Dynamic analysis of flexible parallel robots via enhanced co-rotational and rigid finite element formulations
•Based on the co-rotational finite element method (CRFEM), a new formulation is presented.•Adapted to the CRFEM, another formulation is proposed based on the rigid finite element method.•The dynamic analysis of Delta parallel robot with flexible links are conducted by means of presented formulations...
Saved in:
Published in | Mechanism and machine theory Vol. 139; pp. 144 - 173 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0094-114X 1873-3999 |
DOI | 10.1016/j.mechmachtheory.2019.04.010 |
Cover
Abstract | •Based on the co-rotational finite element method (CRFEM), a new formulation is presented.•Adapted to the CRFEM, another formulation is proposed based on the rigid finite element method.•The dynamic analysis of Delta parallel robot with flexible links are conducted by means of presented formulations.•The accuracy and computational cost of both formulations are discussed.
The aim of this paper is to develop formulations for the dynamic analysis of parallel robots considering the links flexibility. These formulations are based on two popular methods which are used frequently in the literature, the Co-rotational and Rigid finite elements. In the first part of this study, the co-rotational elements are incorporated to model the flexible links. Unlike the common co-rotational formulations presented in the literature, the deformation of each element is described directly in its co-rotated frame without the need of expressing any intricate kinematic relations. In the second part, a formulation based on the rigid finite element method is elaborated. The formulation simplifies the form and derivation of kinetic energy of a flexible link, with respect to the co-rotational elements, at the cost of assuming the elements to be rigid. Choosing the Delta parallel robot as a case study, the two aforementioned formulations are implemented and evaluated. The numerical simulations show that, for the same number of nodes, the results differed by 6% in the worst case. However, in terms of computational cost, the rigid finite element formulation always reduces the simulation time by 31%–46%. |
---|---|
AbstractList | •Based on the co-rotational finite element method (CRFEM), a new formulation is presented.•Adapted to the CRFEM, another formulation is proposed based on the rigid finite element method.•The dynamic analysis of Delta parallel robot with flexible links are conducted by means of presented formulations.•The accuracy and computational cost of both formulations are discussed.
The aim of this paper is to develop formulations for the dynamic analysis of parallel robots considering the links flexibility. These formulations are based on two popular methods which are used frequently in the literature, the Co-rotational and Rigid finite elements. In the first part of this study, the co-rotational elements are incorporated to model the flexible links. Unlike the common co-rotational formulations presented in the literature, the deformation of each element is described directly in its co-rotated frame without the need of expressing any intricate kinematic relations. In the second part, a formulation based on the rigid finite element method is elaborated. The formulation simplifies the form and derivation of kinetic energy of a flexible link, with respect to the co-rotational elements, at the cost of assuming the elements to be rigid. Choosing the Delta parallel robot as a case study, the two aforementioned formulations are implemented and evaluated. The numerical simulations show that, for the same number of nodes, the results differed by 6% in the worst case. However, in terms of computational cost, the rigid finite element formulation always reduces the simulation time by 31%–46%. |
Author | Taghvaeipour, Afshin Kermanian, Ali Kamali E., Ali |
Author_xml | – sequence: 1 givenname: Ali surname: Kermanian fullname: Kermanian, Ali – sequence: 2 givenname: Ali surname: Kamali E. fullname: Kamali E., Ali – sequence: 3 givenname: Afshin surname: Taghvaeipour fullname: Taghvaeipour, Afshin email: afshintaghvaeipour@aut.ac.ir |
BookMark | eNqNkL1OwzAURi0EEm3hHTywJlzHaX4kFigUkCqxgMRmOc41deXElW0q8vaklAWmTne550jfmZLT3vVIyBWDlAErrjdph2rdSbWOa3R-SDNgdQp5CgxOyIRVJU94XdenZAJQ5wlj-fs5mYawAYBynvMJ6e6HXnZGUdlLOwQTqNNUW_wyjUW6lV5ai5Z617gY6M5Iiv1a9gpbqlziXZTRuBEd-ZZ682Faqk1vIlK02GEfqXa--7Q_b-GCnGlpA17-3hl5Wz68Lp6S1cvj8-J2lSjOISa8hZYrVRWl0o1mZV7Ns0a1ZZWxuoYCsqzgDW8ybCo97ijmDEspy_1Hzhqu-IzcHLzKuxA8arH1ppN-EAzEPp3YiL_pxD6dgFyM6Ub87h-uzGFo9NLYYyXLgwTHoTuDXgRlcF_OeFRRtM4cJ_oGeQmcLw |
CitedBy_id | crossref_primary_10_1080_03772063_2024_2350934 crossref_primary_10_1139_tcsme_2022_0123 crossref_primary_10_3390_app13116693 crossref_primary_10_3390_app12147224 crossref_primary_10_1007_s12206_023_0228_9 crossref_primary_10_1016_j_ymssp_2020_106745 crossref_primary_10_2514_1_G007137 crossref_primary_10_1016_j_mechmachtheory_2021_104502 crossref_primary_10_1016_j_mechmachtheory_2020_104145 crossref_primary_10_1016_j_ymssp_2020_107502 crossref_primary_10_3390_ma15196797 crossref_primary_10_1088_1402_4896_acba52 crossref_primary_10_1177_09544062231213491 crossref_primary_10_1016_j_mechmachtheory_2023_105250 crossref_primary_10_1088_1742_6596_2181_1_012024 crossref_primary_10_3390_machines10030200 crossref_primary_10_1007_s12555_021_0145_6 crossref_primary_10_1016_j_mechmachtheory_2023_105554 crossref_primary_10_1080_15397734_2020_1820874 crossref_primary_10_1186_s10033_022_00723_2 crossref_primary_10_1186_s10033_020_00460_4 crossref_primary_10_1142_S0219455422500997 |
Cites_doi | 10.1016/j.mechmachtheory.2015.11.018 10.1016/j.cma.2004.07.035 10.1016/0045-7949(79)90085-3 10.1155/2011/146505 10.1007/s40997-016-0019-3 10.1007/s10846-007-9167-4 10.1016/j.mechmachtheory.2006.01.014 10.1016/S0020-7462(97)00024-3 10.1016/S0045-7825(98)00152-2 10.1177/1077546313490978 10.1023/B:NODY.0000014556.40215.95 10.1017/S0263574716000291 10.1016/j.camwa.2016.03.018 10.1023/A:1009773505418 10.1115/1.2167655 10.1007/s11044-008-9133-3 10.1016/j.tws.2017.11.056 10.1177/0954406214538946 10.1016/j.jfranklin.2009.10.014 10.1016/j.jsv.2017.05.022 10.1007/s11771-010-0049-8 10.1017/S0263574710000032 10.1177/0954406214538781 10.1023/A:1026465001946 10.1016/0898-1221(96)00141-1 10.3901/CJME.2014.0618.113 10.1002/cnm.773 10.1016/j.rcim.2011.03.003 10.1016/0045-7949(94)00346-5 10.1115/1.1410100 10.1016/0045-7949(93)90313-3 10.1115/1.3079825 10.1155/2018/2670462 10.1023/A:1026433909962 10.1016/j.cma.2013.11.007 10.4028/www.scientific.net/AMM.762.101 10.1016/j.compstruc.2018.01.011 10.1016/j.mechmachtheory.2014.03.005 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mechmachtheory.2019.04.010 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3999 |
EndPage | 173 |
ExternalDocumentID | 10_1016_j_mechmachtheory_2019_04_010 S0094114X19305488 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K T9H TN5 TWZ WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
ID | FETCH-LOGICAL-c330t-3d0d3cc867cfbf174852bcd7821990602263b3b2eb8f075651e7aa7cd7841b3c3 |
IEDL.DBID | AIKHN |
ISSN | 0094-114X |
IngestDate | Wed Oct 01 02:29:08 EDT 2025 Thu Apr 24 23:09:53 EDT 2025 Fri Feb 23 02:18:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Rigid finite element method Co-rotational elements Delta parallel robot Flexible links |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-3d0d3cc867cfbf174852bcd7821990602263b3b2eb8f075651e7aa7cd7841b3c3 |
PageCount | 30 |
ParticipantIDs | crossref_primary_10_1016_j_mechmachtheory_2019_04_010 crossref_citationtrail_10_1016_j_mechmachtheory_2019_04_010 elsevier_sciencedirect_doi_10_1016_j_mechmachtheory_2019_04_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2019 2019-09-00 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: September 2019 |
PublicationDecade | 2010 |
PublicationTitle | Mechanism and machine theory |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Huang, Fujii, Hsiao (bib0025) 2018; 200 Chang, Ali, Ren, Zhang, Wu (bib0047) 2015 Kuo (bib0049) 2016; 71 Firoozabadi, Ebrahimi, Font-Llagunes (bib0041) 2017; 35 Zhao, Gao, Dong, Zhao (bib0036) 2011; 27 Zhou, Xi, Mechefske (bib0030) 2006; 128 Liu, Yu, Zhu, Su, Liu (bib0035) 2010; 17 Enferadi, Tootoonchi (bib0033) 2011; 29 Cretescu, Neagoe (bib0048) 2015; 762 Shabana, Schwertassek (bib0004) 1998; 33 Tsai, Lin, Zhou, Hsiao (bib0020) 2011; 2011 Cammarata, Sinatra (bib0034) 2015 Hsiao, Lin, Lin (bib0017) 1999; 169 Baruh (bib0052) 1999 Zhang, Zhang, Chen (bib0039) 2014; 78 Lee, Geng (bib0028) 1993; 48 Huang, Peng, Hsiao (bib0022) 2017 Liang, Song, Sun, Jin (bib0045) 2017; 403 Zhang, Mills, Cleghorn (bib0031) 2007; 50 Nada, Hussein, Megahed, Shabana (bib0006) 2010; 224 Berzeri, Campanelli, Shabana (bib0008) 2001; 5 Dibold, Gerstmayr, Irschik (bib0012) 2009; 4 Shi, McPhee, Heppler (bib0054) 2001; 5 Chen, Kong, Ji, Liu (bib0038) 2015; 229 Fish, Belytschko (bib0051) 2007 Dibold, Gerstmayr, Irschik (bib0011) 2007 Le, Battini, Hjiaj (bib0021) 2014; 269 Shabana, Yakoub (bib0007) 2001; 123 Wang, Jiang, Li (bib0040) 2014; 27 Chen, Ming, Minxiu, Chen (bib0044) 2016 Gerstmayr (bib0010) 2003; 34 Ebrahimi, Eshaghiyeh-Firoozabadi (bib0042) 2016; 40 Zhang, Mills, Cleghorn (bib0032) 2009; 21 Zhang, Zhang (bib0037) 2015; 21 Shabana (bib0003) 2013 Liu, Wang (bib0001) 2014 Garcia-Vallejo, Sugiyama, Shabana (bib0005) 2005; 219 Elkaranshawy, Dokainish (bib0016) 1995; 54 Shabana (bib0002) 1997; 1 Felippa, Haugen (bib0019) 2005; 194 Elkaranshawy, Elerian, Hussien (bib0024) 2018; 2018 Dwivedy, Eberhard (bib0027) 2006; 41 Urthaler, Reddy (bib0018) 2005; 21 Bogacki, Shampine (bib0053) 1996; 32 Huang, Peng, Lin, Fujii, Hsiao (bib0023) 2018; 124 Wittbrodt, Adamiec-Wójcik, Wojciech (bib0026) 2007 Gerstmayr (bib0009) 2003 Belytschko, Glaum (bib0015) 1979; 10 Argyris, Kamel, Kelsey (bib0014) 1964 Zhang, Zhang, Liang (bib0046) 2012 Pennestrì, Valentini, de Falco (bib0013) 2010; 347 Li, Chen, Sun, Gao, Wang (bib0043) 2016; 99 Fattah, Angeles, Misra (bib0029) 1995 Taghvaeipour, Angeles, Lessard (bib0050) 2015; 229 Fish (10.1016/j.mechmachtheory.2019.04.010_bib0051) 2007 Berzeri (10.1016/j.mechmachtheory.2019.04.010_bib0008) 2001; 5 Tsai (10.1016/j.mechmachtheory.2019.04.010_bib0020) 2011; 2011 Felippa (10.1016/j.mechmachtheory.2019.04.010_bib0019) 2005; 194 Enferadi (10.1016/j.mechmachtheory.2019.04.010_bib0033) 2011; 29 Chang (10.1016/j.mechmachtheory.2019.04.010_bib0047) 2015 Firoozabadi (10.1016/j.mechmachtheory.2019.04.010_bib0041) 2017; 35 Gerstmayr (10.1016/j.mechmachtheory.2019.04.010_bib0010) 2003; 34 Gerstmayr (10.1016/j.mechmachtheory.2019.04.010_bib0009) 2003 Liu (10.1016/j.mechmachtheory.2019.04.010_bib0035) 2010; 17 Elkaranshawy (10.1016/j.mechmachtheory.2019.04.010_bib0024) 2018; 2018 Zhang (10.1016/j.mechmachtheory.2019.04.010_bib0039) 2014; 78 Li (10.1016/j.mechmachtheory.2019.04.010_bib0043) 2016; 99 Taghvaeipour (10.1016/j.mechmachtheory.2019.04.010_bib0050) 2015; 229 Huang (10.1016/j.mechmachtheory.2019.04.010_bib0022) 2017 Chen (10.1016/j.mechmachtheory.2019.04.010_bib0038) 2015; 229 Ebrahimi (10.1016/j.mechmachtheory.2019.04.010_bib0042) 2016; 40 Zhang (10.1016/j.mechmachtheory.2019.04.010_bib0046) 2012 Bogacki (10.1016/j.mechmachtheory.2019.04.010_bib0053) 1996; 32 Liu (10.1016/j.mechmachtheory.2019.04.010_bib0001) 2014 Shabana (10.1016/j.mechmachtheory.2019.04.010_bib0004) 1998; 33 Nada (10.1016/j.mechmachtheory.2019.04.010_bib0006) 2010; 224 Shabana (10.1016/j.mechmachtheory.2019.04.010_bib0003) 2013 Huang (10.1016/j.mechmachtheory.2019.04.010_bib0023) 2018; 124 Elkaranshawy (10.1016/j.mechmachtheory.2019.04.010_bib0016) 1995; 54 Le (10.1016/j.mechmachtheory.2019.04.010_bib0021) 2014; 269 Argyris (10.1016/j.mechmachtheory.2019.04.010_bib0014) 1964 Kuo (10.1016/j.mechmachtheory.2019.04.010_bib0049) 2016; 71 Fattah (10.1016/j.mechmachtheory.2019.04.010_bib0029) 1995 Urthaler (10.1016/j.mechmachtheory.2019.04.010_bib0018) 2005; 21 Zhang (10.1016/j.mechmachtheory.2019.04.010_bib0037) 2015; 21 Zhou (10.1016/j.mechmachtheory.2019.04.010_bib0030) 2006; 128 Chen (10.1016/j.mechmachtheory.2019.04.010_bib0044) 2016 Wang (10.1016/j.mechmachtheory.2019.04.010_bib0040) 2014; 27 Dwivedy (10.1016/j.mechmachtheory.2019.04.010_bib0027) 2006; 41 Zhang (10.1016/j.mechmachtheory.2019.04.010_bib0031) 2007; 50 Huang (10.1016/j.mechmachtheory.2019.04.010_bib0025) 2018; 200 Dibold (10.1016/j.mechmachtheory.2019.04.010_bib0012) 2009; 4 Liang (10.1016/j.mechmachtheory.2019.04.010_bib0045) 2017; 403 Cammarata (10.1016/j.mechmachtheory.2019.04.010_bib0034) 2015 Cretescu (10.1016/j.mechmachtheory.2019.04.010_bib0048) 2015; 762 Shabana (10.1016/j.mechmachtheory.2019.04.010_bib0002) 1997; 1 Garcia-Vallejo (10.1016/j.mechmachtheory.2019.04.010_bib0005) 2005; 219 Pennestrì (10.1016/j.mechmachtheory.2019.04.010_bib0013) 2010; 347 Wittbrodt (10.1016/j.mechmachtheory.2019.04.010_bib0026) 2007 Zhao (10.1016/j.mechmachtheory.2019.04.010_bib0036) 2011; 27 Baruh (10.1016/j.mechmachtheory.2019.04.010_bib0052) 1999 Shi (10.1016/j.mechmachtheory.2019.04.010_bib0054) 2001; 5 Zhang (10.1016/j.mechmachtheory.2019.04.010_bib0032) 2009; 21 Lee (10.1016/j.mechmachtheory.2019.04.010_bib0028) 1993; 48 Shabana (10.1016/j.mechmachtheory.2019.04.010_bib0007) 2001; 123 Belytschko (10.1016/j.mechmachtheory.2019.04.010_bib0015) 1979; 10 Hsiao (10.1016/j.mechmachtheory.2019.04.010_bib0017) 1999; 169 Dibold (10.1016/j.mechmachtheory.2019.04.010_bib0011) 2007 |
References_xml | – volume: 32 start-page: 15 year: 1996 end-page: 28 ident: bib0053 article-title: An efficient runge-kutta (4, 5) pair publication-title: Comput. Math. Appl. – start-page: 29 year: 2003 end-page: 35 ident: bib0009 article-title: Comparison of the absolute nodal coordinate and the floating frame of reference formulation by means of a simplified strain formulation publication-title: Am. Soc. Mech. Eng. – volume: 229 start-page: 663 year: 2015 end-page: 678 ident: bib0038 article-title: An efficient dynamic modelling approach for high-speed planar parallel manipulator with flexible links publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. – volume: 194 start-page: 2285 year: 2005 end-page: 2335 ident: bib0019 article-title: A unified formulation of small-strain corotational finite elements: I. Theory publication-title: Comput. Meth. Appl. Mech. Eng. – volume: 2011 year: 2011 ident: bib0020 article-title: A corotational finite element method combined with floating frame method for large steady-state deformation and free vibration analysis of a rotating-inclined beam publication-title: Math. Probl. Eng. – start-page: 5 year: 2017 ident: bib0022 article-title: Congress on Numerical Methods in Engineering CMN2017 – volume: 71 start-page: 1973 year: 2016 end-page: 1989 ident: bib0049 article-title: Mathematical modeling and analysis of the Delta robot with flexible links publication-title: Comput. Math. Appl. – year: 2007 ident: bib0051 article-title: A First Course in Finite Elements – volume: 269 start-page: 538 year: 2014 end-page: 565 ident: bib0021 article-title: A consistent 3D corotational beam element for nonlinear dynamic analysis of flexible structures publication-title: Comput. Meth. Appl. Mech. Eng. – volume: 21 start-page: 167 year: 2009 end-page: 192 ident: bib0032 article-title: Coupling characteristics of rigid body motion and elastic deformation of a 3-PRR parallel manipulator with flexible links publication-title: Multibody Syst. Dyn. – volume: 54 start-page: 881 year: 1995 end-page: 890 ident: bib0016 article-title: Corotational finite element analysis of planar flexible multibody systems publication-title: Comput. Struct. – start-page: 1071 year: 2007 end-page: 1080 ident: bib0011 article-title: On the accuracy and computational costs of the absolute nodal coordinate and the floating frame of reference formulation in deformable multibody systems publication-title: Am. Soc. Mech. Eng. – volume: 762 start-page: 101 year: 2015 ident: bib0048 article-title: Rigid versus flexible link dynamic analysis of a 3DOF Delta type parallel manipulator publication-title: Appl. Mech. Mater. – volume: 21 start-page: 81 year: 2015 end-page: 104 ident: bib0037 article-title: Dynamic analysis of planar 3-R RR flexible parallel robots under uniform temperature change publication-title: J. Vib. Control – volume: 33 start-page: 417 year: 1998 end-page: 432 ident: bib0004 article-title: Equivalence of the floating frame of reference approach and finite element formulations publication-title: Int. J. Non Linear Mech. – start-page: 627 year: 1995 end-page: 633 ident: bib0029 article-title: Dynamics of a 3-DOF spatial parallel manipulator with flexible links publication-title: Robotics and Automation, 1995. Proceedings., 1995 IEEE International Conference on, IEEE – volume: 10 start-page: 175 year: 1979 end-page: 182 ident: bib0015 article-title: Applications of higher order corotational stretch theories to nonlinear finite element analysis publication-title: Comput. Struct. – volume: 1 start-page: 189 year: 1997 end-page: 222 ident: bib0002 article-title: Flexible multibody dynamics: review of past and recent developments publication-title: Multibody Syst. Dyn. – volume: 21 start-page: 553 year: 2005 end-page: 570 ident: bib0018 article-title: A corotational finite element formulation for the analysis of planar beams publication-title: Commun. Numer. Methods Eng. – volume: 229 start-page: 751 year: 2015 end-page: 764 ident: bib0050 article-title: Elastodynamics of a two-limb Schönflies motion generator publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. – year: 2013 ident: bib0003 article-title: Dynamics of Multibody Systems – volume: 403 start-page: 129 year: 2017 end-page: 151 ident: bib0045 article-title: Rigid-flexible coupling dynamic modeling and investigation of a redundantly actuated parallel manipulator with multiple actuation modes publication-title: J. Sound Vib. – volume: 5 start-page: 21 year: 2001 end-page: 54 ident: bib0008 article-title: Definition of the elastic forces in the finite-element absolute nodal coordinate formulation and the floating frame of reference formulation publication-title: Multibody Syst. Dyn. – start-page: 154 year: 2012 end-page: 159 ident: bib0046 article-title: Dynamic analysis of planar 3-RRR flexible parallel robot publication-title: 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO) – year: 2014 ident: bib0001 article-title: Parallel Kinematics – start-page: 347 year: 2015 end-page: 356 ident: bib0034 article-title: On the elastostatics of spherical parallel machines with curved links publication-title: Recent Advances in Mechanism Design for Robotics – volume: 27 start-page: 918 year: 2011 end-page: 928 ident: bib0036 article-title: Dynamics analysis and characteristics of the 8-PSS flexible redundant parallel manipulator publication-title: Rob. Comput. Integr. Manuf. – volume: 27 start-page: 890 year: 2014 end-page: 899 ident: bib0040 article-title: Running accuracy analysis of a 3-RRR parallel kinematic machine considering the deformations of the links publication-title: Chin. J. Mech. Eng. – volume: 5 start-page: 79 year: 2001 end-page: 104 ident: bib0054 article-title: A deformation field for Euler–Bernoulli beams with applications to flexible multibody dynamics publication-title: Multibody Syst. Dyn. – volume: 128 start-page: 403 year: 2006 end-page: 412 ident: bib0030 article-title: Modeling of a fully flexible 3PRS manipulator for vibration analysis publication-title: J. Mech. Des. – volume: 4 year: 2009 ident: bib0012 article-title: A detailed comparison of the absolute nodal coordinate and the floating frame of reference formulation in deformable multibody systems publication-title: J. Comput. Nonlinear Dyn. – volume: 123 start-page: 606 year: 2001 end-page: 613 ident: bib0007 article-title: Three dimensional absolute nodal coordinate formulation for beam elements: theory publication-title: J. Mech. Des. – volume: 2018 year: 2018 ident: bib0024 article-title: A corotational formulation based on Hamilton's principle for geometrically nonlinear thin and thick planar beams and frames publication-title: Math. Probl. Eng. – volume: 40 start-page: 169 year: 2016 end-page: 180 ident: bib0042 article-title: Dynamic performance evaluation of serial and parallel RPR manipulators with flexible intermediate links publication-title: Iran. J. Sci. Technol. Trans. Mech. Eng. – volume: 41 start-page: 749 year: 2006 end-page: 777 ident: bib0027 article-title: Dynamic analysis of flexible manipulators, a literature review publication-title: Mech. Mach. Theory – volume: 78 start-page: 105 year: 2014 end-page: 115 ident: bib0039 article-title: Dynamic analysis of a 3-RRR parallel mechanism with multiple clearance joints publication-title: Mech. Mach. Theory – year: 1999 ident: bib0052 article-title: Analytical Dynamics – volume: 99 start-page: 37 year: 2016 end-page: 57 ident: bib0043 article-title: Dynamic analysis and optimization design of a planar slider–crank mechanism with flexible components and two clearance joints publication-title: Mech. Mach. Theory – volume: 124 start-page: 558 year: 2018 end-page: 573 ident: bib0023 article-title: A buckling and postbuckling analysis of axially loaded thin-walled beams with point-symmetric open section using corotational finite element formulation publication-title: Thin Walled Struct. – start-page: 1 year: 1964 end-page: 164 ident: bib0014 article-title: Matrix Methods of Structural Analysis – volume: 17 start-page: 323 year: 2010 end-page: 331 ident: bib0035 article-title: Dynamic modeling and analysis of 3-RRS parallel manipulator with flexible links publication-title: J. Cent. South Univ. Technol. – year: 2007 ident: bib0026 article-title: Dynamics of Flexible Multibody Systems: Rigid Finite Element Method – volume: 34 start-page: 133 year: 2003 end-page: 145 ident: bib0010 article-title: Strain tensors in the absolute nodal coordinate and the floating frame of reference formulation publication-title: Nonlinear Dyn. – start-page: 826 year: 2016 ident: bib0044 article-title: Modal analysis of high-speed parallel manipulator with flexible links publication-title: Appl. Mech. Mater. – volume: 200 start-page: 68 year: 2018 end-page: 85 ident: bib0025 article-title: An explicit algorithm for geometrically nonlinear transient analysis of spatial beams using a corotational total Lagrangian finite element formulation publication-title: Comput. Struct. – volume: 169 start-page: 1 year: 1999 end-page: 18 ident: bib0017 article-title: A consistent co-rotational finite element formulation for geometrically nonlinear dynamic analysis of 3-D beams publication-title: Comput. Meth. Appl. Mech. Eng. – volume: 347 start-page: 173 year: 2010 end-page: 194 ident: bib0013 article-title: An application of the Udwadia–Kalaba dynamic formulation to flexible multibody systems publication-title: J. Franklin Inst. B – volume: 224 start-page: 45 year: 2010 end-page: 58 ident: bib0006 article-title: Use of the floating frame of reference formulation in large deformation analysis: experimental and numerical validation publication-title: Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. – volume: 219 start-page: 187 year: 2005 end-page: 202 ident: bib0005 article-title: Finite element analysis of the geometric stiffening effect. Part 1: a correction in the floating frame of reference formulation publication-title: Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. – start-page: 1408 year: 2015 end-page: 1417 ident: bib0047 article-title: Dynamics and vibration analysis of delta robot publication-title: 5th International Conference on Information Engineering for Mechanics and Materials (ICIMM2015) – volume: 35 start-page: 1523 year: 2017 end-page: 1540 ident: bib0041 article-title: A comparative study of elastic motions in trajectory tracking of flexible RPR planar manipulators moving with high speed publication-title: Robotica – volume: 50 start-page: 323 year: 2007 end-page: 340 ident: bib0031 article-title: Dynamic modeling and experimental validation of a 3-PRR parallel manipulator with flexible intermediate links publication-title: J. Intell. Rob. Syst. – volume: 29 start-page: 193 year: 2011 end-page: 209 ident: bib0033 article-title: Accuracy and stiffness analysis of a 3-RRP spherical parallel manipulator publication-title: Robotica – volume: 48 start-page: 367 year: 1993 end-page: 374 ident: bib0028 article-title: A dynamic model of a flexible Stewart platform publication-title: Comput. Struct. – start-page: 1 year: 1964 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0014 – volume: 99 start-page: 37 year: 2016 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0043 article-title: Dynamic analysis and optimization design of a planar slider–crank mechanism with flexible components and two clearance joints publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2015.11.018 – volume: 194 start-page: 2285 year: 2005 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0019 article-title: A unified formulation of small-strain corotational finite elements: I. Theory publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2004.07.035 – volume: 10 start-page: 175 year: 1979 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0015 article-title: Applications of higher order corotational stretch theories to nonlinear finite element analysis publication-title: Comput. Struct. doi: 10.1016/0045-7949(79)90085-3 – volume: 2011 year: 2011 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0020 article-title: A corotational finite