Imaginary time propagation code for large-scale two-dimensional eigenvalue problems in magnetic fields
We present a code for solving the single-particle, time-independent Schrödinger equation in two dimensions. Our program utilizes the imaginary time propagation (ITP) algorithm, and it includes the most recent developments in the ITP method: the arbitrary order operator factorization and the exact in...
Saved in:
| Published in | Computer physics communications Vol. 184; no. 3; pp. 769 - 776 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.03.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4655 1879-2944 |
| DOI | 10.1016/j.cpc.2012.09.029 |
Cover
| Abstract | We present a code for solving the single-particle, time-independent Schrödinger equation in two dimensions. Our program utilizes the imaginary time propagation (ITP) algorithm, and it includes the most recent developments in the ITP method: the arbitrary order operator factorization and the exact inclusion of a (possibly very strong) magnetic field. Our program is able to solve thousands of eigenstates of a two-dimensional quantum system in reasonable time with commonly available hardware. The main motivation behind our work is to allow the study of highly excited states and energy spectra of two-dimensional quantum dots and billiard systems with a single versatile code, e.g., in quantum chaos research. In our implementation we emphasize a modern and easily extensible design, simple and user-friendly interfaces, and an open-source development philosophy.
Program title: itp2d
Catalogue identifier: AENR_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENR_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: GNU General Public License version 3
No. of lines in distributed program, including test data, etc.: 11310
No. of bytes in distributed program, including test data, etc.: 97720
Distribution format: tar.gz
Programming language: C++ and Python.
Computer: Tested on x86 and x86-64 architectures.
Operating system: Tested under Linux with the g++ compiler. Any POSIX-compliant OS with a C++ compiler and the required external routines should suffice.
Has the code been vectorised or parallelized?: Yes, with OpenMP.
RAM: 1 MB or more, depending on system size.
Classification: 7.3.
External routines: FFTW3 (http://www.fftw.org), CBLAS (http://netlib.org/blas), LAPACK (http://www.netlib.org/lapack), HDF5 (http://www.hdfgroup.org/HDF5), OpenMP (http://openmp.org), TCLAP (http://tclap.sourceforge.net), Python (http://python.org), Google Test (http://code.google.com/p/googletest/)
Nature of problem: Numerical calculation of the lowest energy solutions (up to a few thousand, depending on available memory), of a single-particle, time-independent Schrdinger equation in two dimensions with or without a homogeneous magnetic field.
Solution method: Imaginary time propagation (also known as the diffusion algorithm), with arbitrary even order factorization of the imaginary time evolution operator
Additional comments: Please see the README file distributed with the program for more information. The source code of our program is also available at https: //bitbucket.org/luukko/itp2d.
Running time: Seconds to hours |
|---|---|
| AbstractList | We present a code for solving the single-particle, time-independent Schrödinger equation in two dimensions. Our program utilizes the imaginary time propagation (ITP) algorithm, and it includes the most recent developments in the ITP method: the arbitrary order operator factorization and the exact inclusion of a (possibly very strong) magnetic field. Our program is able to solve thousands of eigenstates of a two-dimensional quantum system in reasonable time with commonly available hardware. The main motivation behind our work is to allow the study of highly excited states and energy spectra of two-dimensional quantum dots and billiard systems with a single versatile code, e.g., in quantum chaos research. In our implementation we emphasize a modern and easily extensible design, simple and user-friendly interfaces, and an open-source development philosophy.
Program title: itp2d
Catalogue identifier: AENR_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENR_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: GNU General Public License version 3
No. of lines in distributed program, including test data, etc.: 11310
No. of bytes in distributed program, including test data, etc.: 97720
Distribution format: tar.gz
Programming language: C++ and Python.
Computer: Tested on x86 and x86-64 architectures.
Operating system: Tested under Linux with the g++ compiler. Any POSIX-compliant OS with a C++ compiler and the required external routines should suffice.
Has the code been vectorised or parallelized?: Yes, with OpenMP.
RAM: 1 MB or more, depending on system size.
Classification: 7.3.
External routines: FFTW3 (http://www.fftw.org), CBLAS (http://netlib.org/blas), LAPACK (http://www.netlib.org/lapack), HDF5 (http://www.hdfgroup.org/HDF5), OpenMP (http://openmp.org), TCLAP (http://tclap.sourceforge.net), Python (http://python.org), Google Test (http://code.google.com/p/googletest/)
Nature of problem: Numerical calculation of the lowest energy solutions (up to a few thousand, depending on available memory), of a single-particle, time-independent Schrdinger equation in two dimensions with or without a homogeneous magnetic field.
Solution method: Imaginary time propagation (also known as the diffusion algorithm), with arbitrary even order factorization of the imaginary time evolution operator
Additional comments: Please see the README file distributed with the program for more information. The source code of our program is also available at https: //bitbucket.org/luukko/itp2d.
Running time: Seconds to hours We present a code for solving the single-particle, time-independent Schrodinger equation in two dimensions. Our program utilizes the imaginary time propagation (ITP) algorithm, and it includes the most recent developments in the ITP method: the arbitrary order operator factorization and the exact inclusion of a (possibly very strong) magnetic field. Our program is able to solve thousands of eigenstates of a two-dimensional quantum system in reasonable time with commonly available hardware. The main motivation behind our work is to allow the study of highly excited states and energy spectra of two-dimensional quantum dots and billiard systems with a single versatile code, e.g., in quantum chaos research. In our implementation we emphasize a modern and easily extensible design, simple and user-friendly interfaces, and an open-source development philosophy. Program summary Program title: itp2d Catalogue identifier: AENR_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 11310 No. of bytes in distributed program, including test data, etc.: 97720 Distribution format: tar.gz Programming language: C++ and Python. Computer: Tested on x86 and x86-64 architectures. Operating system: Tested under Linux with the g++ compiler. Any POSIX-compliant OS with a C++ compiler and the required external routines should suffice. Has the code been vectorised or parallelized?: Yes, with OpenMP. RAM: 1 MB or more, depending on system size. Classification: 7.3. External routines: FFTW3 (http://www.fftw.org), CBLAS (http://netlib.org/blas), LAPACK (http://www.netlib.org/lapack), HDF5 (http://www.hdfgroup.org/HDF5), OpenMP (http://openmp.org), TCLAP (http://tclap.sourceforge.net), Python (http://python.org), Google Test (http://code.google.com/p/googletest/) Nature of problem: Numerical calculation of the lowest energy solutions (up to a few thousand, depending on available memory), of a single-particle, time-independent Schrdinger equation in two dimensions with or without a homogeneous magnetic field. Solution method: Imaginary time propagation (also known as the diffusion algorithm), with arbitrary even order factorization of the imaginary time evolution operator Additional comments: Please see the README file distributed with the program for more information. The source code of our program is also available at https: //bitbucket.org/luukko/itp2d. Running time: Seconds to hours |
| Author | Räsänen, E. Luukko, P.J.J. |
| Author_xml | – sequence: 1 givenname: P.J.J. surname: Luukko fullname: Luukko, P.J.J. email: perttu.luukko@iki.fi organization: Nanoscience Center, University of Jyväskylä, PL 35, FI-40014, Finland – sequence: 2 givenname: E. surname: Räsänen fullname: Räsänen, E. organization: Nanoscience Center, University of Jyväskylä, PL 35, FI-40014, Finland |
| BookMark | eNp9kD1PHDEURS1EJBaSH5DOZZqZPM-3RRWhQJCQaKC2PG-eV1557MX2EuXfY9hUFFu95p6rd88lO_fBE2PfBdQCxPBzV-Me6wZEU4OsoZFnbCOmUVaN7LpztgEQUHVD31-wy5R2ADCOst0wc7_qrfU6_uPZrsT3Mez1VmcbPMewEDchcqfjlqqE2hHPf0O1lKRPJaIdJ7sl_6rd4YOdHa2JW89Lq6dskRtLbklf2RejXaJv_-8Ve779_XTzp3p4vLu_-fVQYdtCrkQ_DygRpmGZBUpDmgwO0wySCGmRrW6FHHsUnYZ5HDtj-h7nhVrdNJ2cdHvFfhx7yy8vB0pZrTYhOac9hUNSYhjkNIpukCU6HqMYQ0qRjEKbP4bnqK1TAtS7WbVTxax6N6tAqmK2kOITuY92LQpPMtdHhsr6V0tRJbTkyygbCbNagj1BvwHSo5YQ |
| CitedBy_id | crossref_primary_10_1007_s10910_014_0407_0 crossref_primary_10_1088_2040_8978_18_1_015201 crossref_primary_10_1038_srep37656 crossref_primary_10_1103_PhysRevB_96_094204 crossref_primary_10_1063_1_4928473 crossref_primary_10_1103_PhysRevE_88_022913 crossref_primary_10_1142_S021773231550176X crossref_primary_10_1088_1361_648X_aaf9fb crossref_primary_10_1103_PhysRevB_110_235420 crossref_primary_10_1002_andp_201600121 crossref_primary_10_1016_j_cpc_2015_09_015 crossref_primary_10_1016_j_cpc_2021_108141 crossref_primary_10_1103_PhysRevLett_123_214101 |
| Cites_doi | 10.1145/1089014.1089019 10.1016/S0010-4655(02)00686-0 10.1016/j.cpc.2009.04.003 10.1007/BF02183641 10.1016/j.cpc.2008.01.035 10.1007/s10569-010-9255-9 10.1016/j.cpc.2005.05.006 10.1137/100796637 10.1145/1731022.1731031 10.1063/1.1747632 10.1109/JPROC.2004.840301 10.1016/j.jcp.2006.06.006 10.1103/PhysRevE.81.016703 10.1103/PhysRevE.62.2046 10.1103/PhysRevB.77.245115 10.1103/PhysRevE.53.4555 10.1103/PhysRev.105.102 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier B.V. |
| Copyright_xml | – notice: 2012 Elsevier B.V. |
| DBID | AAYXX CITATION 7SC 7U5 8FD H8D JQ2 L7M L~C L~D |
| DOI | 10.1016/j.cpc.2012.09.029 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2944 |
| EndPage | 776 |
| ExternalDocumentID | 10_1016_j_cpc_2012_09_029 S001046551200327X |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO AAYFN ABBOA ABFNM ABMAC ABNEU ABQEM ABQYD ABXDB ABYKQ ACDAQ ACFVG ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADECG ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE IMUCA J1W KOM LG9 LZ4 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCB SDF SDG SES SEW SHN SPC SPCBC SPD SPG SSE SSK SSQ SSV SSZ T5K TN5 UPT VH1 WUQ ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7U5 8FD H8D JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c330t-15b6c9c086db1c9feaefc68b09eeced93a31975c14a0b774ff55cbde3a22498a3 |
| IEDL.DBID | .~1 |
| ISSN | 0010-4655 |
| IngestDate | Sun Sep 28 06:54:45 EDT 2025 Wed Oct 01 05:21:04 EDT 2025 Thu Apr 24 23:09:25 EDT 2025 Fri Feb 23 02:30:56 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Diffusion algorithm Imaginary time propagation Quantum chaos Schrödinger equation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c330t-15b6c9c086db1c9feaefc68b09eeced93a31975c14a0b774ff55cbde3a22498a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1669871469 |
| PQPubID | 23500 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_1669871469 crossref_citationtrail_10_1016_j_cpc_2012_09_029 crossref_primary_10_1016_j_cpc_2012_09_029 elsevier_sciencedirect_doi_10_1016_j_cpc_2012_09_029 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | March 2013 2013-03-00 20130301 |
| PublicationDateYYYYMMDD | 2013-03-01 |
| PublicationDate_xml | – month: 03 year: 2013 text: March 2013 |
| PublicationDecade | 2010 |
| PublicationTitle | Computer physics communications |
| PublicationYear | 2013 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Frigo, Johnson (br000060) 2005; 93 Barnett, Hassell (br000040) 2011; 49 Chin (br000005) 2010; 106 Marques, Castro, Bertsch, Rubio (br000095) 2003; 151 Berglund, Kunz (br000065) 1996; 83 Löwdin (br000050) 1950; 18 Hernandez, Roman, Vidal (br000090) 2005; 31 Lehtovaara, Toivanen, Eloranta (br000045) 2007; 221 Chin, Janecek, Krotscheck (br000020) 2009; 180 Carlson, Keller (br000055) 1957; 105 Narevich, Prange, Zaitsev (br000080) 2000; 62 Janecek, Krotscheck (br000015) 2008; 77 Stathopoulos, McCombs (br000085) 2010; 37 Stöckmann (br000030) 2006 Aichinger, Janecek, Räsänen (br000070) 2010; 81 de Aguiar (br000075) 1996; 53 T. Betcke, Numerical Computation of Eigenfunctions of Planar Regions, Ph.D. Thesis, University of Oxford, 2005. Janecek, Krotscheck (br000025) 2008; 178 Aichinger, Chin, Krotscheck (br000010) 2005; 171 Berglund (10.1016/j.cpc.2012.09.029_br000065) 1996; 83 Frigo (10.1016/j.cpc.2012.09.029_br000060) 2005; 93 Stöckmann (10.1016/j.cpc.2012.09.029_br000030) 2006 Barnett (10.1016/j.cpc.2012.09.029_br000040) 2011; 49 Narevich (10.1016/j.cpc.2012.09.029_br000080) 2000; 62 Chin (10.1016/j.cpc.2012.09.029_br000005) 2010; 106 Hernandez (10.1016/j.cpc.2012.09.029_br000090) 2005; 31 Janecek (10.1016/j.cpc.2012.09.029_br000015) 2008; 77 Carlson (10.1016/j.cpc.2012.09.029_br000055) 1957; 105 Stathopoulos (10.1016/j.cpc.2012.09.029_br000085) 2010; 37 Janecek (10.1016/j.cpc.2012.09.029_br000025) 2008; 178 Aichinger (10.1016/j.cpc.2012.09.029_br000070) 2010; 81 de Aguiar (10.1016/j.cpc.2012.09.029_br000075) 1996; 53 Löwdin (10.1016/j.cpc.2012.09.029_br000050) 1950; 18 Marques (10.1016/j.cpc.2012.09.029_br000095) 2003; 151 Chin (10.1016/j.cpc.2012.09.029_br000020) 2009; 180 Lehtovaara (10.1016/j.cpc.2012.09.029_br000045) 2007; 221 10.1016/j.cpc.2012.09.029_br000035 Aichinger (10.1016/j.cpc.2012.09.029_br000010) 2005; 171 |
| References_xml | – volume: 178 start-page: 835 year: 2008 ident: br000025 publication-title: Comput. Phys. Commun. – volume: 106 start-page: 391 year: 2010 ident: br000005 publication-title: Celestial Mech. Dynam. Astronom. – reference: T. Betcke, Numerical Computation of Eigenfunctions of Planar Regions, Ph.D. Thesis, University of Oxford, 2005. – volume: 62 start-page: 2046 year: 2000 ident: br000080 publication-title: Phys. Rev. E – volume: 77 start-page: 245115 year: 2008 ident: br000015 publication-title: Phys. Rev. B – volume: 93 start-page: 216 year: 2005 ident: br000060 publication-title: Proc. IEEE – year: 2006 ident: br000030 article-title: Quantum Chaos: An Introduction – volume: 81 start-page: 016703 year: 2010 ident: br000070 publication-title: Phys. Rev. E – volume: 151 start-page: 60 year: 2003 ident: br000095 publication-title: Comput. Phys. Commun. – volume: 180 start-page: 1700 year: 2009 ident: br000020 publication-title: Comput. Phys. Commun. – volume: 18 start-page: 365 year: 1950 ident: br000050 publication-title: J. Chem. Phys. – volume: 53 start-page: 4555 year: 1996 ident: br000075 publication-title: Phys. Rev. E – volume: 31 start-page: 351 year: 2005 ident: br000090 publication-title: ACM Trans. Math. Software – volume: 37 year: 2010 ident: br000085 publication-title: ACM Trans. Math. Software – volume: 171 start-page: 197 year: 2005 ident: br000010 publication-title: Comput. Phys. Commun. – volume: 83 start-page: 81 year: 1996 ident: br000065 publication-title: J. Stat. Phys. – volume: 49 start-page: 1046 year: 2011 ident: br000040 publication-title: SIAM J. Numer. Anal. – volume: 105 start-page: 102 year: 1957 ident: br000055 publication-title: Phys. Rev. – volume: 221 start-page: 148 year: 2007 ident: br000045 publication-title: J. Comput. Phys. – volume: 31 start-page: 351 year: 2005 ident: 10.1016/j.cpc.2012.09.029_br000090 publication-title: ACM Trans. Math. Software doi: 10.1145/1089014.1089019 – volume: 151 start-page: 60 year: 2003 ident: 10.1016/j.cpc.2012.09.029_br000095 publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(02)00686-0 – volume: 180 start-page: 1700 year: 2009 ident: 10.1016/j.cpc.2012.09.029_br000020 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.04.003 – volume: 83 start-page: 81 year: 1996 ident: 10.1016/j.cpc.2012.09.029_br000065 publication-title: J. Stat. Phys. doi: 10.1007/BF02183641 – volume: 178 start-page: 835 year: 2008 ident: 10.1016/j.cpc.2012.09.029_br000025 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2008.01.035 – volume: 106 start-page: 391 year: 2010 ident: 10.1016/j.cpc.2012.09.029_br000005 publication-title: Celestial Mech. Dynam. Astronom. doi: 10.1007/s10569-010-9255-9 – volume: 171 start-page: 197 year: 2005 ident: 10.1016/j.cpc.2012.09.029_br000010 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2005.05.006 – volume: 49 start-page: 1046 year: 2011 ident: 10.1016/j.cpc.2012.09.029_br000040 publication-title: SIAM J. Numer. Anal. doi: 10.1137/100796637 – ident: 10.1016/j.cpc.2012.09.029_br000035 – volume: 37 year: 2010 ident: 10.1016/j.cpc.2012.09.029_br000085 publication-title: ACM Trans. Math. Software doi: 10.1145/1731022.1731031 – volume: 18 start-page: 365 year: 1950 ident: 10.1016/j.cpc.2012.09.029_br000050 publication-title: J. Chem. Phys. doi: 10.1063/1.1747632 – volume: 93 start-page: 216 year: 2005 ident: 10.1016/j.cpc.2012.09.029_br000060 publication-title: Proc. IEEE doi: 10.1109/JPROC.2004.840301 – volume: 221 start-page: 148 year: 2007 ident: 10.1016/j.cpc.2012.09.029_br000045 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.06.006 – volume: 81 start-page: 016703 year: 2010 ident: 10.1016/j.cpc.2012.09.029_br000070 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.81.016703 – volume: 62 start-page: 2046 year: 2000 ident: 10.1016/j.cpc.2012.09.029_br000080 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.62.2046 – volume: 77 start-page: 245115 year: 2008 ident: 10.1016/j.cpc.2012.09.029_br000015 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.245115 – year: 2006 ident: 10.1016/j.cpc.2012.09.029_br000030 – volume: 53 start-page: 4555 year: 1996 ident: 10.1016/j.cpc.2012.09.029_br000075 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.53.4555 – volume: 105 start-page: 102 year: 1957 ident: 10.1016/j.cpc.2012.09.029_br000055 publication-title: Phys. Rev. doi: 10.1103/PhysRev.105.102 |
| SSID | ssj0007793 |
| Score | 2.1685188 |
| Snippet | We present a code for solving the single-particle, time-independent Schrödinger equation in two dimensions. Our program utilizes the imaginary time propagation... We present a code for solving the single-particle, time-independent Schrodinger equation in two dimensions. Our program utilizes the imaginary time propagation... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 769 |
| SubjectTerms | Diffusion algorithm Eigenvalues Factorization Imaginary time propagation Magnetic fields Mathematical analysis Mathematical models Operators Quantum chaos Routines Schroedinger equation Schrödinger equation Summaries Two dimensional |
| Title | Imaginary time propagation code for large-scale two-dimensional eigenvalue problems in magnetic fields |
| URI | https://dx.doi.org/10.1016/j.cpc.2012.09.029 https://www.proquest.com/docview/1669871469 |
| Volume | 184 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: AKRWK dateStart: 19690701 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DEbyIP_E3ETwJ1bRNm-Y4hmNzsIM43C2kaQIT7ca6IV78230vaxVFPHgqlCSUL8l7L833vkfIpXaxKSLHAmZDDgcUFwfaplmgmRQmYkWUGU-QHaa9Eb8bJ-MW6TS5MEirrG3_yqZ7a12_uanRvJlNJpjji_eT4PGRXxWJMWawc4FVDK7fv2geQtTCu2BvsHVzs-k5XmaGKob4O1BeMx9l_uqbflhp73q622Srjhlpe_VZO6Rly12y4bmbptojrv-CpYb0_I1ipXgKw4CV8IhTzFinEJfSZ2R8BxXMiKWL12lQoKr_SpGDWlTkRNVv3xfry1R0UlIYtcQUR-pZbtU-GXVvHzq9oC6fEJg4ZosgTPLUSANnliIPjXRWW2fSLGfSWkBXxhq2n0hMyDXLIQp0LklMXthYg1uXmY4PyFo5Le0hoYlhRlsbcSFQfKbIWWRizQvnIHzMMn5EWAOcMrW2OJa4eFYNiexJAdYKsVZMKsD6iFx9dpmthDX-asyb2VDfVocCw_9Xt4tm5hTsGrwK0aWdLisVpqmEoyJP5fH_hj4hm5EvjIFstFOytpgv7RmEJ4v83K-_c7Le7g96Q3wO7h8HHw0E5-0 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA6jInoRV9yN4Emok7bpkqOIw4zLnEaYW0jTBEbGzmAr4sXf7ntpqyjiwWtpQvmSvKX53vcIOVM21HlgmceMzyFBsaGnTJx6iolEBywPUu0IssO4_8BvxtG4Q67aWhikVTa2v7bpzlo3T7oNmt35ZII1vng_CR4f-VVBMl4gSzwKEszALt6_eB5J0ijvgsHB19urTUfy0nOUMcT_geKCuTDzV-f0w0w739NbJ2tN0Egv6-_aIB1TbJJlR97U5RaxgyfsNaSe3yi2iqcwDZgJBznFknUKgSmdIuXbK2FJDK1eZ16Osv61JAc1KMmJst9uLDaYKemkoDBrgTWO1NHcym3y0LseXfW9pn-Cp8OQVZ4fZbEWGpKWPPO1sEYZq-M0Y8IYgFeECs5fEmmfK5ZBGGhtFOksN6ECvy5SFe6QxWJWmF1CI820MibgSYLqM3nGAh0qnlsL8WOa8j3CWuCkbsTFscfFVLYsskcJWEvEWjIhAes9cv45ZF4ra_z1Mm9XQ37bHhIs_1_DTtuVk3Bs8C5EFWb2Uko_jgXkijwW-_-b-oSs9Ef3d_JuMLw9IKuB65KB1LRDslg9v5gjiFWq7NjtxQ860Off |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Imaginary+time+propagation+code+for+large-scale+two-dimensional+eigenvalue+problems+in+magnetic+fields&rft.jtitle=Computer+physics+communications&rft.au=Luukko%2C+P.J.J.&rft.au=R%C3%A4s%C3%A4nen%2C+E.&rft.date=2013-03-01&rft.issn=0010-4655&rft.volume=184&rft.issue=3&rft.spage=769&rft.epage=776&rft_id=info:doi/10.1016%2Fj.cpc.2012.09.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cpc_2012_09_029 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon |