DDM-Former: Transformer networks for GNSS reflectometry global ocean wind speed estimation
Global navigation satellite system reflectometry (GNSS-R) has shown a capability in recent years to be applied as a novel remote sensing technique to retrieve ocean wind speeds. The combination of GNSS-R observable delay-Doppler maps (DDMs) and deep learning algorithms provides the possibility to bu...
Saved in:
| Published in | Remote sensing of environment Vol. 294; p. 113629 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Inc
15.08.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0034-4257 1879-0704 |
| DOI | 10.1016/j.rse.2023.113629 |
Cover
| Abstract | Global navigation satellite system reflectometry (GNSS-R) has shown a capability in recent years to be applied as a novel remote sensing technique to retrieve ocean wind speeds. The combination of GNSS-R observable delay-Doppler maps (DDMs) and deep learning algorithms provides the possibility to build an end-to-end pipeline for improving wind speed estimations. Recent studies have proven that data-driven approaches can be applied to generate enhanced estimation products. However, these are usually trained with convolutional neural networks (CNNs), which include inductive bias throughout the models. The inbuilt translation equivariance in CNNs represents an inexactitude for the feature extraction on DDMs. To address this issue, we propose Transformer-based models, named DDM-Former and DDM-Sequence-Former (DDM-Seq-Former), to exploit delay-Doppler correlation within and between DDMs, respectively. The advantages of our methods over conventional retrieval algorithms and other deep learning-based approaches are presented based on the Cyclone GNSS (CYGNSS) version 3.0 dataset. In addition, a comprehensive study on the attention mechanism for our models is demonstrated. The proposed DDM-Former yields the best overall performance with a root mean square error (RMSE) of 1.43m/s and a bias of −0.02m/s over the nine months test period. Moreover, with an RMSE of 2.89m/s and a bias of −1.88m/s, the proposed DDM-Seq-Former can promisingly improve the estimations in the cases with wind speeds higher than 12m/s. There are still opportunities for further enhancements in creating more robust models that could perform well in all wind regimes given a non-uniform wind distribution. We will make our code publicly available.
•Transformer-based models are proposed for wind speed estimation with CYGNSS data.•Attention mechanism exploits delay-Doppler correlation within and between DDMs.•Models' explainabilities are demonstrated with attention maps.•Proposed models yield competitive results compared to competitor methods.•Great potential for migrating to other GNSS-R applications. |
|---|---|
| AbstractList | Global navigation satellite system reflectometry (GNSS-R) has shown a capability in recent years to be applied as a novel remote sensing technique to retrieve ocean wind speeds. The combination of GNSS-R observable delay-Doppler maps (DDMs) and deep learning algorithms provides the possibility to build an end-to-end pipeline for improving wind speed estimations. Recent studies have proven that data-driven approaches can be applied to generate enhanced estimation products. However, these are usually trained with convolutional neural networks (CNNs), which include inductive bias throughout the models. The inbuilt translation equivariance in CNNs represents an inexactitude for the feature extraction on DDMs. To address this issue, we propose Transformer-based models, named DDM-Former and DDM-Sequence-Former (DDM-Seq-Former), to exploit delay-Doppler correlation within and between DDMs, respectively. The advantages of our methods over conventional retrieval algorithms and other deep learning-based approaches are presented based on the Cyclone GNSS (CYGNSS) version 3.0 dataset. In addition, a comprehensive study on the attention mechanism for our models is demonstrated. The proposed DDM-Former yields the best overall performance with a root mean square error (RMSE) of 1.43m/s and a bias of −0.02m/s over the nine months test period. Moreover, with an RMSE of 2.89m/s and a bias of −1.88m/s, the proposed DDM-Seq-Former can promisingly improve the estimations in the cases with wind speeds higher than 12m/s. There are still opportunities for further enhancements in creating more robust models that could perform well in all wind regimes given a non-uniform wind distribution. We will make our code publicly available. Global navigation satellite system reflectometry (GNSS-R) has shown a capability in recent years to be applied as a novel remote sensing technique to retrieve ocean wind speeds. The combination of GNSS-R observable delay-Doppler maps (DDMs) and deep learning algorithms provides the possibility to build an end-to-end pipeline for improving wind speed estimations. Recent studies have proven that data-driven approaches can be applied to generate enhanced estimation products. However, these are usually trained with convolutional neural networks (CNNs), which include inductive bias throughout the models. The inbuilt translation equivariance in CNNs represents an inexactitude for the feature extraction on DDMs. To address this issue, we propose Transformer-based models, named DDM-Former and DDM-Sequence-Former (DDM-Seq-Former), to exploit delay-Doppler correlation within and between DDMs, respectively. The advantages of our methods over conventional retrieval algorithms and other deep learning-based approaches are presented based on the Cyclone GNSS (CYGNSS) version 3.0 dataset. In addition, a comprehensive study on the attention mechanism for our models is demonstrated. The proposed DDM-Former yields the best overall performance with a root mean square error (RMSE) of 1.43m/s and a bias of −0.02m/s over the nine months test period. Moreover, with an RMSE of 2.89m/s and a bias of −1.88m/s, the proposed DDM-Seq-Former can promisingly improve the estimations in the cases with wind speeds higher than 12m/s. There are still opportunities for further enhancements in creating more robust models that could perform well in all wind regimes given a non-uniform wind distribution. We will make our code publicly available. •Transformer-based models are proposed for wind speed estimation with CYGNSS data.•Attention mechanism exploits delay-Doppler correlation within and between DDMs.•Models' explainabilities are demonstrated with attention maps.•Proposed models yield competitive results compared to competitor methods.•Great potential for migrating to other GNSS-R applications. |
| ArticleNumber | 113629 |
| Author | Zhao, Daixin Xiao, Tianqi Wickert, Jens Zhu, Xiao Xiang Heidler, Konrad Asgarimehr, Milad Mou, Lichao Arnold, Caroline |
| Author_xml | – sequence: 1 givenname: Daixin surname: Zhao fullname: Zhao, Daixin organization: Technische Universität München, Germany – sequence: 2 givenname: Konrad surname: Heidler fullname: Heidler, Konrad organization: Technische Universität München, Germany – sequence: 3 givenname: Milad surname: Asgarimehr fullname: Asgarimehr, Milad organization: German Research Centre for Geosciences (GFZ), Potsdam, Germany – sequence: 4 givenname: Caroline surname: Arnold fullname: Arnold, Caroline organization: German Climate Computing Center (DKRZ), Hamburg, Germany – sequence: 5 givenname: Tianqi surname: Xiao fullname: Xiao, Tianqi organization: German Research Centre for Geosciences (GFZ), Potsdam, Germany – sequence: 6 givenname: Jens surname: Wickert fullname: Wickert, Jens organization: German Research Centre for Geosciences (GFZ), Potsdam, Germany – sequence: 7 givenname: Xiao Xiang surname: Zhu fullname: Zhu, Xiao Xiang organization: Technische Universität München, Germany – sequence: 8 givenname: Lichao surname: Mou fullname: Mou, Lichao email: lichao.mou@tum.de organization: Technische Universität München, Germany |
| BookMark | eNp9kLFOwzAQhi1UJFrgAdg8siTYjhMnMKGWAlKBAVhYLNe-IJfELnYK4u0xlImhk3XyfXf3fxM0ct4BQieU5JTQ6myVhwg5I6zIKS0q1uyhMa1FkxFB-AiNCSl4xlkpDtAkxhUhtKwFHaOX2ewum_vQQzjHT0G52P4W2MHw6cNbxKnG1_ePjzhA24EefA9D-MKvnV-qDnsNyuFP6wyOawCDIQ62V4P17gjtt6qLcPz3HqLn-dXT9CZbPFzfTi8XmS4KMmRMl2WlNZAlrw1hlWFGCNBQioYao5umqtqmFVy3vK0VlEu2pFQpnj4bRkteHKLT7dx18O-btF_2NmroOuXAb6JkdcFZTXlTpla6bdXBx5gCyXVI14YvSYn88ShXMnmUPx7l1mNixD9G2-E34BCU7XaSF1sSUvoPC0FGbcFpMDYkkdJ4u4P-BvrWkAA |
| CitedBy_id | crossref_primary_10_1016_j_apenergy_2023_122155 crossref_primary_10_1109_TGRS_2024_3401835 crossref_primary_10_3390_rs15174169 crossref_primary_10_1016_j_isprsjprs_2023_09_009 crossref_primary_10_1016_j_jag_2024_104122 crossref_primary_10_1016_j_rsase_2024_101401 crossref_primary_10_3390_rs16071125 crossref_primary_10_3390_rs16142621 crossref_primary_10_1016_j_renene_2025_122653 crossref_primary_10_1109_JSTARS_2024_3418429 crossref_primary_10_1016_j_rse_2024_114375 crossref_primary_10_3390_rs16183468 |
| Cites_doi | 10.3390/rs14143299 10.1109/JSTARS.2020.2968156 10.1016/j.rse.2021.112801 10.1109/LGRS.2018.2852143 10.3390/rs13234820 10.1109/TGRS.2014.2303831 10.1109/MGRS.2014.2374220 10.1109/36.898676 10.1109/JSTARS.2018.2833075 10.1109/MGRS.2017.2762307 10.1038/s41598-018-27127-4 10.3390/rs13163224 10.1016/j.rser.2015.09.063 10.1109/LGRS.2019.2948566 10.1109/JSTARS.2018.2873241 10.1109/36.841977 10.1016/j.rse.2022.112934 10.1109/JSTARS.2022.3196658 10.1109/TGRS.2019.2929002 10.1109/JSTARS.2020.3010879 10.1109/36.981349 10.1109/TGRS.2012.2196437 10.1029/2018GL079708 10.1109/TGRS.2016.2541343 10.1016/j.isprsjprs.2019.04.015 10.1109/JSTARS.2018.2825948 10.1002/qj.3803 10.3390/rs11243013 10.1002/2015GL064204 10.1029/98GL51615 10.1016/j.rse.2021.112454 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Inc. |
| Copyright_xml | – notice: 2023 Elsevier Inc. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.rse.2023.113629 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Environmental Sciences |
| EISSN | 1879-0704 |
| ExternalDocumentID | 10_1016_j_rse_2023_113629 S0034425723001803 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ WH7 ZCA ZMT ~02 ~G- ~KM 29P 41~ 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FA8 FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP VOH WUQ XOL ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c330t-2c556cce0b48d026d2d77ece5791ddc9966f9f74cf4f8ae5b2b11aa41dd921543 |
| IEDL.DBID | .~1 |
| ISSN | 0034-4257 |
| IngestDate | Thu Oct 02 10:41:25 EDT 2025 Wed Oct 01 05:13:03 EDT 2025 Thu Apr 24 23:04:38 EDT 2025 Fri Feb 23 02:38:23 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning GNSS reflectometry Ocean wind speed Transformer networks |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c330t-2c556cce0b48d026d2d77ece5791ddc9966f9f74cf4f8ae5b2b11aa41dd921543 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2834281495 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2834281495 crossref_primary_10_1016_j_rse_2023_113629 crossref_citationtrail_10_1016_j_rse_2023_113629 elsevier_sciencedirect_doi_10_1016_j_rse_2023_113629 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-15 |
| PublicationDateYYYYMMDD | 2023-08-15 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Remote sensing of environment |
| PublicationYear | 2023 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Liu, Collett, Morton (bb0120) 2019; 57 Nabi, Senyurek, Gurbuz, Kurum (bb0150) 2022; 15 Ruf, Chew, Lang, Morris, Nave, Ridley, Balasubramaniam (bb0180) 2018; 8 Clarizia, Ruf, Jales, Gommenginger (bb0055) 2014; 52 Chu, He, Song, Qi, Sun, Bai, Li, Wu (bb0045) 2020; 13 Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, Houlsby (bb0070) 2021 Clarizia, Ruf (bb0050) 2016; 54 Martin-Neira, Caparrini, Font-Rossello, Lannelongue, Vallmitjana (bb0140) 2001; 39 Munoz-Martin, Camps (bb0145) 2021; 13 Garrison, Katzberg, Hill (bb0080) 1998; 25 Zheng, Li, Pan, Liu, Xia (bb0225) 2016; 53 Baevski, Auli (bb0035) 2019 Dankert, Horstmann, Rosenthal (bb0065) 2003; 108 Zhou, Zhou, Corso, Socher, Xiong (bb0235) 2018 Guo, Du, Guo, Southwell, Cheong, Dempster (bb0090) 2022; 272 (bb0060) 2020 Hendrycks, Gimpel (bb0095) 2016 Ruf, Balasubramaniam (bb0175) 2019; 12 Jing, Niu, Duan, Lu, Di, Yang (bb0110) 2019; 11 Garrison, Komjathy, Zavorotny, Katzberg (bb0085) 2002; 40 Ba, Kiros, Hinton (bb0030) 2016 Zheng, Lu, Zhao, Zhu, Luo, Wang, Fu, Feng, Xiang, Torr, Zhang (bb0230) 2021 Xie, He, Cheng (bb0205) 2022 Loshchilov, Hutter (bb0130) 2019 Zhu, Su, Lu, Li, Wang, Dai (bb0245) 2021 Zavorotny, Gleason, Cardellach, Camps (bb0220) 2014; 2 Foti, Gommenginger, Jales, Unwin, Shaw, Robertson, Roselló (bb0075) 2015; 42 Asgarimehr, Arnold, Weigel, Ruf, Wickert (bb0025) 2022; 269 Rodriguez-Alvarez, Akos, Zavorotny, Smith, Camps, Fairall (bb0170) 2013; 51 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bb0190) 2014; 15 Ruf, Gleason, McKague (bb0185) 2019; 12 Reynolds, Clarizia, Santi (bb0155) 2020; 13 Zhu, Tuia, Mou, Xia, Zhang, Xu, Fraundorfer (bb0240) 2017; 5 Asgarimehr, Zhelavskaya, Foti, Reich, Wickert (bb0020) 2020; 17 Rodríguez, Bourassa, Chelton, Thomas Farrar, Long, Perkovic-Martin, Samelson (bb0165) 2019; 6 Jin, Cardellach, Xie (bb0105) 2014 Asgarimehr, Zavorotny, Wickert, Reich (bb0010) 2018; 45 Li, Yang, Yang, Zheng, Han, Nan, Li (bb0115) 2021; 260 Ma, Liu, Zhang, Ye, Yin, Johnson (bb0135) 2019; 152 Zavorotny, Voronovich (bb0215) 2000; 38 Hersbach, Bell, Berrisford, Hirahara, Horányi, Muñoz-Sabater, Nicolas, Peubey, Radu, Schepers, Simmons, Soci, Abdalla, Abellan, Balsamo, Bechtold, Biavati, Bidlot, Bonavita, De Chiara, Dahlgren, Dee, Diamantakis, Dragani, Flemming, Forbes, Fuentes, Geer, Haimberger, Healy, Hogan, Hólm, Janisková, Keeley, Laloyaux, Lopez, Lupu, Radnoti, de Rosnay, Rozum, Vamborg, Villaume, Thépaut (bb0100) 2020; 146 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bb0195) 2017 Wang, Li, Xiao, Zhu, Li, Wong, Chao (bb0200) 2019 Yan, Huang (bb0210) 2018; 15 Roberts, Colwell, Chew, Lowe, Shah (bb0160) 2022; 14 Asgarimehr, Wickert, Reich (bb0015) 2018; 11 Liu, Bai, Xia, Huang, Yin, Sun, Du, Meng, Liu, Hu, Tan (bb0125) 2021; 13 Carion, Massa, Synnaeve, Usunier, Kirillov, Zagoruyko (bb0040) 2020; Vol. 12346 Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mané, Monga, Moore, Murray, Olah, Schuster, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals, Warden, Wattenberg, Wicke, Yu, Zheng (bb0005) 2015 Zhou (10.1016/j.rse.2023.113629_bb0235) 2018 Martin-Neira (10.1016/j.rse.2023.113629_bb0140) 2001; 39 Hendrycks (10.1016/j.rse.2023.113629_bb0095) 2016 Li (10.1016/j.rse.2023.113629_bb0115) 2021; 260 Dankert (10.1016/j.rse.2023.113629_bb0065) 2003; 108 Foti (10.1016/j.rse.2023.113629_bb0075) 2015; 42 Ruf (10.1016/j.rse.2023.113629_bb0185) 2019; 12 Yan (10.1016/j.rse.2023.113629_bb0210) 2018; 15 Abadi (10.1016/j.rse.2023.113629_bb0005) 2015 Clarizia (10.1016/j.rse.2023.113629_bb0055) 2014; 52 Liu (10.1016/j.rse.2023.113629_bb0125) 2021; 13 Asgarimehr (10.1016/j.rse.2023.113629_bb0010) 2018; 45 Xie (10.1016/j.rse.2023.113629_bb0205) 2022 Ma (10.1016/j.rse.2023.113629_bb0135) 2019; 152 Zheng (10.1016/j.rse.2023.113629_bb0225) 2016; 53 Hersbach (10.1016/j.rse.2023.113629_bb0100) 2020; 146 Clarizia (10.1016/j.rse.2023.113629_bb0050) 2016; 54 Wang (10.1016/j.rse.2023.113629_bb0200) 2019 Liu (10.1016/j.rse.2023.113629_bb0120) 2019; 57 Ruf (10.1016/j.rse.2023.113629_bb0175) 2019; 12 Ruf (10.1016/j.rse.2023.113629_bb0180) 2018; 8 Vaswani (10.1016/j.rse.2023.113629_bb0195) 2017 Carion (10.1016/j.rse.2023.113629_bb0040) 2020; Vol. 12346 Nabi (10.1016/j.rse.2023.113629_bb0150) 2022; 15 Jin (10.1016/j.rse.2023.113629_bb0105) 2014 Zhu (10.1016/j.rse.2023.113629_bb0245) 2021 Asgarimehr (10.1016/j.rse.2023.113629_bb0020) 2020; 17 Rodriguez-Alvarez (10.1016/j.rse.2023.113629_bb0170) 2013; 51 (10.1016/j.rse.2023.113629_bb0060) 2020 Rodríguez (10.1016/j.rse.2023.113629_bb0165) 2019; 6 Dosovitskiy (10.1016/j.rse.2023.113629_bb0070) 2021 Guo (10.1016/j.rse.2023.113629_bb0090) 2022; 272 Chu (10.1016/j.rse.2023.113629_bb0045) 2020; 13 Zavorotny (10.1016/j.rse.2023.113629_bb0220) 2014; 2 Munoz-Martin (10.1016/j.rse.2023.113629_bb0145) 2021; 13 Zhu (10.1016/j.rse.2023.113629_bb0240) 2017; 5 Roberts (10.1016/j.rse.2023.113629_bb0160) 2022; 14 Baevski (10.1016/j.rse.2023.113629_bb0035) 2019 Srivastava (10.1016/j.rse.2023.113629_bb0190) 2014; 15 Zheng (10.1016/j.rse.2023.113629_bb0230) 2021 Ba (10.1016/j.rse.2023.113629_bb0030) 2016 Garrison (10.1016/j.rse.2023.113629_bb0085) 2002; 40 Jing (10.1016/j.rse.2023.113629_bb0110) 2019; 11 Garrison (10.1016/j.rse.2023.113629_bb0080) 1998; 25 Asgarimehr (10.1016/j.rse.2023.113629_bb0025) 2022; 269 Asgarimehr (10.1016/j.rse.2023.113629_bb0015) 2018; 11 Loshchilov (10.1016/j.rse.2023.113629_bb0130) 2019 Zavorotny (10.1016/j.rse.2023.113629_bb0215) 2000; 38 Reynolds (10.1016/j.rse.2023.113629_bb0155) 2020; 13 |
| References_xml | – volume: 13 start-page: 3224 year: 2021 ident: bb0145 article-title: Sea surface salinity and wind speed retrievals using GNSS-R and L-band microwave radiometry data from FMPL-2 onboard the FSSCat mission publication-title: Remote Sens. – volume: 15 start-page: 6867 year: 2022 end-page: 6881 ident: bb0150 article-title: Deep learning-based soil moisture retrieval in CONUS using CYGNSS delay-doppler maps publication-title: IEEE J.Select.Top.Appl.Earth Observ.Remote Sens. – year: 2016 ident: bb0095 article-title: Gaussian Error Linear Units (GELUs) – volume: 6 start-page: 1 year: 2019 end-page: 8 ident: bb0165 article-title: The winds and currents Mission concept publication-title: Front. Marine Sci. – start-page: 8739 year: 2018 end-page: 8748 ident: bb0235 article-title: End-to-end dense video captioning with masked transformer publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 284 year: 2022 end-page: 289 ident: bb0205 article-title: A convolution neural network-based method for sea ice remote sensing using GNSS-R data publication-title: 2022 4th International Conference on Communications, Information System and Computer Engineering – volume: 146 start-page: 1999 year: 2020 end-page: 2049 ident: bb0100 article-title: The ERA5 global reanalysis publication-title: Q. J. R. Meteorol. Soc. – volume: 8 start-page: 1 year: 2018 end-page: 13 ident: bb0180 article-title: A new paradigm in Earth environmental monitoring with the CYGNSS small satellite constellation publication-title: Sci. Rep. – volume: 13 start-page: 5971 year: 2020 end-page: 5981 ident: bb0045 article-title: Multimodal deep learning for heterogeneous GNSS-R data fusion and ocean wind speed retrieval publication-title: IEEE J.Select.Top.Appl.Earth Observ.Remote Sens. – year: 2021 ident: bb0070 article-title: An image is worth 16x16 words: transformers for image recognition at scale publication-title: 9th International Conference on Learning Representations – volume: 15 start-page: 1510 year: 2018 end-page: 1514 ident: bb0210 article-title: Sea ice sensing from GNSS-R data using convolutional neural networks publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 5 start-page: 8 year: 2017 end-page: 36 ident: bb0240 article-title: Deep learning in remote sensing: a comprehensive review and list of resources publication-title: IEEE Geosci.Remote Sens.Mag. – year: 2020 ident: bb0060 article-title: CYGNSS Level 1 Science Data Record Version 3.0, Ver. 3.0. PO.DAAC, CA, USA – volume: 14 start-page: 3299 year: 2022 ident: bb0160 article-title: A deep-learning approach to soil moisture estimation with GNSS-R publication-title: Remote Sens. – volume: 52 start-page: 6829 year: 2014 end-page: 6843 ident: bb0055 article-title: Spaceborne GNSS-R minimum variance wind speed estimator publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 12 start-page: 87 year: 2019 end-page: 97 ident: bb0185 article-title: Assessment of CYGNSS wind speed retrieval uncertainty publication-title: IEEE J.Select.Top.Appl.Earth Observ. Remote Sens. – start-page: 6877 year: 2021 end-page: 6886 ident: bb0230 article-title: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers publication-title: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 39 start-page: 142 year: 2001 end-page: 150 ident: bb0140 article-title: The PARIS concept: an experimental demonstration of sea surface altimetry using GPS reflected signals publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 54 start-page: 4419 year: 2016 end-page: 4432 ident: bb0050 article-title: Wind speed retrieval algorithm for the cyclone global navigation satellite system (CYGNSS) Mission publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2019 ident: bb0035 article-title: Adaptive input representations for neural language modeling publication-title: 7th International Conference on Learning Representations – volume: 12 start-page: 66 year: 2019 end-page: 77 ident: bb0175 article-title: Development of the CYGNSS geophysical model function for wind speed publication-title: IEEE J.Select.Top.Appl.Earth Observ. Remote Sens. – volume: 272 year: 2022 ident: bb0090 article-title: Information fusion for GNSS-R wind speed retrieval using statistically modified convolutional neural network publication-title: Remote Sens. Environ. – volume: 11 start-page: 3013 year: 2019 ident: bb0110 article-title: Sea surface wind speed retrieval from the first Chinese GNSS-R Mission: technique and preliminary results publication-title: Remote Sens. – volume: 13 start-page: 4820 year: 2021 ident: bb0125 article-title: FA-RDN: a hybrid neural network on GNSS-R Sea surface wind speed retrieval publication-title: Remote Sens. – volume: 45 start-page: 12585 year: 2018 end-page: 12592 ident: bb0010 article-title: Can GNSS reflectometry detect precipitation over Oceans? publication-title: Geophys. Res. Lett. – volume: 260 year: 2021 ident: bb0115 article-title: Analysis of coastal wind speed retrieval from CYGNSS mission using artificial neural network publication-title: Remote Sens. Environ. – year: 2021 ident: bb0245 article-title: Deformable DETR: deformable transformers for end-to-end object detection publication-title: 9th International Conference on Learning Representations – volume: 17 start-page: 1333 year: 2020 end-page: 1337 ident: bb0020 article-title: A GNSS-R geophysical model function: machine learning for wind speed retrievals publication-title: IEEE Geosci. Remote Sens. Lett. – start-page: 5998 year: 2017 end-page: 6008 ident: bb0195 article-title: Attention is all you need publication-title: Advances in Neural Information Processing Systems – year: 2014 ident: bb0105 article-title: GNSS Remote Sensing: Theory, Methods and Applications – volume: 2 start-page: 8 year: 2014 end-page: 45 ident: bb0220 article-title: Tutorial on remote sensing using GNSS bistatic radar of opportunity publication-title: IEEE Geosci.Remote Sens.Mag. – volume: 53 start-page: 1240 year: 2016 end-page: 1251 ident: bb0225 article-title: An overview of global ocean wind energy resource evaluations publication-title: Renew. Sust. Energ. Rev. – volume: 152 start-page: 166 year: 2019 end-page: 177 ident: bb0135 article-title: Deep learning in remote sensing applications: a meta-analysis and review publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 13 start-page: 708 year: 2020 end-page: 716 ident: bb0155 article-title: Wind speed estimation from CYGNSS using artificial neural networks publication-title: IEEE J.Select.Top.Appl.Earth Observ.Remote Sens. – year: 2015 ident: bb0005 article-title: TensorFlow: Large-scale machine learning on heterogeneous systems, Software available from tensorflow.org – year: 2016 ident: bb0030 article-title: Layer Normalization – volume: 42 start-page: 5435 year: 2015 end-page: 5441 ident: bb0075 article-title: Spaceborne GNSS reflectometry for ocean winds: first results from the UK TechDemoSat-1 mission publication-title: Geophys. Res. Lett. – volume: 57 start-page: 9756 year: 2019 end-page: 9766 ident: bb0120 article-title: Application of neural network to GNSS-R wind speed retrieval publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2019 ident: bb0130 article-title: Decoupled weight decay regularization publication-title: 7th International Conference on Learning Representations – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bb0190 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 38 start-page: 951 year: 2000 end-page: 964 ident: bb0215 article-title: Scattering of GPS signals from the ocean with wind remote sensing application publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 51 start-page: 626 year: 2013 end-page: 641 ident: bb0170 article-title: Airborne GNSS-R wind retrievals using delay-doppler maps publication-title: IEEE Trans. Geosci. Remote Sens. – volume: Vol. 12346 start-page: 213 year: 2020 end-page: 229 ident: bb0040 article-title: End-to-end object detection with transformers publication-title: 16th European Conference on Computer Vision – volume: 25 start-page: 2257 year: 1998 end-page: 2260 ident: bb0080 article-title: Effect of sea roughness on bistatically scattered range coded signals from the global positioning system publication-title: Geophys. Res. Lett. – volume: 11 start-page: 4534 year: 2018 end-page: 4541 ident: bb0015 article-title: TDS-1 GNSS reflectometry: development and validation of forward scattering winds publication-title: IEEE J.Select.Top.Appl.Earth Observ.Remote Sens. – volume: 269 year: 2022 ident: bb0025 article-title: GNSS reflectometry global ocean wind speed using deep learning: development and assessment of CyGNSSnet publication-title: Remote Sens. Environ. – volume: 108 start-page: 2150 year: 2003 end-page: 2152 ident: bb0065 article-title: Ocean wind fields retrieved from radar-image sequences publication-title: J.Geophys.Res.Oceans – start-page: 1810 year: 2019 end-page: 1822 ident: bb0200 article-title: Learning deep transformer models for machine translation publication-title: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics – volume: 40 start-page: 50 year: 2002 end-page: 65 ident: bb0085 article-title: Wind speed measurement using forward scattered GPS signals publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 14 start-page: 3299 issue: 14 year: 2022 ident: 10.1016/j.rse.2023.113629_bb0160 article-title: A deep-learning approach to soil moisture estimation with GNSS-R publication-title: Remote Sens. doi: 10.3390/rs14143299 – year: 2019 ident: 10.1016/j.rse.2023.113629_bb0035 article-title: Adaptive input representations for neural language modeling – volume: 13 start-page: 708 year: 2020 ident: 10.1016/j.rse.2023.113629_bb0155 article-title: Wind speed estimation from CYGNSS using artificial neural networks publication-title: IEEE J.Select.Top.Appl.Earth Observ.Remote Sens. doi: 10.1109/JSTARS.2020.2968156 – volume: 15 start-page: 1929 issue: 56 year: 2014 ident: 10.1016/j.rse.2023.113629_bb0190 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – year: 2020 ident: 10.1016/j.rse.2023.113629_bb0060 – year: 2016 ident: 10.1016/j.rse.2023.113629_bb0095 – volume: 269 year: 2022 ident: 10.1016/j.rse.2023.113629_bb0025 article-title: GNSS reflectometry global ocean wind speed using deep learning: development and assessment of CyGNSSnet publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112801 – year: 2021 ident: 10.1016/j.rse.2023.113629_bb0070 article-title: An image is worth 16x16 words: transformers for image recognition at scale – volume: 15 start-page: 1510 issue: 10 year: 2018 ident: 10.1016/j.rse.2023.113629_bb0210 article-title: Sea ice sensing from GNSS-R data using convolutional neural networks publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2852143 – volume: 6 start-page: 1 issue: JUL year: 2019 ident: 10.1016/j.rse.2023.113629_bb0165 article-title: The winds and currents Mission concept publication-title: Front. Marine Sci. – volume: 13 start-page: 4820 issue: 23 year: 2021 ident: 10.1016/j.rse.2023.113629_bb0125 article-title: FA-RDN: a hybrid neural network on GNSS-R Sea surface wind speed retrieval publication-title: Remote Sens. doi: 10.3390/rs13234820 – volume: 52 start-page: 6829 issue: 11 year: 2014 ident: 10.1016/j.rse.2023.113629_bb0055 article-title: Spaceborne GNSS-R minimum variance wind speed estimator publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2303831 – volume: 2 start-page: 8 issue: 4 year: 2014 ident: 10.1016/j.rse.2023.113629_bb0220 article-title: Tutorial on remote sensing using GNSS bistatic radar of opportunity publication-title: IEEE Geosci.Remote Sens.Mag. doi: 10.1109/MGRS.2014.2374220 – start-page: 8739 year: 2018 ident: 10.1016/j.rse.2023.113629_bb0235 article-title: End-to-end dense video captioning with masked transformer – year: 2014 ident: 10.1016/j.rse.2023.113629_bb0105 – volume: 39 start-page: 142 issue: 1 year: 2001 ident: 10.1016/j.rse.2023.113629_bb0140 article-title: The PARIS concept: an experimental demonstration of sea surface altimetry using GPS reflected signals publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.898676 – volume: 12 start-page: 66 issue: 1 year: 2019 ident: 10.1016/j.rse.2023.113629_bb0175 article-title: Development of the CYGNSS geophysical model function for wind speed publication-title: IEEE J.Select.Top.Appl.Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2018.2833075 – start-page: 5998 year: 2017 ident: 10.1016/j.rse.2023.113629_bb0195 article-title: Attention is all you need – volume: 5 start-page: 8 issue: 4 year: 2017 ident: 10.1016/j.rse.2023.113629_bb0240 article-title: Deep learning in remote sensing: a comprehensive review and list of resources publication-title: IEEE Geosci.Remote Sens.Mag. doi: 10.1109/MGRS.2017.2762307 – year: 2015 ident: 10.1016/j.rse.2023.113629_bb0005 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.rse.2023.113629_bb0180 article-title: A new paradigm in Earth environmental monitoring with the CYGNSS small satellite constellation publication-title: Sci. Rep. doi: 10.1038/s41598-018-27127-4 – volume: 13 start-page: 3224 issue: 16 year: 2021 ident: 10.1016/j.rse.2023.113629_bb0145 article-title: Sea surface salinity and wind speed retrievals using GNSS-R and L-band microwave radiometry data from FMPL-2 onboard the FSSCat mission publication-title: Remote Sens. doi: 10.3390/rs13163224 – start-page: 1810 year: 2019 ident: 10.1016/j.rse.2023.113629_bb0200 article-title: Learning deep transformer models for machine translation – volume: 53 start-page: 1240 year: 2016 ident: 10.1016/j.rse.2023.113629_bb0225 article-title: An overview of global ocean wind energy resource evaluations publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2015.09.063 – volume: 108 start-page: 2150 issue: 11 year: 2003 ident: 10.1016/j.rse.2023.113629_bb0065 article-title: Ocean wind fields retrieved from radar-image sequences publication-title: J.Geophys.Res.Oceans – year: 2016 ident: 10.1016/j.rse.2023.113629_bb0030 – volume: 17 start-page: 1333 issue: 8 year: 2020 ident: 10.1016/j.rse.2023.113629_bb0020 article-title: A GNSS-R geophysical model function: machine learning for wind speed retrievals publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2948566 – volume: Vol. 12346 start-page: 213 year: 2020 ident: 10.1016/j.rse.2023.113629_bb0040 article-title: End-to-end object detection with transformers – volume: 11 start-page: 4534 issue: 11 year: 2018 ident: 10.1016/j.rse.2023.113629_bb0015 article-title: TDS-1 GNSS reflectometry: development and validation of forward scattering winds publication-title: IEEE J.Select.Top.Appl.Earth Observ.Remote Sens. doi: 10.1109/JSTARS.2018.2873241 – volume: 38 start-page: 951 issue: 2 year: 2000 ident: 10.1016/j.rse.2023.113629_bb0215 article-title: Scattering of GPS signals from the ocean with wind remote sensing application publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.841977 – start-page: 284 year: 2022 ident: 10.1016/j.rse.2023.113629_bb0205 article-title: A convolution neural network-based method for sea ice remote sensing using GNSS-R data – volume: 272 year: 2022 ident: 10.1016/j.rse.2023.113629_bb0090 article-title: Information fusion for GNSS-R wind speed retrieval using statistically modified convolutional neural network publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.112934 – volume: 15 start-page: 6867 year: 2022 ident: 10.1016/j.rse.2023.113629_bb0150 article-title: Deep learning-based soil moisture retrieval in CONUS using CYGNSS delay-doppler maps publication-title: IEEE J.Select.Top.Appl.Earth Observ.Remote Sens. doi: 10.1109/JSTARS.2022.3196658 – volume: 57 start-page: 9756 issue: 12 year: 2019 ident: 10.1016/j.rse.2023.113629_bb0120 article-title: Application of neural network to GNSS-R wind speed retrieval publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2929002 – volume: 13 start-page: 5971 year: 2020 ident: 10.1016/j.rse.2023.113629_bb0045 article-title: Multimodal deep learning for heterogeneous GNSS-R data fusion and ocean wind speed retrieval publication-title: IEEE J.Select.Top.Appl.Earth Observ.Remote Sens. doi: 10.1109/JSTARS.2020.3010879 – volume: 40 start-page: 50 issue: 1 year: 2002 ident: 10.1016/j.rse.2023.113629_bb0085 article-title: Wind speed measurement using forward scattered GPS signals publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.981349 – volume: 51 start-page: 626 issue: 1 year: 2013 ident: 10.1016/j.rse.2023.113629_bb0170 article-title: Airborne GNSS-R wind retrievals using delay-doppler maps publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2196437 – volume: 45 start-page: 12585 issue: 22 year: 2018 ident: 10.1016/j.rse.2023.113629_bb0010 article-title: Can GNSS reflectometry detect precipitation over Oceans? publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL079708 – start-page: 6877 year: 2021 ident: 10.1016/j.rse.2023.113629_bb0230 article-title: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers – volume: 54 start-page: 4419 issue: 8 year: 2016 ident: 10.1016/j.rse.2023.113629_bb0050 article-title: Wind speed retrieval algorithm for the cyclone global navigation satellite system (CYGNSS) Mission publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2541343 – volume: 152 start-page: 166 year: 2019 ident: 10.1016/j.rse.2023.113629_bb0135 article-title: Deep learning in remote sensing applications: a meta-analysis and review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.04.015 – volume: 12 start-page: 87 issue: 1 year: 2019 ident: 10.1016/j.rse.2023.113629_bb0185 article-title: Assessment of CYGNSS wind speed retrieval uncertainty publication-title: IEEE J.Select.Top.Appl.Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2018.2825948 – volume: 146 start-page: 1999 issue: 730 year: 2020 ident: 10.1016/j.rse.2023.113629_bb0100 article-title: The ERA5 global reanalysis publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.3803 – volume: 11 start-page: 3013 issue: 24 year: 2019 ident: 10.1016/j.rse.2023.113629_bb0110 article-title: Sea surface wind speed retrieval from the first Chinese GNSS-R Mission: technique and preliminary results publication-title: Remote Sens. doi: 10.3390/rs11243013 – volume: 42 start-page: 5435 issue: 13 year: 2015 ident: 10.1016/j.rse.2023.113629_bb0075 article-title: Spaceborne GNSS reflectometry for ocean winds: first results from the UK TechDemoSat-1 mission publication-title: Geophys. Res. Lett. doi: 10.1002/2015GL064204 – volume: 25 start-page: 2257 issue: 13 year: 1998 ident: 10.1016/j.rse.2023.113629_bb0080 article-title: Effect of sea roughness on bistatically scattered range coded signals from the global positioning system publication-title: Geophys. Res. Lett. doi: 10.1029/98GL51615 – year: 2021 ident: 10.1016/j.rse.2023.113629_bb0245 article-title: Deformable DETR: deformable transformers for end-to-end object detection – year: 2019 ident: 10.1016/j.rse.2023.113629_bb0130 article-title: Decoupled weight decay regularization – volume: 260 year: 2021 ident: 10.1016/j.rse.2023.113629_bb0115 article-title: Analysis of coastal wind speed retrieval from CYGNSS mission using artificial neural network publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112454 |
| SSID | ssj0015871 |
| Score | 2.5629935 |
| Snippet | Global navigation satellite system reflectometry (GNSS-R) has shown a capability in recent years to be applied as a novel remote sensing technique to retrieve... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113629 |
| SubjectTerms | data collection Deep learning environment global positioning systems GNSS reflectometry Ocean wind speed oceans reflectometry Transformer networks wind speed |
| Title | DDM-Former: Transformer networks for GNSS reflectometry global ocean wind speed estimation |
| URI | https://dx.doi.org/10.1016/j.rse.2023.113629 https://www.proquest.com/docview/2834281495 |
| Volume | 294 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB4WRfQiuiq-ieBJqPaRbFpvou6uintRQbyEPqaoaF3aFdmLv92ZPlYU2YPHNEkJmWTmm8wLYN8OExu1x346QcJmRrT8yPWtDkoSfmmHjUPsbTHo9O_k5b26b8FpEwvDbpU17694esmt6y9H9W4eDZ-eOMbXk3ziCERzFirO-Cml5ioGh58TNw9H-bqqmudJi0c3ls3SxysvOFOm65WVTUqU-ads-sWlS9HTXYLFGjOKk2pZy9DCrA1r598hatRZ39GiDfN1XfPHcRvmemXh3vEKPJydXVtdAqiYH4vbBq1iLrLKD7wQ1Ba9wc2NoHWVb_mvOMrHosoYIkjMhZn4IA1eFEOSeIKzc1Rhj6tw1z2_Pe1bdV0FK_Y8e2S5sVKdOEY7kn5COljiJlpjjEoHTpLErAGlQaplnMrUD1FFbuQ4YSipMyCEIL01mMneMlwHEZIIRAx80kuI5SodEX3DwEbleJHUOt0Au9lRE9dJx7n2xYtpvMueDRHBMBFMRYQNOJhMGVYZN6YNlg2ZzI9jY0giTJu215DU0HViG0mY4dt7YQhtkULGauPm_369BQvc4mdnR23DzCh_xx3CLaNotzyYuzB7cnHVH3wBdJfrPg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC58sOhFdFbxbQueFrIm6e7pxJuo4-jqXBxB9tLkUUFF45CMyFz87Vbl4eIiHjymH6Hp6q76qusFsOdGqYtGsp9OmLKZEZ0g9gOni4qEX9Zl4xB7Wwy6_Wt1fqNvpuCojYVht8qG99c8veLWTct-s5v7o7s7jvGVik8cgWjOQiWnYVZp37AG9vv13c_D04Gpy-ZJ5fDw1rRZOXkVJafK9GVV2qSCmZ8Kp__YdCV7eouw0IBGcVivawmmMO_Aysm_GDXqbC5p2YG5prD57aQDP06ryr2Tn_D3-PjS6RFCxeJADFu4ioXIa0fwUtC3OB1cXQlaV_WY_4jjYiLqlCGC5FyUixdS4UU5IpEnOD1HHfe4DNe9k-FR32kKKziJlO7Y8ROtu0mCbqyClJSw1E-NwQS1Cb00TVgFysLMqCRTWRChjv3Y86JIUWdIEEHJFZjJn3JcBRGRDEQMA1JMiOdqExOBo9BF7clYGZOtgdvuqE2arONc_OLBtu5l95aIYJkItibCGvx6nzKqU258NVi1ZLIfzo0lkfDVtN2WpJbuExtJohyfnktLcIs0MtYb17_36x2Y6w8vL-zF2eDPBsxzD79Be3oTZsbFM24RiBnH29UhfQPycezT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DDM-Former%3A+Transformer+networks+for+GNSS+reflectometry+global+ocean+wind+speed+estimation&rft.jtitle=Remote+sensing+of+environment&rft.au=Zhao%2C+Daixin&rft.au=Heidler%2C+Konrad&rft.au=Asgarimehr%2C+Milad&rft.au=Arnold%2C+Caroline&rft.date=2023-08-15&rft.pub=Elsevier+Inc&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=294&rft_id=info:doi/10.1016%2Fj.rse.2023.113629&rft.externalDocID=S0034425723001803 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |