Application of linear regression algorithm and stochastic gradient descent in a machine‐learning environment for predicting biomass higher heating value

The higher heating value (HHV) provides information about the quantity of energy contained in a fuel such as biomass. Correlations and models can be developed to predict biomass HHV quickly from other analysis data. In this study, a linear regression algorithm (LRA) and stochastic gradient descent (...

Full description

Saved in:
Bibliographic Details
Published inBiofuels, bioproducts and biorefining Vol. 14; no. 6; pp. 1286 - 1295
Main Authors Ighalo, Joshua O., Adeniyi, Adewale George, Marques, Gonçalo
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.11.2020
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1932-104X
1932-1031
DOI10.1002/bbb.2140

Cover

Abstract The higher heating value (HHV) provides information about the quantity of energy contained in a fuel such as biomass. Correlations and models can be developed to predict biomass HHV quickly from other analysis data. In this study, a linear regression algorithm (LRA) and stochastic gradient descent (SGD) in a machine‐learning environment were used as novel methods to predict the HHV of biomass. The basis of the model was 78 lines of combined proximate and ultimate analysis data. The LRA model was observed to be more accurate. The testing for both models was done by stratified cross‐validation, stratified shuffle splits, and no sampling tests. The root mean square error (RMSE) of the LRA and SGD models was 8.151 and 21.65 kJ kg−1 and the mean absolute error (MAE) was 6.823 and 13.87 for the stratified shuffle split (ten random samples with 75% data). The coefficient of determination for both models was >0.999 in all cases. The study observed that LRA and SGD are among the most accurate artificial intelligence models for the prediction of biomass HHV. © 2020 Society of Chemical Industry and John Wiley & Sons, Ltd
AbstractList The higher heating value (HHV) provides information about the quantity of energy contained in a fuel such as biomass. Correlations and models can be developed to predict biomass HHV quickly from other analysis data. In this study, a linear regression algorithm (LRA) and stochastic gradient descent (SGD) in a machine‐learning environment were used as novel methods to predict the HHV of biomass. The basis of the model was 78 lines of combined proximate and ultimate analysis data. The LRA model was observed to be more accurate. The testing for both models was done by stratified cross‐validation, stratified shuffle splits, and no sampling tests. The root mean square error (RMSE) of the LRA and SGD models was 8.151 and 21.65 kJ kg −1 and the mean absolute error (MAE) was 6.823 and 13.87 for the stratified shuffle split (ten random samples with 75% data). The coefficient of determination for both models was >0.999 in all cases. The study observed that LRA and SGD are among the most accurate artificial intelligence models for the prediction of biomass HHV. © 2020 Society of Chemical Industry and John Wiley & Sons, Ltd
The higher heating value (HHV) provides information about the quantity of energy contained in a fuel such as biomass. Correlations and models can be developed to predict biomass HHV quickly from other analysis data. In this study, a linear regression algorithm (LRA) and stochastic gradient descent (SGD) in a machine‐learning environment were used as novel methods to predict the HHV of biomass. The basis of the model was 78 lines of combined proximate and ultimate analysis data. The LRA model was observed to be more accurate. The testing for both models was done by stratified cross‐validation, stratified shuffle splits, and no sampling tests. The root mean square error (RMSE) of the LRA and SGD models was 8.151 and 21.65 kJ kg−1 and the mean absolute error (MAE) was 6.823 and 13.87 for the stratified shuffle split (ten random samples with 75% data). The coefficient of determination for both models was >0.999 in all cases. The study observed that LRA and SGD are among the most accurate artificial intelligence models for the prediction of biomass HHV. © 2020 Society of Chemical Industry and John Wiley & Sons, Ltd
The higher heating value (HHV) provides information about the quantity of energy contained in a fuel such as biomass. Correlations and models can be developed to predict biomass HHV quickly from other analysis data. In this study, a linear regression algorithm (LRA) and stochastic gradient descent (SGD) in a machine‐learning environment were used as novel methods to predict the HHV of biomass. The basis of the model was 78 lines of combined proximate and ultimate analysis data. The LRA model was observed to be more accurate. The testing for both models was done by stratified cross‐validation, stratified shuffle splits, and no sampling tests. The root mean square error (RMSE) of the LRA and SGD models was 8.151 and 21.65 kJ kg−1 and the mean absolute error (MAE) was 6.823 and 13.87 for the stratified shuffle split (ten random samples with 75% data). The coefficient of determination for both models was >0.999 in all cases. The study observed that LRA and SGD are among the most accurate artificial intelligence models for the prediction of biomass HHV. © 2020 Society of Chemical Industry and John Wiley & Sons, Ltd
Author Marques, Gonçalo
Ighalo, Joshua O.
Adeniyi, Adewale George
Author_xml – sequence: 1
  givenname: Joshua O.
  orcidid: 0000-0002-8709-100X
  surname: Ighalo
  fullname: Ighalo, Joshua O.
  email: oshea.ighalo@yahoo.com
  organization: Nnamdi Azikiwe University
– sequence: 2
  givenname: Adewale George
  orcidid: 0000-0001-6615-5361
  surname: Adeniyi
  fullname: Adeniyi, Adewale George
  email: adeniyi.ag@unilorin.edu.ng
  organization: University of Ilorin
– sequence: 3
  givenname: Gonçalo
  surname: Marques
  fullname: Marques, Gonçalo
  email: goncalosantosmarques@gmail.com
  organization: University of Beira Interior
BookMark eNp1kM1q3DAQx0VJofko9BEEvfTijWRZ8u4xG_IFgV4a6M2M5LGtxZYcSZuwtzxCz328PEns3dJDaE8zzPzmP_A7IUfOOyTkC2cLzlh-rrVe5LxgH8gxX4k840zwo7998fMTOYlxw5hUspDH5PfFOPbWQLLeUd_Q3jqEQAO2AWOch9C3PtjUDRRcTWPypoOYrKFtgNqiS7TGaOZqJ5gOYLop4_XlVz8FOetaiu7JBu-GmWl8oGPA2po0r7T1A8RIO9t2GGiHsB8_Qb_FM_KxgT7i5z_1lDxcX_24vM3uv9_cXV7cZ0YIxjKZLzkIYErrYlk2ZW2WXKnSyKUxrAZRNrVpTF6XjSn1SkhEAVyVhZKaKy21OCVfD7lj8I9bjKna-G1w08sqL6QSuZq8TtS3A2WCjzFgU43BDhB2FWfVbL6azFez-QldvEONTXvDKYDt_3WQHQ6ebY-7_wZX6_V6z78B_Iya4g
CitedBy_id crossref_primary_10_1002_wer_10893
crossref_primary_10_1007_s42768_023_00187_7
crossref_primary_10_1016_j_biteb_2022_101167
crossref_primary_10_3390_make4040055
crossref_primary_10_1007_s10098_022_02339_5
crossref_primary_10_1021_acs_jced_3c00709
crossref_primary_10_32604_iasc_2023_030479
crossref_primary_10_1007_s00500_022_07778_2
crossref_primary_10_1016_j_rser_2025_115417
crossref_primary_10_1142_S0218348X22400904
crossref_primary_10_1016_j_compbiomed_2024_108248
crossref_primary_10_1016_j_crgsc_2021_100078
crossref_primary_10_1016_j_saa_2022_121123
crossref_primary_10_1007_s40808_021_01276_4
crossref_primary_10_1007_s40808_020_01041_z
crossref_primary_10_1016_j_dche_2024_100159
crossref_primary_10_1016_j_envpol_2023_121363
crossref_primary_10_1080_17597269_2022_2116771
crossref_primary_10_1016_j_eti_2024_104012
crossref_primary_10_1007_s00170_024_14256_6
crossref_primary_10_3390_cleantechnol4040075
crossref_primary_10_1016_j_nexus_2022_100157
crossref_primary_10_1007_s42250_020_00220_w
crossref_primary_10_1016_j_csite_2023_103200
crossref_primary_10_1080_00222348_2020_1866282
crossref_primary_10_1080_17486025_2021_2006803
crossref_primary_10_1016_j_apenergy_2022_119286
crossref_primary_10_1016_j_gce_2021_06_003
crossref_primary_10_1016_j_fuel_2023_129898
crossref_primary_10_1016_j_wasman_2023_12_006
crossref_primary_10_1021_acsomega_3c04275
crossref_primary_10_3390_agriculture13061136
crossref_primary_10_3390_en14165072
crossref_primary_10_3390_su14105964
crossref_primary_10_1109_ACCESS_2021_3134138
crossref_primary_10_1016_j_energy_2023_128874
crossref_primary_10_1016_j_renene_2024_120348
crossref_primary_10_2139_ssrn_4145313
crossref_primary_10_1016_j_jclepro_2023_137853
crossref_primary_10_1016_j_nexus_2023_100263
crossref_primary_10_1016_j_arabjc_2022_104306
crossref_primary_10_1007_s44196_024_00668_5
crossref_primary_10_3390_e24030332
Cites_doi 10.1016/j.rser.2012.02.054
10.33263/Materials22.111116
10.1016/S0016-2361(01)00034-5
10.1109/TPWRS.2011.2113380
10.1016/j.fuel.2019.116603
10.1080/15567036.2017.1413453
10.1137/16M1080173
10.1137/0905052
10.1016/j.ijepes.2015.11.035
10.2200/S00196ED1V01Y200906AIM006
10.1016/j.biombioe.2004.11.008
10.1007/978-3-319-58538-3_185-1
10.1504/IJCISTUDIES.2017.089054
10.1016/S0016-2361(01)00131-4
10.1080/00986440802300984
10.1080/00031305.2000.10474502
10.1080/15567036.2017.1403519
10.1016/0016-2361(91)90049-G
10.1016/j.jesit.2018.03.004
10.1109/WACV.2017.144
10.1080/00268976.2018.1483535
10.1016/j.biortech.2007.09.021
10.1016/j.energy.2017.07.075
10.1007/978-3-642-35289-8_25
10.1016/j.aca.2005.01.041
10.3390/s20020461
10.1016/j.rser.2010.11.012
10.1016/j.fuel.2010.11.031
10.1016/j.fuel.2004.10.010
10.1016/j.scs.2019.102010
10.1016/j.rse.2008.04.018
10.1007/978-3-7908-2604-3_16
10.3390/en11102777
10.1016/j.fuel.2018.02.126
10.1016/j.biortech.2020.123243
10.1021/acs.jced.6b00537
10.1148/radiol.2273011499
10.1002/bbb.1998
10.1007/978-1-4302-5990-9_4
10.1080/15567036.2018.1514437
ContentType Journal Article
Copyright 2020 Society of Chemical Industry and John Wiley & Sons, Ltd
Copyright_xml – notice: 2020 Society of Chemical Industry and John Wiley & Sons, Ltd
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7ST
7TA
7TB
7TN
7U5
8BQ
8FD
C1K
F1W
F28
FR3
H8D
H8G
H95
H98
H99
JG9
JQ2
KR7
L.F
L.G
L7M
L~C
L~D
P64
SOI
DOI 10.1002/bbb.2140
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
ASFA: Marine Biotechnology Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Oceanic Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Environment Abstracts
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1932-1031
EndPage 1295
ExternalDocumentID 10_1002_bbb_2140
BBB2140
Genre article
GroupedDBID 05W
0R~
1OC
23N
31~
33P
3SF
4.4
52U
52V
5DZ
5GY
66C
8-1
8UM
A00
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
L8X
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O9-
OIG
P2P
P2W
P4E
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
ABJIA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7ST
7TA
7TB
7TN
7U5
8BQ
8FD
C1K
F1W
F28
FR3
H8D
H8G
H95
H98
H99
JG9
JQ2
KR7
L.F
L.G
L7M
L~C
L~D
P64
SOI
ID FETCH-LOGICAL-c3300-5281a3a06bb487f7dc81667c58cc0da37fdcfc2d7fc7b935ee3a167465b16b5b3
IEDL.DBID DR2
ISSN 1932-104X
IngestDate Fri Jul 25 21:08:53 EDT 2025
Thu Apr 24 23:00:06 EDT 2025
Thu Oct 16 04:37:19 EDT 2025
Wed Jan 22 16:32:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3300-5281a3a06bb487f7dc81667c58cc0da37fdcfc2d7fc7b935ee3a167465b16b5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6615-5361
0000-0002-8709-100X
PQID 2456326002
PQPubID 2045187
PageCount 10
ParticipantIDs proquest_journals_2456326002
crossref_primary_10_1002_bbb_2140
crossref_citationtrail_10_1002_bbb_2140
wiley_primary_10_1002_bbb_2140_BBB2140
PublicationCentury 2000
PublicationDate November/December 2020
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November/December 2020
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: London
PublicationTitle Biofuels, bioproducts and biorefining
PublicationYear 2020
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References 2017; 40
2017; 6
2012
2020; 20
