DDM-Former: Transformer networks for GNSS reflectometry global ocean wind speed estimation

Global navigation satellite system reflectometry (GNSS-R) has shown a capability in recent years to be applied as a novel remote sensing technique to retrieve ocean wind speeds. The combination of GNSS-R observable delay-Doppler maps (DDMs) and deep learning algorithms provides the possibility to bu...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 294; p. 113629
Main Authors Zhao, Daixin, Heidler, Konrad, Asgarimehr, Milad, Arnold, Caroline, Xiao, Tianqi, Wickert, Jens, Zhu, Xiao Xiang, Mou, Lichao
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.08.2023
Subjects
Online AccessGet full text
ISSN0034-4257
1879-0704
DOI10.1016/j.rse.2023.113629

Cover

Abstract Global navigation satellite system reflectometry (GNSS-R) has shown a capability in recent years to be applied as a novel remote sensing technique to retrieve ocean wind speeds. The combination of GNSS-R observable delay-Doppler maps (DDMs) and deep learning algorithms provides the possibility to build an end-to-end pipeline for improving wind speed estimations. Recent studies have proven that data-driven approaches can be applied to generate enhanced estimation products. However, these are usually trained with convolutional neural networks (CNNs), which include inductive bias throughout the models. The inbuilt translation equivariance in CNNs represents an inexactitude for the feature extraction on DDMs. To address this issue, we propose Transformer-based models, named DDM-Former and DDM-Sequence-Former (DDM-Seq-Former), to exploit delay-Doppler correlation within and between DDMs, respectively. The advantages of our methods over conventional retrieval algorithms and other deep learning-based approaches are presented based on the Cyclone GNSS (CYGNSS) version 3.0 dataset. In addition, a comprehensive study on the attention mechanism for our models is demonstrated. The proposed DDM-Former yields the best overall performance with a root mean square error (RMSE) of 1.43m/s and a bias of −0.02m/s over the nine months test period. Moreover, with an RMSE of 2.89m/s and a bias of −1.88m/s, the proposed DDM-Seq-Former can promisingly improve the estimations in the cases with wind speeds higher than 12m/s. There are still opportunities for further enhancements in creating more robust models that could perform well in all wind regimes given a non-uniform wind distribution. We will make our code publicly available. •Transformer-based models are proposed for wind speed estimation with CYGNSS data.•Attention mechanism exploits delay-Doppler correlation within and between DDMs.•Models' explainabilities are demonstrated with attention maps.•Proposed models yield competitive results compared to competitor methods.•Great potential for migrating to other GNSS-R applications.
AbstractList Global navigation satellite system reflectometry (GNSS-R) has shown a capability in recent years to be applied as a novel remote sensing technique to retrieve ocean wind speeds. The combination of GNSS-R observable delay-Doppler maps (DDMs) and deep learning algorithms provides the possibility to build an end-to-end pipeline for improving wind speed estimations. Recent studies have proven that data-driven approaches can be applied to generate enhanced estimation products. However, these are usually trained with convolutional neural networks (CNNs), which include inductive bias throughout the models. The inbuilt translation equivariance in CNNs represents an inexactitude for the feature extraction on DDMs. To address this issue, we propose Transformer-based models, named DDM-Former and DDM-Sequence-Former (DDM-Seq-Former), to exploit delay-Doppler correlation within and between DDMs, respectively. The advantages of our methods over conventional retrieval algorithms and other deep learning-based approaches are presented based on the Cyclone GNSS (CYGNSS) version 3.0 dataset. In addition, a comprehensive study on the attention mechanism for our models is demonstrated. The proposed DDM-Former yields the best overall performance with a root mean square error (RMSE) of 1.43m/s and a bias of −0.02m/s over the nine months test period. Moreover, with an RMSE of 2.89m/s and a bias of −1.88m/s, the proposed DDM-Seq-Former can promisingly improve the estimations in the cases with wind speeds higher than 12m/s. There are still opportunities for further enhancements in creating more robust models that could perform well in all wind regimes given a non-uniform wind distribution. We will make our code publicly available.
Global navigation satellite system reflectometry (GNSS-R) has shown a capability in recent years to be applied as a novel remote sensing technique to retrieve ocean wind speeds. The combination of GNSS-R observable delay-Doppler maps (DDMs) and deep learning algorithms provides the possibility to build an end-to-end pipeline for improving wind speed estimations. Recent studies have proven that data-driven approaches can be applied to generate enhanced estimation products. However, these are usually trained with convolutional neural networks (CNNs), which include inductive bias throughout the models. The inbuilt translation equivariance in CNNs represents an inexactitude for the feature extraction on DDMs. To address this issue, we propose Transformer-based models, named DDM-Former and DDM-Sequence-Former (DDM-Seq-Former), to exploit delay-Doppler correlation within and between DDMs, respectively. The advantages of our methods over conventional retrieval algorithms and other deep learning-based approaches are presented based on the Cyclone GNSS (CYGNSS) version 3.0 dataset. In addition, a comprehensive study on the attention mechanism for our models is demonstrated. The proposed DDM-Former yields the best overall performance with a root mean square error (RMSE) of 1.43m/s and a bias of −0.02m/s over the nine months test period. Moreover, with an RMSE of 2.89m/s and a bias of −1.88m/s, the proposed DDM-Seq-Former can promisingly improve the estimations in the cases with wind speeds higher than 12m/s. There are still opportunities for further enhancements in creating more robust models that could perform well in all wind regimes given a non-uniform wind distribution. We will make our code publicly available. •Transformer-based models are proposed for wind speed estimation with CYGNSS data.•Attention mechanism exploits delay-Doppler correlation within and between DDMs.•Models' explainabilities are demonstrated with attention maps.•Proposed models yield competitive results compared to competitor methods.•Great potential for migrating to other GNSS-R applications.
ArticleNumber 113629
Author Zhao, Daixin
Xiao, Tianqi
Wickert, Jens
Zhu, Xiao Xiang
Heidler, Konrad
Asgarimehr, Milad
Mou, Lichao
Arnold, Caroline
Author_xml – sequence: 1
  givenname: Daixin
  surname: Zhao
  fullname: Zhao, Daixin
  organization: Technische Universität München, Germany
– sequence: 2
  givenname: Konrad
  surname: Heidler
  fullname: Heidler, Konrad
  organization: Technische Universität München, Germany
– sequence: 3
  givenname: Milad
  surname: Asgarimehr
  fullname: Asgarimehr, Milad
  organization: German Research Centre for Geosciences (GFZ), Potsdam, Germany
– sequence: 4
  givenname: Caroline
  surname: Arnold
  fullname: Arnold, Caroline
  organization: German Climate Computing Center (DKRZ), Hamburg, Germany
– sequence: 5
  givenname: Tianqi
  surname: Xiao
  fullname: Xiao, Tianqi
  organization: German Research Centre for Geosciences (GFZ), Potsdam, Germany
– sequence: 6
  givenname: Jens
  surname: Wickert
  fullname: Wickert, Jens
  organization: German Research Centre for Geosciences (GFZ), Potsdam, Germany
– sequence: 7
  givenname: Xiao Xiang
  surname: Zhu
  fullname: Zhu, Xiao Xiang
  organization: Technische Universität München, Germany
– sequence: 8
  givenname: Lichao
  surname: Mou
  fullname: Mou, Lichao
  email: lichao.mou@tum.de
  organization: Technische Universität München, Germany
BookMark eNp9kLFOwzAQhi1UJFrgAdg8siTYjhMnMKGWAlKBAVhYLNe-IJfELnYK4u0xlImhk3XyfXf3fxM0ct4BQieU5JTQ6myVhwg5I6zIKS0q1uyhMa1FkxFB-AiNCSl4xlkpDtAkxhUhtKwFHaOX2ewum_vQQzjHT0G52P4W2MHw6cNbxKnG1_ePjzhA24EefA9D-MKvnV-qDnsNyuFP6wyOawCDIQ62V4P17gjtt6qLcPz3HqLn-dXT9CZbPFzfTi8XmS4KMmRMl2WlNZAlrw1hlWFGCNBQioYao5umqtqmFVy3vK0VlEu2pFQpnj4bRkteHKLT7dx18O-btF_2NmroOuXAb6JkdcFZTXlTpla6bdXBx5gCyXVI14YvSYn88ShXMnmUPx7l1mNixD9G2-E34BCU7XaSF1sSUvoPC0FGbcFpMDYkkdJ4u4P-BvrWkAA
CitedBy_id crossref_primary_10_1016_j_apenergy_2023_122155
crossref_primary_10_1109_TGRS_2024_3401835
crossref_primary_10_3390_rs15174169
crossref_primary_10_1016_j_isprsjprs_2023_09_009
crossref_primary_10_1016_j_jag_2024_104122
crossref_primary_10_1016_j_rsase_2024_101401
crossref_primary_10_3390_rs16071125
crossref_primary_10_3390_rs16142621
crossref_primary_10_1016_j_renene_2025_122653
crossref_primary_10_1109_JSTARS_2024_3418429
crossref_primary_10_1016_j_rse_2024_114375
crossref_primary_10_3390_rs16183468
Cites_doi 10.3390/rs14143299
10.1109/JSTARS.2020.2968156
10.1016/j.rse.2021.112801
10.1109/LGRS.2018.2852143
10.3390/rs13234820
10.1109/TGRS.2014.2303831
10.1109/MGRS.2014.2374220
10.1109/36.898676
10.1109/JSTARS.2018.2833075
10.1109/MGRS.2017.2762307
10.1038/s41598-018-27127-4
10.3390/rs13163224
10.1016/j.rser.2015.09.063
10.1109/LGRS.2019.2948566
10.1109/JSTARS.2018.2873241
10.1109/36.841977
10.1016/j.rse.2022.112934
10.1109/JSTARS.2022.3196658
10.1109/TGRS.2019.2929002
10.1109/JSTARS.2020.3010879
10.1109/36.981349
10.1109/TGRS.2012.2196437
10.1029/2018GL079708
10.1109/TGRS.2016.2541343
10.1016/j.isprsjprs.2019.04.015
10.1109/JSTARS.2018.2825948
10.1002/qj.3803
10.3390/rs11243013
10.1002/2015GL064204
10.1029/98GL51615
10.1016/j.rse.2021.112454
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright_xml – notice: 2023 Elsevier Inc.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.rse.2023.113629
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
ExternalDocumentID 10_1016_j_rse_2023_113629
S0034425723001803
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
WH7
ZCA
ZMT
~02
~G-
~KM
29P
41~
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FA8
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
VOH
WUQ
XOL
~HD
7S9
L.6
ID FETCH-LOGICAL-c330t-2c556cce0b48d026d2d77ece5791ddc9966f9f74cf4f8ae5b2b11aa41dd921543
IEDL.DBID .~1
ISSN 0034-4257
IngestDate Thu Oct 02 10:41:25 EDT 2025
Wed Oct 01 05:13:03 EDT 2025
Thu Apr 24 23:04:38 EDT 2025
Fri Feb 23 02:38:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
GNSS reflectometry
Ocean wind speed
