Automated skin lesion segmentation of dermoscopic images using GrabCut and k-means algorithms
Skin cancer is the most common type of cancer in the world and the incidents of skin cancer have been rising over the past decade. Even with a dermoscopic imaging system, which magnifies the lesion region, detecting and classifying skin lesions by visual examination is laborious due to the complex s...
Saved in:
| Published in | IET computer vision Vol. 12; no. 8; pp. 1088 - 1095 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
The Institution of Engineering and Technology
01.12.2018
Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1751-9632 1751-9640 1751-9640 |
| DOI | 10.1049/iet-cvi.2018.5289 |
Cover
| Abstract | Skin cancer is the most common type of cancer in the world and the incidents of skin cancer have been rising over the past decade. Even with a dermoscopic imaging system, which magnifies the lesion region, detecting and classifying skin lesions by visual examination is laborious due to the complex structures of the lesions. This necessitates the need for an automated skin lesion diagnosis system to enhance the diagnostic capability of dermatologists. In this study, the authors propose an automatic skin lesion segmentation method which can be used as a preliminary step for lesion classification. The proposed method comprises two major steps, namely preprocessing and segmentation. In the preprocessing step, noise such as illumination, hair and rulers are removed using filtering techniques and in the segmentation phase, skin lesions are segmented using the GrabCut segmentation algorithm. The k-means clustering algorithm is then used along with the colour features learnt from the training images to improve the boundaries of the segments. To evaluate the authors’ proposed method, they have used ISIC 2017 challenge dataset and ${\rm P}{\rm H}^2$PH2 dataset. They have obtained Dice coefficient values of 0.8236 and 0.9139 for ISIC 2017 test dataset and ${\rm P}{\rm H}^2$PH2 dataset, respectively. |
|---|---|
| AbstractList | Skin cancer is the most common type of cancer in the world and the incidents of skin cancer have been rising over the past decade. Even with a dermoscopic imaging system, which magnifies the lesion region, detecting and classifying skin lesions by visual examination is laborious due to the complex structures of the lesions. This necessitates the need for an automated skin lesion diagnosis system to enhance the diagnostic capability of dermatologists. In this study, the authors propose an automatic skin lesion segmentation method which can be used as a preliminary step for lesion classification. The proposed method comprises two major steps, namely preprocessing and segmentation. In the preprocessing step, noise such as illumination, hair and rulers are removed using filtering techniques and in the segmentation phase, skin lesions are segmented using the GrabCut segmentation algorithm. The k‐means clustering algorithm is then used along with the colour features learnt from the training images to improve the boundaries of the segments. To evaluate the authors’ proposed method, they have used ISIC 2017 challenge dataset and PH2 dataset. They have obtained Dice coefficient values of 0.8236 and 0.9139 for ISIC 2017 test dataset and PH2 dataset, respectively. Skin cancer is the most common type of cancer in the world and the incidents of skin cancer have been rising over the past decade. Even with a dermoscopic imaging system, which magnifies the lesion region, detecting and classifying skin lesions by visual examination is laborious due to the complex structures of the lesions. This necessitates the need for an automated skin lesion diagnosis system to enhance the diagnostic capability of dermatologists. In this study, the authors propose an automatic skin lesion segmentation method which can be used as a preliminary step for lesion classification. The proposed method comprises two major steps, namely preprocessing and segmentation. In the preprocessing step, noise such as illumination, hair and rulers are removed using filtering techniques and in the segmentation phase, skin lesions are segmented using the GrabCut segmentation algorithm. The k‐means clustering algorithm is then used along with the colour features learnt from the training images to improve the boundaries of the segments. To evaluate the authors’ proposed method, they have used ISIC 2017 challenge dataset and dataset. They have obtained Dice coefficient values of 0.8236 and 0.9139 for ISIC 2017 test dataset and dataset, respectively. Skin cancer is the most common type of cancer in the world and the incidents of skin cancer have been