Optimization of sorrel oil biodiesel production by base heterogeneous catalyst from kola nut pod husk: Neural intelligence‐genetic algorithm versus neuro‐fuzzy‐genetic algorithm

The conversion of sorrel oil to biodiesel through transesterification was conducted in the presence of calcined kola nut husk pod ash as a base heterogeneous catalyst. Thus, to predict the biodiesel production yield, two models based on neural intelligence and neuro‐fuzzy techniques were established...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental progress & sustainable energy Vol. 39; no. 4
Main Authors Betiku, Eriola, Ishola, Niyi B.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.07.2020
Subjects
Online AccessGet full text
ISSN1944-7442
1944-7450
DOI10.1002/ep.13393

Cover

Abstract The conversion of sorrel oil to biodiesel through transesterification was conducted in the presence of calcined kola nut husk pod ash as a base heterogeneous catalyst. Thus, to predict the biodiesel production yield, two models based on neural intelligence and neuro‐fuzzy techniques were established. The predictive capability and accuracy of the models were compared using various statistics. The neuro‐fuzzy‐based model (adaptive neuro‐fuzzy inference system, ANFIS) obtained for the transesterification process had a lower (0.32%) mean relative percent deviation (MRPD) and a higher coefficient of determination—R2 (0.9991) compared to the neural intelligence‐based model (artificial neural network, ANN) with MRPD of 0.42% and R2 of 0.9971. Also, the models developed were coupled with genetic algorithm (GA) in order to maximize the sorrel oil biodiesel (SOB) yield at optimum values of the process input parameters. SOB yield of >99.0 wt% was obtained when both developed models were subjected to optimization. The results of the process modeling confirm that neuro‐fuzzy model performed slightly better than neural intelligence model. The sensitivity analysis performed on both models shows that reaction time was the most important input variable while other input variables could not be neglected. The characteristics of the synthesized SOB demonstrate that it satisfied the biodiesel standard limits.
AbstractList The conversion of sorrel oil to biodiesel through transesterification was conducted in the presence of calcined kola nut husk pod ash as a base heterogeneous catalyst. Thus, to predict the biodiesel production yield, two models based on neural intelligence and neuro‐fuzzy techniques were established. The predictive capability and accuracy of the models were compared using various statistics. The neuro‐fuzzy‐based model (adaptive neuro‐fuzzy inference system, ANFIS) obtained for the transesterification process had a lower (0.32%) mean relative percent deviation (MRPD) and a higher coefficient of determination— R 2 (0.9991) compared to the neural intelligence‐based model (artificial neural network, ANN) with MRPD of 0.42% and R 2 of 0.9971. Also, the models developed were coupled with genetic algorithm (GA) in order to maximize the sorrel oil biodiesel (SOB) yield at optimum values of the process input parameters. SOB yield of >99.0 wt% was obtained when both developed models were subjected to optimization. The results of the process modeling confirm that neuro‐fuzzy model performed slightly better than neural intelligence model. The sensitivity analysis performed on both models shows that reaction time was the most important input variable while other input variables could not be neglected. The characteristics of the synthesized SOB demonstrate that it satisfied the biodiesel standard limits.
The conversion of sorrel oil to biodiesel through transesterification was conducted in the presence of calcined kola nut husk pod ash as a base heterogeneous catalyst. Thus, to predict the biodiesel production yield, two models based on neural intelligence and neuro‐fuzzy techniques were established. The predictive capability and accuracy of the models were compared using various statistics. The neuro‐fuzzy‐based model (adaptive neuro‐fuzzy inference system, ANFIS) obtained for the transesterification process had a lower (0.32%) mean relative percent deviation (MRPD) and a higher coefficient of determination—R2 (0.9991) compared to the neural intelligence‐based model (artificial neural network, ANN) with MRPD of 0.42% and R2 of 0.9971. Also, the models developed were coupled with genetic algorithm (GA) in order to maximize the sorrel oil biodiesel (SOB) yield at optimum values of the process input parameters. SOB yield of >99.0 wt% was obtained when both developed models were subjected to optimization. The results of the process modeling confirm that neuro‐fuzzy model performed slightly better than neural intelligence model. The sensitivity analysis performed on both models shows that reaction time was the most important input variable while other input variables could not be neglected. The characteristics of the synthesized SOB demonstrate that it satisfied the biodiesel standard limits.