Transformer networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-2c556cce0b48d026d2d77ece5791ddc9966f9f74cf4f8ae5b2b11aa41dd921543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2834281495
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2834281495
crossref_primary_10_1016_j_rse_2023_113629
crossref_citationtrail_10_1016_j_rse_2023_113629
elsevier_sciencedirect_doi_10_1016_j_rse_2023_113629
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-15
PublicationDateYYYYMMDD 2023-08-15
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-15
  day: 15
PublicationDecade 2020
PublicationTitle Remote sensing of environment
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Liu, Collett, Morton (bb0120) 2019; 57
Nabi, Senyurek, Gurbuz, Kurum (bb0150) 2022; 15
Ruf, Chew, Lang, Morris, Nave, Ridley, Balasubramaniam (bb0180) 2018; 8
Clarizia, Ruf, Jales, Gommenginger (bb0055) 2014; 52
Chu, He, Song, Qi, Sun, Bai, Li, Wu (bb0045) 2020; 13
Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, Houlsby (bb0070) 2021
Clarizia, Ruf (bb0050) 2016; 54
Martin-Neira, Caparrini, Font-Rossello, Lannelongue, Vallmitjana (bb0140) 2001; 39
Munoz-Martin, Camps (bb0145) 2021; 13
Garrison, Katzberg, Hill (bb0080) 1998; 25
Zheng, Li, Pan, Liu, Xia (bb0225) 2016; 53
Baevski, Auli (bb0035) 2019
Dankert, Horstmann, Rosenthal (bb0065) 2003; 108
Zhou, Zhou, Corso, Socher, Xiong (bb0235) 2018
Guo, Du, Guo, Southwell, Cheong, Dempster (bb0090) 2022; 272
(bb0060) 2020
Hendrycks, Gimpel (bb0095) 2016
Ruf, Balasubramaniam (bb0175) 2019; 12
Jing, Niu, Duan, Lu, Di, Yang (bb0110) 2019; 11
Garrison, Komjathy, Zavorotny, Katzberg (bb0085) 2002; 40
Ba, Kiros, Hinton (bb0030) 2016
Zheng, Lu, Zhao, Zhu, Luo, Wang, Fu, Feng, Xiang, Torr, Zhang (bb0230) 2021
Xie, He, Cheng (bb0205) 2022
Loshchilov, Hutter (bb0130) 2019
Zhu, Su, Lu, Li, Wang, Dai (bb0245) 2021
Zavorotny, Gleason, Cardellach, Camps (bb0220) 2014; 2
Foti, Gommenginger, Jales, Unwin, Shaw, Robertson, Roselló (bb0075) 2015; 42
Asgarimehr, Arnold, Weigel, Ruf, Wickert (bb0025) 2022; 269
Rodriguez-Alvarez, Akos, Zavorotny, Smith, Camps, Fairall (bb0170) 2013; 51
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bb0190) 2014; 15
Ruf, Gleason, McKague (bb0185) 2019; 12
Reynolds, Clarizia, Santi (bb0155) 2020; 13
Zhu, Tuia, Mou, Xia, Zhang, Xu, Fraundorfer (bb0240) 2017; 5
Asgarimehr, Zhelavskaya, Foti, Reich, Wickert (bb0020) 2020; 17
Rodríguez, Bourassa, Chelton, Thomas Farrar, Long, Perkovic-Martin, Samelson (bb0165) 2019; 6
Jin, Cardellach, Xie (bb0105) 2014
Asgarimehr, Zavorotny, Wickert, Reich (bb0010) 2018; 45
Li, Yang, Yang, Zheng, Han, Nan, Li (bb0115) 2021; 260
Ma, Liu, Zhang, Ye, Yin, Johnson (bb0135) 2019; 152
Zavorotny, Voronovich (bb0215) 2000; 38
Hersbach, Bell, Berrisford, Hirahara, Horányi, Muñoz-Sabater, Nicolas, Peubey, Radu, Schepers, Simmons, Soci, Abdalla, Abellan, Balsamo, Bechtold, Biavati, Bidlot, Bonavita, De Chiara, Dahlgren, Dee, Diamantakis, Dragani, Flemming, Forbes, Fuentes, Geer, Haimberger, Healy, Hogan, Hólm, Janisková, Keeley, Laloyaux, Lopez, Lupu, Radnoti, de Rosnay, Rozum, Vamborg, Villaume, Thépaut (bb0100) 2020; 146
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bb0195) 2017
Wang, Li, Xiao, Zhu, Li, Wong, Chao (bb0200) 2019
Yan, Huang (bb0210) 2018; 15
Roberts, Colwell, Chew, Lowe, Shah (bb0160) 2022; 14
Asgarimehr, Wickert, Reich (bb0015) 2018; 11
Liu, Bai, Xia, Huang, Yin, Sun, Du, Meng, Liu, Hu, Tan (bb0125) 2021; 13
Carion, Massa, Synnaeve, Usunier, Kirillov, Zagoruyko (bb0040) 2020; Vol. 12346
Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mané, Monga, Moore, Murray, Olah, Schuster, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals, Warden, Wattenberg, Wicke, Yu, Zheng (bb0005) 2015
Zhou (10.1016/j.rse.2023.113629_bb0235) 2018
Martin-Neira (10.1016/j.rse.2023.113629_bb0140) 2001; 39
Hendrycks (10.1016/j.rse.2023.113629_bb0095) 2016
Li (10.1016/j.rse.2023.113629_bb0115) 2021; 260
Dankert (10.1016/j.rse.2023.113629_bb0065) 2003; 108
Foti (10.1016/j.rse.2023.113629_bb0075) 2015; 42
