In Vivo Expansion of Antigen-Specific Regulatory T Cells through Staggered Fc.IL-2 Mutein Dosing and Antigen-Specific Immunotherapy
In mice, Ag administration in the absence of adjuvant typically elicits tolerogenic immune responses through the deletion or inactivation of conventional CD4 T cells and the formation or expansion of regulatory CD4 T cells (Treg). Although these “Ag-specific immunotherapy” (ASI) approaches are curre...
Saved in:
Published in | ImmunoHorizons Vol. 5; no. 9; pp. 782 - 791 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
28.09.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2573-7732 2573-7732 |
DOI | 10.4049/immunohorizons.2100051 |
Cover
Abstract | In mice, Ag administration in the absence of adjuvant typically elicits tolerogenic immune responses through the deletion or inactivation of conventional CD4 T cells and the formation or expansion of regulatory CD4 T cells (Treg). Although these “Ag-specific immunotherapy” (ASI) approaches are currently under clinical development to treat autoinflammatory conditions, efficacy and safety may be variable and unpredictable because of the diverse activation states of immune cells in subjects with autoimmune and allergic diseases. To reliably induce Ag-specific tolerance in patients, novel methods to control T cell responses during ASI are needed, and strategies that permanently increase Treg frequencies among Ag-specific CD4 T cells may provide long-lasting immunosuppression between treatments. In this study, we present an approach to durably increase the frequency of Ag-specific Treg in mice by administering ASI when Treg numbers are transiently increased with individual doses of a half-life–extended Treg-selective IL-2 mutein. Repeated weekly cycles of IL-2 mutein doses (day 0) followed by ASI (day 3) resulted in a 3- to 5-fold enrichment in Treg among Ag-responsive CD4 T cells. Expanded Ag-specific Treg persisted for more than 3 wk following treatment cessation, as well as through an inflammatory T cell response to an Ag-expressing virus. Combining Treg enrichment with ASI has the potential to durably treat autoimmune disease or allergy by increasing the Treg/conventional CD4 T cell ratio among autoantigen– or allergen-specific T cells. |
---|---|
AbstractList | In mice, Ag administration in the absence of adjuvant typically elicits tolerogenic immune responses through the deletion or inactivation of conventional CD4 T cells and the formation or expansion of regulatory CD4 T cells (Treg). Although these "Ag-specific immunotherapy" (ASI) approaches are currently under clinical development to treat autoinflammatory conditions, efficacy and safety may be variable and unpredictable because of the diverse activation states of immune cells in subjects with autoimmune and allergic diseases. To reliably induce Ag-specific tolerance in patients, novel methods to control T cell responses during ASI are needed, and strategies that permanently increase Treg frequencies among Ag-specific CD4 T cells may provide long-lasting immunosuppression between treatments. In this study, we present an approach to durably increase the frequency of Ag-specific Treg in mice by administering ASI when Treg numbers are transiently increased with individual doses of a half-life-extended Treg-selective IL-2 mutein. Repeated weekly cycles of IL-2 mutein doses (day 0) followed by ASI (day 3) resulted in a 3- to 5-fold enrichment in Treg among Ag-responsive CD4 T cells. Expanded Ag-specific Treg persisted for more than 3 wk following treatment cessation, as well as through an inflammatory T cell response to an Ag-expressing virus. Combining Treg enrichment with ASI has the potential to durably treat autoimmune disease or allergy by increasing the Treg/conventional CD4 T cell ratio among autoantigen- or allergen-specific T cells. In mice, Ag administration in the absence of adjuvant typically elicits tolerogenic immune responses through the deletion or inactivation of conventional CD4 T cells and the formation or expansion of regulatory CD4 T cells (Treg). Although these "Ag-specific immunotherapy" (ASI) approaches are currently under clinical development to treat autoinflammatory conditions, efficacy and safety may be variable and unpredictable because of the diverse activation states of immune cells in subjects with autoimmune and allergic diseases. To reliably induce Ag-specific tolerance in patients, novel methods to control T cell responses during ASI are needed, and strategies that permanently increase Treg frequencies among Ag-specific CD4 T cells may provide long-lasting immunosuppression between treatments. In this study, we present an approach to durably increase the frequency of Ag-specific Treg in mice by administering ASI when Treg numbers are transiently increased with individual doses of a half-life-extended Treg-selective IL-2 mutein. Repeated weekly cycles of IL-2 mutein doses (day 0) followed by ASI (day 3) resulted in a 3- to 5-fold enrichment in Treg among Ag-responsive CD4 T cells. Expanded Ag-specific Treg persisted for more than 3 wk following treatment cessation, as well as through an inflammatory T cell response to an Ag-expressing virus. Combining Treg enrichment with ASI has the potential to durably treat autoimmune disease or allergy by increasing the Treg/conventional CD4 T cell ratio among autoantigen- or allergen-specific T cells.In mice, Ag administration in the absence of adjuvant typically elicits tolerogenic immune responses through the deletion or inactivation of conventional CD4 T cells and the formation or expansion of regulatory CD4 T cells (Treg). Although these "Ag-specific immunotherapy" (ASI) approaches are currently under clinical development to treat autoinflammatory conditions, efficacy and safety may be variable and unpredictable because of the diverse activation states of immune cells in subjects with autoimmune and allergic diseases. To reliably induce Ag-specific tolerance in patients, novel methods to control T cell responses during ASI are needed, and strategies that permanently increase Treg frequencies among Ag-specific CD4 T cells may provide long-lasting immunosuppression between treatments. In this study, we present an approach to durably increase the frequency of Ag-specific Treg in mice by administering ASI when Treg numbers are transiently increased with individual doses of a half-life-extended Treg-selective IL-2 mutein. Repeated weekly cycles of IL-2 mutein doses (day 0) followed by ASI (day 3) resulted in a 3- to 5-fold enrichment in Treg among Ag-responsive CD4 T cells. Expanded Ag-specific Treg persisted for more than 3 wk following treatment cessation, as well as through an inflammatory T cell response to an Ag-expressing virus. Combining Treg enrichment with ASI has the potential to durably treat autoimmune disease or allergy by increasing the Treg/conventional CD4 T cell ratio among autoantigen- or allergen-specific T cells. In mice, antigen administration in the absence of adjuvant typically elicits tolerogenic immune responses through the deletion or inactivation of conventional CD4 T cells (Tconv) and the formation or expansion of regulatory CD4 T cells (Treg). While these “antigen-specific immunotherapy” (ASI) approaches are currently under clinical development to treat autoinflammatory conditions, efficacy and safety may be variable and unpredictable due to the diverse activation states of immune cells in subjects with autoimmune and allergic diseases. To reliably induce antigen-specific tolerance in patients, novel methods to control T cell responses during ASI are needed; and strategies that permanently increase Treg frequencies among antigen-specific CD4 T cells may provide long-lasting immunosuppression between treatments. Here, we present an approach to durably increase the frequency of antigen-specific Treg by administering ASI when Treg numbers are transiently increased with individual doses of a half-life-extended Treg-selective IL-2 mutein. Repeated weekly cycles of IL-2 mutein doses (day 0) followed by ASI (day 3) resulted in a 3- to 5-fold enrichment in Treg among antigen-responsive CD4 T cells. Expanded antigen-specific Treg persisted for more than 3 weeks following treatment cessation, as well as through an inflammatory T cell response to an antigen-expressing virus. Combining Treg enrichment with ASI has the potential to durably treat autoimmune disease or allergy by increasing the Treg/Tconv ratio among auto-antigen- or allergen-specific T cells. |
Author | Khoryati, Liliane Campbell, Daniel J Pham, Minh N Sullivan, Jenna M Hayes, Erika Jamison, Braxton L Gavin, Marc A |
AuthorAffiliation | Benaroya Research Institute, Seattle, WA, USA Omeros Corporation, Seattle, WA, USA |
AuthorAffiliation_xml | – name: Omeros Corporation, Seattle, WA, USA – name: Benaroya Research Institute, Seattle, WA, USA |
Author_xml | – sequence: 1 givenname: Minh N orcidid: 0000-0002-2357-7721 surname: Pham fullname: Pham, Minh N – sequence: 2 givenname: Liliane surname: Khoryati fullname: Khoryati, Liliane – sequence: 3 givenname: Braxton L surname: Jamison fullname: Jamison, Braxton L – sequence: 4 givenname: Erika orcidid: 0000-0002-2363-7253 surname: Hayes fullname: Hayes, Erika – sequence: 5 givenname: Jenna M surname: Sullivan fullname: Sullivan, Jenna M – sequence: 6 givenname: Daniel J orcidid: 0000-0002-9652-7178 surname: Campbell fullname: Campbell, Daniel J – sequence: 7 givenname: Marc A surname: Gavin fullname: Gavin, Marc A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34583939$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFvFCEYxYmpsbX2X2g4epkVBnYoiYlptq1uso1JW70ShvlmBjMDIzCN69V_XLTbprUHT0D4vffBe6_RnvMOEDqmZMEJl-_sOM7O9z7Yn97FRUkJIUv6Ah2US8EKIVi592i_j45i_JaRknIiGH-F9hlfnjDJ5AH6tXb4q731-PzHpF203mHf4lOXbAeuuJ7A2NYafAXdPOjkwxbf4BUMQ8SpD37uenyddNdBgAZfmMV6U5T4ck5gHT7z0boOa9c891v__UHqIehp-wa9bPUQ4Wi3HqIvF-c3q0_F5vPH9ep0UxjGCC1KSStpSAViqRllVd2S8oSAILWRmtWNBFaZlgndCKY5kTVvoc3nuta1bBvKDtGHO99prkdoDLgU9KCmYEcdtsprq57eONurzt8qSgnjQlTZ4e3OIfjvM8SkRhtNjkM78HNUOfOcOOOlzOjx42EPU-6jz0B1B5jgYwzQPiCUqD81q6c1q13NWfj-H6GxSadcXX60Hf4n_w3Zzbc_ |
CitedBy_id | crossref_primary_10_1002_eji_202250007 crossref_primary_10_1016_j_jaci_2023_09_025 crossref_primary_10_1016_j_jaut_2023_103125 crossref_primary_10_1093_cei_uxac105 crossref_primary_10_1126_sciadv_add8693 |
Cites_doi | 10.1016/j.transproceed.2012.01.093 10.1126/sciimmunol.aba5264 10.4049/jimmunol.1102661 10.1172/jci.insight.147474 10.4049/jimmunol.181.10.6942 10.1084/jem.20040139 10.1016/j.jaci.2018.10.015 10.1111/tan.12822 10.1016/j.cellimm.2020.104236 10.1038/ni1265 10.1038/mt.2011.61 10.1126/science.1122927 10.4049/jimmunol.1600508 10.1084/jem.20082824 10.1084/jem.20040249 10.1111/j.0105-2896.2006.00406.x 10.4049/jimmunol.1500248 10.1016/j.imlet.2021.03.002 10.1038/nature05543 10.3389/fimmu.2020.02194 10.1002/cti2.1099 10.1073/pnas.1611723113 10.1111/imm.13115 10.3390/ijms21197015 10.3389/fimmu.2020.00472 10.1002/eji.201546204 10.4049/jimmunol.1900733 10.1073/pnas.1604765113 10.1126/science.1191996 10.4049/jimmunol.181.10.6923 10.1016/j.intimp.2019.03.064 10.3389/fimmu.2020.611638 10.4049/jimmunol.0901459 10.1038/ni743 10.1126/science.aad0616 10.3389/fimmu.2017.01125 10.1016/j.tibtech.2018.02.008 10.1111/jth.12576 10.1002/eji.201040930 10.1007/s00125-020-05200-w 10.1016/j.immuni.2015.10.011 10.4049/jimmunol.1500367 10.1002/eji.201948131 10.3390/brainsci10060333 10.3389/fimmu.2020.01586 10.1038/76292 10.1371/journal.pone.0141161 10.4049/jimmunol.1102964 10.1126/science.1136080 10.1002/art.41202 10.1002/eji.200939792 10.1038/s41591-018-0070-2 10.1021/acs.bioconjchem.7b00632 10.3389/fimmu.2020.00638 10.1111/imm.12008 10.1016/j.celrep.2016.08.092 |
ContentType | Journal Article |
Copyright | Copyright © 2021 The Authors. |
Copyright_xml | – notice: Copyright © 2021 The Authors. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.4049/immunohorizons.2100051 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2573-7732 |
EndPage | 791 |
ExternalDocumentID | PMC11034776 34583939 10_4049_immunohorizons_2100051 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI136475 |
GroupedDBID | AAYXX ABEJV ABGNP ABXVV ALMA_UNASSIGNED_HOLDINGS AMNDL CITATION GROUPED_DOAJ M~E OK1 RZQ TOX XHW CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c3301-29169c06e75a3136bf0280e70bc9a3bd9e36cf37ad73a409b4feff37bbab9fd13 |
ISSN | 2573-7732 |
IngestDate | Thu Aug 21 18:34:50 EDT 2025 Fri Jul 11 10:11:12 EDT 2025 Thu Apr 03 06:53:58 EDT 2025 Tue Jul 01 03:56:15 EDT 2025 Thu Apr 24 22:59:15 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 Copyright © 2021 The Authors. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3301-29169c06e75a3136bf0280e70bc9a3bd9e36cf37ad73a409b4feff37bbab9fd13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9652-7178 0000-0002-2363-7253 0000-0002-2357-7721 |
OpenAccessLink | https://doi.org/10.4049/immunohorizons.2100051 |
PMID | 34583939 |
PQID | 2577733429 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11034776 proquest_miscellaneous_2577733429 pubmed_primary_34583939 crossref_primary_10_4049_immunohorizons_2100051 crossref_citationtrail_10_4049_immunohorizons_2100051 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210928 |
PublicationDateYYYYMMDD | 2021-09-28 |
PublicationDate_xml | – month: 9 year: 2021 text: 20210928 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ImmunoHorizons |
PublicationTitleAlternate | Immunohorizons |
PublicationYear | 2021 |
References | Atif (2025010703492472200_r7) 2020; 9 Rubtsov (2025010703492472200_r55) 2010; 329 Nakagawa (2025010703492472200_r53) 2016; 113 Wilson (2025010703492472200_r20) 2008; 181 Richardson (2025010703492472200_r37) 2020; 11 Su (2025010703492472200_r42) 2016; 113 Liu (2025010703492472200_r23) 2014; 12 Boyman (2025010703492472200_r17) 2012; 44 Gottschalk (2025010703492472200_r44) 2012; 188 Amini (2025010703492472200_r14) 2020; 11 Waldmann (2025010703492472200_r35) 2006; 212 Tang (2025010703492472200_r11) 2004; 199 Dudziak (2025010703492472200_r31) 2007; 315 Shakya (2025010703492472200_r38) 2018; 36 Liu (2025010703492472200_r24) 2011; 19 Khoryati (2025010703492472200_r26) 2020; 5 Eggenhuizen (2025010703492472200_r1) 2020; 21 Hoeppli (2025010703492472200_r13) 2016; 88 Turner (2025010703492472200_r28) 2009; 183 Liu (2025010703492472200_r57) 2020; 72 Jenkins (2025010703492472200_r29) 2012; 188 Opstelten (2025010703492472200_r5) 2021 Edwards (2025010703492472200_r47) 2016; 46 Esensten (2025010703492472200_r4) 2018; 142 Waight (2025010703492472200_r50) 2015; 194 Nutsch (2025010703492472200_r52) 2016; 17 Carballido (2025010703492472200_r36) 2020; 11 El Beidaq (2025010703492472200_r22) 2016; 197 Thornton (2025010703492472200_r46) 2019; 158 Liu (2025010703492472200_r18) 2010; 40 Chen (2025010703492472200_r25) 2020; 11 Yamazaki (2025010703492472200_r33) 2008; 181 Tahvildari (2025010703492472200_r3) 2019; 203 Janssens (2025010703492472200_r10) 2020; 358 Gavin (2025010703492472200_r54) 2007; 445 Bodinier (2025010703492472200_r30) 2000; 6 Kammona (2025010703492472200_r40) 2020; 10 Skuljec (2025010703492472200_r12) 2017; 8 Gavin (2025010703492472200_r27) 2002; 3 Passerini (2025010703492472200_r39) 2020; 11 Legoux (2025010703492472200_r56) 2015; 43 Azukizawa (2025010703492472200_r48) 2011; 41 Boyman (2025010703492472200_r15) 2006; 311 Webster (2025010703492472200_r19) 2009; 206 Kretschmer (2025010703492472200_r32) 2005; 6 Giganti (2025010703492472200_r6) 2020; 51 Dong (2025010703492472200_r9) 2021 Xu (2025010703492472200_r2) 2019; 72 Kim (2025010703492472200_r45) 2015; 350 Yu (2025010703492472200_r41) 2018; 29 Huehn (2025010703492472200_r49) 2015; 194 Rosenzwajg (2025010703492472200_r8) 2020; 63 Apostolou (2025010703492472200_r43) 2004; 199 Szurek (2025010703492472200_r51) 2015; 10 Trotta (2025010703492472200_r21) 2018; 24 Lee (2025010703492472200_r16) 2012; 137 Idoyaga (2025010703492472200_r34) 2013; 123 |
References_xml | – volume: 44 start-page: 1032 year: 2012 ident: 2025010703492472200_r17 article-title: Selectively expanding subsets of T cells in mice by injection of interleukin-2/antibody complexes: implications for transplantation tolerance publication-title: Transplant. Proc doi: 10.1016/j.transproceed.2012.01.093 – volume: 5 start-page: eaba5264 year: 2020 ident: 2025010703492472200_r26 article-title: An IL-2 mutein engineered to promote expansion of regulatory T cells arrests ongoing autoimmunity in mice publication-title: Sci. Immunol doi: 10.1126/sciimmunol.aba5264 – volume: 188 start-page: 4135 year: 2012 ident: 2025010703492472200_r29 article-title: The role of naive T cell precursor frequency and recruitment in dictating immune response magnitude publication-title: J. Immunol doi: 10.4049/jimmunol.1102661 – year: 2021 ident: 2025010703492472200_r9 article-title: The effects of low-dose IL-2 on Treg adoptive cell therapy in patients with Type 1 diabetes publication-title: JCI Insight doi: 10.1172/jci.insight.147474 – volume: 181 start-page: 6942 year: 2008 ident: 2025010703492472200_r20 article-title: Suppression of murine allergic airway disease by IL-2:anti-IL-2 monoclonal antibody-induced regulatory T cells publication-title: J. Immunol doi: 10.4049/jimmunol.181.10.6942 – volume: 199 start-page: 1455 year: 2004 ident: 2025010703492472200_r11 article-title: In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes publication-title: J. Exp. Med doi: 10.1084/jem.20040139 – volume: 142 start-page: 1710 year: 2018 ident: 2025010703492472200_r4 article-title: Regulatory T-cell therapy for autoimmune and autoinflammatory diseases: The next frontier publication-title: J. Allergy Clin. Immunol doi: 10.1016/j.jaci.2018.10.015 – volume: 88 start-page: 3 year: 2016 ident: 2025010703492472200_r13 article-title: How antigen specificity directs regulatory T-cell function: self, foreign and engineered specificity publication-title: HLA doi: 10.1111/tan.12822 – volume: 358 start-page: 104236 year: 2020 ident: 2025010703492472200_r10 article-title: Regulating the regulators: Is introduction of an antigen-specific approach in regulatory T cells the next step to treat autoimmunity? publication-title: Cell. Immunol doi: 10.1016/j.cellimm.2020.104236 – volume: 6 start-page: 1219 year: 2005 ident: 2025010703492472200_r32 article-title: Inducing and expanding regulatory T cell populations by foreign antigen publication-title: Nat. Immunol doi: 10.1038/ni1265 – volume: 19 start-page: 1511 year: 2011 ident: 2025010703492472200_r24 article-title: In vivo expansion of regulatory T cells with IL-2/IL-2 mAb complexes prevents anti-factor VIII immune responses in hemophilia A mice treated with factor VIII plasmid-mediated gene therapy publication-title: Mol. Ther doi: 10.1038/mt.2011.61 – volume: 311 start-page: 1924 year: 2006 ident: 2025010703492472200_r15 article-title: Selective stimulation of T cell subsets with antibody-cytokine immune complexes publication-title: Science doi: 10.1126/science.1122927 – volume: 197 start-page: 1567 year: 2016 ident: 2025010703492472200_r22 article-title: In vivo expansion of endogenous regulatory T cell populations induces long-term suppression of contact hypersensitivity publication-title: J Immunol doi: 10.4049/jimmunol.1600508 – volume: 206 start-page: 751 year: 2009 ident: 2025010703492472200_r19 article-title: In vivo expansion of T reg cells with IL-2-mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression publication-title: J. Exp. Med doi: 10.1084/jem.20082824 – volume: 199 start-page: 1401 year: 2004 ident: 2025010703492472200_r43 article-title: In vivo instruction of suppressor commitment in naive T cells publication-title: J. Exp. Med doi: 10.1084/jem.20040249 – volume: 212 start-page: 301 year: 2006 ident: 2025010703492472200_r35 article-title: Infectious tolerance and the long-term acceptance of transplanted tissue publication-title: Immunol. Rev doi: 10.1111/j.0105-2896.2006.00406.x – volume: 194 start-page: 3533 year: 2015 ident: 2025010703492472200_r49 article-title: Comment on “cutting edge: epigenetic regulation of Foxp3 defines a stable population of CD4+ regulatory T cells in tumors from mice and humans” publication-title: J. Immunol doi: 10.4049/jimmunol.1500248 – year: 2021 ident: 2025010703492472200_r5 article-title: Separating the wheat from the chaff: Making sense of Treg heterogeneity for better adoptive cellular therapy publication-title: Immunol. Lett doi: 10.1016/j.imlet.2021.03.002 – volume: 445 start-page: 771 year: 2007 ident: 2025010703492472200_r54 article-title: Foxp3-dependent programme of regulatory T-cell differentiation publication-title: Nature doi: 10.1038/nature05543 – volume: 11 start-page: 2194 year: 2020 ident: 2025010703492472200_r39 article-title: Induction of antigen-specific tolerance in T cell mediated diseases publication-title: Front. Immunol doi: 10.3389/fimmu.2020.02194 – volume: 9 start-page: e01099 year: 2020 ident: 2025010703492472200_r7 article-title: Regulatory T cells in solid organ transplantation publication-title: Clin. Transl. Immunology doi: 10.1002/cti2.1099 – volume: 113 start-page: E6192 year: 2016 ident: 2025010703492472200_r42 article-title: Antigen exposure shapes the ratio between antigen-specific Tregs and conventional T cells in human peripheral blood publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1611723113 – volume: 158 start-page: 161 year: 2019 ident: 2025010703492472200_r46 article-title: Helios: still behind the clouds publication-title: Immunology doi: 10.1111/imm.13115 – volume: 21 start-page: 7015 year: 2020 ident: 2025010703492472200_r1 article-title: Treg enhancing therapies to treat autoimmune diseases publication-title: Int. J. Mol. Sci doi: 10.3390/ijms21197015 – volume: 11 start-page: 472 year: 2020 ident: 2025010703492472200_r36 article-title: The emerging jamboree of transformative therapies for autoimmune diseases publication-title: Front. Immunol doi: 10.3389/fimmu.2020.00472 – volume: 46 start-page: 1480 year: 2016 ident: 2025010703492472200_r47 article-title: The GARP/Latent TGF-β1 complex on Treg cells modulates the induction of peripherally derived Treg cells during oral tolerance publication-title: Eur. J. Immunol doi: 10.1002/eji.201546204 – volume: 203 start-page: 2749 year: 2019 ident: 2025010703492472200_r3 article-title: Low-dose IL-2 therapy in transplantation, autoimmunity, and inflammatory diseases publication-title: J. Immunol doi: 10.4049/jimmunol.1900733 – volume: 123 start-page: 844 year: 2013 ident: 2025010703492472200_r34 article-title: Specialized role of migratory dendritic cells in peripheral tolerance induction publication-title: J. Clin. Invest – volume: 113 start-page: 6248 year: 2016 ident: 2025010703492472200_r53 article-title: Instability of Helios-deficient Tregs is associated with conversion to a T-effector phenotype and enhanced antitumor immunity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1604765113 – volume: 329 start-page: 1667 year: 2010 ident: 2025010703492472200_r55 article-title: Stability of the regulatory T cell lineage in vivo publication-title: Science doi: 10.1126/science.1191996 – volume: 181 start-page: 6923 year: 2008 ident: 2025010703492472200_r33 article-title: CD8+ CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells publication-title: J. Immunol doi: 10.4049/jimmunol.181.10.6923 – volume: 72 start-page: 322 year: 2019 ident: 2025010703492472200_r2 article-title: New therapeutic strategies based on IL-2 to modulate Treg cells for autoimmune diseases publication-title: Int. Immunopharmacol doi: 10.1016/j.intimp.2019.03.064 – volume: 11 start-page: 611638 year: 2020 ident: 2025010703492472200_r14 article-title: Super-Treg: toward a new era of adoptive Treg therapy enabled by genetic modifications publication-title: Front Immunol doi: 10.3389/fimmu.2020.611638 – volume: 183 start-page: 4895 year: 2009 ident: 2025010703492472200_r28 article-title: Dominant role of antigen dose in CD4+Foxp3+ regulatory T cell induction and expansion publication-title: J. Immunol doi: 10.4049/jimmunol.0901459 – volume: 3 start-page: 33 year: 2002 ident: 2025010703492472200_r27 article-title: Homeostasis and anergy of CD4(+)CD25(+) suppressor T cells in vivo publication-title: Nat. Immunol doi: 10.1038/ni743 – volume: 350 start-page: 334 year: 2015 ident: 2025010703492472200_r45 article-title: Stable inhibitory activity of regulatory T cells requires the transcription factor Helios publication-title: Science doi: 10.1126/science.aad0616 – volume: 8 start-page: 1125 year: 2017 ident: 2025010703492472200_r12 article-title: Chimeric antigen receptor-redirected regulatory T cells suppress experimental allergic airway inflammation, a model of asthma publication-title: Front. Immunol doi: 10.3389/fimmu.2017.01125 – volume: 36 start-page: 686 year: 2018 ident: 2025010703492472200_r38 article-title: Antigen-specific tolerization and targeted delivery as therapeutic strategies for autoimmune diseases publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2018.02.008 – volume: 12 start-page: 921 year: 2014 ident: 2025010703492472200_r23 article-title: Long-term tolerance to factor VIII is achieved by administration of interleukin-2/interleukin-2 monoclonal antibody complexes and low dosages of factor VIII publication-title: J. Thromb. Haemost doi: 10.1111/jth.12576 – volume: 41 start-page: 1420 year: 2011 ident: 2025010703492472200_r48 article-title: Steady state migratory RelB+ langerin+ dermal dendritic cells mediate peripheral induction of antigen-specific CD4+ CD25+ Foxp3+ regulatory T cells publication-title: Eur. J. Immunol doi: 10.1002/eji.201040930 – volume: 63 start-page: 1808 year: 2020 ident: 2025010703492472200_r8 article-title: Low-dose IL-2 in children with recently diagnosed type 1 diabetes: a Phase I/II randomised, double-blind, placebo-controlled, dose-finding study publication-title: Diabetologia doi: 10.1007/s00125-020-05200-w – volume: 43 start-page: 896 year: 2015 ident: 2025010703492472200_r56 article-title: CD4+ T cell tolerance to tissue-restricted self antigens is mediated by antigen-specific regulatory T cells rather than deletion publication-title: Immunity doi: 10.1016/j.immuni.2015.10.011 – volume: 194 start-page: 3533 year: 2015 ident: 2025010703492472200_r50 article-title: Response to comment on “cutting edge: epigenetic regulation of Foxp3 defines a stable population of CD4+ regulatory T cells in tumors from mice and humans” publication-title: J. Immunol doi: 10.4049/jimmunol.1500367 – volume: 51 start-page: 39 year: 2020 ident: 2025010703492472200_r6 article-title: Treg cell therapy: how cell heterogeneity can make the difference publication-title: Eur. J. Immunol doi: 10.1002/eji.201948131 – volume: 10 start-page: 333 year: 2020 ident: 2025010703492472200_r40 article-title: Recent advances in antigen-specific immunotherapies for the treatment of multiple sclerosis publication-title: Brain Sci doi: 10.3390/brainsci10060333 – volume: 11 start-page: 1586 year: 2020 ident: 2025010703492472200_r37 article-title: Antigen-specific immunotherapy for treatment of autoimmune liver diseases publication-title: Front. Immunol doi: 10.3389/fimmu.2020.01586 – volume: 6 start-page: 707 year: 2000 ident: 2025010703492472200_r30 article-title: Efficient detection and immunomagnetic sorting of specific T cells using multimers of MHC class I and peptide with reduced CD8 binding. [Published erratum appears in 2001 Nat. Med. 7: 129.] publication-title: Nat. Med doi: 10.1038/76292 – volume: 10 start-page: e0141161 year: 2015 ident: 2025010703492472200_r51 article-title: Differences in expression level of Helios and Neuropilin-1 do not distinguish thymus-derived from extrathymically-induced CD4+Foxp3+ regulatory T cells publication-title: PLoS One doi: 10.1371/journal.pone.0141161 – volume: 188 start-page: 976 year: 2012 ident: 2025010703492472200_r44 article-title: Expression of Helios in peripherally induced Foxp3+ regulatory T cells publication-title: J. Immunol doi: 10.4049/jimmunol.1102964 – volume: 315 start-page: 107 year: 2007 ident: 2025010703492472200_r31 article-title: Differential antigen processing by dendritic cell subsets in vivo publication-title: Science doi: 10.1126/science.1136080 – volume: 72 start-page: 997 year: 2020 ident: 2025010703492472200_r57 article-title: DNA vaccination with Hsp70 protects against systemic lupus erythematosus in (NZB × NZW)F1 mice publication-title: Arthritis Rheumatol doi: 10.1002/art.41202 – volume: 40 start-page: 1577 year: 2010 ident: 2025010703492472200_r18 article-title: Expansion of regulatory T cells via IL-2/anti-IL-2 mAb complexes suppresses experimental myasthenia publication-title: Eur. J. Immunol doi: 10.1002/eji.200939792 – volume: 24 start-page: 1005 year: 2018 ident: 2025010703492472200_r21 article-title: A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism publication-title: Nat. Med doi: 10.1038/s41591-018-0070-2 – volume: 29 start-page: 719 year: 2018 ident: 2025010703492472200_r41 article-title: Bioconjugate strategies for the induction of antigen-specific tolerance in autoimmune diseases publication-title: Bioconjug. Chem doi: 10.1021/acs.bioconjchem.7b00632 – volume: 11 start-page: 638 year: 2020 ident: 2025010703492472200_r25 article-title: A Treg-selective IL-2 mutein prevents the formation of factor VIII inhibitors in hemophilia mice treated with factor VIII gene therapy publication-title: Front. Immunol doi: 10.3389/fimmu.2020.00638 – volume: 137 start-page: 305 year: 2012 ident: 2025010703492472200_r16 article-title: Interleukin-2/anti-interleukin-2 monoclonal antibody immune complex suppresses collagen-induced arthritis in mice by fortifying interleukin-2/STAT5 signalling pathways publication-title: Immunology doi: 10.1111/imm.12008 – volume: 17 start-page: 206 year: 2016 ident: 2025010703492472200_r52 article-title: Rapid and efficient generation of regulatory T cells to commensal antigens in the periphery publication-title: Cell Rep doi: 10.1016/j.celrep.2016.08.092 |
SSID | ssj0002140734 |
Score | 2.20483 |
Snippet | In mice, Ag administration in the absence of adjuvant typically elicits tolerogenic immune responses through the deletion or inactivation of conventional CD4 T... In mice, antigen administration in the absence of adjuvant typically elicits tolerogenic immune responses through the deletion or inactivation of conventional... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 782 |
SubjectTerms | Animals Antigens - immunology Autoimmune Diseases - immunology Autoimmune Diseases - therapy Cells, Cultured Female Humans Hypersensitivity - immunology Hypersensitivity - therapy Immune Tolerance Immunotherapy, Adoptive - methods Interleukin-2 - genetics Interleukin-2 - immunology Mice Models, Animal Mutation Primary Cell Culture - methods Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - immunology T-Lymphocytes, Regulatory - immunology T-Lymphocytes, Regulatory - transplantation |
Title | In Vivo Expansion of Antigen-Specific Regulatory T Cells through Staggered Fc.IL-2 Mutein Dosing and Antigen-Specific Immunotherapy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34583939 https://www.proquest.com/docview/2577733429 https://pubmed.ncbi.nlm.nih.gov/PMC11034776 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ (Directory of Open Access Journals) customDbUrl: eissn: 2573-7732 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140734 issn: 2573-7732 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2573-7732 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140734 issn: 2573-7732 databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 2573-7732 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140734 issn: 2573-7732 databaseCode: TOX dateStart: 20170101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKEGgXxDcdMBmJW5WuiVO7OY6JqR0rXDrUW-Uk9hrRpVPXom1XLvzZvGc7adIO8XGJ2jh2Pn4_2-_5-b1HyPuO7vGe4spjacIwqLb2Ii6lp2Cq6KQgALAAvZGHn3n_LDwZd8eNxs_KrqXVMm4nt3f6lfwPqnAOcEUv2X9AtmwUTsBvwBeOgDAc_wrjQd76mn2fY7ximHGc6HeYLzHCpmcyy2uzT96km0dj-qh1pGazqzI7D4ia5-eYrbN1nLQHp17QGq4w_SXI1VeF9-JWewN0KXGOWzWjsC3ozxfZbbEIaOwNlnPDLJ-uDT-fpvA80u4lOM1wraVk2Im8yJwf2IeFvMa4H-sVcnnjHCgW2TdZXbIIfNxf4VzAlRnaYJxgINez2jjcrdAtqoypwmYn2hzrQ9BtAKDMvNrUvVo78I1UWq0AmF1eGAYwNBJHNnjSRpTtougeuR8IzjEXxujLuFytC0APFSy0LuZ454O777tLHhYt1QWdLe1lcxNuRaoZPSaPnDpCDy23npCGyp-SBzZB6c0z8mOQU2QYLRlG55puMoKuGUZH1DCMOobRkmHUMYxahlHLMAoM226vxrDn5Oz44-io77m0HV7CYLrwAtA4oqTDlehK5jMeazTfK9GJk0iyOI0U44lmQqaCybATxaFWGv7HsYwjnfrsBdnJ57l6RagvA1_C50xkJEMm0p6Ikp6IteA-16AZN0m3-MaTxMW0x9QqswnotgjTpA7TxMHUJAdlvUsb1eWPNd4VEE6gE6BVDTrGfAUXdAUwmYFc1yQvLaRlmwUXmqRXA7u8AIO710vybGqCvINYzkIh-N5vG31Ndted6w3ZWS5W6i1IyMt436ws7RsK_wLv6cW6 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Vivo+Expansion+of+Antigen-Specific+Regulatory+T+Cells+through+Staggered+Fc.IL-2+Mutein+Dosing+and+Antigen-Specific+Immunotherapy&rft.jtitle=ImmunoHorizons&rft.au=Pham%2C+Minh+N&rft.au=Khoryati%2C+Liliane&rft.au=Jamison%2C+Braxton+L&rft.au=Hayes%2C+Erika&rft.date=2021-09-28&rft.eissn=2573-7732&rft.volume=5&rft.issue=9&rft.spage=782&rft_id=info:doi/10.4049%2Fimmunohorizons.2100051&rft_id=info%3Apmid%2F34583939&rft.externalDocID=34583939 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2573-7732&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2573-7732&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2573-7732&client=summon |