element method combined with floating frame method for large steady-state deformation and free vibration analysis of a rotating-inclined beam publication-title: Math. Probl. Eng. doi: 10.1155/2011/146505 – volume: 40 start-page: 169 year: 2016 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0042 article-title: Dynamic performance evaluation of serial and parallel RPR manipulators with flexible intermediate links publication-title: Iran. J. Sci. Technol. Trans. Mech. Eng. doi: 10.1007/s40997-016-0019-3 – start-page: 5 year: 2017 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0022 – volume: 50 start-page: 323 year: 2007 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0031 article-title: Dynamic modeling and experimental validation of a 3-PRR parallel manipulator with flexible intermediate links publication-title: J. Intell. Rob. Syst. doi: 10.1007/s10846-007-9167-4 – start-page: 826 year: 2016 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0044 article-title: Modal analysis of high-speed parallel manipulator with flexible links publication-title: Appl. Mech. Mater. – volume: 41 start-page: 749 year: 2006 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0027 article-title: Dynamic analysis of flexible manipulators, a literature review publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2006.01.014 – year: 2013 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0003 – volume: 33 start-page: 417 year: 1998 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0004 article-title: Equivalence of the floating frame of reference approach and finite element formulations publication-title: Int. J. Non Linear Mech. doi: 10.1016/S0020-7462(97)00024-3 – volume: 169 start-page: 1 year: 1999 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0017 article-title: A consistent co-rotational finite element formulation for geometrically nonlinear dynamic analysis of 3-D beams publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/S0045-7825(98)00152-2 – volume: 21 start-page: 81 year: 2015 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0037 article-title: Dynamic analysis of planar 3-R RR flexible parallel robots under uniform temperature change publication-title: J. Vib. Control doi: 10.1177/1077546313490978 – volume: 224 start-page: 45 year: 2010 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0006 article-title: Use of the floating frame of reference formulation in large deformation analysis: experimental and numerical validation publication-title: Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. – volume: 34 start-page: 133 year: 2003 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0010 article-title: Strain tensors in the absolute nodal coordinate and the floating frame of reference formulation publication-title: Nonlinear Dyn. doi: 10.1023/B:NODY.0000014556.40215.95 – volume: 35 start-page: 1523 year: 2017 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0041 article-title: A comparative study of elastic motions in trajectory tracking of flexible RPR planar manipulators moving with high speed publication-title: Robotica doi: 10.1017/S0263574716000291 – year: 2014 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0001 – volume: 71 start-page: 1973 year: 2016 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0049 article-title: Mathematical modeling and analysis of the Delta robot with flexible links publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2016.03.018 – volume: 1 start-page: 189 year: 1997 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0002 article-title: Flexible multibody dynamics: review of past and recent developments publication-title: Multibody Syst. Dyn. doi: 10.1023/A:1009773505418 – volume: 128 start-page: 403 year: 2006 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0030 article-title: Modeling of a fully flexible 3PRS manipulator for vibration analysis publication-title: J. Mech. Des. doi: 10.1115/1.2167655 – volume: 21 start-page: 167 year: 2009 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0032 article-title: Coupling characteristics of rigid body motion and elastic deformation of a 3-PRR parallel manipulator with flexible links publication-title: Multibody Syst. Dyn. doi: 10.1007/s11044-008-9133-3 – volume: 124 start-page: 558 year: 2018 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0023 article-title: A buckling and postbuckling analysis of axially loaded thin-walled beams with point-symmetric open section using corotational finite element formulation publication-title: Thin Walled Struct. doi: 10.1016/j.tws.2017.11.056 – volume: 229 start-page: 663 year: 2015 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0038 article-title: An efficient dynamic modelling approach for high-speed planar parallel manipulator with flexible links publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. doi: 10.1177/0954406214538946 – volume: 347 start-page: 173 year: 2010 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0013 article-title: An application of the Udwadia–Kalaba dynamic formulation to flexible multibody systems publication-title: J. Franklin Inst. B doi: 10.1016/j.jfranklin.2009.10.014 – volume: 403 start-page: 129 year: 2017 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0045 article-title: Rigid-flexible coupling dynamic modeling and investigation of a redundantly actuated parallel manipulator with multiple actuation modes publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2017.05.022 – year: 1999 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0052 – start-page: 29 year: 2003 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0009 article-title: Comparison of the absolute nodal coordinate and the floating frame of reference formulation by means of a simplified strain formulation publication-title: Am. Soc. Mech. Eng. – volume: 17 start-page: 323 year: 2010 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0035 article-title: Dynamic modeling and analysis of 3-RRS parallel manipulator with flexible links publication-title: J. Cent. South Univ. Technol. doi: 10.1007/s11771-010-0049-8 – volume: 29 start-page: 193 year: 2011 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0033 article-title: Accuracy and stiffness analysis of a 3-RRP spherical parallel manipulator publication-title: Robotica doi: 10.1017/S0263574710000032 – volume: 229 start-page: 751 year: 2015 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0050 article-title: Elastodynamics of a two-limb Schönflies motion generator publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. doi: 10.1177/0954406214538781 – volume: 5 start-page: 21 year: 2001 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0008 article-title: Definition of the elastic forces in the finite-element absolute nodal coordinate formulation and the floating frame of reference formulation publication-title: Multibody Syst. Dyn. doi: 10.1023/A:1026465001946 – start-page: 1071 year: 2007 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0011 article-title: On the accuracy and computational costs of the absolute nodal coordinate and the floating frame of reference formulation in deformable multibody systems publication-title: Am. Soc. Mech. Eng. – start-page: 347 year: 2015 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0034 article-title: On the elastostatics of spherical parallel machines with curved links – start-page: 627 year: 1995 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0029 article-title: Dynamics of a 3-DOF spatial parallel manipulator with flexible links – volume: 32 start-page: 15 year: 1996 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0053 article-title: An efficient runge-kutta (4, 5) pair publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(96)00141-1 – volume: 27 start-page: 890 year: 2014 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0040 article-title: Running accuracy analysis of a 3-RRR parallel kinematic machine considering the deformations of the links publication-title: Chin. J. Mech. Eng. doi: 10.3901/CJME.2014.0618.113 – year: 2007 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0026 – start-page: 154 year: 2012 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0046 article-title: Dynamic analysis of planar 3-RRR flexible parallel robot – volume: 21 start-page: 553 year: 2005 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0018 article-title: A corotational finite element formulation for the analysis of planar beams publication-title: Commun. Numer. Methods Eng. doi: 10.1002/cnm.773 – volume: 27 start-page: 918 year: 2011 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0036 article-title: Dynamics analysis and characteristics of the 8-PSS flexible redundant parallel manipulator publication-title: Rob. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2011.03.003 – volume: 54 start-page: 881 year: 1995 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0016 article-title: Corotational finite element analysis of planar flexible multibody systems publication-title: Comput. Struct. doi: 10.1016/0045-7949(94)00346-5 – volume: 123 start-page: 606 year: 2001 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0007 article-title: Three dimensional absolute nodal coordinate formulation for beam elements: theory publication-title: J. Mech. Des. doi: 10.1115/1.1410100 – volume: 48 start-page: 367 year: 1993 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0028 article-title: A dynamic model of a flexible Stewart platform publication-title: Comput. Struct. doi: 10.1016/0045-7949(93)90313-3 – year: 2007 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0051 – volume: 4 year: 2009 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0012 article-title: A detailed comparison of the absolute nodal coordinate and the floating frame of reference formulation in deformable multibody systems publication-title: J. Comput. Nonlinear Dyn. doi: 10.1115/1.3079825 – volume: 2018 year: 2018 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0024 article-title: A corotational formulation based on Hamilton's principle for geometrically nonlinear thin and thick planar beams and frames publication-title: Math. Probl. Eng. doi: 10.1155/2018/2670462 – volume: 5 start-page: 79 year: 2001 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0054 article-title: A deformation field for Euler–Bernoulli beams with applications to flexible multibody dynamics publication-title: Multibody Syst. Dyn. doi: 10.1023/A:1026433909962 – volume: 219 start-page: 187 year: 2005 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0005 article-title: Finite element analysis of the geometric stiffening effect. Part 1: a correction in the floating frame of reference formulation publication-title: Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. – volume: 269 start-page: 538 year: 2014 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0021 article-title: A consistent 3D corotational beam element for nonlinear dynamic analysis of flexible structures publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2013.11.007 – volume: 762 start-page: 101 year: 2015 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0048 article-title: Rigid versus flexible link dynamic analysis of a 3DOF Delta type parallel manipulator publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.762.101 – volume: 200 start-page: 68 year: 2018 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0025 article-title: An explicit algorithm for geometrically nonlinear transient analysis of spatial beams using a corotational total Lagrangian finite element formulation publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2018.01.011 – start-page: 1408 year: 2015 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0047 article-title: Dynamics and vibration analysis of delta robot – volume: 78 start-page: 105 year: 2014 ident: 10.1016/j.mechmachtheory.2019.04.010_bib0039 article-title: Dynamic analysis of a 3-RRR parallel mechanism with multiple clearance joints publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2014.03.005 |
SSID | ssj0007543 |
Score | 2.3929477 |
Snippet | •Based on the co-rotational finite element method (CRFEM), a new formulation is presented.•Adapted to the CRFEM, another formulation is proposed based on the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 144 |
SubjectTerms | Co-rotational elements Delta parallel robot Flexible links Rigid finite element method |
Title | Dynamic analysis of flexible parallel robots via enhanced co-rotational and rigid finite element formulations |
URI | https://dx.doi.org/10.1016/j.mechmachtheory.2019.04.010 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-3999 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007543 issn: 0094-114X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-3999 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007543 issn: 0094-114X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-3999 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007543 issn: 0094-114X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-3999 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007543 issn: 0094-114X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-3999 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007543 issn: 0094-114X databaseCode: AKRWK dateStart: 19720101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7MDUQP4k-cP0YOu0bbJk1bPMiYylTYSWG3kqQJm3Tr2Krgxb_dpM2mggfBY0tfKF_De1_b730PoEtDw1FDn2FBOMNUSw_HOiCYC04FSZQhsZXaYsgGz_RhFI4a0F_1wlhZpcv9dU6vsrU7c-nQvJxPJrbHN6GGzY8MBTG8I443oBWQxA-a0OrdPw6G64QchU48l1BsAzah-yXzmio5nnI5rvoG363WK6m8T21L7W-V6lv1uduFHUcbUa--sz1oqNk-bH8zEzyA6U09XB5x5zOCCo209bsUuULW4jvPVY4WhSjKJXqbcKRm4-r_P5IFXhSl-yxo4jNkx2VlSE8sI0Wqlpgjy2_dtK_lITzf3T71B9gNU8CSEK_EJPMyImXMIqmFNu8hcRgImRmC4JuCxEwpZ0QQESgRa4MYC30VcR7ZK6gviCRH0JwVM3UMKJEZMytwIpWmEWGC-rEnM64SpWIeRG24WgGXSuc0bgde5OlKUvaS_oQ9tbCnHk0N7G0I19Hz2nHjj3HXq2eU_thBqSkOf1rh5N8rnMKWPao1aGfQLBev6tyQllJ0YOPiw--4rfkJ85PxpQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH7oCC4HccVxzcFrsJ2kaYoHGVwYtzkpzC0kacKMdKYyVsF_b9JmXMCD4LXtC-VreO9r-73vARzTxHHUJGZYEckwtTrC3HYIlkpSRTLjSGyttuiz3iO9GSSDOTif9cJ4WWXI_U1Or7N1OHIS0Dx5Ho18j29GHZsfOArieAfn87BAE5LxFix0r297_c-EnCZBPJdR7AMW4fhL5jU2ejiWelj3Db57rVdWe5_6ltrfKtW36nO1BquBNqJuc2frMGcmG7DyzUxwE8YXzXB5JIPPCCotst7vUhUGeYvvojAFmpaqrF7Q20giMxnW__-RLvG0rMJnQRefIz8uK0d25BkpMo3EHHl-G6Z9vWzB49Xlw3kPh2EKWBMSVZjkUU605izVVln3HsKTjtK5IwixK0jMlXJGFFEdo7h1iLEkNqmUqb-Cxoposg2tSTkxO4AynTO3giTaWJoSpmjMI51LkxnDZSdtw-kMOKGD07gfeFGImaTsSfyEXXjYRUSFg70NyWf0c-O48ce4s9kzEj92kHDF4U8r7P57hSNY6j3c34m76_7tHiz7M40ebR9a1fTVHDgCU6nDsEE_ANZY850 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+analysis+of+flexible+parallel+robots+via+enhanced+co-rotational+and+rigid+finite+element+formulations&rft.jtitle=Mechanism+and+machine+theory&rft.au=Kermanian%2C+Ali&rft.au=Kamali+E.%2C+Ali&rft.au=Taghvaeipour%2C+Afshin&rft.date=2019-09-01&rft.issn=0094-114X&rft.volume=139&rft.spage=144&rft.epage=173&rft_id=info:doi/10.1016%2Fj.mechmachtheory.2019.04.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mechmachtheory_2019_04_010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-114X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-114X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-114X&client=summon |