Author Betiku, Eriola
Ishola, Niyi B.
Author_xml – sequence: 1
  givenname: Eriola
  orcidid: 0000-0003-4521-1277
  surname: Betiku
  fullname: Betiku, Eriola
  email: ebetiku@oauife.edu.ng, ebetiku@yahoo.com
  organization: Obafemi Awolowo University
– sequence: 2
  givenname: Niyi B.
  surname: Ishola
  fullname: Ishola, Niyi B.
  organization: Obafemi Awolowo University
BookMark eNp1kE1OwzAQRi1UJNqCxBG8ZJNix2mTsENV-ZEqyqL7yHEmrakTR7YDSlccgdtwH06C2yIWqKxmRvPet_gGqFfrGhC6pGRECQmvoRlRxlJ2gvo0jaIgjsak97tH4RkaWPtCyIRFadpHn4vGyUpuuZO6xrrEVhsDCmupcC51IcH6qzG6aMUeyTuccwt4DQ6MXkENurVYcMdVZx0uja7wRiuO69bhRhd43drNDX6C1nCFZe1AKek1AV_vHzvdSYG5Wmkj3brCr2Csz6s9rj1Qttttdww8R6clVxYufuYQLe9my-lDMF_cP05v54FgjLCAhVCwlIJIRJxHeUFjUiRJGE3KcMwgyhPKJhDnYTGmsaDUk2WZ0tx_k5gCYUN0dYgVRltroMwaIytuuoySbNd3Bk2279ujoz-okG5fqzNcqmNCcBDepILu3-Bs9nzgvwGE3Jtw
CitedBy_id crossref_primary_10_1016_j_rineng_2023_101216
crossref_primary_10_1007_s00521_020_05158_1
crossref_primary_10_1016_j_jwpe_2021_102490
crossref_primary_10_1016_j_molliq_2022_118482
crossref_primary_10_2139_ssrn_4898486
crossref_primary_10_1002_ente_202301164
crossref_primary_10_1007_s13369_023_07947_x
crossref_primary_10_1016_j_biombioe_2024_107525
crossref_primary_10_1021_acsomega_2c08117
crossref_primary_10_1080_15567036_2023_2213177
crossref_primary_10_1016_j_energy_2022_125734
crossref_primary_10_1007_s13399_021_01343_x
crossref_primary_10_1016_j_ecmx_2023_100452
crossref_primary_10_1016_j_bcab_2023_102856
crossref_primary_10_1016_j_pecs_2021_100904
crossref_primary_10_1016_j_matpr_2021_02_291
crossref_primary_10_1016_j_clet_2021_100184
crossref_primary_10_1016_j_grets_2023_100057
crossref_primary_10_1007_s13399_021_01727_z
crossref_primary_10_3389_fenrg_2020_612165
crossref_primary_10_3389_fenrg_2020_614621
crossref_primary_10_1016_j_geits_2025_100260
crossref_primary_10_1007_s13399_020_01080_7
crossref_primary_10_1088_2631_8695_ada485
crossref_primary_10_1080_15567036_2020_1851324
crossref_primary_10_1080_15567036_2023_2185317
crossref_primary_10_1016_j_ecmx_2024_100669
crossref_primary_10_1016_j_grets_2022_100007
crossref_primary_10_1007_s11696_021_01971_7
crossref_primary_10_1016_j_jclepro_2022_131955
crossref_primary_10_1002_htj_22266
Cites_doi 10.1007/s10661-009-1012-8
10.1007/BF02645752
10.1016/j.energy.2017.05.196
10.1016/S0016-2361(97)00289-5
10.1111/j.1750-3841.2007.00285.x
10.1016/j.molcata.2003.08.003
10.1007/s00521-018-03989-7
10.1016/j.jtice.2015.12.001
10.1016/j.enconman.2016.07.030
10.1016/j.energy.2017.05.041
10.1016/j.eswa.2009.02.073
10.1016/j.ultsonch.2015.01.013
10.1007/s00170-016-8349-2
10.1016/j.renene.2012.08.070
10.1016/j.fuproc.2013.03.038
10.1007/s10562-019-02788-6
10.1016/j.fuel.2009.11.040
10.1016/j.cej.2007.04.014
10.1016/j.rser.2012.02.063
10.1109/5.364486
10.1002/ep.13015
10.1007/s11746-013-2409-7
10.1016/j.enconman.2016.11.030
10.1016/j.energy.2014.04.024
10.1016/j.fuproc.2004.11.005
10.1016/S0960-8524(03)00150-0
10.1080/17597269.2018.1472980
10.1021/ef901514a
10.1002/ep.12698
10.1016/j.renene.2018.10.023
10.1021/acs.energyfuels.7b00331
10.1016/j.energy.2016.02.138
10.1016/j.fuproc.2018.02.023
10.1016/j.renene.2019.07.065
10.1016/j.fuproc.2018.10.003
10.1016/j.cej.2013.01.046
10.3390/su10030707
10.1016/j.asoc.2011.01.025
10.1080/0952813X.2015.1056242
10.1016/j.cep.2013.10.008
10.1016/j.energy.2016.09.028
10.9734/ACSJ/2013/2777
10.1016/j.apenergy.2009.10.006
10.1016/j.enbuild.2007.10.002
10.1016/j.fuproc.2009.05.016
10.1016/j.molcata.2013.09.031
10.1080/17597269.2018.1432267
10.1021/ie010414g
ContentType Journal Article
Copyright 2020 American Institute of Chemical Engineers
Copyright_xml – notice: 2020 American Institute of Chemical Engineers
DBID AAYXX
CITATION
DOI 10.1002/ep.13393
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-7450
EndPage n/a
ExternalDocumentID 10_1002_ep_13393
EP13393
Genre article
GrantInformation_xml – fundername: Tertiary Education Trust Fund
GroupedDBID ..I
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJCF
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOD
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADOZA
ADXAS
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BCU
BDRZF
BEC
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GUQSH
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
ITG
ITH
IX1
J0M
JPC
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PATMY
PQQKQ
PROAC
PTHSS
PYCSY
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
S0X
SJFOW
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c3303-32ed391ec8c7b4bd170d88246f253e4b8136e7b2d517c1191eff91bf25871e03
IEDL.DBID DR2
ISSN 1944-7442
IngestDate Sat Oct 25 05:30:36 EDT 2025
Thu Apr 24 23:00:05 EDT 2025
Wed Jan 22 16:34:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3303-32ed391ec8c7b4bd170d88246f253e4b8136e7b2d517c1191eff91bf25871e03
Notes Funding information
Tertiary Education Trust Fund
ORCID 0000-0003-4521-1277
PageCount 15
ParticipantIDs crossref_primary_10_1002_ep_13393
crossref_citationtrail_10_1002_ep_13393
wiley_primary_10_1002_ep_13393_EP13393
PublicationCentury 2000
PublicationDate July/August 2020
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July/August 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
PublicationTitle Environmental progress & sustainable energy
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2014; 70
2013; 3
2011; 11
2007; 72
2012; 16
2016; 103
2004; 209
2017; 31
2018; 176
2003; 90
2010; 24
2002; 41
2001
2000
2013; 50
2009; 90
2016; 86
2013; 114
2016; 115
2018; 37
2018; 181
2014; 91
2019; 31
2016; 124
2019; 38
2010; 166
2019; 149
2005; 86
1995
2017; 29
2013; 220
2020; 146
2017; 132
2017; 134
2010; 89
2010; 87
2015; 26
2009; 36
1995; 83
1986; 63
2016; 64
2018
2008; 135
2008; 40
2018; 10
2019; 133
1998; 77
2014; 388
2014; 75
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
AOAC (e_1_2_8_47_1) 1995
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
Coates J (e_1_2_8_50_1) 2000
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
Montgomery DC (e_1_2_8_41_1) 2001
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
References_xml – volume: 63
  start-page: 552
  year: 1986
  end-page: 553
  article-title: A simple method for estimation of cetane index of vegetable oil methyl esters
  publication-title: J Am Oil Chemist Soc
– volume: 11
  start-page: 3525
  year: 2011
  end-page: 3533
  article-title: An effectiveness model for an indirect evaporative cooling (IEC) system: comparison of artificial neural networks (ANN), adaptive neuro‐fuzzy inference system (ANFIS) and fuzzy inference system (FIS) approach
  publication-title: Appl Soft Compt
– volume: 3
  start-page: 449
  year: 2013
  end-page: 458
  article-title: Sorrel ( ) seed oil extraction optimization and quality characterization
  publication-title: Am Chem Sci J
– volume: 31
  start-page: 6109
  year: 2017
  end-page: 6119
  article-title: Transesterification of rubber seed oil to biodiesel over a calcined waste rubber seed shell catalyst: modeling and optimization of process variables
  publication-title: Energy Fuel
– volume: 26
  start-page: 218
  year: 2015
  end-page: 228
  article-title: Ultrasound assisted biodiesel production from sesame ( L.) oil using barium hydroxide as a heterogeneous catalyst: comparative assessment of prediction abilities between response surface methodology (RSM) and artificial neural network (ANN)
  publication-title: Ultrason Sonochem
– year: 2001
– volume: 75
  start-page: 31
  year: 2014
  end-page: 37
  article-title: Artificial neural network approach for modeling of ultrasound‐assisted transesterification process of crude Jatropha oil catalyzed by heteropolyacid based catalyst
  publication-title: Chem Eng Process Process Intensif
– volume: 114
  start-page: 101
  year: 2013
  end-page: 108
  article-title: Optimization of base‐catalyzed ethanolysis of sunflower oil by regression and artificial neural network models
  publication-title: Fuel Process Technol
– volume: 16
  start-page: 3275
  year: 2012
  end-page: 3285
  article-title: Production of biodiesel using high free fatty acid feedstocks
  publication-title: Renew Sust Energ Rev
– volume: 70
  start-page: 493
  year: 2014
  end-page: 503
  article-title: Oil palm trunk and sugarcane bagasse derived heterogeneous acid catalysts for production of fatty acid methyl esters
  publication-title: Energy
– volume: 124
  start-page: 219
  year: 2016
  end-page: 230
  article-title: Predictive capability evaluation of RSM, ANFIS and ANN: a case of reduction of high free fatty acid of palm kernel oil via esterification process
  publication-title: Energy Convers Manag
– volume: 209
  start-page: 29
  year: 2004
  end-page: 33
  article-title: Utilization of metal complexes as catalysts in the transesterification of Brazilian vegetable oils with different alcohols
  publication-title: J Mol Catal A Chem
– volume: 31
  start-page: 4929
  year: 2019
  end-page: 4943
  article-title: Process modeling and optimization of sorrel biodiesel synthesis usingbarium hydroxide as a base heterogeneous catalyst: appraisal of response surface methodology, neural network and neuro‐fuzzy system
  publication-title: Neural Comput & Applic
– volume: 90
  start-page: 229
  year: 2003
  end-page: 240
  article-title: Biodiesel production from waste cooking oil: 2 economic assessment and sensitivity analysis
  publication-title: Bioresour Technol
– volume: 181
  start-page: 259
  year: 2018
  end-page: 267
  article-title: Efficient and green production of biodiesel catalyzed by recyclable biomass‐derived magnetic acids
  publication-title: Fuel Process Technol
– volume: 132
  start-page: 231
  year: 2017
  end-page: 240
  article-title: Optimization of biodiesel production from seed oil by adaptive neuro‐fuzzy inference system coupled with genetic algorithm and response surface methodology
  publication-title: Energy Convers Manag
– volume: 103
  start-page: 797
  year: 2016
  end-page: 806
  article-title: Banana peels as a biobase catalyst for fatty acid methyl esters production using Napoleon's plume ( ) seed oil: a process parameters optimization study
  publication-title: Energy
– volume: 176
  start-page: 1
  year: 2018
  end-page: 6
  article-title: From orchids to biodiesel: coco coir as an effective drywash material for biodiesel fuel
  publication-title: Fuel Process Technol
– volume: 29
  start-page: 1
  year: 2017
  end-page: 17
  article-title: Modelling and experimental performance analysis of solar‐assisted ground source heat pump system
  publication-title: J Experim Theoret Artif Intellig
– volume: 86
  start-page: 1097
  year: 2005
  end-page: 1107
  article-title: Biodiesel processing and production
  publication-title: Fuel Process Technol
– volume: 50
  start-page: 915
  year: 2013
  end-page: 920
  article-title: The optimized operational conditions for biodiesel production from soybean oil and application of artificial neural networks for estimation of the biodiesel yield
  publication-title: Renew Energy
– volume: 90
  start-page: 1157
  year: 2009
  end-page: 1163
  article-title: Evaluation of biodiesel obtained from cottonseed oil
  publication-title: Fuel Process Technol
– volume: 37
  start-page: 562
  year: 2018
  end-page: 568
  article-title: Biodiesel conversion modeling under several conditions using computational intelligence methods
  publication-title: Environ Prog Sustain Energy
– start-page: 503
  year: 1995
  end-page: 515
– volume: 40
  start-page: 1074
  year: 2008
  end-page: 1083
  article-title: Artificial neural networks and adaptive neuro‐fuzzy assessments for ground‐coupled heat pump system
  publication-title: Energ Buildings
– volume: 133
  start-page: 520
  year: 2019
  end-page: 527
  article-title: Intensification of biodiesel production using infrared radiation: simulation, optimisation and validation
  publication-title: Renew Energy
– volume: 132
  start-page: 65
  year: 2017
  end-page: 78
  article-title: Fuzzy modeling and optimization of the synthesis of biodiesel from waste cooking oil (WCO) by a low power, high frequency piezo‐ultrasonic reactor
  publication-title: Energy
– volume: 134
  start-page: 24
  year: 2017
  end-page: 34
  article-title: Optimization of transesterification process for oil: a comparative study between kernel‐based extreme learning machine and artificial neural networks
  publication-title: Energy
– volume: 388
  start-page: 167
  year: 2014
  end-page: 176
  article-title: Biodiesel production from acid oils using sulfonated carbon catalyst derived from oil‐cake waste
  publication-title: J Mol Catal A Chem
– volume: 149
  start-page: 1772
  year: 2019
  end-page: 1787
  article-title: Development of a novel mesoporous biocatalyst derived from Kola nut pod husk for conversion of Kariya seed oil to methyl esters: a case of synthesis, modeling and optimization studies
  publication-title: Catal Lett
– volume: 135
  start-page: 63
  year: 2008
  end-page: 70
  article-title: Evaluation of the activity and stability of alkali‐doped metal oxide catalysts for application to an intensified method of biodiesel production
  publication-title: Chem Eng J
– volume: 72
  start-page: 207
  year: 2007
  end-page: 211
  article-title: Roselle ( ) seed oil is a rich source of γ‐tocopherol
  publication-title: J Food Sci
– year: 2000
– volume: 83
  start-page: 378
  year: 1995
  end-page: 406
  article-title: Neuro‐fuzzy modeling and control
  publication-title: Proc IEEE
– volume: 41
  start-page: 2159
  year: 2002
  end-page: 2169
  article-title: Reaction modeling and optimization using neural networks and genetic algorithms: case study involving TS‐1‐catalyzed hydroxylation of benzene
  publication-title: Ind Eng Chem Res
– start-page: 1
  year: 2018
  end-page: 16
  article-title: Performance evaluation of adaptive neuro‐fuzzy inference system, artificial neural network and response surface methodology in modeling biodiesel synthesis from palm kernel oil by transesterification
  publication-title: Biofuels
– volume: 36
  start-page: 11240
  year: 2009
  end-page: 11248
  article-title: Artificial neural network and wavelet neural network approaches for modelling of a solar air heater
  publication-title: Expert Syst Appl
– volume: 115
  start-page: 626
  year: 2016
  end-page: 636
  article-title: Modeling the effects of ultrasound power and reactor dimension on the biodiesel production yield: comparison of prediction abilities between response surface methodology (RSM) and adaptive neuro‐fuzzy inference system (ANFIS)
  publication-title: Energy
– volume: 10
  start-page: 393
  year: 2018
  end-page: 401
  article-title: Artificial neural network–genetic algorithm‐based optimization of biodiesel production from
  publication-title: Biofuels
– volume: 10
  start-page: 707
  year: 2018
  article-title: Potential of ripe plantain fruit peels as an Ecofriendly catalyst for biodiesel synthesis: optimization by artificial neural network integrated with genetic algorithm
  publication-title: Sustain For
– volume: 166
  start-page: 421
  year: 2010
  end-page: 434
  article-title: Application of ANN and ANFIS models for reconstructing missing flow data
  publication-title: Environ Monit Assess
– volume: 89
  start-page: 1806
  year: 2010
  end-page: 1811
  article-title: Roselle ( L.) oil as an alternative feedstock for biodiesel production in Thailand
  publication-title: Fuel
– volume: 91
  start-page: 641
  year: 2014
  end-page: 653
  article-title: A polymath approach for the prediction of optimized transesterification process variables of polanga biodiesel
  publication-title: J Am Oil Chem Soc
– volume: 24
  start-page: 3223
  year: 2010
  end-page: 3231
  article-title: Application of an efficient nonconventional heterogeneous catalyst for biodiesel synthesis from oil
  publication-title: Energy Fuel
– volume: 77
  start-page: 1117
  year: 1998
  end-page: 1120
  article-title: Fuel properties and calculation of higher heating values of vegetable oils
  publication-title: Fuel
– volume: 64
  start-page: 47
  year: 2016
  end-page: 58
  article-title: Sensitivity analysis of catalyzed‐transesterification as a renewable and sustainable energy production system by adaptive neuro‐fuzzy methodology
  publication-title: J Taiwan Inst Chem Eng
– volume: 86
  start-page: 2667
  year: 2016
  end-page: 2677
  article-title: Application of adaptive neuro fuzzy inference system and genetic algorithm for pressure path optimization in sheet hydroforming process
  publication-title: Int J Adv Manuf Technol
– volume: 87
  start-page: 1083
  year: 2010
  end-page: 1095
  article-title: A review on biodiesel production using catalyzed transesterification
  publication-title: Appl Energy
– volume: 38
  year: 2019
  article-title: Process optimization for biodiesel production from oil using conch shells as heterogeneous catalyst
  publication-title: Environ Prog Sustain Energy
– volume: 146
  start-page: 1278
  year: 2020
  end-page: 1291
  article-title: Biodiesel synthesis from oil by microwave irradiation‐assisted transesterification: ELM modeling and optimization
  publication-title: Renew Energy
– volume: 220
  start-page: 395
  year: 2013
  end-page: 401
  article-title: The potential of using cocoa pod husks as green solid base catalysts for the transesterification of soybean oil into biodiesel: effects of biodiesel on engine performance
  publication-title: Chem Eng J
– ident: e_1_2_8_35_1
  doi: 10.1007/s10661-009-1012-8
– ident: e_1_2_8_48_1
  doi: 10.1007/BF02645752
– volume-title: Design and analysis of experiments
  year: 2001
  ident: e_1_2_8_41_1
– ident: e_1_2_8_21_1
  doi: 10.1016/j.energy.2017.05.196
– ident: e_1_2_8_49_1
  doi: 10.1016/S0016-2361(97)00289-5
– ident: e_1_2_8_51_1
  doi: 10.1111/j.1750-3841.2007.00285.x
– ident: e_1_2_8_19_1
  doi: 10.1016/j.molcata.2003.08.003
– ident: e_1_2_8_39_1
  doi: 10.1007/s00521-018-03989-7
– ident: e_1_2_8_23_1
  doi: 10.1016/j.jtice.2015.12.001
– ident: e_1_2_8_31_1
  doi: 10.1016/j.enconman.2016.07.030
– ident: e_1_2_8_24_1
  doi: 10.1016/j.energy.2017.05.041
– ident: e_1_2_8_34_1
  doi: 10.1016/j.eswa.2009.02.073
– ident: e_1_2_8_29_1
  doi: 10.1016/j.ultsonch.2015.01.013
– start-page: 503
  volume-title: Association of Official Analytical Chemists
  year: 1995
  ident: e_1_2_8_47_1
– ident: e_1_2_8_26_1
  doi: 10.1007/s00170-016-8349-2
– ident: e_1_2_8_22_1
  doi: 10.1016/j.renene.2012.08.070
– ident: e_1_2_8_44_1
  doi: 10.1016/j.fuproc.2013.03.038
– ident: e_1_2_8_40_1
  doi: 10.1007/s10562-019-02788-6
– ident: e_1_2_8_52_1
  doi: 10.1016/j.fuel.2009.11.040
– ident: e_1_2_8_3_1
  doi: 10.1016/j.cej.2007.04.014
– ident: e_1_2_8_20_1
  doi: 10.1016/j.rser.2012.02.063
– ident: e_1_2_8_27_1
  doi: 10.1109/5.364486
– ident: e_1_2_8_15_1
  doi: 10.1002/ep.13015
– ident: e_1_2_8_43_1
  doi: 10.1007/s11746-013-2409-7
– ident: e_1_2_8_46_1
  doi: 10.1016/j.enconman.2016.11.030
– ident: e_1_2_8_12_1
  doi: 10.1016/j.energy.2014.04.024
– ident: e_1_2_8_2_1
  doi: 10.1016/j.fuproc.2004.11.005
– ident: e_1_2_8_7_1
  doi: 10.1016/S0960-8524(03)00150-0
– ident: e_1_2_8_32_1
  doi: 10.1080/17597269.2018.1472980
– ident: e_1_2_8_10_1
  doi: 10.1021/ef901514a
– ident: e_1_2_8_38_1
  doi: 10.1002/ep.12698
– ident: e_1_2_8_16_1
  doi: 10.1016/j.renene.2018.10.023
– ident: e_1_2_8_14_1
  doi: 10.1021/acs.energyfuels.7b00331
– ident: e_1_2_8_13_1
  doi: 10.1016/j.energy.2016.02.138
– ident: e_1_2_8_6_1
  doi: 10.1016/j.fuproc.2018.02.023
– ident: e_1_2_8_17_1
  doi: 10.1016/j.renene.2019.07.065
– ident: e_1_2_8_9_1
  doi: 10.1016/j.fuproc.2018.10.003
– ident: e_1_2_8_11_1
  doi: 10.1016/j.cej.2013.01.046
– ident: e_1_2_8_30_1
  doi: 10.3390/su10030707
– ident: e_1_2_8_36_1
  doi: 10.1016/j.asoc.2011.01.025
– ident: e_1_2_8_37_1
  doi: 10.1080/0952813X.2015.1056242
– ident: e_1_2_8_28_1
  doi: 10.1016/j.cep.2013.10.008
– ident: e_1_2_8_45_1
  doi: 10.1016/j.energy.2016.09.028
– ident: e_1_2_8_18_1
  doi: 10.9734/ACSJ/2013/2777
– ident: e_1_2_8_5_1
  doi: 10.1016/j.apenergy.2009.10.006
– volume-title: Encyclopedia of analytical chemistry
  year: 2000
  ident: e_1_2_8_50_1
– ident: e_1_2_8_33_1
  doi: 10.1016/j.enbuild.2007.10.002
– ident: e_1_2_8_4_1
  doi: 10.1016/j.fuproc.2009.05.016
– ident: e_1_2_8_8_1
  doi: 10.1016/j.molcata.2013.09.031
– ident: e_1_2_8_42_1
  doi: 10.1080/17597269.2018.1432267
– ident: e_1_2_8_25_1
  doi: 10.1021/ie010414g
SSID ssj0063499
Score 2.391962
Snippet The conversion of sorrel oil to biodiesel through transesterification was conducted in the presence of calcined kola nut husk pod ash as a base heterogeneous...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms biodiesel
modeling
neural intelligence
neuro‐fuzzy
optimization
soft computing
Title Optimization of sorrel oil biodiesel production by base heterogeneous catalyst from kola nut pod husk: Neural intelligence‐genetic algorithm versus neuro‐fuzzy‐genetic algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fep.13393
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1944-7442
  databaseCode: DR2
  dateStart: 20000101
  customDbUrl:
  isFulltext: true
  eissn: 1944-7450
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063499
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NSuRAEIAb8aQH_3Zl3VUpYdk9ZUy6O8nEm4gigu6yuCB4COl0Z2eYnwSTHGZOPoJv4_v4JFZ1MuOsuLB4CqGrk4Lqn6qm-ivGvrquDn0dZA7hyBwZeanT1Yo7XigSI7DJTem84_IqOP8tL278mzarku7CNHyI-YEbzQy7XtMET1R5-AINNUUH46uIQJ-eCGw09WtOjgqEtKUjMUSXTigln3FnXX446_jXTrTomdqt5Wyd3c6UajJKBp26Up10-orX-D6tN9ha63HCcTNENtmSGW-x1QUO4Qf2-AMXjlF7IxPyDEqq2TGEvD8E1c8p0RDfigYOSyJqArT9QY-SaXIcgyavS7BHQZOyArqzAgMMmmFcV1DkGnp1OTgCIoGgKv0FDOjT_QN1R90gGf7J7_pVbwSUKoLfs6xNFMjq6XTyluBHdn12en1y7rQVHZxUCLrIx40WkWfSbhoqqbQXuhpdfBlk3BdGqi5a0oSKa98LU0LPmSyLPIWtGNcZV2yz5XE-Np8YSK_rapUEvuZC-lonkcFeURAp_IMKzA77PjNunLa0cyq6MYwbTjOPTRFbS-ywg7lk0RA-3pD5Zo36T4H49Kd9fv5fwS9shVPkbhN_d9lydVebPXRvKrVvB_Iz5ef-dw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NbtNAEIBXpT1AD235U39hkBCcnNq763VcThVqFaAtCAWpByQr612TKGlsNfYhOfUReBvep0_CzDoOARUJcbKsnbVH2r-Z1cw3jL30fROFRmUe4cg8GQep1zaae0EkelZgk5_Sfcf5hep8ke8vw8sV9qbJhan5EIsLN1oZbr-mBU4X0oe_qKG2aKGDFYt7bE0qdFPIIvq8YEcpIV3xSHTSpRdJyRvyrM8Pm56_nUXLtqk7XE432ddGrTqmZNiqSt1KZ38QG_9T7y22MTc64bieJQ_Zih0_YutLKMLH7MdH3Duu5kmZkGcwobIdI8gHI9CDnGIN8a2o-bAkoqdAJyD0KZ4mx2lo82oC7jZoOimB0lZgiH4zjKsSitxAv5oMj4BgIKjKYIkEenvznbqjbtAbfcuvB2X_CihaBL_ncJsokFWz2fQuwSese3rSfdvx5kUdvFQIyuXj1og4sGk7jbTUJoh8g1a-VBkPhZW6HQhlI81NGEQp0edslsWBxlZ07awvnrLVcT622wxk0PaN7qnQcCFDY3qxxV6xijX-QSu7w143o5ukc-A51d0YJTWqmSe2SNxI7LAXC8mihnzcIfPKjepfBZKTT-65-6-Cz9n9Tvf8LDl7d_Fhjz3g5Mi7OOB9tlpeV_YArZ1SP3Oz-ie4KAKn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEIBHpUiIHnhXtLwGCcHJqb27fsEJ0UblVSpUpB6QrKx3TaKksdXYh-TET-Df8H_4Jcys4xBQkRAny9pZe6R9zaxmvgF44vsmDk1UeIwj81Qa5F5itPCCWA6spCY_5_uO90fR4Sf15jQ83YAXXS5My4dYXbjxynD7NS9wW5li7xc11FY9crBSeQkuqzBNOJ5v_-OKHRVJ5YpHkpOuvFgp0ZFnfbHX9fztLFq3Td3h0r8Onzu12piSca-pdS9f_EFs_E-9b8C1pdGJL9tZchM27PQWbK2hCG_D9w-0d5wtkzKxLHDGZTsmWI4mqEclxxrSW9XyYVlEz5FPQBxyPE1J09CWzQzdbdB8ViOnreCY_GacNjVWpcFhMxs_R4aBkCqjNRLoj6_fuDvphoPJl_J8VA_PkKNF6HsOt0kCRbNYzC8SvAMn_YOTV4fesqiDl0vJuXzCGpkGNk_yWCttgtg3ZOWrqBChtEongYxsrIUJgzhn-pwtijTQ1EqunfXlNmxOy6m9C6iCxDd6EIVGSBUaM0gt9UqjVNMfdGR34Fk3ulm-BJ5z3Y1J1qKaRWarzI3EDjxeSVYt5OMCmaduVP8qkB0cu-fuvwo-givH-_3s3eujt_fgqmA_3oUB34fN-ryxD8jYqfVDN6l_Al57Ais
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+sorrel+oil+biodiesel+production+by+base+heterogeneous+catalyst+from+kola+nut+pod+husk%3A+Neural+intelligence%E2%80%90genetic+algorithm+versus+neuro%E2%80%90fuzzy%E2%80%90genetic+algorithm&rft.jtitle=Environmental+progress+%26+sustainable+energy&rft.au=Betiku%2C+Eriola&rft.au=Ishola%2C+Niyi+B.&rft.date=2020-07-01&rft.issn=1944-7442&rft.eissn=1944-7450&rft.volume=39&rft.issue=4&rft_id=info:doi/10.1002%2Fep.13393&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ep_13393
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-7442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-7442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-7442&client=summon