rising over the past decade. Even with a dermoscopic imaging system, which magnifies the lesion region, detecting and classifying skin lesions by visual examination is laborious due to the complex structures of the lesions. This necessitates the need for an automated skin lesion diagnosis system to enhance the diagnostic capability of dermatologists. In this study, the authors propose an automatic skin lesion segmentation method which can be used as a preliminary step for lesion classification. The proposed method comprises two major steps, namely preprocessing and segmentation. In the preprocessing step, noise such as illumination, hair and rulers are removed using filtering techniques and in the segmentation phase, skin lesions are segmented using the GrabCut segmentation algorithm. The k-means clustering algorithm is then used along with the colour features learnt from the training images to improve the boundaries of the segments. To evaluate the authors’ proposed method, they have used ISIC 2017 challenge dataset and ${\rm P}{\rm H}^2$PH2 dataset. They have obtained Dice coefficient values of 0.8236 and 0.9139 for ISIC 2017 test dataset and ${\rm P}{\rm H}^2$PH2 dataset, respectively. |
| Author | Mirunalini, Palaniappan Jaisakthi, Seetharani Murugaiyan Aravindan, Chandrabose |
| Author_xml | – sequence: 1 givenname: Seetharani Murugaiyan surname: Jaisakthi fullname: Jaisakthi, Seetharani Murugaiyan organization: 1School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India – sequence: 2 givenname: Palaniappan surname: Mirunalini fullname: Mirunalini, Palaniappan email: miruna@ssn.edu.in organization: 2Department of Computer Science and Engineering, SSN College of Engineering, Chennai, India – sequence: 3 givenname: Chandrabose surname: Aravindan fullname: Aravindan, Chandrabose organization: 2Department of Computer Science and Engineering, SSN College of Engineering, Chennai, India |
| BookMark | eNqFkc1O3DAURq2KSgXaB-jOL5DBv3HSHYwKjITEpu2usm4cJ_WQ2Mj2FM3b4zQVCxawsn3l833W8Rk68cFbhL5SsqFEtBfO5sr8dRtGaLORrGk_oFOqJK3aWpCTlz1nn9BZSntCZN224hT9vjzkMEO2PU4PzuPJJhc8Tnacrc-Ql0MYcG_jHJIJj85gN8NoEz4k50d8E6HbHjIG3-OHarbgE4ZpDNHlP3P6jD4OMCX75f96jn5ef_-xva3u7m9228u7ynBOmoqpWgiqjFSED6wRChQTXcvZYKg0fUcEJwREGcLAiALScmm5ASKs6Wpl-Dnarbl9gL1-jOWJ8agDOP1vEOKoIWZnJqtr1vdECUkH2Ym6a1oGvJasb2wpGiQpWXTNMjGkFO3wkkeJXlzr4loX13pxrRfXhVGvGONWeTmCm94kv63kk5vs8f0qvf21Y1fX5f9YU-BqhZdr-3CIvkh-o-wZC8WpbQ |
| CitedBy_id | crossref_primary_10_3390_diagnostics12020344 crossref_primary_10_3390_electronics12244924 crossref_primary_10_4236_jcc_2020_84003 crossref_primary_10_1016_j_eswa_2023_119993 crossref_primary_10_1080_10942912_2022_2055056 crossref_primary_10_12677_CSA_2020_102039 crossref_primary_10_1111_exsy_13010 crossref_primary_10_32604_iasc_2022_019117 crossref_primary_10_3389_fcomp_2019_00004 crossref_primary_10_1016_j_cogsys_2018_12_008 crossref_primary_10_1038_s41598_024_60954_2 crossref_primary_10_1111_srt_13111 crossref_primary_10_1016_j_bspc_2023_105517 crossref_primary_10_1109_ACCESS_2020_3042474 crossref_primary_10_1007_s00521_024_09964_9 crossref_primary_10_1007_s11517_023_02897_w crossref_primary_10_1080_02564602_2023_2238683 crossref_primary_10_1080_23311916_2021_2009093 crossref_primary_10_1007_s10489_024_05520_z crossref_primary_10_1016_j_eswa_2019_113129 crossref_primary_10_1016_j_compbiomed_2022_106222 crossref_primary_10_54365_adyumbd_1112260 crossref_primary_10_3390_math11081965 crossref_primary_10_1007_s13319_019_0229_8 crossref_primary_10_3390_s22103636 crossref_primary_10_3390_app15031067 crossref_primary_10_3390_diagnostics11081390 crossref_primary_10_1049_iet_ipr_2018_6669 crossref_primary_10_1016_j_matpr_2021_05_016 crossref_primary_10_1007_s10278_019_00316_x crossref_primary_10_1002_ima_22633 crossref_primary_10_3390_diagnostics12112625 crossref_primary_10_1109_TGRS_2023_3318788 crossref_primary_10_3390_diagnostics13071285 crossref_primary_10_3390_informatics9040099 crossref_primary_10_3390_s20061601 crossref_primary_10_1002_ima_23090 crossref_primary_10_3103_S1060992X2204004X crossref_primary_10_3390_diagnostics13081460 crossref_primary_10_1007_s11042_020_10064_8 crossref_primary_10_1007_s11042_024_18895_5 crossref_primary_10_1002_jemt_24792 crossref_primary_10_32604_cmc_2024_052548 crossref_primary_10_1016_j_bspc_2020_102358 crossref_primary_10_1002_ima_22545 crossref_primary_10_48175_IJARSCT_7826 crossref_primary_10_1016_j_compbiomed_2023_106624 crossref_primary_10_1016_j_compbiomed_2024_108819 crossref_primary_10_1109_ACCESS_2022_3210533 crossref_primary_10_1002_cpe_6907 crossref_primary_10_1007_s11042_022_12521_y |
| Cites_doi | 10.1080/10867651.2004.10487596 10.1109/TBME.2007.910651 10.1046/j.1365-2133.1998.02075.x 10.1016/j.bspc.2011.01.003 10.1111/j.1600-0846.2010.00472.x 10.1109/ICCV.2001.937505 10.1007/BFb0056195 10.1109/TBME.2017.2712771 10.1016/j.compbiomed.2017.03.025 10.1109/JBHI.2017.2653179 10.1109/ICIP.2014.7025179 10.1186/1471-2105-12-S10-S12 10.1111/j.1600-0846.2008.00301.x 10.1007/978-3-540-79347-2_2 10.1016/j.compmedimag.2010.08.001 10.1016/j.patcog.2012.08.012 10.1109/JSYST.2014.2313671 10.1001/archderm.1990.01670300063008 10.1109/ICPR.2016.7899656 10.1016/j.compmedimag.2016.05.002 10.1109/ISBI.2016.7493448 10.1071/BT9660127 10.1016/j.compmedimag.2008.11.002 10.1109/TBME.2012.2227478 10.1109/TBME.2004.831538 10.1109/JSTSP.2008.2011119 10.1109/JSTSP.2008.2010631 10.1109/JBHI.2015.2390032 10.1016/j.cmpb.2010.06.016 10.1016/S0734-189X(87)80186-X 10.1109/TMI.2016.2642839 10.1111/srt.12015 10.1109/TFUZZ.2009.2018300 10.1147/JRD.2017.2708283 10.1016/S0895-6111(98)00048-2 10.1109/EMBC.2015.7319013 10.1109/DICTA.2015.7371308 10.1016/0190-9622(90)70056-N |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2018 The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2018 The Institution of Engineering and Technology |
| DBID | AAYXX CITATION DOA |
| DOI | 10.1049/iet-cvi.2018.5289 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Open Access - DOAJ url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1751-9640 |
| EndPage | 1095 |
| ExternalDocumentID | oai_doaj_org_article_62dd07451f5b46b892a3652d8ecdbf50 10_1049_iet_cvi_2018_5289 CVI2BF00528 |
| Genre | article |
| GroupedDBID | 0R 24P 29I 3V. 5GY 6IK 8AL 8FE 8FG 8VB AAJGR ABJCF ABPTK ABUWG ACGFS ACIWK AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BFFAM BGLVJ BPHCQ CS3 DU5 DWQXO EBS EJD ESX GNUQQ HCIFZ HZ IFIPE IPLJI J9A JAVBF K6V K7- L6V LAI LOTEE LXI LXU M0N M43 M7S MS NADUK NXXTH O9- OCL P62 PQEST PQQKQ PQUKI PROAC PTHSS QWB RIE RNS RUI S0W UNMZH UNR ZL0 ZZ .DC 0R~ 0ZK 1OC AAHHS AAHJG ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADEYR ADZOD AEEZP AEGXH AEQDE AIWBW AJBDE ALUQN AVUZU CCPQU GROUPED_DOAJ HZ~ IAO ITC K1G MCNEO MS~ OK1 ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c3308-2764417c5703f2847a724b932fc15cdb04300a4724af207a0935e3ca04ecb67c3 |
| IEDL.DBID | 24P |
| ISSN | 1751-9632 1751-9640 |
| IngestDate | Fri Oct 03 12:46:02 EDT 2025 Thu Apr 24 22:51:43 EDT 2025 Wed Oct 29 21:23:12 EDT 2025 Wed Jan 22 16:32:00 EST 2025 Tue Jan 05 21:51:38 EST 2021 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | dermoscopic imaging system skin cancer image classification graph theory skin ISIC 2017 challenge dataset image filtering GrabCut segmentation algorithm k-means clustering algorithm object detection lesion region filtering techniques image segmentation skin lesion detection colour features image colour analysis medical image processing segmentation step diagnostic capability enhancement automated skin lesion diagnosis system visual examination preprocessing step pattern clustering dermoscopic images cancer PH2 dataset automatic skin lesion segmentation method skin lesion classification biomedical optical imaging |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3308-2764417c5703f2847a724b932fc15cdb04300a4724af207a0935e3ca04ecb67c3 |
| OpenAccessLink | https://doaj.org/article/62dd07451f5b46b892a3652d8ecdbf50 |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_1049_iet_cvi_2018_5289 wiley_primary_10_1049_iet_cvi_2018_5289_CVI2BF00528 crossref_citationtrail_10_1049_iet_cvi_2018_5289 doaj_primary_oai_doaj_org_article_62dd07451f5b46b892a3652d8ecdbf50 iet_journals_10_1049_iet_cvi_2018_5289 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 20181200 December 2018 2018-12-00 2018-12-01 |
| PublicationDateYYYYMMDD | 2018-12-01 |
| PublicationDate_xml | – month: 12 year: 2018 text: 20181200 |
| PublicationDecade | 2010 |
| PublicationTitle | IET computer vision |
| PublicationYear | 2018 |
| Publisher | The Institution of Engineering and Technology Wiley |
| Publisher_xml | – name: The Institution of Engineering and Technology – name: Wiley |
| References | Abbas, Q.; Fondon, I.; Rashid, M. (C12) 2011; 104 Pizer, S.M.; Amburn, E.P.; Austin, J.D. (C36) 1987; 39 Pennisi, A.; Bloisi, D.D.; Nardi, D. (C13) 2016; 52 Abbas, Q.; Celebi, M.E.; Garca, I.F. (C26) 2011; 6 Bozorgtabar, B.; Sedai, S.; Roy, P.K. (C28) 2017; 61 Jancey, R. (C42) 1966; 14 Fengying, X.; Alan, C.B. (C23) 2013; 46 Fan, H.; Xie, F.; Li, Y. (C20) 2017; 85 Zhou, H.; Schaefer, G.; Sadka, A.H. (C21) 2009; 3 Chuang, T.-Y.; Popescu, A.; Su, W.D. (C1) 1990; 22 Ahn, E.; Kim, J.; Bi, L. (C9) 2017; 21 Suer, S.; Kockara, S.; Mete, M. (C22) 2011; 12 Ma, Z.; Tavares, J.M.R.S. (C14) 2016; 20 Yu, L.; Chen, H.; Dou, Q. (C30) 2017; 36 Yuksel, M.E.; Borlu, M. (C19) 2009; 17 Sadri, A.R.; Zekri, M.; Sadri, S. (C10) 2013; 60 Telea, A. (C39) 2004; 9 Grin, C.M.; Kopf, A.W.; Welkovich, B. (C5) 1990; 126 Silveira, M.; Nascimento, J.C.; Marques, J.S. (C8) 2009; 3 Bahreyni, T.M.T.; Reza, P.H.; Hoda, Z. (C27) 2013; 19 Garnavi, R.; Aldeen, M.; Celebi, M.E. (C17) 2011; 35 Fleming, M.G.; Steger, C.; Zhang, J. (C4) 1998; 22 Gomez, D.D.; Butakoff, C.; Ersboll, B.K. (C18) 2008; 55 Abbas, Q.; Celebi, M.E.; Fondon Garcia, I. (C15) 2011; 17 Celebi, M.; Kingravi, H.; Iyatomi, H. (C25) 2008; 14 Sigurdsson, S.; Philipsen, P.A.; Hansen, L.K. (C2) 2004; 51 Bi, L.; Kim, J.; Ahn, E. (C29) 2017; 64 Morton, C.A.; Mackie, R.M. (C6) 1998; 138 Celebi, M.; Iyatomi, H.; Schaefer, G. (C7) 2009; 33 Celebi, M.E.; Zornberg, A. (C24) 2014; 8 Forgy, E. (C41) 1965; 21 2017; 61 2017; 64 2017; 85 1966; 14 1990; 126 2010 2013; 46 2017; 21 2004; 9 2008; 14 1998 2016; 52 2007 2011; 35 1994 2008; 55 2011; 12 1998; 138 2011; 17 2011; 6 1987; 39 1998; 22 2013; 19 2009; 33 2011; 104 1965; 21 1990; 22 2004; 51 2001 2017; 36 2016; 20 2013; 60 2016 2015 2014 2013 2009; 3 2014; 8 2009; 17 e_1_2_6_31_2 e_1_2_6_30_2 e_1_2_6_18_2 e_1_2_6_19_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_17_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_15_2 e_1_2_6_20_2 e_1_2_6_41_2 Arthur D. (e_1_2_6_44_2) 2007 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_4_2 Zuiderveld K. (e_1_2_6_38_2) 1994 Forgy E. (e_1_2_6_42_2) 1965; 21 e_1_2_6_3_2 Mendonca T. (e_1_2_6_36_2) 2013 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_27_2 e_1_2_6_26_2 e_1_2_6_25_2 |
| References_xml | – volume: 14 start-page: 127 issue: 1 year: 1966 end-page: 130 ident: C42 article-title: Multidimensional group analysis publication-title: Aust. J. Bot. – volume: 61 start-page: 6:1 issue: 4 year: 2017 end-page: 6:8 ident: C28 article-title: Skin lesion segmentation using deep convolution networks guided by local unsupervised learning publication-title: IBM J. Res. Dev. – volume: 22 start-page: 413 issue: 3 year: 1990 end-page: 417 ident: C1 article-title: Basal cell carcinoma: a population-based incidence study in Rochester, Minnesota publication-title: J. Am. Acad. Dermatol. – volume: 126 start-page: 763 issue: 6 year: 1990 end-page: 766 ident: C5 article-title: Accuracy in the clinical diagnosis of malignant melanoma publication-title: Arch. Dermatol. – volume: 104 start-page: e1 issue: 3 year: 2011 end-page: e15 ident: C12 article-title: Unsupervised skin lesions border detection via two-dimensional image analysis publication-title: Comput. Methods Programs Biomed. – volume: 46 start-page: 1012 issue: 3 year: 2013 end-page: 1019 ident: C23 article-title: Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm publication-title: Pattern Recognit. – volume: 35 start-page: 105 issue: 2 year: 2011 end-page: 115 ident: C17 article-title: Border detection in dermoscopy images using hybrid thresholding on optimized color channels publication-title: Comput. Med. Imaging Graph. – volume: 19 start-page: 230 issue: 3 year: 2013 end-page: 235 ident: C27 article-title: An effective hair removal algorithm for dermoscopy images publication-title: Skin Res. Technol. – volume: 22 start-page: 375 issue: 5 year: 1998 end-page: 389 ident: C4 article-title: Techniques for a structural analysis of dermatoscopic imagery publication-title: Comput. Med. Imaging Graph. – volume: 33 start-page: 148 issue: 2 year: 2009 end-page: 153 ident: C7 article-title: Lesion border detection in dermoscopy images publication-title: Comput. Med. Imaging Graph. – volume: 55 start-page: 157 issue: 1 year: 2008 end-page: 161 ident: C18 article-title: Independent histogram pursuit for segmentation of skin lesions publication-title: IEEE Trans. Biomed. Eng. – volume: 6 start-page: 395 issue: 4 year: 2011 end-page: 404 ident: C26 article-title: Hair removal methods: a comparative study for dermoscopy images publication-title: Biomed. Signal Proc. Control – volume: 85 start-page: 75 year: 2017 end-page: 85 ident: C20 article-title: Automatic segmentation of dermoscopy images using saliency combined with Otsu threshold publication-title: Comput. Biol. Med. – volume: 36 start-page: 994 issue: 4 year: 2017 end-page: 1004 ident: C30 article-title: Automated melanoma recognition in dermoscopy images via very deep residual networks publication-title: IEEE Trans. Med. Imaging – volume: 12 start-page: S12 issue: 10 year: 2011 ident: C22 article-title: An improved border detection in dermoscopy images for density based clustering publication-title: BMC Bioinf. – volume: 17 start-page: 91 issue: 1 year: 2011 end-page: 100 ident: C15 article-title: Lesion border detection in dermoscopy images using dynamic programming publication-title: Skin Res. Technol. – volume: 8 start-page: 980 issue: 3 year: 2014 end-page: 984 ident: C24 article-title: Automated quantification of clinically significant colors in dermoscopy images and its application to skin lesion classification publication-title: IEEE Syst. J. – volume: 17 start-page: 976 issue: 4 year: 2009 end-page: 982 ident: C19 article-title: Accurate segmentation of dermoscopic images by image thresholding based on type-2 fuzzy logic publication-title: IEEE Trans. Fuzzy Syst. – volume: 51 start-page: 1784 issue: 10 year: 2004 end-page: 1793 ident: C2 article-title: Detection of skin cancer by classification of Raman spectra publication-title: IEEE Trans. Biomed. Eng. – volume: 21 start-page: 1685 issue: 6 year: 2017 end-page: 1693 ident: C9 article-title: Saliency-based lesion segmentation via background detection in dermoscopic images publication-title: IEEE J. Biomed. Health Inf. – volume: 3 start-page: 35 issue: 1 year: 2009 end-page: 45 ident: C8 article-title: Comparison of segmentation methods for melanoma diagnosis in dermoscopy images publication-title: IEEE J. Sel. Top. Signal Process. – volume: 3 start-page: 26 issue: 1 year: 2009 end-page: 34 ident: C21 article-title: Anisotropic mean shift based fuzzy c-means segmentation of dermoscopy images publication-title: IEEE J. Sel. Top. Signal Process. – volume: 52 start-page: 89 year: 2016 end-page: 103 ident: C13 article-title: Skin lesion image segmentation using Delaunay triangulation for melanoma detection publication-title: Comput. Med. Imaging Graph. – volume: 39 start-page: 355 issue: 3 year: 1987 end-page: 368 ident: C36 article-title: Adaptive histogram equalization and its variations publication-title: Comput. Vision Graph. Image Process. – volume: 60 start-page: 1134 issue: 4 year: 2013 end-page: 1141 ident: C10 article-title: Segmentation of dermoscopy images using wavelet networks publication-title: IEEE Trans. Biomed. Eng. – volume: 138 start-page: 283 issue: 2 year: 1998 end-page: 287 ident: C6 article-title: Clinical accuracy of the diagnosis of cutaneous malignant melanoma publication-title: Br. J. Dermatol. – volume: 64 start-page: 2065 issue: 9 year: 2017 end-page: 2074 ident: C29 article-title: Dermoscopic image segmentation via multistage fully convolutional networks publication-title: IEEE Trans. Biomed. Eng. – volume: 9 start-page: 23 issue: 1 year: 2004 end-page: 34 ident: C39 article-title: An image inpainting technique based on the fast marching method publication-title: J. Graph. Tools – volume: 21 start-page: 768 issue: 3 year: 1965 end-page: 769 ident: C41 article-title: Cluster analysis of multivariate data: efficiency versus interpretability of classification publication-title: Biometrics – volume: 14 start-page: 347 issue: 3 year: 2008 end-page: 353 ident: C25 article-title: Border detection in dermoscopy images using statistical region merging publication-title: Skin Res. Technol. – volume: 20 start-page: 615 issue: 2 year: 2016 end-page: 623 ident: C14 article-title: A novel approach to segment skin lesions in dermoscopic images based on a deformable model publication-title: IEEE J. Biomed. Health Inf. – volume: 19 start-page: 230 issue: 3 year: 2013 end-page: 235 article-title: An effective hair removal algorithm for dermoscopy images publication-title: Skin Res. Technol. – volume: 3 start-page: 26 issue: 1 year: 2009 end-page: 34 article-title: Anisotropic mean shift based fuzzy c‐means segmentation of dermoscopy images publication-title: IEEE J. Sel. Top. Signal Process. – start-page: 5437 year: 2013 end-page: 5440 – volume: 46 start-page: 1012 issue: 3 year: 2013 end-page: 1019 article-title: Automatic segmentation of dermoscopy images using self‐generating neural networks seeded by genetic algorithm publication-title: Pattern Recognit. – start-page: 105 year: 2001 end-page: 112 – volume: 3 start-page: 35 issue: 1 year: 2009 end-page: 45 article-title: Comparison of segmentation methods for melanoma diagnosis in dermoscopy images publication-title: IEEE J. Sel. Top. Signal Process. – start-page: 17 year: 2010 end-page: 35 – volume: 85 start-page: 75 year: 2017 end-page: 85 article-title: Automatic segmentation of dermoscopy images using saliency combined with Otsu threshold publication-title: Comput. Biol. Med. – start-page: 1 year: 2015 end-page: 8 – start-page: 474 year: 1994 end-page: 485 – start-page: 1027 year: 2007 end-page: 1035 – volume: 52 start-page: 89 year: 2016 end-page: 103 article-title: Skin lesion image segmentation using Delaunay triangulation for melanoma detection publication-title: Comput. Med. Imaging Graph. – start-page: 2960 year: 2015 end-page: 2963 – volume: 14 start-page: 127 issue: 1 year: 1966 end-page: 130 article-title: Multidimensional group analysis publication-title: Aust. J. Bot. – volume: 20 start-page: 615 issue: 2 year: 2016 end-page: 623 article-title: A novel approach to segment skin lesions in dermoscopic images based on a deformable model publication-title: IEEE J. Biomed. Health Inf. – volume: 36 start-page: 994 issue: 4 year: 2017 end-page: 1004 article-title: Automated melanoma recognition in dermoscopy images via very deep residual networks publication-title: IEEE Trans. Med. Imaging – volume: 17 start-page: 976 issue: 4 year: 2009 end-page: 982 article-title: Accurate segmentation of dermoscopic images by image thresholding based on type‐2 fuzzy logic publication-title: IEEE Trans. Fuzzy Syst. – volume: 39 start-page: 355 issue: 3 year: 1987 end-page: 368 article-title: Adaptive histogram equalization and its variations publication-title: Comput. Vision Graph. Image Process. – volume: 33 start-page: 148 issue: 2 year: 2009 end-page: 153 article-title: Lesion border detection in dermoscopy images publication-title: Comput. Med. Imaging Graph. – start-page: 892 year: 2014 end-page: 896 – volume: 55 start-page: 157 issue: 1 year: 2008 end-page: 161 article-title: Independent histogram pursuit for segmentation of skin lesions publication-title: IEEE Trans. Biomed. Eng. – year: 2016 – volume: 60 start-page: 1134 issue: 4 year: 2013 end-page: 1141 article-title: Segmentation of dermoscopy images using wavelet networks publication-title: IEEE Trans. Biomed. Eng. – volume: 138 start-page: 283 issue: 2 year: 1998 end-page: 287 article-title: Clinical accuracy of the diagnosis of cutaneous malignant melanoma publication-title: Br. J. Dermatol. – volume: 21 start-page: 1685 issue: 6 year: 2017 end-page: 1693 article-title: Saliency‐based lesion segmentation via background detection in dermoscopic images publication-title: IEEE J. Biomed. Health Inf. – volume: 22 start-page: 413 issue: 3 year: 1990 end-page: 417 article-title: Basal cell carcinoma: a population‐based incidence study in Rochester, Minnesota publication-title: J. Am. Acad. Dermatol. – volume: 51 start-page: 1784 issue: 10 year: 2004 end-page: 1793 article-title: Detection of skin cancer by classification of Raman spectra publication-title: IEEE Trans. Biomed. Eng. – start-page: 1059 year: 2016 end-page: 1062 – volume: 21 start-page: 768 issue: 3 year: 1965 end-page: 769 article-title: Cluster analysis of multivariate data: efficiency versus interpretability of classification publication-title: Biometrics – volume: 61 start-page: 6:1 issue: 4 year: 2017 end-page: 6:8 article-title: Skin lesion segmentation using deep convolution networks guided by local unsupervised learning publication-title: IBM J. Res. Dev. – volume: 126 start-page: 763 issue: 6 year: 1990 end-page: 766 article-title: Accuracy in the clinical diagnosis of malignant melanoma publication-title: Arch. Dermatol. – volume: 104 start-page: e1 issue: 3 year: 2011 end-page: e15 article-title: Unsupervised skin lesions border detection via two‐dimensional image analysis publication-title: Comput. Methods Programs Biomed. – volume: 17 start-page: 91 issue: 1 year: 2011 end-page: 100 article-title: Lesion border detection in dermoscopy images using dynamic programming publication-title: Skin Res. Technol. – volume: 6 start-page: 395 issue: 4 year: 2011 end-page: 404 article-title: Hair removal methods: a comparative study for dermoscopy images publication-title: Biomed. Signal Proc. Control – start-page: 130 year: 1998 end-page: 137 – volume: 9 start-page: 23 issue: 1 year: 2004 end-page: 34 article-title: An image inpainting technique based on the fast marching method publication-title: J. Graph. Tools – volume: 22 start-page: 375 issue: 5 year: 1998 end-page: 389 article-title: Techniques for a structural analysis of dermatoscopic imagery publication-title: Comput. Med. Imaging Graph. – volume: 14 start-page: 347 issue: 3 year: 2008 end-page: 353 article-title: Border detection in dermoscopy images using statistical region merging publication-title: Skin Res. Technol. – volume: 12 start-page: S12 issue: 10 year: 2011 article-title: An improved border detection in dermoscopy images for density based clustering publication-title: BMC Bioinf. – volume: 64 start-page: 2065 issue: 9 year: 2017 end-page: 2074 article-title: Dermoscopic image segmentation via multistage fully convolutional networks publication-title: IEEE Trans. Biomed. Eng. – volume: 35 start-page: 105 issue: 2 year: 2011 end-page: 115 article-title: Border detection in dermoscopy images using hybrid thresholding on optimized color channels publication-title: Comput. Med. Imaging Graph. – start-page: 337 year: 2016 end-page: 342 – volume: 8 start-page: 980 issue: 3 year: 2014 end-page: 984 article-title: Automated quantification of clinically significant colors in dermoscopy images and its application to skin lesion classification publication-title: IEEE Syst. J. – ident: e_1_2_6_40_2 doi: 10.1080/10867651.2004.10487596 – ident: e_1_2_6_19_2 doi: 10.1109/TBME.2007.910651 – ident: e_1_2_6_7_2 doi: 10.1046/j.1365-2133.1998.02075.x – ident: e_1_2_6_27_2 doi: 10.1016/j.bspc.2011.01.003 – start-page: 1027 volume-title: Proc. of the Eighteenth Annual ACM‐SIAM Symp. on Discrete Algorithms, ser. SODA ‘07 year: 2007 ident: e_1_2_6_44_2 – ident: e_1_2_6_16_2 doi: 10.1111/j.1600-0846.2010.00472.x – ident: e_1_2_6_41_2 doi: 10.1109/ICCV.2001.937505 – ident: e_1_2_6_39_2 doi: 10.1007/BFb0056195 – ident: e_1_2_6_30_2 doi: 10.1109/TBME.2017.2712771 – ident: e_1_2_6_21_2 doi: 10.1016/j.compbiomed.2017.03.025 – ident: e_1_2_6_10_2 doi: 10.1109/JBHI.2017.2653179 – ident: e_1_2_6_35_2 – ident: e_1_2_6_12_2 doi: 10.1109/ICIP.2014.7025179 – volume: 21 start-page: 768 issue: 3 year: 1965 ident: e_1_2_6_42_2 article-title: Cluster analysis of multivariate data: efficiency versus interpretability of classification publication-title: Biometrics – ident: e_1_2_6_23_2 doi: 10.1186/1471-2105-12-S10-S12 – ident: e_1_2_6_26_2 doi: 10.1111/j.1600-0846.2008.00301.x – ident: e_1_2_6_4_2 doi: 10.1007/978-3-540-79347-2_2 – ident: e_1_2_6_18_2 doi: 10.1016/j.compmedimag.2010.08.001 – ident: e_1_2_6_24_2 doi: 10.1016/j.patcog.2012.08.012 – ident: e_1_2_6_25_2 doi: 10.1109/JSYST.2014.2313671 – ident: e_1_2_6_6_2 doi: 10.1001/archderm.1990.01670300063008 – ident: e_1_2_6_32_2 doi: 10.1109/ICPR.2016.7899656 – ident: e_1_2_6_14_2 doi: 10.1016/j.compmedimag.2016.05.002 – ident: e_1_2_6_17_2 doi: 10.1109/ISBI.2016.7493448 – ident: e_1_2_6_43_2 doi: 10.1071/BT9660127 – ident: e_1_2_6_8_2 doi: 10.1016/j.compmedimag.2008.11.002 – ident: e_1_2_6_11_2 doi: 10.1109/TBME.2012.2227478 – ident: e_1_2_6_3_2 doi: 10.1109/TBME.2004.831538 – ident: e_1_2_6_9_2 doi: 10.1109/JSTSP.2008.2011119 – start-page: 5437 volume-title: 2013 35th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC) year: 2013 ident: e_1_2_6_36_2 – ident: e_1_2_6_22_2 doi: 10.1109/JSTSP.2008.2010631 – ident: e_1_2_6_15_2 doi: 10.1109/JBHI.2015.2390032 – ident: e_1_2_6_13_2 doi: 10.1016/j.cmpb.2010.06.016 – ident: e_1_2_6_37_2 doi: 10.1016/S0734-189X(87)80186-X – ident: e_1_2_6_31_2 doi: 10.1109/TMI.2016.2642839 – ident: e_1_2_6_28_2 doi: 10.1111/srt.12015 – ident: e_1_2_6_20_2 doi: 10.1109/TFUZZ.2009.2018300 – start-page: 474 volume-title: Contrast limited adaptive histogram equalization year: 1994 ident: e_1_2_6_38_2 – ident: e_1_2_6_29_2 doi: 10.1147/JRD.2017.2708283 – ident: e_1_2_6_5_2 doi: 10.1016/S0895-6111(98)00048-2 – ident: e_1_2_6_34_2 doi: 10.1109/EMBC.2015.7319013 – ident: e_1_2_6_33_2 doi: 10.1109/DICTA.2015.7371308 – ident: e_1_2_6_2_2 doi: 10.1016/0190-9622(90)70056-N |
| SSID | ssj0056994 |
| Score | 2.3580024 |
| Snippet | Skin cancer is the most common type of cancer in the world and the incidents of skin cancer have been rising over the past decade. Even with a dermoscopic... |
| SourceID | doaj crossref wiley iet |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 1088 |
| SubjectTerms | automated skin lesion diagnosis system automatic skin lesion segmentation method biomedical optical imaging cancer colour features dermoscopic images dermoscopic imaging system diagnostic capability enhancement filtering techniques GrabCut segmentation algorithm graph theory image classification image colour analysis image filtering image segmentation ISIC 2017 challenge dataset k-means clustering algorithm lesion region medical image processing object detection pattern clustering PH2 dataset preprocessing step segmentation step skin skin cancer skin lesion classification skin lesion detection Special Issue: Computer Vision in Cancer Data Analysis visual examination |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbeiPKSB8SAFJo4dh5jqSgPCSZAbJZjOyWiTVCTMvMT-I38Eu6SUJWFLqyW45zOZ3-ffec7Qk4AkQQWJnQA_pTDFSzFJE2V42mg95EByKjL-dzdB9eP_PZZPC-U-sKYsCY9cKO4XsCMAZgTXioSHiRRzJQfCGYiq02SNqd1N4p_DlPNHiyCuC6BCJJ4DpgYm_sz415mK0e_ZxjVFZ0LhvXdFxCpTtwPOAO9ftPVGm-GG2StJYq03wi4SVZsvkXWW9JI2yVZbhPZn1UF0E5oLF-znI4t3n_R0o4m7bOinBYpNbADF_gEJdM0m8AmUlIMeR_Rq6lKBrOKqtzQ16-Pz4kF8KJqPCqmWfUyKXfI4_DyYXDttFUTHO37Lph9iBQn1JhaK0XwUSHjCdC0VHsCdIZJvlzFoVGlzA0VekKtr5XLrU6CUPu7pJMXud0jlDHPcusGGqaTW-5GOo6NBcJnw8h4QnWJ-6M5qduU4ljZYixr1zaPJahRgrIlKluisrvkbP7JW5NP46_OFzgd846YCrtuAAORrYHIZQbSJac4cLs0y7_-5tfzvVwuOXi6YRdDvFKP9v9DxgOyioM3YTKHpFNNZ_YIyE6VHNd2_Q2_g_hx priority: 102 providerName: Directory of Open Access Journals – databaseName: IET Digital Library (Open Access collection) dbid: IDLOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELba5cKlQKHq8qh8qHpAMiSOnccRlm6hKpwAcaksx3aWiN0EbbL8fmYS7yIkRHuLLMdxZmx_n8fjGUK-AyJJTEzIAP40ExqmYl4UmoUG6H1qATK6dD6XV_H5jfh9J-9erkfbcoK5MtjS4obWctffPEDXbViHj72M-4QkwG-PoQIzTyW6aaVHEjYQH8kah905H5C1i7M_uMXqV2YZZ11iROhfyGDg8dUp5xuNvMKpLpw_oA_Uek1iOxQab5JPnj7Sk17fW-SDqz6TDU8lqZ-ozTb5e7JoayCjUNg8lBWdOrSK0cZNZv6yUUXrglpYl2u8mFIaWs5gaWkoOsJP6K-5zkeLlurK0gc2cwBoVE8n9bxs72fNDrkZ_7wenTOfSYGZKApgKiRIexKD4bYKBCSdcJEDdStMKI3NMfBXoAUU6oIHicbTURcZHQhn8jgx0RcyqOrKfSWU89AJF8QGVCycCFKTZdYBCXRJakOphyRYyk0ZH2Ycs11MVXfcLTIFQlQgaoWiVijqITlcvfLYx9h4r_IpKmNVEcNjdwUwRpSfbSrm1gI3kmEhcxHnacZ1FEtuUwc_W8hgSH5gw8uh9N7Xok7b_-6XGt1e8NMxmtnT3f9tfo-s43PvHrNPBu184Q6A5LT5Nz92nwGCXPXJ priority: 102 providerName: Institution of Engineering and Technology |
| Title | Automated skin lesion segmentation of dermoscopic images using GrabCut and k-means algorithms |
| URI | http://digital-library.theiet.org/content/journals/10.1049/iet-cvi.2018.5289 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-cvi.2018.5289 https://doaj.org/article/62dd07451f5b46b892a3652d8ecdbf50 |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBHI databaseName: IET Digital Library (Open Access collection) customDbUrl: eissn: 1751-9640 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056994 issn: 1751-9632 databaseCode: IDLOA dateStart: 20130201 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1751-9640 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056994 issn: 1751-9632 databaseCode: AVUZU dateStart: 20130201 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Journal - Open Access customDbUrl: eissn: 1751-9640 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056994 issn: 1751-9632 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKe-ECfYBYKCsfKg5IgcSx8zhuly5tVSgHtqq4WH5libqboE2WMz-B39hf0hknu6hCKhLHjGzHmfHMfBnbM4QcgUcSWJgwAPenAq5AFXVRqCAyAO8zCy7Dl_P59Dk5nfLza3G9RcbruzBdfohNwA01w9trVHCluyokAGpBiKVrA_OzxNNZ2TsB_w2PyE4EeAaXOeNf1uZYJLmvhgiTioI84X-2NvP3fw1xzzn5HP7gcqDVfeTqXc9klzzpMSMddULeI1uu2idPe_xIe-1sDogcrdoaECgQm5uyonOHoTDauNmiv2FU0bqgFoxxjbdRSkPLBdiThuLp9xn9uFR6vGqpqiy9uf31e-HAj1E1n9XLsv2-aJ6R6eTk6_g06AsoBCaOQ9CAFNFOajDLVoF-SKWMa0BshYmEsRrzfYWKA1EVLEwVboq62KiQO6OT1MTPyXZVV-4FoYxFjrswMSBZ7niYmTy3DrCfSzMbCTUg4Zpz0vTZxbHIxVz6XW6eS2CjBGZLZLZEZg_I202XH11qjYcaH6M4Ng0xK7Yn1MuZ7JVMJsxagEQiKoTmic5ypuJEMJs5-NhChAPyBgfutbR56G2xl_e_5yXHV2fseILR9ezlf_V6RR4jvTsic0i22-XKvQag0-qhX8hDsjO6mn6bDn24AJ7OPlxcju4AsSz55A |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwELUoPbQXSmmrLtDiA-qhUtrEsZ3kCEuXpQXUA1TcLMd2thG7Cdpke-4n9Bv5ks442UUIiUq9WhPHmcl4nsf2G0L2ISIJLEwYQPjTAdfginlR6CAyAO9TCyHDl_M5O5fjS_71SlytkaPlXZiOH2KVcEPP8PM1OjgmpLsFJ0eSzNK1gflV4vGs9JOAhcMT8pTLSOISjPHvy_lYyMyXQ4RRRUEm-d3eZvb5QRf3opMn8YeYA1L3oauPPaNNstGDRnrQWfklWXPVFnnRA0jau2fziqiDRVsDBIXG5rqs6NRhLow2bjLrrxhVtC6ohdm4xusopaHlDCaUhuLx9wk9nut8uGipriy9vv39Z-YgkFE9ndTzsv05a16Ty9GXi-E46CsoBCaOQ3CBBOFOYpBmq8BApBPGc4BshYmEsTkSfoWaQ6MuWJho3BV1sdEhdyaXiYnfkPWqrtxbQhmLHHehNGBa7niYmiyzDsCfS1IbCT0g4VJzyvT04ljlYqr8NjfPFKhRgbIVKluhsgfk4-qRm45b4zHhQzTHShBpsX1DPZ-o3suUZNYCJhJRIXIu8zRjOpaC2dTBxxYiHJAP2HHvps1jb4u9vf89LjX8ccIOR5heT7f_66k98mx8cXaqTk_Ov-2Q5yjTnZfZJevtfOHeAepp8_f-p_4Lrif5EQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVEJceCPCcw-IA5Jhbe_6cUxTQsuj4kCqistqvY9gNbGr2OHMT-A38kuYsZ2gCqlIXFfj9XrGM9-3rxmAF4hIkgoTBgh_OhAaXbHwXgehQXqfWYSMrpzPp5PkaC7en8mzPTjc3oXp80PsFtzIM7p4TQ7uLqzvJ5yCkmSWrg3M95KOZ2WvJU4crsE-4jkXI9ifnM6_zrcRWSZ5VxARxxUGeSL-7G7mb_7q5BI-dWn8EXVQ6jJ57dBndhtuDrSRTXo734E9V92FWwOFZIODNvdATTZtjSQUG5vzsmJLR6thrHGL1XDJqGK1ZxbjcU0XUkrDyhWGlIbRAfgFe7fWxXTTMl1Zdv7rx8-VQyhjermo12X7bdXch_ns7ZfpUTDUUAhMHHN0gpQIT2oo0ZYnKNJpJAokbd6E0tiCUn5xLbBR-4inmvZFXWw0F84USWriBzCq6so9BBZFoROOJwaNK5zgmclz65D-uTSzodRj4FvNKTMkGKc6F0vVbXSLXKEaFSpbkbIVKXsMr3aPXPTZNa4SPiBz7AQpMXbXUK8XavAzlUTWIiuSoZeFSIosj3ScyMhmDj_WSz6Gl9Tx4KjNVW-LO3v_e1xqenocHcxogT179F9PPYfrnw9n6uPxyYfHcINE-gMzT2DUrjfuKdKetng2_NW_ASMR-mU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+skin+lesion+segmentation+of+dermoscopic+images+using+GrabCut+and+k%E2%80%90means+algorithms&rft.jtitle=IET+computer+vision&rft.au=Jaisakthi%2C+Seetharani+Murugaiyan&rft.au=Mirunalini%2C+Palaniappan&rft.au=Aravindan%2C+Chandrabose&rft.date=2018-12-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-9640&rft.eissn=1751-9640&rft.volume=12&rft.issue=8&rft.spage=1088&rft.epage=1095&rft_id=info:doi/10.1049%2Fiet-cvi.2018.5289&rft.externalDBID=10.1049%252Fiet-cvi.2018.5289&rft.externalDocID=CVI2BF00528 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9632&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9632&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9632&client=summon |