1016/j.camwa.2010.09.044 10.1155/2011/687363 10.1186/1687-2770-2012-62 10.1186/1687-1847-2012-204 10.1016/j.cnsns.2011.04.025 10.1016/j.apm.2011.05.011 10.2478/s13540-013-0002-2 10.1016/j.cam.2012.08.018 10.1002/mma.1545 10.1016/j.camwa.2011.07.024 10.1016/S0096-3003(01)00167-9 10.1155/2012/542401 10.1016/j.camwa.2009.08.030 10.2478/s13540-012-0028-x 10.1088/0305-4470/37/3/010 10.3182/20130204-3-FR-4032.00208 10.1016/j.cnsns.2007.09.014 10.1016/j.jat.2004.03.008 10.1016/j.camwa.2009.07.006 10.1016/j.chaos.2006.06.041 10.1142/8180 10.1016/j.sigpro.2006.02.007 10.1016/j.camwa.2010.10.045 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. |
Copyright_xml | – notice: 2013 Elsevier Inc. |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.amc.2013.01.051 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1873-5649 |
EndPage | 8056 |
ExternalDocumentID | 10_1016_j_amc_2013_01_051 S009630031300091X |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABAOU ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ RXW SBC SDF SDG SES SME SPC SPCBC SSW SSZ T5K TN5 WH7 X6Y XPP ZMT ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ACLOT ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HMJ HVGLF HZ~ R2- SEW TAE VH1 VOH WUQ ~HD 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c330t-3de05ab046e3e014e5cdd9aa44441f34bb8139ba9ca14511a948dd5dcb9206e53 |
IEDL.DBID | .~1 |
ISSN | 0096-3003 |
IngestDate | Sat Sep 27 18:14:38 EDT 2025 Thu Apr 24 23:10:27 EDT 2025 Wed Oct 01 04:43:31 EDT 2025 Fri Feb 23 02:27:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | Multi-term fractional differential equations Shifted Jacobi polynomials Jacobi–Gauss–Lobatto quadrature Caputo derivative Spectral methods Nonlinear fractional initial value problems |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-3de05ab046e3e014e5cdd9aa44441f34bb8139ba9ca14511a948dd5dcb9206e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1671383419 |
PQPubID | 23500 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1671383419 crossref_citationtrail_10_1016_j_amc_2013_01_051 crossref_primary_10_1016_j_amc_2013_01_051 elsevier_sciencedirect_doi_10_1016_j_amc_2013_01_051 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-04-01 |
PublicationDateYYYYMMDD | 2013-04-01 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied mathematics and computation |
PublicationYear | 2013 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Diethelm, Ford (b0055) 2004; 154 D.Y. Liu, T.M. Laleg-Kirati, O. Gibaru, Fractional order differentiation by integration: an application to fractional linear systems, in: 6th IFAC Workshop on Fractional Differentiation and its Applications, 2013. Doha, Bhrawy, Ezz-Eldien (b0070) 2011; 62 Szegö (b0225) 1985; 23 Bagley, Torvik (b0010) 1984; 51 Odibat, Momani (b0185) 2008; 36 Zhang, Liu, Wu, Lu (b0245) 2013; 219 Kumer, Agrawal (b0145) 2006; 84 Liu, Meerschaert, McGough, Zhuang, Liu (b0160) 2013; 16 Guo (b0085) 1998 Yuzbasi (b0240) 2012 Baleanu, Diethelm, Scalas, Trujillo (b0025) 2012 Yanga, Xiao, Su (b0230) 2010; 60 Ansari, Refahi Sheikhani, Saberi Najafi (b0005) 2012; 35 Baleanu, Mustafa, Agarwal (b0015) 2010; 23 Baleanu, Mustafa, Agarwal (b0020) 2010; 43 Guo, Wang (b0090) 2004; 128 Oldham, Spanier (b0190) 1974 Kadem, Baleanu (b0130) 2010; 59 Khan, Diblik, Faraz, Smarda (b0135) 2012; 2012 Fornberg (b0080) 1998 Deng, Ma (b0050) 2010; 23 