Ruf (10.1016/j.rse.2023.113629_bb0185) 2019; 12
Yan (10.1016/j.rse.2023.113629_bb0210) 2018; 15
Abadi (10.1016/j.rse.2023.113629_bb0005) 2015
Clarizia (10.1016/j.rse.2023.113629_bb0055) 2014; 52
Liu (10.1016/j.rse.2023.113629_bb0125) 2021; 13
Asgarimehr (10.1016/j.rse.2023.113629_bb0010) 2018; 45
Xie (10.1016/j.rse.2023.113629_bb0205) 2022
Ma (10.1016/j.rse.2023.113629_bb0135) 2019; 152
Zheng (10.1016/j.rse.2023.113629_bb0225) 2016; 53
Hersbach (10.1016/j.rse.2023.113629_bb0100) 2020; 146
Clarizia (10.1016/j.rse.2023.113629_bb0050) 2016; 54
Wang (10.1016/j.rse.2023.113629_bb0200) 2019
Liu (10.1016/j.rse.2023.113629_bb0120) 2019; 57
Ruf (10.1016/j.rse.2023.113629_bb0175) 2019; 12
Ruf (10.1016/j.rse.2023.113629_bb0180) 2018; 8
Vaswani (10.1016/j.rse.2023.113629_bb0195) 2017
Carion (10.1016/j.rse.2023.113629_bb0040) 2020; Vol. 12346
Nabi (10.1016/j.rse.2023.113629_bb0150) 2022; 15
Jin (10.1016/j.rse.2023.113629_bb0105) 2014
Zhu (10.1016/j.rse.2023.113629_bb0245) 2021
Asgarimehr (10.1016/j.rse.2023.113629_bb0020) 2020; 17
Rodriguez-Alvarez (10.1016/j.rse.2023.113629_bb0170) 2013; 51
(10.1016/j.rse.2023.113629_bb0060) 2020
Rodríguez (10.1016/j.rse.2023.113629_bb0165) 2019; 6
Dosovitskiy (10.1016/j.rse.2023.113629_bb0070) 2021
Guo (10.1016/j.rse.2023.113629_bb0090) 2022; 272
Chu (10.1016/j.rse.2023.113629_bb0045) 2020; 13
Zavorotny (10.1016/j.rse.2023.113629_bb0220) 2014; 2
Munoz-Martin (10.1016/j.rse.2023.113629_bb0145) 2021; 13
Zhu (10.1016/j.rse.2023.113629_bb0240) 2017; 5
Roberts (10.1016/j.rse.2023.113629_bb0160) 2022; 14
Baevski (10.1016/j.rse.2023.113629_bb0035) 2019
Srivastava (10.1016/j.rse.2023.113629_bb0190) 2014; 15
Zheng (10.1016/j.rse.2023.113629_bb0230) 2021
Ba (10.1016/j.rse.2023.113629_bb0030) 2016
Garrison (10.1016/j.rse.2023.113629_bb0085) 2002; 40
Jing (10.1016/j.rse.2023.113629_bb0110) 2019; 11
Garrison (10.1016/j.rse.2023.113629_bb0080) 1998; 25
Asgarimehr (10.1016/j.rse.2023.113629_bb0025) 2022; 269
Asgarimehr (10.1016/j.rse.2023.113629_bb0015) 2018; 11
Loshchilov (10.1016/j.rse.2023.113629_bb0130) 2019
Zavorotny (10.1016/j.rse.2023.113629_bb0215) 2000; 38
Reynolds (10.1016/j.rse.2023.113629_bb0155) 2020; 13
References_xml – volume: 13
  start-page: 3224
  year: 2021
  ident: bb0145
  article-title: Sea surface salinity and wind speed retrievals using GNSS-R and L-band microwave radiometry data from FMPL-2 onboard the FSSCat mission
  publication-title: Remote Sens.
– volume: 15
  start-page: 6867
  year: 2022
  end-page: 6881
  ident: bb0150
  article-title: Deep learning-based soil moisture retrieval in CONUS using CYGNSS delay-doppler maps
  publication-title: IEEE J.Select.Top.Appl.Earth Observ.Remote Sens.
– year: 2016
  ident: bb0095
  article-title: Gaussian Error Linear Units (GELUs)
– volume: 6
  start-page: 1
  year: 2019
  end-page: 8
  ident: bb0165
  article-title: The winds and currents Mission concept
  publication-title: Front. Marine Sci.
– start-page: 8739
  year: 2018
  end-page: 8748
  ident: bb0235
  article-title: End-to-end dense video captioning with masked transformer
  publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 284
  year: 2022
  end-page: 289
  ident: bb0205
  article-title: A convolution neural network-based method for sea ice remote sensing using GNSS-R data
  publication-title: 2022 4th International Conference on Communications, Information System and Computer Engineering
– volume: 146
  start-page: 1999
  year: 2020
  end-page: 2049
  ident: bb0100
  article-title: The ERA5 global reanalysis
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 13
  ident: bb0180
  article-title: A new paradigm in Earth environmental monitoring with the CYGNSS small satellite constellation
  publication-title: Sci. Rep.
– volume: 13
  start-page: 5971
  year: 2020
  end-page: 5981
  ident: bb0045
  article-title: Multimodal deep learning for heterogeneous GNSS-R data fusion and ocean wind speed retrieval
  publication-title: IEEE J.Select.Top.Appl.Earth Observ.Remote Sens.
– year: 2021
  ident: bb0070
  article-title: An image is worth 16x16 words: transformers for image recognition at scale
  publication-title: 9th International Conference on Learning Representations
– volume: 15
  start-page: 1510
  year: 2018
  end-page: 1514
  ident: bb0210
  article-title: Sea ice sensing from GNSS-R data using convolutional neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 5
  start-page: 8
  year: 2017
  end-page: 36
  ident: bb0240
  article-title: Deep learning in remote sensing: a comprehensive review and list of resources
  publication-title: IEEE Geosci.Remote Sens.Mag.
– year: 2020
  ident: bb0060
  article-title: CYGNSS Level 1 Science Data Record Version 3.0, Ver. 3.0. PO.DAAC, CA, USA
– volume: 14
  start-page: 3299
  year: 2022
  ident: bb0160
  article-title: A deep-learning approach to soil moisture estimation with GNSS-R
  publication-title: Remote Sens.
– volume: 52
  start-page: 6829
  year: 2014
  end-page: 6843
  ident: bb0055
  article-title: Spaceborne GNSS-R minimum variance wind speed estimator
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 12
  start-page: 87
  year: 2019
  end-page: 97
  ident: bb0185
  article-title: Assessment of CYGNSS wind speed retrieval uncertainty
  publication-title: IEEE J.Select.Top.Appl.Earth Observ. Remote Sens.
– start-page: 6877
  year: 2021
  end-page: 6886
  ident: bb0230
  article-title: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers
  publication-title: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 39
  start-page: 142
  year: 2001
  end-page: 150
  ident: bb0140
  article-title: The PARIS concept: an experimental demonstration of sea surface altimetry using GPS reflected signals
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 54
  start-page: 4419
  year: 2016
  end-page: 4432
  ident: bb0050
  article-title: Wind speed retrieval algorithm for the cyclone global navigation satellite system (CYGNSS) Mission
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2019
  ident: bb0035
  article-title: Adaptive input representations for neural language modeling
  publication-title: 7th International Conference on Learning Representations
– volume: 12
  start-page: 66
  year: 2019
  end-page: 77
  ident: bb0175
  article-title: Development of the CYGNSS geophysical model function for wind speed
  publication-title: IEEE J.Select.Top.Appl.Earth Observ. Remote Sens.
– volume: 272
  year: 2022
  ident: bb0090
  article-title: Information fusion for GNSS-R wind speed retrieval using statistically modified convolutional neural network
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 3013
  year: 2019
  ident: bb0110
  article-title: Sea surface wind speed retrieval from the first Chinese GNSS-R Mission: technique and preliminary results
  publication-title: Remote Sens.
– volume: 13
  start-page: 4820
  year: 2021
  ident: bb0125
  article-title: FA-RDN: a hybrid neural network on GNSS-R Sea surface wind speed retrieval
  publication-title: Remote Sens.
– volume: 45
  start-page: 12585
  year: 2018
  end-page: 12592
  ident: bb0010
  article-title: Can GNSS reflectometry detect precipitation over Oceans?
  publication-title: Geophys. Res. Lett.
– volume: 260
  year: 2021
  ident: bb0115
  article-title: Analysis of coastal wind speed retrieval from CYGNSS mission using artificial neural network
  publication-title: Remote Sens. Environ.
– year: 2021
  ident: bb0245
  article-title: Deformable DETR: deformable transformers for end-to-end object detection
  publication-title: 9th International Conference on Learning Representations
– volume: 17
  start-page: 1333
  year: 2020
  end-page: 1337
  ident: bb0020
  article-title: A GNSS-R geophysical model function: machine learning for wind speed retrievals
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 5998
  year: 2017
  end-page: 6008
  ident: bb0195
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems
– year: 2014
  ident: bb0105
  article-title: GNSS Remote Sensing: Theory, Methods and Applications
– volume: 2
  start-page: 8
  year: 2014
  end-page: 45
  ident: bb0220
  article-title: Tutorial on remote sensing using GNSS bistatic radar of opportunity
  publication-title: IEEE Geosci.Remote Sens.Mag.
– volume: 53
  start-page: 1240
  year: 2016
  end-page: 1251
  ident: bb0225
  article-title: An overview of global ocean wind energy resource evaluations
  publication-title: Renew. Sust. Energ. Rev.
– volume: 152
  start-page: 166
  year: 2019
  end-page: 177
  ident: bb0135
  article-title: Deep learning in remote sensing applications: a meta-analysis and review
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 13
  start-page: 708
  year: 2020
  end-page: 716
  ident: bb0155
  article-title: Wind speed estimation from CYGNSS using artificial neural networks
  publication-title: IEEE J.Select.Top.Appl.Earth Observ.Remote Sens.
– year: 2015
  ident: bb0005
  article-title: TensorFlow: Large-scale machine learning on heterogeneous systems, Software available from tensorflow.org
– year: 2016
  ident: bb0030
  article-title: Layer Normalization
– volume: 42
  start-page: 5435
  year: 2015
  end-page: 5441
  ident: bb0075
  article-title: Spaceborne GNSS reflectometry for ocean winds: first results from the UK TechDemoSat-1 mission
  publication-title: Geophys. Res. Lett.
– volume: 57
  start-page: 9756
  year: 2019
  end-page: 9766
  ident: bb0120
  article-title: Application of neural network to GNSS-R wind speed retrieval
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2019
  ident: bb0130
  article-title: Decoupled weight decay regularization
  publication-title: 7th International Conference on Learning Representations
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bb0190
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 38
  start-page: 951
  year: 2000
  end-page: 964
  ident: bb0215
  article-title: Scattering of GPS signals from the ocean with wind remote sensing application
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 51
  start-page: 626
  year: 2013
  end-page: 641
  ident: bb0170
  article-title: Airborne GNSS-R wind retrievals using delay-doppler maps
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: Vol. 12346
  start-page: 213
  year: 2020
  end-page: 229
  ident: bb0040
  article-title: End-to-end object detection with transformers
  publication-title: 16th European Conference on Computer Vision
– volume: 25
  start-page: 2257
  year: 1998
  end-page: 2260
  ident: bb0080
  article-title: Effect of sea roughness on bistatically scattered range coded signals from the global positioning system
  publication-title: Geophys. Res. Lett.
– volume: 11
  start-page: 4534
  year: 2018
  end-page: 4541
  ident: bb0015
  article-title: TDS-1 GNSS reflectometry: development and validation of forward scattering winds
  publication-title: IEEE J.Select.Top.Appl.Earth Observ.Remote Sens.
– volume: 269
  year: 2022
  ident: bb0025
  article-title: GNSS reflectometry global ocean wind speed using deep learning: development and assessment of CyGNSSnet
  publication-title: Remote Sens. Environ.
– volume: 108
  start-page: 2150
  year: 2003
  end-page: 2152
  ident: bb0065
  article-title: Ocean wind fields retrieved from radar-image sequences
  publication-title: J.Geophys.Res.Oceans
– start-page: 1810
  year: 2019
  end-page: 1822
  ident: bb0200
  article-title: Learning deep transformer models for machine translation
  publication-title: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
– volume: 40
  start-page: 50
  year: 2002
  end-page: 65
  ident: bb0085
  article-title: Wind speed measurement using forward scattered GPS signals
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 14
  start-page: 3299
  issue: 14
  year: 2022
  ident: 10.1016/j.rse.2023.113629_bb0160
  article-title: A deep-learning approach to soil moisture estimation with GNSS-R
  publication-title: Remote Sens.
  doi: 10.3390/rs14143299
– year: 2019
  ident: 10.1016/j.rse.2023.113629_bb0035
  article-title: Adaptive input representations for neural language modeling
– volume: 13
  start-page: 708
  year: 2020
  ident: 10.1016/j.rse.2023.113629_bb0155
  article-title: Wind speed estimation from CYGNSS using artificial neural networks
  publication-title: IEEE J.Select.Top.Appl.Earth Observ.Remote Sens.
  doi: 10.1109/JSTARS.2020.2968156
– volume: 15
  start-page: 1929
  issue: 56
  year: 2014
  ident: 10.1016/j.rse.2023.113629_bb0190
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– year: 2020
  ident: 10.1016/j.rse.2023.113629_bb0060
– year: 2016
  ident: 10.1016/j.rse.2023.113629_bb0095
– volume: 269
  year: 2022
  ident: 10.1016/j.rse.2023.113629_bb0025
  article-title: GNSS reflectometry global ocean wind speed using deep learning: development and assessment of CyGNSSnet
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112801
– year: 2021
  ident: 10.1016/j.rse.2023.113629_bb0070
  article-title: An image is worth 16x16 words: transformers for image recognition at scale
– volume: 15
  start-page: 1510
  issue: 10
  year: 2018
  ident: 10.1016/j.rse.2023.113629_bb0210
  article-title: Sea ice sensing from GNSS-R data using convolutional neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2852143
– volume: 6
  start-page: 1
  issue: JUL
  year: 2019
  ident: 10.1016/j.rse.2023.113629_bb0165
  article-title: The winds and currents Mission concept
  publication-title: Front. Marine Sci.
– volume: 13
  start-page: 4820
  issue: 23
  year: 2021
  ident: 10.1016/j.rse.2023.113629_bb0125
  article-title: FA-RDN: a hybrid neural network on GNSS-R Sea surface wind speed retrieval
  publication-title: Remote Sens.
  doi: 10.3390/rs13234820
– volume: 52
  start-page: 6829
  issue: 11
  year: 2014
  ident: 10.1016/j.rse.2023.113629_bb0055
  article-title: Spaceborne GNSS-R minimum variance wind speed estimator
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2303831
– volume: 2
  start-page: 8
  issue: 4
  year: 2014
  ident: 10.1016/j.rse.2023.113629_bb0220
  article-title: Tutorial on remote sensing using GNSS bistatic radar of opportunity
  publication-title: IEEE Geosci.Remote Sens.Mag.
  doi: 10.1109/MGRS.2014.2374220
– start-page: 8739
  year: 2018
  ident: 10.1016/j.rse.2023.113629_bb0235
  article-title: End-to-end dense video captioning with masked transformer
– year: 2014
  ident: 10.1016/j.rse.2023.113629_bb0105
– volume: 39
  start-page: 142
  issue: 1
  year: 2001
  ident: 10.1016/j.rse.2023.113629_bb0140
  article-title: The PARIS concept: an experimental demonstration of sea surface altimetry using GPS reflected signals
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.898676
– volume: 12
  start-page: 66
  issue: 1
  year: 2019
  ident: 10.1016/j.rse.2023.113629_bb0175
  article-title: Development of the CYGNSS geophysical model function for wind speed
  publication-title: IEEE J.Select.Top.Appl.Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2018.2833075
– start-page: 5998
  year: 2017
  ident: 10.1016/j.rse.2023.113629_bb0195
  article-title: Attention is all you need
– volume: 5
  start-page: 8
  issue: 4
  year: 2017
  ident: 10.1016/j.rse.2023.113629_bb0240
  article-title: Deep learning in remote sensing: a comprehensive review and list of resources
  publication-title: IEEE Geosci.Remote Sens.Mag.
  doi: 10.1109/MGRS.2017.2762307
– year: 2015
  ident: 10.1016/j.rse.2023.113629_bb0005
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.rse.2023.113629_bb0180
  article-title: A new paradigm in Earth environmental monitoring with the CYGNSS small satellite constellation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-27127-4
– volume: 13
  start-page: 3224
  issue: 16
  year: 2021
  ident: 10.1016/j.rse.2023.113629_bb0145
  article-title: Sea surface salinity and wind speed retrievals using GNSS-R and L-band microwave radiometry data from FMPL-2 onboard the FSSCat mission
  publication-title: Remote Sens.
  doi: 10.3390/rs13163224
– start-page: 1810
  year: 2019
  ident: 10.1016/j.rse.2023.113629_bb0200
  article-title: Learning deep transformer models for machine translation
– volume: 53
  start-page: 1240
  year: 2016
  ident: 10.1016/j.rse.2023.113629_bb0225
  article-title: An overview of global ocean wind energy resource evaluations
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2015.09.063
– volume: 108
  start-page: 2150
  issue: 11
  year: 2003
  ident: 10.1016/j.rse.2023.113629_bb0065
  article-title: Ocean wind fields retrieved from radar-image sequences
  publication-title: J.Geophys.Res.Oceans
– year: 2016
  ident: 10.1016/j.rse.2023.113629_bb0030
– volume: 17
  start-page: 1333
  issue: 8
  year: 2020
  ident: 10.1016/j.rse.2023.113629_bb0020
  article-title: A GNSS-R geophysical model function: machine learning for wind speed retrievals
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2948566
– volume: Vol. 12346
  start-page: 213
  year: 2020
  ident: 10.1016/j.rse.2023.113629_bb0040
  article-title: End-to-end object detection with transformers
– volume: 11
  start-page: 4534
  issue: 11
  year: 2018
  ident: 10.1016/j.rse.2023.113629_bb0015
  article-title: TDS-1 GNSS reflectometry: development and validation of forward scattering winds
  publication-title: IEEE J.Select.Top.Appl.Earth Observ.Remote Sens.
  doi: 10.1109/JSTARS.2018.2873241
– volume: 38
  start-page: 951
  issue: 2
  year: 2000
  ident: 10.1016/j.rse.2023.113629_bb0215
  article-title: Scattering of GPS signals from the ocean with wind remote sensing application
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.841977
– start-page: 284
  year: 2022
  ident: 10.1016/j.rse.2023.113629_bb0205
  article-title: A convolution neural network-based method for sea ice remote sensing using GNSS-R data
– volume: 272
  year: 2022
  ident: 10.1016/j.rse.2023.113629_bb0090
  article-title: Information fusion for GNSS-R wind speed retrieval using statistically modified convolutional neural network
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.112934
– volume: 15
  start-page: 6867
  year: 2022
  ident: 10.1016/j.rse.2023.113629_bb0150
  article-title: Deep learning-based soil moisture retrieval in CONUS using CYGNSS delay-doppler maps
  publication-title: IEEE J.Select.Top.Appl.Earth Observ.Remote Sens.
  doi: 10.1109/JSTARS.2022.3196658
– volume: 57
  start-page: 9756
  issue: 12
  year: 2019
  ident: 10.1016/j.rse.2023.113629_bb0120
  article-title: Application of neural network to GNSS-R wind speed retrieval
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2929002
– volume: 13
  start-page: 5971
  year: 2020
  ident: 10.1016/j.rse.2023.113629_bb0045
  article-title: Multimodal deep learning for heterogeneous GNSS-R data fusion and ocean wind speed retrieval
  publication-title: IEEE J.Select.Top.Appl.Earth Observ.Remote Sens.
  doi: 10.1109/JSTARS.2020.3010879
– volume: 40
  start-page: 50
  issue: 1
  year: 2002
  ident: 10.1016/j.rse.2023.113629_bb0085
  article-title: Wind speed measurement using forward scattered GPS signals
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.981349
– volume: 51
  start-page: 626
  issue: 1
  year: 2013
  ident: 10.1016/j.rse.2023.113629_bb0170
  article-title: Airborne GNSS-R wind retrievals using delay-doppler maps
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2196437
– volume: 45
  start-page: 12585
  issue: 22
  year: 2018
  ident: 10.1016/j.rse.2023.113629_bb0010
  article-title: Can GNSS reflectometry detect precipitation over Oceans?
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL079708
– start-page: 6877
  year: 2021
  ident: 10.1016/j.rse.2023.113629_bb0230
  article-title: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers
– volume: 54
  start-page: 4419
  issue: 8
  year: 2016
  ident: 10.1016/j.rse.2023.113629_bb0050
  article-title: Wind speed retrieval algorithm for the cyclone global navigation satellite system (CYGNSS) Mission
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2541343
– volume: 152
  start-page: 166
  year: 2019
  ident: 10.1016/j.rse.2023.113629_bb0135
  article-title: Deep learning in remote sensing applications: a meta-analysis and review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.04.015
– volume: 12
  start-page: 87
  issue: 1
  year: 2019
  ident: 10.1016/j.rse.2023.113629_bb0185
  article-title: Assessment of CYGNSS wind speed retrieval uncertainty
  publication-title: IEEE J.Select.Top.Appl.Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2018.2825948
– volume: 146
  start-page: 1999
  issue: 730
  year: 2020
  ident: 10.1016/j.rse.2023.113629_bb0100
  article-title: The ERA5 global reanalysis
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.3803
– volume: 11
  start-page: 3013
  issue: 24
  year: 2019
  ident: 10.1016/j.rse.2023.113629_bb0110
  article-title: Sea surface wind speed retrieval from the first Chinese GNSS-R Mission: technique and preliminary results
  publication-title: Remote Sens.
  doi: 10.3390/rs11243013
– volume: 42
  start-page: 5435
  issue: 13
  year: 2015
  ident: 10.1016/j.rse.2023.113629_bb0075
  article-title: Spaceborne GNSS reflectometry for ocean winds: first results from the UK TechDemoSat-1 mission
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2015GL064204
– volume: 25
  start-page: 2257
  issue: 13
  year: 1998
  ident: 10.1016/j.rse.2023.113629_bb0080
  article-title: Effect of sea roughness on bistatically scattered range coded signals from the global positioning system
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/98GL51615
– year: 2021
  ident: 10.1016/j.rse.2023.113629_bb0245
  article-title: Deformable DETR: deformable transformers for end-to-end object detection
– year: 2019
  ident: 10.1016/j.rse.2023.113629_bb0130
  article-title: Decoupled weight decay regularization
– volume: 260
  year: 2021
  ident: 10.1016/j.rse.2023.113629_bb0115
  article-title: Analysis of coastal wind speed retrieval from CYGNSS mission using artificial neural network
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112454
SSID ssj0015871
Score 2.5629935
Snippet Global navigation satellite system reflectometry (GNSS-R) has shown a capability in recent years to be applied as a novel remote sensing technique to retrieve...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113629
SubjectTerms data collection
Deep learning
environment
global positioning systems
GNSS reflectometry
Ocean wind speed
oceans
reflectometry
Transformer networks
wind speed
Title DDM-Former: Transformer networks for GNSS reflectometry global ocean wind speed estimation
URI https://dx.doi.org/10.1016/j.rse.2023.113629
https://www.proquest.com/docview/2834281495
Volume 294
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB4WRfQiuiq-ieBJqPaRbFpvou6uintRQbyEPqaoaF3aFdmLv92ZPlYU2YPHNEkJmWTmm8wLYN8OExu1x346QcJmRrT8yPWtDkoSfmmHjUPsbTHo9O_k5b26b8FpEwvDbpU17694esmt6y9H9W4eDZ-eOMbXk3ziCERzFirO-Cml5ioGh58TNw9H-bqqmudJi0c3ls3SxysvOFOm65WVTUqU-ads-sWlS9HTXYLFGjOKk2pZy9DCrA1r598hatRZ39GiDfN1XfPHcRvmemXh3vEKPJydXVtdAqiYH4vbBq1iLrLKD7wQ1Ba9wc2NoHWVb_mvOMrHosoYIkjMhZn4IA1eFEOSeIKzc1Rhj6tw1z2_Pe1bdV0FK_Y8e2S5sVKdOEY7kn5COljiJlpjjEoHTpLErAGlQaplnMrUD1FFbuQ4YSipMyCEIL01mMneMlwHEZIIRAx80kuI5SodEX3DwEbleJHUOt0Au9lRE9dJx7n2xYtpvMueDRHBMBFMRYQNOJhMGVYZN6YNlg2ZzI9jY0giTJu215DU0HViG0mY4dt7YQhtkULGauPm_369BQvc4mdnR23DzCh_xx3CLaNotzyYuzB7cnHVH3wBdJfrPg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC58sOhFdFbxbQueFrIm6e7pxJuo4-jqXBxB9tLkUUFF45CMyFz87Vbl4eIiHjymH6Hp6q76qusFsOdGqYtGsp9OmLKZEZ0g9gOni4qEX9Zl4xB7Wwy6_Wt1fqNvpuCojYVht8qG99c8veLWTct-s5v7o7s7jvGVik8cgWjOQiWnYVZp37AG9vv13c_D04Gpy-ZJ5fDw1rRZOXkVJafK9GVV2qSCmZ8Kp__YdCV7eouw0IBGcVivawmmMO_Aysm_GDXqbC5p2YG5prD57aQDP06ryr2Tn_D3-PjS6RFCxeJADFu4ioXIa0fwUtC3OB1cXQlaV_WY_4jjYiLqlCGC5FyUixdS4UU5IpEnOD1HHfe4DNe9k-FR32kKKziJlO7Y8ROtu0mCbqyClJSw1E-NwQS1Cb00TVgFysLMqCRTWRChjv3Y86JIUWdIEEHJFZjJn3JcBRGRDEQMA1JMiOdqExOBo9BF7clYGZOtgdvuqE2arONc_OLBtu5l95aIYJkItibCGvx6nzKqU258NVi1ZLIfzo0lkfDVtN2WpJbuExtJohyfnktLcIs0MtYb17_36x2Y6w8vL-zF2eDPBsxzD79Be3oTZsbFM24RiBnH29UhfQPycezT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DDM-Former%3A+Transformer+networks+for+GNSS+reflectometry+global+ocean+wind+speed+estimation&rft.jtitle=Remote+sensing+of+environment&rft.au=Zhao%2C+Daixin&rft.au=Heidler%2C+Konrad&rft.au=Asgarimehr%2C+Milad&rft.au=Arnold%2C+Caroline&rft.date=2023-08-15&rft.pub=Elsevier+Inc&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=294&rft_id=info:doi/10.1016%2Fj.rse.2023.113629&rft.externalDocID=S0034425723001803
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon