Automated skin lesion segmentation of dermoscopic images using GrabCut and k-means algorithms

Skin cancer is the most common type of cancer in the world and the incidents of skin cancer have been rising over the past decade. Even with a dermoscopic imaging system, which magnifies the lesion region, detecting and classifying skin lesions by visual examination is laborious due to the complex s...

Full description

Saved in:
Bibliographic Details
Published inIET computer vision Vol. 12; no. 8; pp. 1088 - 1095
Main Authors Jaisakthi, Seetharani Murugaiyan, Mirunalini, Palaniappan, Aravindan, Chandrabose
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 01.12.2018
Wiley
Subjects
Online AccessGet full text
ISSN1751-9632
1751-9640
1751-9640
DOI10.1049/iet-cvi.2018.5289

Cover

Abstract Skin cancer is the most common type of cancer in the world and the incidents of skin cancer have been rising over the past decade. Even with a dermoscopic imaging system, which magnifies the lesion region, detecting and classifying skin lesions by visual examination is laborious due to the complex structures of the lesions. This necessitates the need for an automated skin lesion diagnosis system to enhance the diagnostic capability of dermatologists. In this study, the authors propose an automatic skin lesion segmentation method which can be used as a preliminary step for lesion classification. The proposed method comprises two major steps, namely preprocessing and segmentation. In the preprocessing step, noise such as illumination, hair and rulers are removed using filtering techniques and in the segmentation phase, skin lesions are segmented using the GrabCut segmentation algorithm. The k-means clustering algorithm is then used along with the colour features learnt from the training images to improve the boundaries of the segments. To evaluate the authors’ proposed method, they have used ISIC 2017 challenge dataset and ${\rm P}{\rm H}^2$PH2 dataset. They have obtained Dice coefficient values of 0.8236 and 0.9139 for ISIC 2017 test dataset and ${\rm P}{\rm H}^2$PH2 dataset, respectively.
AbstractList Skin cancer is the most common type of cancer in the world and the incidents of skin cancer have been rising over the past decade. Even with a dermoscopic imaging system, which magnifies the lesion region, detecting and classifying skin lesions by visual examination is laborious due to the complex structures of the lesions. This necessitates the need for an automated skin lesion diagnosis system to enhance the diagnostic capability of dermatologists. In this study, the authors propose an automatic skin lesion segmentation method which can be used as a preliminary step for lesion classification. The proposed method comprises two major steps, namely preprocessing and segmentation. In the preprocessing step, noise such as illumination, hair and rulers are removed using filtering techniques and in the segmentation phase, skin lesions are segmented using the GrabCut segmentation algorithm. The k‐means clustering algorithm is then used along with the colour features learnt from the training images to improve the boundaries of the segments. To evaluate the authors’ proposed method, they have used ISIC 2017 challenge dataset and PH2 dataset. They have obtained Dice coefficient values of 0.8236 and 0.9139 for ISIC 2017 test dataset and PH2 dataset, respectively.
Skin cancer is the most common type of cancer in the world and the incidents of skin cancer have been rising over the past decade. Even with a dermoscopic imaging system, which magnifies the lesion region, detecting and classifying skin lesions by visual examination is laborious due to the complex structures of the lesions. This necessitates the need for an automated skin lesion diagnosis system to enhance the diagnostic capability of dermatologists. In this study, the authors propose an automatic skin lesion segmentation method which can be used as a preliminary step for lesion classification. The proposed method comprises two major steps, namely preprocessing and segmentation. In the preprocessing step, noise such as illumination, hair and rulers are removed using filtering techniques and in the segmentation phase, skin lesions are segmented using the GrabCut segmentation algorithm. The k‐means clustering algorithm is then used along with the colour features learnt from the training images to improve the boundaries of the segments. To evaluate the authors’ proposed method, they have used ISIC 2017 challenge dataset and dataset. They have obtained Dice coefficient values of 0.8236 and 0.9139 for ISIC 2017 test dataset and dataset, respectively.
Skin cancer is the most common type of cancer in the world and the incidents of skin cancer have been rising over the past decade. Even with a dermoscopic imaging system, which magnifies the lesion region, detecting and classifying skin lesions by visual examination is laborious due to the complex structures of the lesions. This necessitates the need for an automated skin lesion diagnosis system to enhance the diagnostic capability of dermatologists. In this study, the authors propose an automatic skin lesion segmentation method which can be used as a preliminary step for lesion classification. The proposed method comprises two major steps, namely preprocessing and segmentation. In the preprocessing step, noise such as illumination, hair and rulers are removed using filtering techniques and in the segmentation phase, skin lesions are segmented using the GrabCut segmentation algorithm. The k-means clustering algorithm is then used along with the colour features learnt from the training images to improve the boundaries of the segments. To evaluate the authors’ proposed method, they have used ISIC 2017 challenge dataset and ${\rm P}{\rm H}^2$PH2 dataset. They have obtained Dice coefficient values of 0.8236 and 0.9139 for ISIC 2017 test dataset and ${\rm P}{\rm H}^2$PH2 dataset, respectively.
Author Mirunalini, Palaniappan
Jaisakthi, Seetharani Murugaiyan
Aravindan, Chandrabose
Author_xml – sequence: 1
  givenname: Seetharani Murugaiyan
  surname: Jaisakthi
  fullname: Jaisakthi, Seetharani Murugaiyan
  organization: 1School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India
– sequence: 2
  givenname: Palaniappan
  surname: Mirunalini
  fullname: Mirunalini, Palaniappan
  email: miruna@ssn.edu.in
  organization: 2Department of Computer Science and Engineering, SSN College of Engineering, Chennai, India
– sequence: 3
  givenname: Chandrabose
  surname: Aravindan
  fullname: Aravindan, Chandrabose
  organization: 2Department of Computer Science and Engineering, SSN College of Engineering, Chennai, India
BookMark eNqFkc1O3DAURq2KSgXaB-jOL5DBv3HSHYwKjITEpu2usm4cJ_WQ2Mj2FM3b4zQVCxawsn3l833W8Rk68cFbhL5SsqFEtBfO5sr8dRtGaLORrGk_oFOqJK3aWpCTlz1nn9BZSntCZN224hT9vjzkMEO2PU4PzuPJJhc8Tnacrc-Ql0MYcG_jHJIJj85gN8NoEz4k50d8E6HbHjIG3-OHarbgE4ZpDNHlP3P6jD4OMCX75f96jn5ef_-xva3u7m9228u7ynBOmoqpWgiqjFSED6wRChQTXcvZYKg0fUcEJwREGcLAiALScmm5ASKs6Wpl-Dnarbl9gL1-jOWJ8agDOP1vEOKoIWZnJqtr1vdECUkH2Ym6a1oGvJasb2wpGiQpWXTNMjGkFO3wkkeJXlzr4loX13pxrRfXhVGvGONWeTmCm94kv63kk5vs8f0qvf21Y1fX5f9YU-BqhZdr-3CIvkh-o-wZC8WpbQ
CitedBy_id crossref_primary_10_3390_diagnostics12020344
crossref_primary_10_3390_electronics12244924
crossref_primary_10_4236_jcc_2020_84003
crossref_primary_10_1016_j_eswa_2023_119993
crossref_primary_10_1080_10942912_2022_2055056
crossref_primary_10_12677_CSA_2020_102039
crossref_primary_10_1111_exsy_13010
crossref_primary_10_32604_iasc_2022_019117
crossref_primary_10_3389_fcomp_2019_00004
crossref_primary_10_1016_j_cogsys_2018_12_008
crossref_primary_10_1038_s41598_024_60954_2
crossref_primary_10_1111_srt_13111
crossref_primary_10_1016_j_bspc_2023_105517
crossref_primary_10_1109_ACCESS_2020_3042474
crossref_primary_10_1007_s00521_024_09964_9
crossref_primary_10_1007_s11517_023_02897_w
crossref_primary_10_1080_02564602_2023_2238683
crossref_primary_10_1080_23311916_2021_2009093
crossref_primary_10_1007_s10489_024_05520_z
crossref_primary_10_1016_j_eswa_2019_113129
crossref_primary_10_1016_j_compbiomed_2022_106222
crossref_primary_10_54365_adyumbd_1112260
crossref_primary_10_3390_math11081965
crossref_primary_10_1007_s13319_019_0229_8
crossref_primary_10_3390_s22103636
crossref_primary_10_3390_app15031067
crossref_primary_10_3390_diagnostics11081390
crossref_primary_10_1049_iet_ipr_2018_6669
crossref_primary_10_1016_j_matpr_2021_05_016
crossref_primary_10_1007_s10278_019_00316_x
crossref_primary_10_1002_ima_22633
crossref_primary_10_3390_diagnostics12112625
crossref_primary_10_1109_TGRS_2023_3318788
crossref_primary_10_3390_diagnostics13071285
crossref_primary_10_3390_informatics9040099
crossref_primary_10_3390_s20061601
crossref_primary_10_1002_ima_23090
crossref_primary_10_3103_S1060992X2204004X
crossref_primary_10_3390_diagnostics13081460
crossref_primary_10_1007_s11042_020_10064_8
crossref_primary_10_1007_s11042_024_18895_5
crossref_primary_10_1002_jemt_24792
crossref_primary_10_32604_cmc_2024_052548
crossref_primary_10_1016_j_bspc_2020_102358
crossref_primary_10_1002_ima_22545
crossref_primary_10_48175_IJARSCT_7826
crossref_primary_10_1016_j_compbiomed_2023_106624
crossref_primary_10_1016_j_compbiomed_2024_108819
crossref_primary_10_1109_ACCESS_2022_3210533
crossref_primary_10_1002_cpe_6907
crossref_primary_10_1007_s11042_022_12521_y
Cites_doi 10.1080/10867651.2004.10487596
10.1109/TBME.2007.910651
10.1046/j.1365-2133.1998.02075.x
10.1016/j.bspc.2011.01.003
10.1111/j.1600-0846.2010.00472.x
10.1109/ICCV.2001.937505
10.1007/BFb0056195
10.1109/TBME.2017.2712771
10.1016/j.compbiomed.2017.03.025
10.1109/JBHI.2017.2653179
10.1109/ICIP.2014.7025179
10.1186/1471-2105-12-S10-S12
10.1111/j.1600-0846.2008.00301.x
10.1007/978-3-540-79347-2_2
10.1016/j.compmedimag.2010.08.001
10.1016/j.patcog.2012.08.012
10.1109/JSYST.2014.2313671
10.1001/archderm.1990.01670300063008
10.1109/ICPR.2016.7899656
10.1016/j.compmedimag.2016.05.002
10.1109/ISBI.2016.7493448
10.1071/BT9660127
10.1016/j.compmedimag.2008.11.002
10.1109/TBME.2012.2227478
10.1109/TBME.2004.831538
10.1109/JSTSP.2008.2011119
10.1109/JSTSP.2008.2010631
10.1109/JBHI.2015.2390032
10.1016/j.cmpb.2010.06.016
10.1016/S0734-189X(87)80186-X
10.1109/TMI.2016.2642839
10.1111/srt.12015
10.1109/TFUZZ.2009.2018300
10.1147/JRD.2017.2708283
10.1016/S0895-6111(98)00048-2
10.1109/EMBC.2015.7319013
10.1109/DICTA.2015.7371308
10.1016/0190-9622(90)70056-N
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2018 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2018 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOA
DOI 10.1049/iet-cvi.2018.5289
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: Open Access - DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9640
EndPage 1095
ExternalDocumentID oai_doaj_org_article_62dd07451f5b46b892a3652d8ecdbf50
10_1049_iet_cvi_2018_5289
CVI2BF00528
Genre article
GroupedDBID 0R
24P
29I
3V.
5GY
6IK
8AL
8FE
8FG
8VB
AAJGR
ABJCF
ABPTK
ABUWG
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BFFAM
BGLVJ
BPHCQ
CS3
DU5
DWQXO
EBS
EJD
ESX
GNUQQ
HCIFZ
HZ
IFIPE
IPLJI
J9A
JAVBF
K6V
K7-
L6V
LAI
LOTEE
LXI
LXU
M0N
M43
M7S
MS
NADUK
NXXTH
O9-
OCL
P62
PQEST
PQQKQ
PQUKI
PROAC
PTHSS
QWB
RIE
RNS
RUI
S0W
UNMZH
UNR
ZL0
ZZ
.DC
0R~
0ZK
1OC
AAHHS
AAHJG
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
GROUPED_DOAJ
HZ~
IAO
ITC
K1G
MCNEO
MS~
OK1
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3308-2764417c5703f2847a724b932fc15cdb04300a4724af207a0935e3ca04ecb67c3
IEDL.DBID 24P
ISSN 1751-9632
1751-9640
IngestDate Fri Oct 03 12:46:02 EDT 2025
Thu Apr 24 22:51:43 EDT 2025
Wed Oct 29 21:23:12 EDT 2025
Wed Jan 22 16:32:00 EST 2025
Tue Jan 05 21:51:38 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords dermoscopic imaging system
skin cancer
image classification
graph theory
skin
ISIC 2017 challenge dataset
image filtering
GrabCut segmentation algorithm
k-means clustering algorithm
object detection
lesion region
filtering techniques
image segmentation
skin lesion detection
colour features
image colour analysis
medical image processing
segmentation step
diagnostic capability enhancement
automated skin lesion diagnosis system
visual examination
preprocessing step
pattern clustering
dermoscopic images
cancer
PH2 dataset
automatic skin lesion segmentation method
skin lesion classification
biomedical optical imaging
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3308-2764417c5703f2847a724b932fc15cdb04300a4724af207a0935e3ca04ecb67c3
OpenAccessLink https://doaj.org/article/62dd07451f5b46b892a3652d8ecdbf50
PageCount 8
ParticipantIDs crossref_primary_10_1049_iet_cvi_2018_5289
wiley_primary_10_1049_iet_cvi_2018_5289_CVI2BF00528
crossref_citationtrail_10_1049_iet_cvi_2018_5289
doaj_primary_oai_doaj_org_article_62dd07451f5b46b892a3652d8ecdbf50
iet_journals_10_1049_iet_cvi_2018_5289
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 20181200
December 2018
2018-12-00
2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 20181200
PublicationDecade 2010
PublicationTitle IET computer vision
PublicationYear 2018
Publisher The Institution of Engineering and Technology
Wiley
Publisher_xml – name: The Institution of Engineering and Technology
– name: Wiley
References Abbas, Q.; Fondon, I.; Rashid, M. (C12) 2011; 104
Pizer, S.M.; Amburn, E.P.; Austin, J.D. (C36) 1987; 39
Pennisi, A.; Bloisi, D.D.; Nardi, D. (C13) 2016; 52
Abbas, Q.; Celebi, M.E.; Garca, I.F. (C26) 2011; 6
Bozorgtabar, B.; Sedai, S.; Roy, P.K. (C28) 2017; 61
Jancey, R. (C42) 1966; 14
Fengying, X.; Alan, C.B. (C23) 2013; 46
Fan, H.; Xie, F.; Li, Y. (C20) 2017; 85
Zhou, H.; Schaefer, G.; Sadka, A.H. (C21) 2009; 3
Chuang, T.-Y.; Popescu, A.; Su, W.D. (C1) 1990; 22
Ahn, E.; Kim, J.; Bi, L. (C9) 2017; 21
Suer, S.; Kockara, S.; Mete, M. (C22) 2011; 12
Ma, Z.; Tavares, J.M.R.S. (C14) 2016; 20
Yu, L.; Chen, H.; Dou, Q. (C30) 2017; 36
Yuksel, M.E.; Borlu, M. (C19) 2009; 17
Sadri, A.R.; Zekri, M.; Sadri, S. (C10) 2013; 60
Telea, A. (C39) 2004; 9
Grin, C.M.; Kopf, A.W.; Welkovich, B. (C5) 1990; 126
Silveira, M.; Nascimento, J.C.; Marques, J.S. (C8) 2009; 3
Bahreyni, T.M.T.; Reza, P.H.; Hoda, Z. (C27) 2013; 19
Garnavi, R.; Aldeen, M.; Celebi, M.E. (C17) 2011; 35
Fleming, M.G.; Steger, C.; Zhang, J. (C4) 1998; 22
Gomez, D.D.; Butakoff, C.; Ersboll, B.K. (C18) 2008; 55
Abbas, Q.; Celebi, M.E.; Fondon Garcia, I. (C15) 2011; 17
Celebi, M.; Kingravi, H.; Iyatomi, H. (C25) 2008; 14
Sigurdsson, S.; Philipsen, P.A.; Hansen, L.K. (C2) 2004; 51
Bi, L.; Kim, J.; Ahn, E. (C29) 2017; 64
Morton, C.A.; Mackie, R.M. (C6) 1998; 138
Celebi, M.; Iyatomi, H.; Schaefer, G. (C7) 2009; 33
Celebi, M.E.; Zornberg, A. (C24) 2014; 8
Forgy, E. (C41) 1965; 21
2017; 61
2017; 64
2017; 85
1966; 14
1990; 126
2010
2013; 46
2017; 21
2004; 9
2008; 14
1998
2016; 52
2007
2011; 35
1994
2008; 55
2011; 12
1998; 138
2011; 17
2011; 6
1987; 39
1998; 22
2013; 19
2009; 33
2011; 104
1965; 21
1990; 22
2004; 51
2001
2017; 36
2016; 20
2013; 60
2016
2015
2014
2013
2009; 3
2014; 8
2009; 17
e_1_2_6_31_2
e_1_2_6_30_2
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_15_2
e_1_2_6_20_2
e_1_2_6_41_2
Arthur D. (e_1_2_6_44_2) 2007
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
Zuiderveld K. (e_1_2_6_38_2) 1994
Forgy E. (e_1_2_6_42_2) 1965; 21
e_1_2_6_3_2
Mendonca T. (e_1_2_6_36_2) 2013
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – volume: 14
  start-page: 127
  issue: 1
  year: 1966
  end-page: 130
  ident: C42
  article-title: Multidimensional group analysis
  publication-title: Aust. J. Bot.
– volume: 61
  start-page: 6:1
  issue: 4
  year: 2017
  end-page: 6:8
  ident: C28
  article-title: Skin lesion segmentation using deep convolution networks guided by local unsupervised learning
  publication-title: IBM J. Res. Dev.
– volume: 22
  start-page: 413
  issue: 3
  year: 1990
  end-page: 417
  ident: C1
  article-title: Basal cell carcinoma: a population-based incidence study in Rochester, Minnesota
  publication-title: J. Am. Acad. Dermatol.
– volume: 126
  start-page: 763
  issue: 6
  year: 1990
  end-page: 766
  ident: C5
  article-title: Accuracy in the clinical diagnosis of malignant melanoma
  publication-title: Arch. Dermatol.
– volume: 104
  start-page: e1
  issue: 3
  year: 2011
  end-page: e15
  ident: C12
  article-title: Unsupervised skin lesions border detection via two-dimensional image analysis
  publication-title: Comput. Methods Programs Biomed.
– volume: 46
  start-page: 1012
  issue: 3
  year: 2013
  end-page: 1019
  ident: C23
  article-title: Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm
  publication-title: Pattern Recognit.
– volume: 35
  start-page: 105
  issue: 2
  year: 2011
  end-page: 115
  ident: C17
  article-title: Border detection in dermoscopy images using hybrid thresholding on optimized color channels
  publication-title: Comput. Med. Imaging Graph.
– volume: 19
  start-page: 230
  issue: 3
  year: 2013
  end-page: 235
  ident: C27
  article-title: An effective hair removal algorithm for dermoscopy images
  publication-title: Skin Res. Technol.
– volume: 22
  start-page: 375
  issue: 5
  year: 1998
  end-page: 389
  ident: C4
  article-title: Techniques for a structural analysis of dermatoscopic imagery
  publication-title: Comput. Med. Imaging Graph.
– volume: 33
  start-page: 148
  issue: 2
  year: 2009
  end-page: 153
  ident: C7
  article-title: Lesion border detection in dermoscopy images
  publication-title: Comput. Med. Imaging Graph.
– volume: 55
  start-page: 157
  issue: 1
  year: 2008
  end-page: 161
  ident: C18
  article-title: Independent histogram pursuit for segmentation of skin lesions
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 6
  start-page: 395
  issue: 4
  year: 2011
  end-page: 404
  ident: C26
  article-title: Hair removal methods: a comparative study for dermoscopy images
  publication-title: Biomed. Signal Proc. Control
– volume: 85
  start-page: 75
  year: 2017
  end-page: 85
  ident: C20
  article-title: Automatic segmentation of dermoscopy images using saliency combined with Otsu threshold
  publication-title: Comput. Biol. Med.
– volume: 36
  start-page: 994
  issue: 4
  year: 2017
  end-page: 1004
  ident: C30
  article-title: Automated melanoma recognition in dermoscopy images via very deep residual networks
  publication-title: IEEE Trans. Med. Imaging
– volume: 12
  start-page: S12
  issue: 10
  year: 2011
  ident: C22
  article-title: An improved border detection in dermoscopy images for density based clustering
  publication-title: BMC Bioinf.
– volume: 17
  start-page: 91
  issue: 1
  year: 2011
  end-page: 100
  ident: C15
  article-title: Lesion border detection in dermoscopy images using dynamic programming
  publication-title: Skin Res. Technol.
– volume: 8
  start-page: 980
  issue: 3
  year: 2014
  end-page: 984
  ident: C24
  article-title: Automated quantification of clinically significant colors in dermoscopy images and its application to skin lesion classification
  publication-title: IEEE Syst. J.
– volume: 17
  start-page: 976
  issue: 4
  year: 2009
  end-page: 982
  ident: C19
  article-title: Accurate segmentation of dermoscopic images by image thresholding based on type-2 fuzzy logic
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 51
  start-page: 1784
  issue: 10
  year: 2004
  end-page: 1793
  ident: C2
  article-title: Detection of skin cancer by classification of Raman spectra
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 21
  start-page: 1685
  issue: 6
  year: 2017
  end-page: 1693
  ident: C9
  article-title: Saliency-based lesion segmentation via background detection in dermoscopic images
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 3
  start-page: 35
  issue: 1
  year: 2009
  end-page: 45
  ident: C8
  article-title: Comparison of segmentation methods for melanoma diagnosis in dermoscopy images
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 3
  start-page: 26
  issue: 1
  year: 2009
  end-page: 34
  ident: C21
  article-title: Anisotropic mean shift based fuzzy c-means segmentation of dermoscopy images
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 52
  start-page: 89
  year: 2016
  end-page: 103
  ident: C13
  article-title: Skin lesion image segmentation using Delaunay triangulation for melanoma detection
  publication-title: Comput. Med. Imaging Graph.
– volume: 39
  start-page: 355
  issue: 3
  year: 1987
  end-page: 368
  ident: C36
  article-title: Adaptive histogram equalization and its variations
  publication-title: Comput. Vision Graph. Image Process.
– volume: 60
  start-page: 1134
  issue: 4
  year: 2013
  end-page: 1141
  ident: C10
  article-title: Segmentation of dermoscopy images using wavelet networks
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 138
  start-page: 283
  issue: 2
  year: 1998
  end-page: 287
  ident: C6
  article-title: Clinical accuracy of the diagnosis of cutaneous malignant melanoma
  publication-title: Br. J. Dermatol.
– volume: 64
  start-page: 2065
  issue: 9
  year: 2017
  end-page: 2074
  ident: C29
  article-title: Dermoscopic image segmentation via multistage fully convolutional networks
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 9
  start-page: 23
  issue: 1
  year: 2004
  end-page: 34
  ident: C39
  article-title: An image inpainting technique based on the fast marching method
  publication-title: J. Graph. Tools
– volume: 21
  start-page: 768
  issue: 3
  year: 1965
  end-page: 769
  ident: C41
  article-title: Cluster analysis of multivariate data: efficiency versus interpretability of classification
  publication-title: Biometrics
– volume: 14
  start-page: 347
  issue: 3
  year: 2008
  end-page: 353
  ident: C25
  article-title: Border detection in dermoscopy images using statistical region merging
  publication-title: Skin Res. Technol.
– volume: 20
  start-page: 615
  issue: 2
  year: 2016
  end-page: 623
  ident: C14
  article-title: A novel approach to segment skin lesions in dermoscopic images based on a deformable model
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 19
  start-page: 230
  issue: 3
  year: 2013
  end-page: 235
  article-title: An effective hair removal algorithm for dermoscopy images
  publication-title: Skin Res. Technol.
– volume: 3
  start-page: 26
  issue: 1
  year: 2009
  end-page: 34
  article-title: Anisotropic mean shift based fuzzy c‐means segmentation of dermoscopy images
  publication-title: IEEE J. Sel. Top. Signal Process.
– start-page: 5437
  year: 2013
  end-page: 5440
– volume: 46
  start-page: 1012
  issue: 3
  year: 2013
  end-page: 1019
  article-title: Automatic segmentation of dermoscopy images using self‐generating neural networks seeded by genetic algorithm
  publication-title: Pattern Recognit.
– start-page: 105
  year: 2001
  end-page: 112
– volume: 3
  start-page: 35
  issue: 1
  year: 2009
  end-page: 45
  article-title: Comparison of segmentation methods for melanoma diagnosis in dermoscopy images
  publication-title: IEEE J. Sel. Top. Signal Process.
– start-page: 17
  year: 2010
  end-page: 35
– volume: 85
  start-page: 75
  year: 2017
  end-page: 85
  article-title: Automatic segmentation of dermoscopy images using saliency combined with Otsu threshold
  publication-title: Comput. Biol. Med.
– start-page: 1
  year: 2015
  end-page: 8
– start-page: 474
  year: 1994
  end-page: 485
– start-page: 1027
  year: 2007
  end-page: 1035
– volume: 52
  start-page: 89
  year: 2016
  end-page: 103
  article-title: Skin lesion image segmentation using Delaunay triangulation for melanoma detection
  publication-title: Comput. Med. Imaging Graph.
– start-page: 2960
  year: 2015
  end-page: 2963
– volume: 14
  start-page: 127
  issue: 1
  year: 1966
  end-page: 130
  article-title: Multidimensional group analysis
  publication-title: Aust. J. Bot.
– volume: 20
  start-page: 615
  issue: 2
  year: 2016
  end-page: 623
  article-title: A novel approach to segment skin lesions in dermoscopic images based on a deformable model
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 36
  start-page: 994
  issue: 4
  year: 2017
  end-page: 1004
  article-title: Automated melanoma recognition in dermoscopy images via very deep residual networks
  publication-title: IEEE Trans. Med. Imaging
– volume: 17
  start-page: 976
  issue: 4
  year: 2009
  end-page: 982
  article-title: Accurate segmentation of dermoscopic images by image thresholding based on type‐2 fuzzy logic
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 39
  start-page: 355
  issue: 3
  year: 1987
  end-page: 368
  article-title: Adaptive histogram equalization and its variations
  publication-title: Comput. Vision Graph. Image Process.
– volume: 33
  start-page: 148
  issue: 2
  year: 2009
  end-page: 153
  article-title: Lesion border detection in dermoscopy images
  publication-title: Comput. Med. Imaging Graph.
– start-page: 892
  year: 2014
  end-page: 896
– volume: 55
  start-page: 157
  issue: 1
  year: 2008
  end-page: 161
  article-title: Independent histogram pursuit for segmentation of skin lesions
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2016
– volume: 60
  start-page: 1134
  issue: 4
  year: 2013
  end-page: 1141
  article-title: Segmentation of dermoscopy images using wavelet networks
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 138
  start-page: 283
  issue: 2
  year: 1998
  end-page: 287
  article-title: Clinical accuracy of the diagnosis of cutaneous malignant melanoma
  publication-title: Br. J. Dermatol.
– volume: 21
  start-page: 1685
  issue: 6
  year: 2017
  end-page: 1693
  article-title: Saliency‐based lesion segmentation via background detection in dermoscopic images
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 22
  start-page: 413
  issue: 3
  year: 1990
  end-page: 417
  article-title: Basal cell carcinoma: a population‐based incidence study in Rochester, Minnesota
  publication-title: J. Am. Acad. Dermatol.
– volume: 51
  start-page: 1784
  issue: 10
  year: 2004
  end-page: 1793
  article-title: Detection of skin cancer by classification of Raman spectra
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 1059
  year: 2016
  end-page: 1062
– volume: 21
  start-page: 768
  issue: 3
  year: 1965
  end-page: 769
  article-title: Cluster analysis of multivariate data: efficiency versus interpretability of classification
  publication-title: Biometrics
– volume: 61
  start-page: 6:1
  issue: 4
  year: 2017
  end-page: 6:8
  article-title: Skin lesion segmentation using deep convolution networks guided by local unsupervised learning
  publication-title: IBM J. Res. Dev.
– volume: 126
  start-page: 763
  issue: 6
  year: 1990
  end-page: 766
  article-title: Accuracy in the clinical diagnosis of malignant melanoma
  publication-title: Arch. Dermatol.
– volume: 104
  start-page: e1
  issue: 3
  year: 2011
  end-page: e15
  article-title: Unsupervised skin lesions border detection via two‐dimensional image analysis
  publication-title: Comput. Methods Programs Biomed.
– volume: 17
  start-page: 91
  issue: 1
  year: 2011
  end-page: 100
  article-title: Lesion border detection in dermoscopy images using dynamic programming
  publication-title: Skin Res. Technol.
– volume: 6
  start-page: 395
  issue: 4
  year: 2011
  end-page: 404
  article-title: Hair removal methods: a comparative study for dermoscopy images
  publication-title: Biomed. Signal Proc. Control
– start-page: 130
  year: 1998
  end-page: 137
– volume: 9
  start-page: 23
  issue: 1
  year: 2004
  end-page: 34
  article-title: An image inpainting technique based on the fast marching method
  publication-title: J. Graph. Tools
– volume: 22
  start-page: 375
  issue: 5
  year: 1998
  end-page: 389
  article-title: Techniques for a structural analysis of dermatoscopic imagery
  publication-title: Comput. Med. Imaging Graph.
– volume: 14
  start-page: 347
  issue: 3
  year: 2008
  end-page: 353
  article-title: Border detection in dermoscopy images using statistical region merging
  publication-title: Skin Res. Technol.
– volume: 12
  start-page: S12
  issue: 10
  year: 2011
  article-title: An improved border detection in dermoscopy images for density based clustering
  publication-title: BMC Bioinf.
– volume: 64
  start-page: 2065
  issue: 9
  year: 2017
  end-page: 2074
  article-title: Dermoscopic image segmentation via multistage fully convolutional networks
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 35
  start-page: 105
  issue: 2
  year: 2011
  end-page: 115
  article-title: Border detection in dermoscopy images using hybrid thresholding on optimized color channels
  publication-title: Comput. Med. Imaging Graph.
– start-page: 337
  year: 2016
  end-page: 342
– volume: 8
  start-page: 980
  issue: 3
  year: 2014
  end-page: 984
  article-title: Automated quantification of clinically significant colors in dermoscopy images and its application to skin lesion classification
  publication-title: IEEE Syst. J.
– ident: e_1_2_6_40_2
  doi: 10.1080/10867651.2004.10487596
– ident: e_1_2_6_19_2
  doi: 10.1109/TBME.2007.910651
– ident: e_1_2_6_7_2
  doi: 10.1046/j.1365-2133.1998.02075.x
– ident: e_1_2_6_27_2
  doi: 10.1016/j.bspc.2011.01.003
– start-page: 1027
  volume-title: Proc. of the Eighteenth Annual ACM‐SIAM Symp. on Discrete Algorithms, ser. SODA ‘07
  year: 2007
  ident: e_1_2_6_44_2
– ident: e_1_2_6_16_2
  doi: 10.1111/j.1600-0846.2010.00472.x
– ident: e_1_2_6_41_2
  doi: 10.1109/ICCV.2001.937505
– ident: e_1_2_6_39_2
  doi: 10.1007/BFb0056195
– ident: e_1_2_6_30_2
  doi: 10.1109/TBME.2017.2712771
– ident: e_1_2_6_21_2
  doi: 10.1016/j.compbiomed.2017.03.025
– ident: e_1_2_6_10_2
  doi: 10.1109/JBHI.2017.2653179
– ident: e_1_2_6_35_2
– ident: e_1_2_6_12_2
  doi: 10.1109/ICIP.2014.7025179
– volume: 21
  start-page: 768
  issue: 3
  year: 1965
  ident: e_1_2_6_42_2
  article-title: Cluster analysis of multivariate data: efficiency versus interpretability of classification
  publication-title: Biometrics
– ident: e_1_2_6_23_2
  doi: 10.1186/1471-2105-12-S10-S12
– ident: e_1_2_6_26_2
  doi: 10.1111/j.1600-0846.2008.00301.x
– ident: e_1_2_6_4_2
  doi: 10.1007/978-3-540-79347-2_2
– ident: e_1_2_6_18_2
  doi: 10.1016/j.compmedimag.2010.08.001
– ident: e_1_2_6_24_2
  doi: 10.1016/j.patcog.2012.08.012
– ident: e_1_2_6_25_2
  doi: 10.1109/JSYST.2014.2313671
– ident: e_1_2_6_6_2
  doi: 10.1001/archderm.1990.01670300063008
– ident: e_1_2_6_32_2
  doi: 10.1109/ICPR.2016.7899656
– ident: e_1_2_6_14_2
  doi: 10.1016/j.compmedimag.2016.05.002
– ident: e_1_2_6_17_2
  doi: 10.1109/ISBI.2016.7493448
– ident: e_1_2_6_43_2
  doi: 10.1071/BT9660127
– ident: e_1_2_6_8_2
  doi: 10.1016/j.compmedimag.2008.11.002
– ident: e_1_2_6_11_2
  doi: 10.1109/TBME.2012.2227478
– ident: e_1_2_6_3_2
  doi: 10.1109/TBME.2004.831538
– ident: e_1_2_6_9_2
  doi: 10.1109/JSTSP.2008.2011119
– start-page: 5437
  volume-title: 2013 35th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC)
  year: 2013
  ident: e_1_2_6_36_2
– ident: e_1_2_6_22_2
  doi: 10.1109/JSTSP.2008.2010631
– ident: e_1_2_6_15_2
  doi: 10.1109/JBHI.2015.2390032
– ident: e_1_2_6_13_2
  doi: 10.1016/j.cmpb.2010.06.016
– ident: e_1_2_6_37_2
  doi: 10.1016/S0734-189X(87)80186-X
– ident: e_1_2_6_31_2
  doi: 10.1109/TMI.2016.2642839
– ident: e_1_2_6_28_2
  doi: 10.1111/srt.12015
– ident: e_1_2_6_20_2
  doi: 10.1109/TFUZZ.2009.2018300
– start-page: 474
  volume-title: Contrast limited adaptive histogram equalization
  year: 1994
  ident: e_1_2_6_38_2
– ident: e_1_2_6_29_2
  doi: 10.1147/JRD.2017.2708283
– ident: e_1_2_6_5_2
  doi: 10.1016/S0895-6111(98)00048-2
– ident: e_1_2_6_34_2
  doi: 10.1109/EMBC.2015.7319013
– ident: e_1_2_6_33_2
  doi: 10.1109/DICTA.2015.7371308
– ident: e_1_2_6_2_2
  doi: 10.1016/0190-9622(90)70056-N
SSID ssj0056994
Score 2.3580024
Snippet Skin cancer is the most common type of cancer in the world and the incidents of skin cancer have been rising over the past decade. Even with a dermoscopic...
SourceID doaj
crossref
wiley
iet
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1088
SubjectTerms automated skin lesion diagnosis system
automatic skin lesion segmentation method
biomedical optical imaging
cancer
colour features
dermoscopic images
dermoscopic imaging system
diagnostic capability enhancement
filtering techniques
GrabCut segmentation algorithm
graph theory
image classification
image colour analysis
image filtering
image segmentation
ISIC 2017 challenge dataset
k-means clustering algorithm
lesion region
medical image processing
object detection
pattern clustering
PH2 dataset
preprocessing step
segmentation step
skin
skin cancer
skin lesion classification
skin lesion detection
Special Issue: Computer Vision in Cancer Data Analysis
visual examination
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbeiPKSB8SAFJo4dh5jqSgPCSZAbJZjOyWiTVCTMvMT-I38Eu6SUJWFLqyW45zOZ3-ffec7Qk4AkQQWJnQA_pTDFSzFJE2V42mg95EByKjL-dzdB9eP_PZZPC-U-sKYsCY9cKO4XsCMAZgTXioSHiRRzJQfCGYiq02SNqd1N4p_DlPNHiyCuC6BCJJ4DpgYm_sz415mK0e_ZxjVFZ0LhvXdFxCpTtwPOAO9ftPVGm-GG2StJYq03wi4SVZsvkXWW9JI2yVZbhPZn1UF0E5oLF-znI4t3n_R0o4m7bOinBYpNbADF_gEJdM0m8AmUlIMeR_Rq6lKBrOKqtzQ16-Pz4kF8KJqPCqmWfUyKXfI4_DyYXDttFUTHO37Lph9iBQn1JhaK0XwUSHjCdC0VHsCdIZJvlzFoVGlzA0VekKtr5XLrU6CUPu7pJMXud0jlDHPcusGGqaTW-5GOo6NBcJnw8h4QnWJ-6M5qduU4ljZYixr1zaPJahRgrIlKluisrvkbP7JW5NP46_OFzgd846YCrtuAAORrYHIZQbSJac4cLs0y7_-5tfzvVwuOXi6YRdDvFKP9v9DxgOyioM3YTKHpFNNZ_YIyE6VHNd2_Q2_g_hx
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IET Digital Library (Open Access collection)
  dbid: IDLOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELba5cKlQKHq8qh8qHpAMiSOnccRlm6hKpwAcaksx3aWiN0EbbL8fmYS7yIkRHuLLMdxZmx_n8fjGUK-AyJJTEzIAP40ExqmYl4UmoUG6H1qATK6dD6XV_H5jfh9J-9erkfbcoK5MtjS4obWctffPEDXbViHj72M-4QkwG-PoQIzTyW6aaVHEjYQH8kah905H5C1i7M_uMXqV2YZZ11iROhfyGDg8dUp5xuNvMKpLpw_oA_Uek1iOxQab5JPnj7Sk17fW-SDqz6TDU8lqZ-ozTb5e7JoayCjUNg8lBWdOrSK0cZNZv6yUUXrglpYl2u8mFIaWs5gaWkoOsJP6K-5zkeLlurK0gc2cwBoVE8n9bxs72fNDrkZ_7wenTOfSYGZKApgKiRIexKD4bYKBCSdcJEDdStMKI3NMfBXoAUU6oIHicbTURcZHQhn8jgx0RcyqOrKfSWU89AJF8QGVCycCFKTZdYBCXRJakOphyRYyk0ZH2Ycs11MVXfcLTIFQlQgaoWiVijqITlcvfLYx9h4r_IpKmNVEcNjdwUwRpSfbSrm1gI3kmEhcxHnacZ1FEtuUwc_W8hgSH5gw8uh9N7Xok7b_-6XGt1e8NMxmtnT3f9tfo-s43PvHrNPBu184Q6A5LT5Nz92nwGCXPXJ
  priority: 102
  providerName: Institution of Engineering and Technology
Title Automated skin lesion segmentation of dermoscopic images using GrabCut and k-means algorithms
URI http://digital-library.theiet.org/content/journals/10.1049/iet-cvi.2018.5289
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-cvi.2018.5289
https://doaj.org/article/62dd07451f5b46b892a3652d8ecdbf50
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBHI
  databaseName: IET Digital Library (Open Access collection)
  customDbUrl:
  eissn: 1751-9640
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056994
  issn: 1751-9632
  databaseCode: IDLOA
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-9640
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056994
  issn: 1751-9632
  databaseCode: AVUZU
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Journal - Open Access
  customDbUrl:
  eissn: 1751-9640
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056994
  issn: 1751-9632
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKe-ECfYBYKCsfKg5IgcSx8zhuly5tVSgHtqq4WH5libqboE2WMz-B39hf0hknu6hCKhLHjGzHmfHMfBnbM4QcgUcSWJgwAPenAq5AFXVRqCAyAO8zCy7Dl_P59Dk5nfLza3G9RcbruzBdfohNwA01w9trVHCluyokAGpBiKVrA_OzxNNZ2TsB_w2PyE4EeAaXOeNf1uZYJLmvhgiTioI84X-2NvP3fw1xzzn5HP7gcqDVfeTqXc9klzzpMSMddULeI1uu2idPe_xIe-1sDogcrdoaECgQm5uyonOHoTDauNmiv2FU0bqgFoxxjbdRSkPLBdiThuLp9xn9uFR6vGqpqiy9uf31e-HAj1E1n9XLsv2-aJ6R6eTk6_g06AsoBCaOQ9CAFNFOajDLVoF-SKWMa0BshYmEsRrzfYWKA1EVLEwVboq62KiQO6OT1MTPyXZVV-4FoYxFjrswMSBZ7niYmTy3DrCfSzMbCTUg4Zpz0vTZxbHIxVz6XW6eS2CjBGZLZLZEZg_I202XH11qjYcaH6M4Ng0xK7Yn1MuZ7JVMJsxagEQiKoTmic5ypuJEMJs5-NhChAPyBgfutbR56G2xl_e_5yXHV2fseILR9ezlf_V6RR4jvTsic0i22-XKvQag0-qhX8hDsjO6mn6bDn24AJ7OPlxcju4AsSz55A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwELUoPbQXSmmrLtDiA-qhUtrEsZ3kCEuXpQXUA1TcLMd2thG7Cdpke-4n9Bv5ks442UUIiUq9WhPHmcl4nsf2G0L2ISIJLEwYQPjTAdfginlR6CAyAO9TCyHDl_M5O5fjS_71SlytkaPlXZiOH2KVcEPP8PM1OjgmpLsFJ0eSzNK1gflV4vGs9JOAhcMT8pTLSOISjPHvy_lYyMyXQ4RRRUEm-d3eZvb5QRf3opMn8YeYA1L3oauPPaNNstGDRnrQWfklWXPVFnnRA0jau2fziqiDRVsDBIXG5rqs6NRhLow2bjLrrxhVtC6ohdm4xusopaHlDCaUhuLx9wk9nut8uGipriy9vv39Z-YgkFE9ndTzsv05a16Ty9GXi-E46CsoBCaOQ3CBBOFOYpBmq8BApBPGc4BshYmEsTkSfoWaQ6MuWJho3BV1sdEhdyaXiYnfkPWqrtxbQhmLHHehNGBa7niYmiyzDsCfS1IbCT0g4VJzyvT04ljlYqr8NjfPFKhRgbIVKluhsgfk4-qRm45b4zHhQzTHShBpsX1DPZ-o3suUZNYCJhJRIXIu8zRjOpaC2dTBxxYiHJAP2HHvps1jb4u9vf89LjX8ccIOR5heT7f_66k98mx8cXaqTk_Ov-2Q5yjTnZfZJevtfOHeAepp8_f-p_4Lrif5EQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVEJceCPCcw-IA5Jhbe_6cUxTQsuj4kCqistqvY9gNbGr2OHMT-A38kuYsZ2gCqlIXFfj9XrGM9-3rxmAF4hIkgoTBgh_OhAaXbHwXgehQXqfWYSMrpzPp5PkaC7en8mzPTjc3oXp80PsFtzIM7p4TQ7uLqzvJ5yCkmSWrg3M95KOZ2WvJU4crsE-4jkXI9ifnM6_zrcRWSZ5VxARxxUGeSL-7G7mb_7q5BI-dWn8EXVQ6jJ57dBndhtuDrSRTXo734E9V92FWwOFZIODNvdATTZtjSQUG5vzsmJLR6thrHGL1XDJqGK1ZxbjcU0XUkrDyhWGlIbRAfgFe7fWxXTTMl1Zdv7rx8-VQyhjermo12X7bdXch_ns7ZfpUTDUUAhMHHN0gpQIT2oo0ZYnKNJpJAokbd6E0tiCUn5xLbBR-4inmvZFXWw0F84USWriBzCq6so9BBZFoROOJwaNK5zgmclz65D-uTSzodRj4FvNKTMkGKc6F0vVbXSLXKEaFSpbkbIVKXsMr3aPXPTZNa4SPiBz7AQpMXbXUK8XavAzlUTWIiuSoZeFSIosj3ScyMhmDj_WSz6Gl9Tx4KjNVW-LO3v_e1xqenocHcxogT179F9PPYfrnw9n6uPxyYfHcINE-gMzT2DUrjfuKdKetng2_NW_ASMR-mU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+skin+lesion+segmentation+of+dermoscopic+images+using+GrabCut+and+k%E2%80%90means+algorithms&rft.jtitle=IET+computer+vision&rft.au=Jaisakthi%2C+Seetharani+Murugaiyan&rft.au=Mirunalini%2C+Palaniappan&rft.au=Aravindan%2C+Chandrabose&rft.date=2018-12-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-9640&rft.eissn=1751-9640&rft.volume=12&rft.issue=8&rft.spage=1088&rft.epage=1095&rft_id=info:doi/10.1049%2Fiet-cvi.2018.5289&rft.externalDBID=10.1049%252Fiet-cvi.2018.5289&rft.externalDocID=CVI2BF00528
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9632&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9632&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9632&client=summon