Bhrawy, Alofi, Ezz-Eldien (b0030) 2011; 24 Canuto, Hussaini, Quarteroni, Zang (b0045) 1988 Heydari, Hooshmandasl, Maalek Ghaini, Mohammadi (b0105) 2012; 2012 Ortiz, Samara (b0200) 1983; 31 Kilbas, Srivastava, Trujillo (b0140) 2006 Sabatier, Nguyen, Farges, Deletage, Moreau, Guillemard, Bavoux (b0235) 2011; 2011 Ortigueira (b0195) 2000; 147 Doha, Bhrawy, Ezz-Eldien (b0065) 2011; 35 Miller, Ross (b0180) 1993 Hilfer (b0110) 2000 Doha, Bhrawy, Ezzeldeen (b0075) 2012; 36 Li, Zeng, Liu (b0155) 2012; 15 Luke (b0170) 1969; vol. 2 Jiang, Ding (b0120) 2013; 238 Doha (b0060) 2004; 37 Jiang, Liu, Turner, Burrage (b0125) 2012; 389 Magin (b0175) 2006 Hashim, Abdulaziz, Momani (b0100) 2009; 14 Bhrawy, Alghamdi (b0040) 2012; 2012 Li, Zhao (b0150) 2010; 216 Shawagfeh (b0220) 2002; 131 Jaradat, Awawdeh, Rawashdeh (b0115) 2010; 26 Bhrawy, Alofi (b0035) 2012; 17 Podlubny (b0210) 1999 Petras (b0205) 2011 Saadatmandi, Dehghan (b0215) 2010; 59 Gupta, Singh (b0095) 2011; 61 Bhrawy (10.1016/j.amc.2013.01.051_b0040) 2012; 2012 Ortiz (10.1016/j.amc.2013.01.051_b0200) 1983; 31 Fornberg (10.1016/j.amc.2013.01.051_b0080) 1998 10.1016/j.amc.2013.01.051_b0165 Podlubny (10.1016/j.amc.2013.01.051_b0210) 1999 Li (10.1016/j.amc.2013.01.051_b0150) 2010; 216 Baleanu (10.1016/j.amc.2013.01.051_b0020) 2010; 43 Miller (10.1016/j.amc.2013.01.051_b0180) 1993 Diethelm (10.1016/j.amc.2013.01.051_b0055) 2004; 154 Szegö (10.1016/j.amc.2013.01.051_b0225) 1985; 23 Kadem (10.1016/j.amc.2013.01.051_b0130) 2010; 59 Odibat (10.1016/j.amc.2013.01.051_b0185) 2008; 36 Heydari (10.1016/j.amc.2013.01.051_b0105) 2012; 2012 Jiang (10.1016/j.amc.2013.01.051_b0125) 2012; 389 Liu (10.1016/j.amc.2013.01.051_b0160) 2013; 16 Zhang (10.1016/j.amc.2013.01.051_b0245) 2013; 219 Bhrawy (10.1016/j.amc.2013.01.051_b0030) 2011; 24 Canuto (10.1016/j.amc.2013.01.051_b0045) 1988 Hashim (10.1016/j.amc.2013.01.051_b0100) 2009; 14 Jaradat (10.1016/j.amc.2013.01.051_b0115) 2010; 26 Ortigueira (10.1016/j.amc.2013.01.051_b0195) 2000; 147 Guo (10.1016/j.amc.2013.01.051_b0090) 2004; 128 Baleanu (10.1016/j.amc.2013.01.051_b0025) 2012 Doha (10.1016/j.amc.2013.01.051_b0065) 2011; 35 Guo (10.1016/j.amc.2013.01.051_b0085) 1998 Jiang (10.1016/j.amc.2013.01.051_b0120) 2013; 238 Bhrawy (10.1016/j.amc.2013.01.051_b0035) 2012; 17 Li (10.1016/j.amc.2013.01.051_b0155) 2012; 15 Ansari (10.1016/j.amc.2013.01.051_b0005) 2012; 35 Shawagfeh (10.1016/j.amc.2013.01.051_b0220) 2002; 131 Doha (10.1016/j.amc.2013.01.051_b0070) 2011; 62 Magin (10.1016/j.amc.2013.01.051_b0175) 2006 Yanga (10.1016/j.amc.2013.01.051_b0230) 2010; 60 Yuzbasi (10.1016/j.amc.2013.01.051_b0240) 2012 Gupta (10.1016/j.amc.2013.01.051_b0095) 2011; 61 Hilfer (10.1016/j.amc.2013.01.051_b0110) 2000 Kumer (10.1016/j.amc.2013.01.051_b0145) 2006; 84 Doha (10.1016/j.amc.2013.01.051_b0060) 2004; 37 Doha (10.1016/j.amc.2013.01.051_b0075) 2012; 36 Baleanu (10.1016/j.amc.2013.01.051_b0015) 2010; 23 Sabatier (10.1016/j.amc.2013.01.051_b0235) 2011; 2011 Luke (10.1016/j.amc.2013.01.051_b0170) 1969; vol. 2 Khan (10.1016/j.amc.2013.01.051_b0135) 2012; 2012 Deng (10.1016/j.amc.2013.01.051_b0050) 2010; 23 Petras (10.1016/j.amc.2013.01.051_b0205) 2011 Kilbas (10.1016/j.amc.2013.01.051_b0140) 2006 Saadatmandi (10.1016/j.amc.2013.01.051_b0215) 2010; 59 Bagley (10.1016/j.amc.2013.01.051_b0010) 1984; 51 Oldham (10.1016/j.amc.2013.01.051_b0190) 1974 |
References_xml | – volume: 17 start-page: 62 year: 2012 end-page: 70 ident: b0035 article-title: A Jacobi–Gauss collocation method for solving nonlinear Lane–Emden type equations publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 23 start-page: 1129 year: 2010 end-page: 1132 ident: b0015 article-title: An existence result for a superlinear fractional differential equation publication-title: Appl. Math. Lett. – year: 2012 ident: b0025 article-title: Fractional calculus models and numerical methods publication-title: Series on Complexity, Nonlinearity and Chaos – volume: 16 start-page: 9 year: 2013 end-page: 25 ident: b0160 article-title: Numerical methods for solving the multi-term time-fractional wave-diffusion equations publication-title: Fract. Calc. Appl. Anal. – volume: 36 start-page: 167 year: 2008 end-page: 174 ident: b0185 article-title: Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order publication-title: Chaos Solitons Fract. – volume: 147 start-page: 71 year: 2000 end-page: 78 ident: b0195 article-title: Introduction to fraction linear systems. Part 2: discrete-time case publication-title: IEE Proceedings Vision, Image, Signal Processing – volume: vol. 2 year: 1969 ident: b0170 publication-title: The Special Functions and Their Approximations – volume: 36 start-page: 4931 year: 2012 end-page: 4943 ident: b0075 article-title: A new Jacobi operational matrix: an application for solving fractional differential equation publication-title: Appl. Math. Modell. – year: 1974 ident: b0190 article-title: The Fractional Calculus – volume: 15 start-page: 383 year: 2012 end-page: 406 ident: b0155 article-title: Spectral approximations to the fractional integral and derivative publication-title: Fract. Calc. Appl. Anal. – volume: 35 start-page: 119 year: 2012 end-page: 123 ident: b0005 article-title: Solution to system of partial fractional differential equations using the fractional exponential operators publication-title: Math. Methods Appl. Sci. – year: 2000 ident: b0110 article-title: Applications of Fractional Calculus in Physics – year: 1993 ident: b0180 article-title: An Introduction to the Fractional Calaulus and Fractional Differential Equations – volume: 60 start-page: 2871 year: 2010 end-page: 2879 ident: b0230 article-title: Convergence of the variational iteration method for solving multi-order fractional differential equations publication-title: Comput. Math. Appl. – volume: 219 start-page: 4680 year: 2013 end-page: 4691 ident: b0245 article-title: The iterative solutions of nonlinear fractional differential equations publication-title: Appl. Math. Comput. – volume: 31 start-page: 95 year: 1983 end-page: 103 ident: b0200 article-title: Numerical solutions of differential eigenvalues problems with with an operational approach to the Tau method publication-title: Computing – volume: 131 start-page: 517 year: 2002 end-page: 529 ident: b0220 article-title: Analytical approximate solutions for nonlinear fractional differential equations publication-title: Appl. Math. Comput. – volume: 14 start-page: 674 year: 2009 end-page: 684 ident: b0100 article-title: Homotopy analysis method for fractional IVPs publication-title: Commun. Nonlinear Sci. Numer. Simul. – year: 2006 ident: b0175 article-title: Fractional Calculus in Bioengineering – year: 2011 ident: b0205 article-title: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation – volume: 24 start-page: 2146 year: 2011 end-page: 2152 ident: b0030 article-title: A quadrature tau method for variable coefficients fractional differential equations publication-title: Appl. Math. Lett. – reference: D.Y. Liu, T.M. Laleg-Kirati, O. Gibaru, Fractional order differentiation by integration: an application to fractional linear systems, in: 6th IFAC Workshop on Fractional Differentiation and its Applications, 2013. – volume: 59 start-page: 1326 year: 2010 end-page: 1336 ident: b0215 article-title: A new operational matrix for solving fractional-order differential equations publication-title: Comput. Math. Appl. – volume: 154 start-page: 621 year: 2004 end-page: 640 ident: b0055 article-title: Multi-order fractional differential equations and their numerical solutions publication-title: Appl. Math. Comput. – volume: 35 start-page: 5662 year: 2011 end-page: 5672 ident: b0065 article-title: Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations publication-title: Appl. Math. Modell. – volume: 37 start-page: 657 year: 2004 end-page: 675 ident: b0060 article-title: On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials publication-title: J. Phys. A: Math. Gen. – volume: 51 start-page: 294 year: 1984 end-page: 298 ident: b0010 article-title: On the appearance of the fractional derivative in the behaviour of real materials publication-title: J. Appl. Mech. – volume: 23 year: 1985 ident: b0225 article-title: Orthogonal polynomials publication-title: Am. Math. Soc. Colloq. Pub. – volume: 2011 year: 2011 ident: b0235 article-title: Fractional models for thermal modeling and temperature estimation of a transistor junction publication-title: Adv. Difference Equ. – volume: 128 start-page: 1 year: 2004 end-page: 41 ident: b0090 article-title: Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces publication-title: J. Approximation Theory – year: 1988 ident: b0045 article-title: Spectral Methods in Fluid Dynamics – volume: 23 start-page: 676 year: 2010 end-page: 680 ident: b0050 article-title: Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations publication-title: Appl. Math. Lett. – volume: 61 start-page: 250 year: 2011 end-page: 254 ident: b0095 article-title: Homotopy perturbation method for fractional Fornberg–Whitham equation publication-title: Comput. Math. Appl. – year: 1998 ident: b0080 article-title: A Practical Guide to Pseudospectral Methods – volume: 2012 start-page: 19 year: 2012 ident: b0105 article-title: Wavelet collocation method for solving multi-order fractional differential equations publication-title: J. Appl. Math. – volume: 2012 start-page: 204 year: 2012 ident: b0135 article-title: An efficient new perturbative Laplace method for space–time fractional telegraph equations publication-title: Adv. Difference Equ. – volume: 43 start-page: 385209 year: 2010 ident: b0020 article-title: On the solution set for a class of sequential fractional differential equations publication-title: J. Phys. A: Math. Theory – year: 1999 ident: b0210 article-title: Fractional Differential Equations – volume: 62 start-page: 2364 year: 2011 end-page: 2373 ident: b0070 article-title: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order publication-title: Comput. Math. Appl. – year: 2012 ident: b0240 article-title: Numerical solution of the Bagley–Torvik equation by the Bessel collocation method publication-title: Math. Methods Appl. Sci. – volume: 59 start-page: 1865 year: 2010 end-page: 1873 ident: b0130 article-title: Fractional radiative transfer equation within Chebyshev spectral approach publication-title: Comput. Math. Appl. – volume: 84 start-page: 2602 year: 2006 end-page: 2610 ident: b0145 article-title: An approximate method for numerical solution of fractional differential equations publication-title: Signal Process. – volume: 238 start-page: 51 year: 2013 end-page: 67 ident: b0120 article-title: Waveform relaxation methods for fractional differential equations with the Caputo derivatives publication-title: J. Comput. Appl. Math. – volume: 2012 start-page: 62 year: 2012 ident: b0040 article-title: A shifted Jacobi–Gauss–Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals publication-title: Boundary Value Prob. – year: 1998 ident: b0085 article-title: Spectral Methods and Their Applications – year: 2006 ident: b0140 article-title: Theory and Applications of Fractional Differential Equations – volume: 216 start-page: 2276 year: 2010 end-page: 2285 ident: b0150 article-title: Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations publication-title: Appl. Math. Comput. – volume: 389 start-page: 1117 year: 2012 end-page: 1127 ident: b0125 article-title: Analytical solutions for the multi-term time–space Caputo–Riesz fractional advection–diffusion equations on a finite domain publication-title: J. Math. Anal. Appl. – volume: 26 start-page: 305 year: 2010 end-page: 320 ident: b0115 article-title: An analytical scheme for multi-order fractional differential equations publication-title: Tamsui Oxford J. Math. Sci. – volume: 389 start-page: 1117 year: 2012 ident: 10.1016/j.amc.2013.01.051_b0125 article-title: Analytical solutions for the multi-term time–space Caputo–Riesz fractional advection–diffusion equations on a finite domain publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2011.12.055 – volume: vol. 2 year: 1969 ident: 10.1016/j.amc.2013.01.051_b0170 – year: 1998 ident: 10.1016/j.amc.2013.01.051_b0080 – volume: 216 start-page: 2276 year: 2010 ident: 10.1016/j.amc.2013.01.051_b0150 article-title: Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2010.03.063 – volume: 219 start-page: 4680 year: 2013 ident: 10.1016/j.amc.2013.01.051_b0245 article-title: The iterative solutions of nonlinear fractional differential equations publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2012.10.082 – year: 2012 ident: 10.1016/j.amc.2013.01.051_b0240 article-title: Numerical solution of the Bagley–Torvik equation by the Bessel collocation method publication-title: Math. Methods Appl. Sci. – volume: 23 year: 1985 ident: 10.1016/j.amc.2013.01.051_b0225 article-title: Orthogonal polynomials publication-title: Am. Math. Soc. Colloq. Pub. – volume: 24 start-page: 2146 year: 2011 ident: 10.1016/j.amc.2013.01.051_b0030 article-title: A quadrature tau method for variable coefficients fractional differential equations publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2011.06.016 – volume: 31 start-page: 95 year: 1983 ident: 10.1016/j.amc.2013.01.051_b0200 article-title: Numerical solutions of differential eigenvalues problems with with an operational approach to the Tau method publication-title: Computing doi: 10.1007/BF02259906 – volume: 23 start-page: 676 year: 2010 ident: 10.1016/j.amc.2013.01.051_b0050 article-title: Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2010.02.007 – volume: 36 start-page: 4931 year: 2012 ident: 10.1016/j.amc.2013.01.051_b0075 article-title: A new Jacobi operational matrix: an application for solving fractional differential equation publication-title: Appl. Math. Modell. doi: 10.1016/j.apm.2011.12.031 – volume: 43 start-page: 385209 year: 2010 ident: 10.1016/j.amc.2013.01.051_b0020 article-title: On the solution set for a class of sequential fractional differential equations publication-title: J. Phys. A: Math. Theory doi: 10.1088/1751-8113/43/38/385209 – volume: 154 start-page: 621 year: 2004 ident: 10.1016/j.amc.2013.01.051_b0055 article-title: Multi-order fractional differential equations and their numerical solutions publication-title: Appl. Math. Comput. doi: 10.1016/S0096-3003(03)00739-2 – volume: 26 start-page: 305 year: 2010 ident: 10.1016/j.amc.2013.01.051_b0115 article-title: An analytical scheme for multi-order fractional differential equations publication-title: Tamsui Oxford J. Math. Sci. – volume: 51 start-page: 294 year: 1984 ident: 10.1016/j.amc.2013.01.051_b0010 article-title: On the appearance of the fractional derivative in the behaviour of real materials publication-title: J. Appl. Mech. doi: 10.1115/1.3167615 – volume: 147 start-page: 71 year: 2000 ident: 10.1016/j.amc.2013.01.051_b0195 article-title: Introduction to fraction linear systems. Part 2: discrete-time case publication-title: IEE Proceedings Vision, Image, Signal Processing doi: 10.1049/ip-vis:20000273 – volume: 23 start-page: 1129 year: 2010 ident: 10.1016/j.amc.2013.01.051_b0015 article-title: An existence result for a superlinear fractional differential equation publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2010.04.049 – volume: 60 start-page: 2871 year: 2010 ident: 10.1016/j.amc.2013.01.051_b0230 article-title: Convergence of the variational iteration method for solving multi-order fractional differential equations publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2010.09.044 – volume: 2011 year: 2011 ident: 10.1016/j.amc.2013.01.051_b0235 article-title: Fractional models for thermal modeling and temperature estimation of a transistor junction publication-title: Adv. Difference Equ. doi: 10.1155/2011/687363 – year: 1999 ident: 10.1016/j.amc.2013.01.051_b0210 – year: 2006 ident: 10.1016/j.amc.2013.01.051_b0140 – volume: 2012 start-page: 62 year: 2012 ident: 10.1016/j.amc.2013.01.051_b0040 article-title: A shifted Jacobi–Gauss–Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals publication-title: Boundary Value Prob. doi: 10.1186/1687-2770-2012-62 – volume: 2012 start-page: 204 year: 2012 ident: 10.1016/j.amc.2013.01.051_b0135 article-title: An efficient new perturbative Laplace method for space–time fractional telegraph equations publication-title: Adv. Difference Equ. doi: 10.1186/1687-1847-2012-204 – volume: 17 start-page: 62 year: 2012 ident: 10.1016/j.amc.2013.01.051_b0035 article-title: A Jacobi–Gauss collocation method for solving nonlinear Lane–Emden type equations publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2011.04.025 – year: 1993 ident: 10.1016/j.amc.2013.01.051_b0180 – volume: 35 start-page: 5662 year: 2011 ident: 10.1016/j.amc.2013.01.051_b0065 article-title: Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations publication-title: Appl. Math. Modell. doi: 10.1016/j.apm.2011.05.011 – year: 1974 ident: 10.1016/j.amc.2013.01.051_b0190 – volume: 16 start-page: 9 year: 2013 ident: 10.1016/j.amc.2013.01.051_b0160 article-title: Numerical methods for solving the multi-term time-fractional wave-diffusion equations publication-title: Fract. Calc. Appl. Anal. doi: 10.2478/s13540-013-0002-2 – year: 2006 ident: 10.1016/j.amc.2013.01.051_b0175 – year: 2000 ident: 10.1016/j.amc.2013.01.051_b0110 – volume: 238 start-page: 51 year: 2013 ident: 10.1016/j.amc.2013.01.051_b0120 article-title: Waveform relaxation methods for fractional differential equations with the Caputo derivatives publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2012.08.018 – volume: 35 start-page: 119 year: 2012 ident: 10.1016/j.amc.2013.01.051_b0005 article-title: Solution to system of partial fractional differential equations using the fractional exponential operators publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.1545 – volume: 62 start-page: 2364 year: 2011 ident: 10.1016/j.amc.2013.01.051_b0070 article-title: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.07.024 – volume: 131 start-page: 517 year: 2002 ident: 10.1016/j.amc.2013.01.051_b0220 article-title: Analytical approximate solutions for nonlinear fractional differential equations publication-title: Appl. Math. Comput. doi: 10.1016/S0096-3003(01)00167-9 – volume: 2012 start-page: 19 year: 2012 ident: 10.1016/j.amc.2013.01.051_b0105 article-title: Wavelet collocation method for solving multi-order fractional differential equations publication-title: J. Appl. Math. doi: 10.1155/2012/542401 – year: 1988 ident: 10.1016/j.amc.2013.01.051_b0045 – volume: 59 start-page: 1865 year: 2010 ident: 10.1016/j.amc.2013.01.051_b0130 article-title: Fractional radiative transfer equation within Chebyshev spectral approach publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2009.08.030 – volume: 15 start-page: 383 year: 2012 ident: 10.1016/j.amc.2013.01.051_b0155 article-title: Spectral approximations to the fractional integral and derivative publication-title: Fract. Calc. Appl. Anal. doi: 10.2478/s13540-012-0028-x – year: 2011 ident: 10.1016/j.amc.2013.01.051_b0205 – volume: 37 start-page: 657 year: 2004 ident: 10.1016/j.amc.2013.01.051_b0060 article-title: On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/37/3/010 – ident: 10.1016/j.amc.2013.01.051_b0165 doi: 10.3182/20130204-3-FR-4032.00208 – volume: 14 start-page: 674 year: 2009 ident: 10.1016/j.amc.2013.01.051_b0100 article-title: Homotopy analysis method for fractional IVPs publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2007.09.014 – year: 1998 ident: 10.1016/j.amc.2013.01.051_b0085 – volume: 128 start-page: 1 year: 2004 ident: 10.1016/j.amc.2013.01.051_b0090 article-title: Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces publication-title: J. Approximation Theory doi: 10.1016/j.jat.2004.03.008 – volume: 59 start-page: 1326 year: 2010 ident: 10.1016/j.amc.2013.01.051_b0215 article-title: A new operational matrix for solving fractional-order differential equations publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2009.07.006 – volume: 36 start-page: 167 year: 2008 ident: 10.1016/j.amc.2013.01.051_b0185 article-title: Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order publication-title: Chaos Solitons Fract. doi: 10.1016/j.chaos.2006.06.041 – year: 2012 ident: 10.1016/j.amc.2013.01.051_b0025 article-title: Fractional calculus models and numerical methods doi: 10.1142/8180 – volume: 84 start-page: 2602 year: 2006 ident: 10.1016/j.amc.2013.01.051_b0145 article-title: An approximate method for numerical solution of fractional differential equations publication-title: Signal Process. doi: 10.1016/j.sigpro.2006.02.007 – volume: 61 start-page: 250 year: 2011 ident: 10.1016/j.amc.2013.01.051_b0095 article-title: Homotopy perturbation method for fractional Fornberg–Whitham equation publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2010.10.045 |
SSID | ssj0007614 |
Score | 2.360854 |
Snippet | ► A new formula of fractional-order derivatives of shifted Jacobi polynomials is proved. ► A Jacobi spectral tau approximation for solving linear FDEs with... In this paper, a new formula of Caputo fractional-order derivatives of shifted Jacobi polynomials of any degree in terms of shifted Jacobi polynomials... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8042 |
SubjectTerms | Approximation Caputo derivative Derivatives Differential equations Initial value problems Jacobi–Gauss–Lobatto quadrature Mathematical analysis Mathematical models Multi-term fractional differential equations Nonlinear fractional initial value problems Nonlinearity Shifted Jacobi polynomials Spectra Spectral methods |
Title | On shifted Jacobi spectral approximations for solving fractional differential equations |
URI | https://dx.doi.org/10.1016/j.amc.2013.01.051 https://www.proquest.com/docview/1671383419 |
Volume | 219 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5649 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GBE8CXXpktbmOIZjTjYvDncLSZtiZXZz3cCTf7vv9WOi4A72VEpSykv6y_sl7_0eIVfWjf1IM4Y796Ejbo0EHLQAhoh9QMakCJEoDkd-fywGE29SI90qFwbDKkvsLzA9R-vySau0ZmueJJjjK1EviuOBDKx6E8xgFz6G9d18fod5AE0vlJglxngxXp1s5jFe-g1VDF2eK3d67l9r0y-Uzpee3h7ZLX1G2ik-a5_UbHpAdoZrwdXskDw_pjR7SWLwH-kAQM4kNM-hXEC_XDb8IylyFDMKXiqFCYcbCTReFHkN0KqqlAJ__JTa90IBPDsi497dU7fvlDUTnJBztnR4ZJmnDbBeyy3QH-uFUSS1FnC5MRfGBODzGS1DjTV6XS1FEEVeFBrZZr71-DGpp7PUnhAaAFlpG6Nd09ZCS24C6we-QI2-GO5tg7DKWiosBcWxrsVUVZFjrwoMrNDAirkKDNwg1-su80JNY1NjUQ2B-jElFKD9pm6X1XAp-FXw_EOndrbKlOsDIw9QwO70f68-I9vtvBoGBu6ck_pysbIX4JMsTTOfdE2y1bl_6I--AFeN4Ig |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSD-MS3K3gSSpPsJmaPpVjqo_XSYm_LbrLBSE1rU8Gf70weBQU9mFMIuyHMbr6db3fmG4Ar6yZBrB2Hdu6jprgxEnHQIhgS9iEZkyIiotgfBL2RuB_74xXo1LkwFFZZYX-J6QVaV09alTVbszSlHF9JelGcDmRw1RuvwprwEZMbsNa-e-gNloCMTL0UY5YU5uXw-nCzCPPSbyRk6PJCvNN3f1uefgB1sfp0t2GrchtZu_yyHVix2S5s9peaq_kePD9lLH9JE3Qh2T3inElZkUY5x36FcvhnWqYp5gwdVYZzjvYSWDIvUxuwVV0sBX_6CbPvpQh4vg-j7u2w02tWZROaEefOoslj6_jaIPG13CIDsn4Ux1JrgZebcGFMiG6f0TLSVKbX1VKEcezHkZGeE1ifH0Ajm2b2EFiIfMUzRrvG00JLbkIbhIEgmb4E7-0ROLW1VFRpilNpi4mqg8deFRpYkYGV4yo08BFcL7vMSkGNvxqLegjUt1mhEPD_6nZZD5fCv4WOQHRmpx-5cgMk5SFp2B3_79UXsN4b9h_V493g4QQ2vKI4BsXxnEJjMf-wZ-iiLMx5NQW_AAI-4zM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+shifted+Jacobi+spectral+approximations+for+solving+fractional+differential+equations&rft.jtitle=Applied+mathematics+and+computation&rft.au=Doha%2C+E.H.&rft.au=Bhrawy%2C+A.H.&rft.au=Baleanu%2C+D.&rft.au=Ezz-Eldien%2C+S.S.&rft.date=2013-04-01&rft.issn=0096-3003&rft.volume=219&rft.issue=15&rft.spage=8042&rft.epage=8056&rft_id=info:doi/10.1016%2Fj.amc.2013.01.051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2013_01_051 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |