Body vascular MR angiography: Using 2D- and 3D-time-of-flight techniques
Magnetic resonance (MR) is a rapidly evolving field for imaging soft tissues and blood vessels, noninvasively. Currently, the field of magnetic resonance angiography (MRA) is the subject of widespread interest for the assessment of vascular disease. The need for such a noninvasive modality stems fro...
Saved in:
| Published in | Concepts in magnetic resonance Vol. 12; no. 4; pp. 230 - 255 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
John Wiley & Sons, Inc
2000
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1043-7347 1099-0534 |
| DOI | 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R |
Cover
| Abstract | Magnetic resonance (MR) is a rapidly evolving field for imaging soft tissues and blood vessels, noninvasively. Currently, the field of magnetic resonance angiography (MRA) is the subject of widespread interest for the assessment of vascular disease. The need for such a noninvasive modality stems from the fact that certain patient populations are at a potential risk with conventional contrast angiography. While the acquisition of MR images greatly differs from that of x‐ray angiography, the presentation of images is comparable to the conventional x‐ray angiograms. The objective of this article is to describe the basic physical principles relevant to magnetic resonance angiography. In addition, the basic principles of various techniques and their clinical applications are presented in which the attention is given to the time‐of‐flight (TOF) technique. The optimization of different versions of TOF methods is described and the methods are compared with each other. © 2000 John Wiley & Sons, Inc. Concepts Magn Reson 12: 230–255, 2000 |
|---|---|
| AbstractList | Magnetic resonance (MR) is a rapidly evolving field for imaging soft tissues and blood vessels, noninvasively. Currently, the field of magnetic resonance angiography (MRA) is the subject of widespread interest for the assessment of vascular disease. The need for such a noninvasive modality stems from the fact that certain patient populations are at a potential risk with conventional contrast angiography. While the acquisition of MR images greatly differs from that of x‐ray angiography, the presentation of images is comparable to the conventional x‐ray angiograms. The objective of this article is to describe the basic physical principles relevant to magnetic resonance angiography. In addition, the basic principles of various techniques and their clinical applications are presented in which the attention is given to the time‐of‐flight (TOF) technique. The optimization of different versions of TOF methods is described and the methods are compared with each other. © 2000 John Wiley & Sons, Inc. Concepts Magn Reson 12: 230–255, 2000 |
| Author | Bis, Kostaki G. Shetty, Anil N. Shirkhoda, Ali |
| Author_xml | – sequence: 1 givenname: Anil N. surname: Shetty fullname: Shetty, Anil N. email: ashetty@beaumont.edu organization: Department of Diagnostic Radiology, William Beaumont Hospital, Royal Oak, MI 48073 – sequence: 2 givenname: Kostaki G. surname: Bis fullname: Bis, Kostaki G. organization: Department of Diagnostic Radiology, William Beaumont Hospital, Royal Oak, MI 48073 – sequence: 3 givenname: Ali surname: Shirkhoda fullname: Shirkhoda, Ali organization: Department of Diagnostic Radiology, William Beaumont Hospital, Royal Oak, MI 48073 |
| BookMark | eNqNkE1PwzAMhiMEEp__oUc4ZCRx2q4DIUHLNtDGpAnE0fKyZCuMdjTjY_-eliFOHDj5tWU_1vvus-2iLCxjWoqWFEKdSpEkXISgj5UQ4kSqjj5XIDqdy5uMp8OxvoCWaKWjM8XHW2zvd3270Rp4DDreZfveP9XnSaTFHutfldN18E7evC2oCobjgIpZXs4qWs7XneDB58UsUBmvx9MAMr7KXywvHXeLfDZfBStr5kX--mb9IdtxtPD26KcesPvu9X3a54NR7ya9HHADIDQHcqDAUAQ0MQShg4mT0I6mVpEBlRgTJhZcEquQnIkoElMgokhLCfGkDQdssMGaqvS-sg6XVf5C1RqlwCYkbFxj4xqbkFAqrBUIxDokbEJCQIHpCBWOa9xwg_vIF3b9b9YfqO--5vENL_cr-_nLo-oZoxjiEB_vepj1s_Ztvwv1_y96F4W_ |
| Cites_doi | 10.2214/ajr.143.6.1167 10.1103/PhysRev.70.474 10.1148/radiology.211.1.r99ap4869 10.1097/00004728-198701000-00006 10.1148/radiology.197.3.7480757 10.1097/00004728-198805010-00002 10.1148/radiology.190.3.8115646 10.1103/PhysRev.112.1693 10.2214/ajr.143.6.1157 10.1063/1.1719961 10.1109/TMI.1987.4307816 10.1148/radiology.202.1.8988209 10.2214/ajr.165.5.7572521 10.1148/radiology.179.1.2006288 10.1002/mrm.1910090117 10.2214/ajr.154.3.2106232 10.1148/radiology.153.1.6089263 10.1093/oso/9780198539445.001.0001 10.1148/radiology.205.1.9314975 10.1002/jmri.1880010405 10.1148/radiology.160.3.3526407 10.1002/jmri.1880080314 10.1148/radiology.174.1.2403679 10.1148/radiology.154.2.3966131 10.1097/00004424-199310000-00017 10.1002/jmri.1880010311 10.1002/jmri.1880010404 10.1002/mrm.1910350216 10.1148/radiology.203.1.9122407 10.1148/radiology.191.1.8134563 10.1148/radiology.173.3.2813760 10.1109/TMI.1986.4307763 10.1016/0022-2364(86)90433-6 10.1002/mrm.1910310515 10.1002/mrm.1910170215 10.1002/jmri.1880070402 10.1103/PhysRev.80.580 10.1103/PhysRev.70.460 |
| ContentType | Journal Article |
| Copyright | Copyright © 2000 John Wiley & Sons, Inc. |
| Copyright_xml | – notice: Copyright © 2000 John Wiley & Sons, Inc. |
| DBID | BSCLL AAYXX CITATION |
| DOI | 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R |
| DatabaseName | Istex CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Chemistry Physics |
| EISSN | 1099-0534 |
| EndPage | 255 |
| ExternalDocumentID | 10_1002_1099_0534_2000_12_4_230__AID_CMR4_3_0_CO_2_R CMR4 ark_67375_WNG_DHD8JHF3_R |
| Genre | article |
| GroupedDBID | .GA .Y3 10A 1L6 1OB 1ZS 24P 31~ 3WU 4.4 51W 51X 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 66C 7PT 8-1 8-4 8-5 930 A01 A03 AAEVG AAMMB AANHP AAZKR ABIJN ACBWZ ACCMX ACMXC ACRPL ACXQS ACYXJ ADBBV ADEOM ADIZJ ADNMO AEFGJ AEIMD AETEA AFBPY AFFNX AFZJQ AGQPQ AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS AMBMR ASPBG ATUGU AVWKF AZFZN BDRZF BRXPI BSCLL BY8 CS3 D-7 D-F DCZOG EBS EJD F00 F01 F04 FEDTE G-S GODZA HBH HDBZQ HF~ HVGLF JPC LAW LH4 LITHE LOXES LP6 LP7 LUTES LW6 M65 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM OK1 OVD P4B P4D PALCI Q11 QB0 QRW RIWAO ROL SAMSI SUPJJ TEORI UB1 WIH WIJ WIK WQJ WXI WXSBR XG1 XHW XPP XV2 ZCG 1OC AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGB RWI VQA WRC WUP AAYXX CITATION |
| ID | FETCH-LOGICAL-c3304-3af323ca63abca35f3bf1386de2ac329cc59e3f9725afc6a60d3aaa641137b83 |
| IEDL.DBID | 24P |
| ISSN | 1043-7347 |
| IngestDate | Wed Oct 01 03:44:28 EDT 2025 Wed Jan 22 16:41:38 EST 2025 Sun Sep 21 06:19:01 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 4 |
| Language | English |
| License | http://doi.wiley.com/10.1002/tdm_license_1.1 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3304-3af323ca63abca35f3bf1386de2ac329cc59e3f9725afc6a60d3aaa641137b83 |
| Notes | ark:/67375/WNG-DHD8JHF3-R ArticleID:CMR4 istex:D977BF33AC7963667C147DC1C8F1995B8BC07796 |
| PageCount | 26 |
| ParticipantIDs | crossref_primary_10_1002_1099_0534_2000_12_4_230__AID_CMR4_3_0_CO_2_R wiley_primary_10_1002_1099_0534_2000_12_4_230_AID_CMR4_3_0_CO_2_R_CMR4 istex_primary_ark_67375_WNG_DHD8JHF3_R |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2000 2000-00-00 |
| PublicationDateYYYYMMDD | 2000-01-01 |
| PublicationDate_xml | – year: 2000 text: 2000 |
| PublicationDecade | 2000 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Concepts in magnetic resonance |
| PublicationTitleAlternate | Concepts Magn. Reson |
| PublicationYear | 2000 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | Nishimura DG, Macovski A, Pauli J. Magnetic resonance angiography. IEEE Trans MI 1986; 5:140-151. Axel L. Blood flow effects in magnetic resonance imaging. Am J Roentgenol 1984; 143:1157-1166. Kouwenhoven M. Contrast-enhanced MR angiography: Methods, limitations and possibilities. Acta Radiologica 1997; 38(suppl 412):57-67. Dumoulin CL. Phase contrast MR angiography techniques. Magnetic Resonance Imaging: Clinics of North America 1995; 3:399-411. Haase A, Frahm J, Matthaei D, et al. FLASH imaging: Rapid NMR imaging using low tip angle pulses. J Magn Reson 1986; 67:258-266. Lee VS, Rofsky NM, Krinsky GA, Stemerman DH, Weinreb JC. Single-dose breath-hold gadolinium-enhanced three-dimensional MR angiography of the renal arteries. Radiology 1999; 211:69-78. Bloch F. Nuclear induction. Phys Rev 1946; 70:460-478. Shetty AN, Shirkhoda A, Bis KG, Alcantara A. Contrast-enhanced three-dimensional MR angiography in a single breath hold: A novel technique. Am J Roentgenol 1995; 165:1290-1292. Steffens JC, Link J, Grassner J, Mueller-Huelsbeck S, Brinkmann G, et al. Contrast-enhanced, K-space centered, breath-hold MR angiography of the renal arteries and abdominal aorta. J Magn Reson Imaging 1997; 7:617-622. Haacke EM, Masaryk TJ. The salient features of MR angiography. Radiology 1989; 173:611-612. Goldstein HA, Kashanian FK, Blumetti RF, Holyok WI, Hugo FP, Blumenfield DM. Safety assessment of gadopentetate dimeglumine in U.S. clinical trials. Radiology 1990; 174:17-23. Ernst RR, Anderson WA. Application of Fourier transform spectroscopy to magnetic resonance. Rev Sci Instrum 1966; 37:93-102. Atkinson D, Brant-Zawadzki M, Laub G. Optimization strategies enhance time-of-flight MRA. Radiology 1994; 190:890-894. Parker DL, Blatter DD. Multiple thin slab magnetic resonance angiography. Neuroimaging Clinics of North America 1992; 2:677-692. Wehrli FW, Shimakawa A, Gullnerg GT, et al. Time-of-flight MR flow imaging: Selective saturation recovery with gradient refocussing. Radiology 1986; 160:781-785. Lin W, Haacke EM, Smith AS. Lumen definition in MR angiography. J Magn Reson Imag 1991; 1:327-336. Nagele T, Klose U, Grodd W, Peterson D, Tintera J. The effects of linearly increasing tip angles on 3D inflow MR angiography. Magn Reson Med 1994; 31:561-566. Pelc NJ, Bernstein MA, Shimakawa A, et al. Encoding strategies for three-direction phase-contrast MR imaging of flow. J Magn Reson Imag 1991; 1:405-413. Keller PJ. Time-of-flight magnetic resonance angiography. Neuroimaging Clinics of North America 1992; 2:639-656. Foo TK; Saranathan M; Prince MR; Chenevert TL. Automated detection of bolus arrival and initiation of data acquisition in fast, three-dimensional, gadolinium-enhanced MR angiography. Radiology 1997; 203:275-280. Dumoulin CL, Souza SP, Walker MF. Three dimensional phase contrast angiography. Magn Reson Med 1989; 9:139-149. Laub GA, Kaiser WA. MR angiography with gradient motion refocussing. J Comput Assist Tomogr 1988; 12:377-382. Axel L, Morton D. MR flow imaging by velocity compensated/uncompensated difference images. J Comput Assist Tomogr 1987; 11:31-34. Wilman AH, Riederer SJ, King BF, Debbins JP, Rossman PJ, Ehman RL. Fluoroscopically triggered contrast-enhanced three-dimensional MR angiography with elliptical centric view order: Application to the renal arteries. Radiology 1997; 205:137-146. Sekihara K. Steady-state magnetization in rapid NMR imaging using small flip angles and short repetition intervals. IEEE Trans Med Imag 1987; MI-6:157-164. Lewin JS, Laub G, Hausmann R. Three-dimensional time-of-flight MR angiography: Application in the abdomen and thorax. Radiology 1992; 179:261-264. Bradley WG, Waluch V. Blood flow: Magnetic resonance imaging. Radiology 1985; 154:443-450. Elster AD, Provost TJ. Large-tip-angle spin-echo imaging. Theory and applications. Invest Radiol 1993; 28:944-953. Shetty AN, Bis KG, Vrachliotis TG, Kirsch M, Shirkhoda A, Ellwood R. Contrast-enhanced 3D MRA with centric ordering in k-space: A preliminary clinical experience in imaging the abdominal aorta and renal and peripheral arterial vasculature. J Magn Reson Imag 1998; 8:603-615. Hausmann R, Lewin JS, Laub G. Phase-contrast MR angiography with reduced acquisition time: New concepts in sequence design. J Magn Reson Imag 1991; 1:415-422. Carr HY. Steady-state free precession in nuclear magnetic resonance. Phys Rev 1958; 112:1693-1701. Hahn EL. Spin echoes. Phys Rev 1950; 20:580-594. Laub G. Time-of-flight method of MR angiography. Magnetic Resonance Imaging: Clinics of North America 1995; 3:391-398. Prince MR. Gadolinium-enhanced MR aortography. Radiology 194; 191:155-164. Prince MR, Narasimham DL, Stanley JC, Chenevert TL, Williams DM, Marx MV, Cho KJ. Breath-hold gadolinium-enhanced MR angiography of the abdominal aorta and its major branches. Radiology, 1995; 197:785-792. Bloch F, Hansen WW, Packard M. The nuclear induction experiments. Phys Rev 1946; 70:474-485. Anderson CM, Saloner D, Tsuruda JS, Shapeero LG, Lee RE. Artifacts in maximum intensity projection display of MR angiograms. Am J Roentgenol 1990; 154:623-629. Epstein FH, Mugler JP 3rd, Brookeman JR. Spoiling of transverse magnetization in gradient-echo (GRE) imaging during the approach to steady state. Magn Reson Med 1996; 35( 2):237-245. Bradley WG, Waluch V, Lai KS, et al. The appearance of rapidly flowing blood on magnetic resonance images. Am J Roentgenol 1984; 143:1167-1174. Dixon WT. Simple proton spectroscopic imaging. Radiology 1984; 153:189-194. Rofsky NM, Purdy DE, Johnson G, DeCorato DR, Earls JP, Krinsky G, Weinreb JC. Suppression of venous signal in a time-of-flight MR angiography of the lower extremities after administration of gadopentetate dimeglumine. Radiology 1997; 202:177-182. Parker DL, Yuan C, Gullberg G. MR angiography by multiple thin slab 3D acquisition. Magn Reson Med 1991; 17:434-451. 1987; 11 1991; 1 1984; 143 1991; 17 1958; 112 1993; 28 1966; 37 191 1994; 190 1950; 20 1989; 9 1998 1988; 12 1993 1992 1991 1995; 197 1996; 35 1995; 3 1997; 7 1997; 202 1997; 203 1997; 205 1946; 70 1984; 153 1986; 67 1992; 179 1986; 160 1986; 5 1987; MI‐6 1989; 173 1997; 38 1999; 211 1995; 165 1990; 154 1990; 174 1992; 2 1985; 154 1994; 31 1998; 8 Axel (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB38) 1987; 11 Parker (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB34) 1992; 2 Prince (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB41) 1998 Atkinson (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB12) 1994; 190 Bloch (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB1) 1946; 70 Pelc (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB17) 1991; 1 Haacke (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB4) 1989; 173 Bradley (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB22) 1985; 154 Dumoulin (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB15) 1989; 9 Sekihara (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB42) 1987; MI-6 Steffens (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB44) 1997; 7 Laub (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB9) 1995; 3 Laub (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB10) 1988; 12 Dixon (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB31) 1984; 153 Anderson (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB36) 1993 Callaghan (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB28) 1991 Prince (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB40); 191 Bloch (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB24) 1946; 70 Shetty (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB46) 1998; 8 Parker (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB35) 1991; 17 Lewin (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB11) 1992; 179 Rofsky (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB39) 1997; 202 Wehrli (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB13) 1986; 160 Prince (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB43) 1995; 197 Anderson (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB32) 1993 Bradley (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB23) 1984; 143 Ernst (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB25) 1966; 37 Keller (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB27) 1992; 2 Kouwenhoven (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB47) 1997; 38 Niendorf (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB7) 1993 Goldstein (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB8) 1990; 174 Anderson (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB37) 1990; 154 Lin (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB6) 1991; 1 Epstein (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB26) 1996; 35 Hausmann (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB16) 1991; 1 Carr (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB19) 1958; 112 Turski (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB18) Nishimura (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB5) 1986; 5 Stark (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB3) 1992 Wilman (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB50) 1997; 205 Hahn (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB2) 1950; 20 Elster (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB30) 1993; 28 Shetty (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB45) 1995; 165 Foo (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB49) 1997; 203 Nagele (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB33) 1994; 31 Haase (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB20) 1986; 67 Dumoulin (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB14) 1995; 3 Lee (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB48) 1999; 211 Axel (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB21) 1984; 143 Wehrli (10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB29) 1993 |
| References_xml | – reference: Nagele T, Klose U, Grodd W, Peterson D, Tintera J. The effects of linearly increasing tip angles on 3D inflow MR angiography. Magn Reson Med 1994; 31:561-566. – reference: Bradley WG, Waluch V, Lai KS, et al. The appearance of rapidly flowing blood on magnetic resonance images. Am J Roentgenol 1984; 143:1167-1174. – reference: Atkinson D, Brant-Zawadzki M, Laub G. Optimization strategies enhance time-of-flight MRA. Radiology 1994; 190:890-894. – reference: Shetty AN, Shirkhoda A, Bis KG, Alcantara A. Contrast-enhanced three-dimensional MR angiography in a single breath hold: A novel technique. Am J Roentgenol 1995; 165:1290-1292. – reference: Ernst RR, Anderson WA. Application of Fourier transform spectroscopy to magnetic resonance. Rev Sci Instrum 1966; 37:93-102. – reference: Dumoulin CL. Phase contrast MR angiography techniques. Magnetic Resonance Imaging: Clinics of North America 1995; 3:399-411. – reference: Lewin JS, Laub G, Hausmann R. Three-dimensional time-of-flight MR angiography: Application in the abdomen and thorax. Radiology 1992; 179:261-264. – reference: Parker DL, Yuan C, Gullberg G. MR angiography by multiple thin slab 3D acquisition. Magn Reson Med 1991; 17:434-451. – reference: Rofsky NM, Purdy DE, Johnson G, DeCorato DR, Earls JP, Krinsky G, Weinreb JC. Suppression of venous signal in a time-of-flight MR angiography of the lower extremities after administration of gadopentetate dimeglumine. Radiology 1997; 202:177-182. – reference: Goldstein HA, Kashanian FK, Blumetti RF, Holyok WI, Hugo FP, Blumenfield DM. Safety assessment of gadopentetate dimeglumine in U.S. clinical trials. Radiology 1990; 174:17-23. – reference: Laub GA, Kaiser WA. MR angiography with gradient motion refocussing. J Comput Assist Tomogr 1988; 12:377-382. – reference: Kouwenhoven M. Contrast-enhanced MR angiography: Methods, limitations and possibilities. Acta Radiologica 1997; 38(suppl 412):57-67. – reference: Laub G. Time-of-flight method of MR angiography. Magnetic Resonance Imaging: Clinics of North America 1995; 3:391-398. – reference: Steffens JC, Link J, Grassner J, Mueller-Huelsbeck S, Brinkmann G, et al. Contrast-enhanced, K-space centered, breath-hold MR angiography of the renal arteries and abdominal aorta. J Magn Reson Imaging 1997; 7:617-622. – reference: Foo TK; Saranathan M; Prince MR; Chenevert TL. Automated detection of bolus arrival and initiation of data acquisition in fast, three-dimensional, gadolinium-enhanced MR angiography. Radiology 1997; 203:275-280. – reference: Nishimura DG, Macovski A, Pauli J. Magnetic resonance angiography. IEEE Trans MI 1986; 5:140-151. – reference: Wilman AH, Riederer SJ, King BF, Debbins JP, Rossman PJ, Ehman RL. Fluoroscopically triggered contrast-enhanced three-dimensional MR angiography with elliptical centric view order: Application to the renal arteries. Radiology 1997; 205:137-146. – reference: Dumoulin CL, Souza SP, Walker MF. Three dimensional phase contrast angiography. Magn Reson Med 1989; 9:139-149. – reference: Prince MR, Narasimham DL, Stanley JC, Chenevert TL, Williams DM, Marx MV, Cho KJ. Breath-hold gadolinium-enhanced MR angiography of the abdominal aorta and its major branches. Radiology, 1995; 197:785-792. – reference: Axel L. Blood flow effects in magnetic resonance imaging. Am J Roentgenol 1984; 143:1157-1166. – reference: Hahn EL. Spin echoes. Phys Rev 1950; 20:580-594. – reference: Bloch F. Nuclear induction. Phys Rev 1946; 70:460-478. – reference: Elster AD, Provost TJ. Large-tip-angle spin-echo imaging. Theory and applications. Invest Radiol 1993; 28:944-953. – reference: Carr HY. Steady-state free precession in nuclear magnetic resonance. Phys Rev 1958; 112:1693-1701. – reference: Anderson CM, Saloner D, Tsuruda JS, Shapeero LG, Lee RE. Artifacts in maximum intensity projection display of MR angiograms. Am J Roentgenol 1990; 154:623-629. – reference: Sekihara K. Steady-state magnetization in rapid NMR imaging using small flip angles and short repetition intervals. IEEE Trans Med Imag 1987; MI-6:157-164. – reference: Shetty AN, Bis KG, Vrachliotis TG, Kirsch M, Shirkhoda A, Ellwood R. Contrast-enhanced 3D MRA with centric ordering in k-space: A preliminary clinical experience in imaging the abdominal aorta and renal and peripheral arterial vasculature. J Magn Reson Imag 1998; 8:603-615. – reference: Epstein FH, Mugler JP 3rd, Brookeman JR. Spoiling of transverse magnetization in gradient-echo (GRE) imaging during the approach to steady state. Magn Reson Med 1996; 35( 2):237-245. – reference: Lin W, Haacke EM, Smith AS. Lumen definition in MR angiography. J Magn Reson Imag 1991; 1:327-336. – reference: Keller PJ. Time-of-flight magnetic resonance angiography. Neuroimaging Clinics of North America 1992; 2:639-656. – reference: Lee VS, Rofsky NM, Krinsky GA, Stemerman DH, Weinreb JC. Single-dose breath-hold gadolinium-enhanced three-dimensional MR angiography of the renal arteries. Radiology 1999; 211:69-78. – reference: Prince MR. Gadolinium-enhanced MR aortography. Radiology 194; 191:155-164. – reference: Axel L, Morton D. MR flow imaging by velocity compensated/uncompensated difference images. J Comput Assist Tomogr 1987; 11:31-34. – reference: Bloch F, Hansen WW, Packard M. The nuclear induction experiments. Phys Rev 1946; 70:474-485. – reference: Haacke EM, Masaryk TJ. The salient features of MR angiography. Radiology 1989; 173:611-612. – reference: Dixon WT. Simple proton spectroscopic imaging. Radiology 1984; 153:189-194. – reference: Haase A, Frahm J, Matthaei D, et al. FLASH imaging: Rapid NMR imaging using low tip angle pulses. J Magn Reson 1986; 67:258-266. – reference: Hausmann R, Lewin JS, Laub G. Phase-contrast MR angiography with reduced acquisition time: New concepts in sequence design. J Magn Reson Imag 1991; 1:415-422. – reference: Parker DL, Blatter DD. Multiple thin slab magnetic resonance angiography. Neuroimaging Clinics of North America 1992; 2:677-692. – reference: Wehrli FW, Shimakawa A, Gullnerg GT, et al. Time-of-flight MR flow imaging: Selective saturation recovery with gradient refocussing. Radiology 1986; 160:781-785. – reference: Pelc NJ, Bernstein MA, Shimakawa A, et al. Encoding strategies for three-direction phase-contrast MR imaging of flow. J Magn Reson Imag 1991; 1:405-413. – reference: Bradley WG, Waluch V. Blood flow: Magnetic resonance imaging. Radiology 1985; 154:443-450. – volume: 9 start-page: 139 year: 1989 end-page: 149 article-title: Three dimensional phase contrast angiography. publication-title: Magn Reson Med – volume: 28 start-page: 944 year: 1993 end-page: 953 article-title: Large‐tip‐angle spin‐echo imaging. Theory and applications. publication-title: Invest Radiol – volume: 202 start-page: 177 year: 1997 end-page: 182 article-title: Suppression of venous signal in a time‐of‐flight MR angiography of the lower extremities after administration of gadopentetate dimeglumine. publication-title: Radiology – volume: 197 start-page: 785 year: 1995 end-page: 792 article-title: Breath‐hold gadolinium‐enhanced MR angiography of the abdominal aorta and its major branches. publication-title: Radiology – volume: 190 start-page: 890 year: 1994 end-page: 894 article-title: Optimization strategies enhance time‐of‐flight MRA. publication-title: Radiology – volume: 160 start-page: 781 year: 1986 end-page: 785 article-title: Time‐of‐flight MR flow imaging: Selective saturation recovery with gradient refocussing. publication-title: Radiology – volume: 70 start-page: 460 year: 1946 end-page: 478 article-title: Nuclear induction. publication-title: Phys Rev – volume: 179 start-page: 261 year: 1992 end-page: 264 article-title: Three‐dimensional time‐of‐flight MR angiography: Application in the abdomen and thorax. publication-title: Radiology – volume: 1 start-page: 405 year: 1991 end-page: 413 article-title: Encoding strategies for three‐direction phase‐contrast MR imaging of flow. publication-title: J Magn Reson Imag – volume: 35 start-page: 237 issue: 2 year: 1996 end-page: 245 article-title: Spoiling of transverse magnetization in gradient‐echo (GRE) imaging during the approach to steady state. publication-title: Magn Reson Med – year: 1992 – volume: 154 start-page: 623 year: 1990 end-page: 629 article-title: Artifacts in maximum intensity projection display of MR angiograms. publication-title: Am J Roentgenol – volume: 12 start-page: 377 year: 1988 end-page: 382 article-title: MR angiography with gradient motion refocussing. publication-title: J Comput Assist Tomogr – year: 1998 – volume: 153 start-page: 189 year: 1984 end-page: 194 article-title: Simple proton spectroscopic imaging. publication-title: Radiology – volume: MI‐6 start-page: 157 year: 1987 end-page: 164 article-title: Steady‐state magnetization in rapid NMR imaging using small flip angles and short repetition intervals. publication-title: IEEE Trans Med Imag – volume: 165 start-page: 1290 year: 1995 end-page: 1292 article-title: Contrast‐enhanced three‐dimensional MR angiography in a single breath hold: A novel technique. publication-title: Am J Roentgenol – volume: 211 start-page: 69 year: 1999 end-page: 78 article-title: Single‐dose breath‐hold gadolinium‐enhanced three‐dimensional MR angiography of the renal arteries. publication-title: Radiology – volume: 67 start-page: 258 year: 1986 end-page: 266 article-title: FLASH imaging: Rapid NMR imaging using low tip angle pulses. publication-title: J Magn Reson – volume: 7 start-page: 617 year: 1997 end-page: 622 article-title: Contrast‐enhanced, K‐space centered, breath‐hold MR angiography of the renal arteries and abdominal aorta. publication-title: J Magn Reson Imaging – volume: 11 start-page: 31 year: 1987 end-page: 34 article-title: MR flow imaging by velocity compensated/uncompensated difference images. publication-title: J Comput Assist Tomogr – volume: 38 start-page: 57 year: 1997 end-page: 67 article-title: Contrast‐enhanced MR angiography: Methods, limitations and possibilities publication-title: Acta Radiologica – volume: 17 start-page: 434 year: 1991 end-page: 451 article-title: MR angiography by multiple thin slab 3D acquisition. publication-title: Magn Reson Med – volume: 70 start-page: 474 year: 1946 end-page: 485 article-title: The nuclear induction experiments. publication-title: Phys Rev – volume: 143 start-page: 1157 year: 1984 end-page: 1166 article-title: Blood flow effects in magnetic resonance imaging. publication-title: Am J Roentgenol – volume: 20 start-page: 580 year: 1950 end-page: 594 article-title: Spin echoes. publication-title: Phys Rev – volume: 2 start-page: 639 year: 1992 end-page: 656 article-title: Time‐of‐flight magnetic resonance angiography. publication-title: Neuroimaging Clinics of North America – volume: 173 start-page: 611 year: 1989 end-page: 612 article-title: The salient features of MR angiography. publication-title: Radiology – volume: 112 start-page: 1693 year: 1958 end-page: 1701 article-title: Steady‐state free precession in nuclear magnetic resonance. publication-title: Phys Rev – volume: 3 start-page: 391 year: 1995 end-page: 398 article-title: Time‐of‐flight method of MR angiography. publication-title: Magnetic Resonance Imaging: Clinics of North America – volume: 1 start-page: 415 year: 1991 end-page: 422 article-title: Phase‐contrast MR angiography with reduced acquisition time: New concepts in sequence design. publication-title: J Magn Reson Imag – volume: 154 start-page: 443 year: 1985 end-page: 450 article-title: Blood flow: Magnetic resonance imaging. publication-title: Radiology – volume: 191 start-page: 155 end-page: 164 article-title: Gadolinium‐enhanced MR aortography. publication-title: Radiology 194 – volume: 5 start-page: 140 year: 1986 end-page: 151 article-title: Magnetic resonance angiography. publication-title: IEEE Trans MI – volume: 3 start-page: 399 year: 1995 end-page: 411 article-title: Phase contrast MR angiography techniques. publication-title: Magnetic Resonance Imaging: Clinics of North America – volume: 205 start-page: 137 year: 1997 end-page: 146 article-title: Fluoroscopically triggered contrast‐enhanced three‐dimensional MR angiography with elliptical centric view order: Application to the renal arteries. publication-title: Radiology – year: 1991 – volume: 8 start-page: 603 year: 1998 end-page: 615 article-title: Contrast‐enhanced 3D MRA with centric ordering in k‐space: A preliminary clinical experience in imaging the abdominal aorta and renal and peripheral arterial vasculature. publication-title: J Magn Reson Imag – volume: 37 start-page: 93 year: 1966 end-page: 102 article-title: Application of Fourier transform spectroscopy to magnetic resonance. publication-title: Rev Sci Instrum – volume: 1 start-page: 327 year: 1991 end-page: 336 article-title: Lumen definition in MR angiography. publication-title: J Magn Reson Imag – year: 1993 – volume: 143 start-page: 1167 year: 1984 end-page: 1174 article-title: The appearance of rapidly flowing blood on magnetic resonance images. publication-title: Am J Roentgenol – volume: 31 start-page: 561 year: 1994 end-page: 566 article-title: The effects of linearly increasing tip angles on 3D inflow MR angiography. publication-title: Magn Reson Med – volume: 174 start-page: 17 year: 1990 end-page: 23 article-title: Safety assessment of gadopentetate dimeglumine in U.S. clinical trials. publication-title: Radiology – start-page: 83 year: 1993 end-page: 98 – volume: 203 start-page: 275 year: 1997 end-page: 280 article-title: Automated detection of bolus arrival and initiation of data acquisition in fast, three‐dimensional, gadolinium‐enhanced MR angiography. publication-title: Radiology – volume: 2 start-page: 677 year: 1992 end-page: 692 article-title: Multiple thin slab magnetic resonance angiography. publication-title: Neuroimaging Clinics of North America – volume: 3 start-page: 399 year: 1995 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB14 publication-title: Magnetic Resonance Imaging: Clinics of North America – volume: 143 start-page: 1167 year: 1984 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB23 publication-title: Am J Roentgenol doi: 10.2214/ajr.143.6.1167 – volume: 70 start-page: 474 year: 1946 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB1 publication-title: Phys Rev doi: 10.1103/PhysRev.70.474 – volume: 211 start-page: 69 year: 1999 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB48 publication-title: Radiology doi: 10.1148/radiology.211.1.r99ap4869 – volume: 11 start-page: 31 year: 1987 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB38 publication-title: J Comput Assist Tomogr doi: 10.1097/00004728-198701000-00006 – volume: 197 start-page: 785 year: 1995 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB43 publication-title: Radiology doi: 10.1148/radiology.197.3.7480757 – volume: 2 start-page: 677 year: 1992 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB34 publication-title: Neuroimaging Clinics of North America – volume: 12 start-page: 377 year: 1988 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB10 publication-title: J Comput Assist Tomogr doi: 10.1097/00004728-198805010-00002 – volume: 190 start-page: 890 year: 1994 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB12 publication-title: Radiology doi: 10.1148/radiology.190.3.8115646 – volume: 112 start-page: 1693 year: 1958 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB19 publication-title: Phys Rev doi: 10.1103/PhysRev.112.1693 – volume-title: Clinical magnetic resonance angiography. year: 1993 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB32 – volume-title: Cardiovascular physiology. ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB18 – volume: 3 start-page: 391 year: 1995 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB9 publication-title: Magnetic Resonance Imaging: Clinics of North America – volume: 143 start-page: 1157 year: 1984 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB21 publication-title: Am J Roentgenol doi: 10.2214/ajr.143.6.1157 – volume: 37 start-page: 93 year: 1966 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB25 publication-title: Rev Sci Instrum doi: 10.1063/1.1719961 – volume: MI-6 start-page: 157 year: 1987 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB42 publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.1987.4307816 – volume: 202 start-page: 177 year: 1997 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB39 publication-title: Radiology doi: 10.1148/radiology.202.1.8988209 – volume: 165 start-page: 1290 year: 1995 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB45 publication-title: Am J Roentgenol doi: 10.2214/ajr.165.5.7572521 – volume-title: Principles of MR imaging. year: 1993 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB29 – volume: 38 start-page: 57 year: 1997 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB47 publication-title: Acta Radiologica – volume: 179 start-page: 261 year: 1992 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB11 publication-title: Radiology doi: 10.1148/radiology.179.1.2006288 – volume: 9 start-page: 139 year: 1989 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB15 publication-title: Magn Reson Med doi: 10.1002/mrm.1910090117 – volume: 154 start-page: 623 year: 1990 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB37 publication-title: Am J Roentgenol doi: 10.2214/ajr.154.3.2106232 – volume: 153 start-page: 189 year: 1984 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB31 publication-title: Radiology doi: 10.1148/radiology.153.1.6089263 – volume-title: 3D contrast MR angiography. year: 1998 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB41 – volume-title: Principles of nuclear magnetic resonance microscopy. year: 1991 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB28 doi: 10.1093/oso/9780198539445.001.0001 – volume: 205 start-page: 137 year: 1997 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB50 publication-title: Radiology doi: 10.1148/radiology.205.1.9314975 – volume: 1 start-page: 415 year: 1991 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB16 publication-title: J Magn Reson Imag doi: 10.1002/jmri.1880010405 – start-page: 83 volume-title: Clinical magnetic resonance angiography. year: 1993 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB36 – volume: 160 start-page: 781 year: 1986 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB13 publication-title: Radiology doi: 10.1148/radiology.160.3.3526407 – volume-title: Magnetic resonance imaging. year: 1992 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB3 – volume: 8 start-page: 603 year: 1998 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB46 publication-title: J Magn Reson Imag doi: 10.1002/jmri.1880080314 – volume: 174 start-page: 17 year: 1990 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB8 publication-title: Radiology doi: 10.1148/radiology.174.1.2403679 – volume: 154 start-page: 443 year: 1985 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB22 publication-title: Radiology doi: 10.1148/radiology.154.2.3966131 – volume: 28 start-page: 944 year: 1993 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB30 publication-title: Invest Radiol doi: 10.1097/00004424-199310000-00017 – volume: 1 start-page: 327 year: 1991 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB6 publication-title: J Magn Reson Imag doi: 10.1002/jmri.1880010311 – volume: 1 start-page: 405 year: 1991 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB17 publication-title: J Magn Reson Imag doi: 10.1002/jmri.1880010404 – volume-title: Gd-DTPA Tolerance and clinical safety. MRI contrast enhancement in the central nervous system: A case study approach. year: 1993 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB7 – volume: 35 start-page: 237 year: 1996 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB26 publication-title: Magn Reson Med doi: 10.1002/mrm.1910350216 – volume: 203 start-page: 275 year: 1997 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB49 publication-title: Radiology doi: 10.1148/radiology.203.1.9122407 – volume: 191 start-page: 155 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB40 publication-title: Radiology 194 doi: 10.1148/radiology.191.1.8134563 – volume: 173 start-page: 611 year: 1989 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB4 publication-title: Radiology doi: 10.1148/radiology.173.3.2813760 – volume: 2 start-page: 639 year: 1992 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB27 publication-title: Neuroimaging Clinics of North America – volume: 5 start-page: 140 year: 1986 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB5 publication-title: IEEE Trans MI doi: 10.1109/TMI.1986.4307763 – volume: 67 start-page: 258 year: 1986 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB20 publication-title: J Magn Reson doi: 10.1016/0022-2364(86)90433-6 – volume: 31 start-page: 561 year: 1994 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB33 publication-title: Magn Reson Med doi: 10.1002/mrm.1910310515 – volume: 17 start-page: 434 year: 1991 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB35 publication-title: Magn Reson Med doi: 10.1002/mrm.1910170215 – volume: 7 start-page: 617 year: 1997 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB44 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.1880070402 – volume: 20 start-page: 580 year: 1950 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB2 publication-title: Phys Rev doi: 10.1103/PhysRev.80.580 – volume: 70 start-page: 460 year: 1946 ident: 10.1002/1099-0534(2000)12:4<230::AID-CMR4>3.0.CO;2-R-BIB24 publication-title: Phys Rev doi: 10.1103/PhysRev.70.460 |
| SSID | ssj0009640 |
| Score | 1.2873046 |
| Snippet | Magnetic resonance (MR) is a rapidly evolving field for imaging soft tissues and blood vessels, noninvasively. Currently, the field of magnetic resonance... |
| SourceID | crossref wiley istex |
| SourceType | Index Database Publisher |
| StartPage | 230 |
| SubjectTerms | magnetic resonance magnetic resonance angiography time-of-flight methods vascular imaging |
| Title | Body vascular MR angiography: Using 2D- and 3D-time-of-flight techniques |
| URI | https://api.istex.fr/ark:/67375/WNG-DHD8JHF3-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1099-0534%282000%2912%3A4%3C230%3A%3AAID-CMR4%3E3.0.CO%3B2-R |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1099-0534 dateEnd: 20021231 omitProxy: true ssIdentifier: ssj0009640 issn: 1043-7347 databaseCode: 24P dateStart: 19960101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZKKwoXBAuI8icfKIKD28TjOPGCkNrsLkulbatVEb1ZthNXFSiLukWCG4_AM_IkjJ1kq0ocOCBFifOjGWlsx9_Y428IeWETZ2VhUyZtqpjIjGKFzzkzqkpUlSGEiNkaZody-lEcnGana6Tp98K0_BCrCbfQM-L_OnRwY5e7V6ShYUmHYRMSiMTCfhP0nFOO1Sq2oURcjSU89j6MWDmb47Mx7CQ75dE27HM2v0E2UoQ-oUdwcXxF0itFx14ALAeRbxLR6dtdaXsVdL1O-VC8RS3DYa_hXSv_DUq_NsRthNr6fh36xrFrcpfc6UAn3WtbyT2yVjcDcqvsc70NyOasW2IfkJsxJtQt75Pj_UX1g_ahqnQ2p6Y5O-8oroc0BhtQPvr98xe-qCiEUkhVj5eFx5P_Ehx_umKJXT4gJ5PxSTllXQIG5sI0BwPjgYMzEox1BjIP1qdQyKrmxgFXzmWqBq9ynhnvpJFJBcYYKdC4uS3gIVlvFk39iFAEBTm3RSZMagSCLlVXHpFEhQ44-n_Wb5FxbzL9taXZ0C2hMg9r5EoH04eUmfiMayxBojWaXgfTa9CJLo801_Mt8jLaeyXEXHwOoWt5pj8dvtej6ag4mE4gfDiJFfLP2v6iLN4__l-CnpDb7Tb_ML3zlKxfXnyrnyHgubTPYyv9A4Ra6rc |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZKK9peECwg2vKTA0VwcJt4HCdZEFKb3SUtzbZaLaI3y05ihFrtVm2R4MYj8Iw8CTP52aoSBw5IUeI40Yw0duJvxvY3jL20fmFVbAOubJBwGZqExy4S3CSln5QhQog6W0M-VtkneXgani6xebcXpuGHWATc6Muo_9f0gVNAeveGNZTmdDj2IYlQjDacoOscCGxXuQ0pAmss4bF3MOBpPsG6Iez4O-nxNuwLPrnDVqQKFHlrQp7csPQq2dIXAI9ARqtMtvp2F9pek643gejLd6il3-80vG_kv0Xpt8a4FWqu77exbz14je6zey3q9PaabvKALVWzHltLu2RvPbaat3PsPXa3XhRaXD1kJ_vz8ofXrVX18olnZl--thzXfa9ebeCJwe-fv_BB6QGVKFc9XuYOT-6cPH9vQRN79YhNR8NpmvE2AwMvKM7BwTgQUBgFxhYGQgfWBRCrshKmAJEURZhU4JJIhMYVyii_BGOMkkEAkY3hMVuezWfVE-YhKoiEjUNpAiMRdSVV6RBKlOiBowNo3QYbdibTFw3Phm4YlQVNkieaTE85M7FOaCyBrzWaXpPpNWhfp8da6MkGe1XbeyHEXJ7R2rUo1J_HH_QgG8SH2QjoxVHdIP-s7S_K6vvN_yXoBVvLpvmRPjoYf9xi682ef4r1PGXL15ffqmeIfq7t87rH_gFNh-4j |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VViy9IFhAtOWRA0VwcJt4nIcXhNQmG7aF3a5WrejNspMYIdBu1YcEN34Cv5FfwjiPrSpx4IAUJY4TzUhjJ_7GHn8D8ML4hYkSE7DIBJKJUEuW2JgzLUtfliFBiDpbw3gSjU7E4Wl4ugKLbi9Mww-xnHBzX0b9v3YfeHVW2t1r1lC3psOoDwmCYm7DCbnOAad2FduYErCmEh17BxlLxzOqG-KOv5MebeM-Z7NbsCZCGjwdFbSYXrP0RqKlL0AWo4h7IFp9u0ttr5yu1wEfiLekZTDoNLxr5L8h6TfGuDXXXN9vYt968Mrvwd0WdXp7TTe5DyvVvA930i7ZWx9643aNvQ-366DQ4uIBTPcX5Q-vi1X1xjNPzz9_aTmuB14dbeDx7PfPX_Sg9NCVXK56uiwsnew35_l7S5rYi4dwnA-P0xFrMzCwws1zMNQWORY6Qm0KjaFFYwNMorLiukAuiyKUFVoZ81DbItKRX6LWOhJBgLFJ8BGszhfz6jF4hApibpJQ6EALQl2yKi1BiZI8cHIAjd2AYWcyddbwbKiGUZm7RXKpnOldzkyq44pK6CtFplfO9AqVr9IjxdVsA17W9l4K0edfXexaHKpPk_cqG2XJ4ShH92JeN8g_a_uLsvp-838Jeg69aZarjweTD1uw3mz5d1M9T2D18vyqekrg59I8qzvsHxpW7bI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Body+vascular+MR+angiography%3A+Using+2D%E2%80%90+and+3D%E2%80%90time%E2%80%90of%E2%80%90flight+techniques&rft.jtitle=Concepts+in+magnetic+resonance&rft.au=Shetty%2C+Anil+N.&rft.au=Bis%2C+Kostaki+G.&rft.au=Shirkhoda%2C+Ali&rft.date=2000&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1043-7347&rft.eissn=1099-0534&rft.volume=12&rft.issue=4&rft.spage=230&rft.epage=255&rft_id=info:doi/10.1002%2F1099-0534%282000%2912%3A4%3C230%3A%3AAID-CMR4%3E3.0.CO%3B2-R&rft.externalDBID=10.1002%252F1099-0534%25282000%252912%253A4%253C230%253A%253AAID-CMR4%253E3.0.CO%253B2-R&rft.externalDocID=CMR4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1043-7347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1043-7347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1043-7347&client=summon |