2020; 262
2010
2019; 13
2018; 222
2005; 84
2009; 113
2002; 81
2008; 99
2018; 40
2012; 16
2009; 196
2011; 15
2020; 54
2018; 60
2005; 28
2020; 307
2017; 138
1978
2016; 77
2001; 80
2019; 1910
2013; 14
2020; 2
2003; 227
2018; 5
2018; 116
2017; 39
2020
2011; 90
2000; 54
2005; 544
1984; 5
1991; 70
1985
2016; 61
2016
2017; 18
2015
2011; 26
2009; 3
2018; 11
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Demšar J (e_1_2_8_44_1) 2013; 14
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
Sweke R (e_1_2_8_36_1) 2019; 1910
Mandt S (e_1_2_8_27_1) 2017; 18
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_33_1
Tillman DA (e_1_2_8_12_1) 1978
e_1_2_8_50_1
References_xml – volume: 11
  start-page: 2777
  issue: 10
  year: 2018
  article-title: A short‐term wind speed forecasting model by using artificial neural networks with stochastic optimization for renewable energy systems
  publication-title: Energies
– start-page: 371
  year: 1985
  end-page: 403
– volume: 77
  start-page: 337
  year: 2016
  end-page: 344
  article-title: Energy management at the distribution grid using a battery energy storage system (BESS)
  publication-title: Int J Electr Power Energy Syst
– volume: 113
  start-page: 476
  issue: 3
  year: 2009
  end-page: 488
  article-title: Model‐based mean square error estimators for k‐nearest neighbour predictions and applications using remotely sensed data for forest inventories
  publication-title: Remote Sens Environ
– volume: 14
  start-page: 2349
  issue: 1
  year: 2013
  end-page: 2353
  article-title: Orange: data mining toolbox in python
  publication-title: J Mach Learn Res
– volume: 5
  start-page: 735
  issue: 3
  year: 1984
  end-page: 743
  article-title: The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses
  publication-title: SIAM J Sci Stat Comput
– volume: 138
  start-page: 473
  year: 2017
  end-page: 479
  article-title: Estimation of biomass higher heating value (HHV) based on the proximate analysis by using iterative neural network‐adapted partial least squares (INNPLS)
  publication-title: Energy
– volume: 262
  year: 2020
  article-title: Co‐pyrolysis of Miscanthus Sacchariflorus and coals: a systematic study on the synergies in thermal decomposition, kinetics and vapour phase products
  publication-title: Fuel
– volume: 84
  start-page: 487
  issue: 5
  year: 2005
  end-page: 494
  article-title: A correlation for calculating HHV from proximate analysis of solid fuels
  publication-title: Fuel
– volume: 61
  start-page: 4039
  issue: 12
  year: 2016
  end-page: 4045
  article-title: A simple prediction model for higher heat value of biomass
  publication-title: J Chem Eng Data
– volume: 1910
  year: 2019
  article-title: Stochastic gradient descent for hybrid quantum‐classical optimization
  publication-title: arXiv preprint arXiv
– volume: 60
  start-page: 223
  issue: 2
  year: 2018
  end-page: 311
  article-title: Optimization methods for large‐scale machine learning
  publication-title: Siam Rev
– volume: 6
  start-page: 229
  issue: 2–3
  year: 2017
  end-page: 244
  article-title: Application of cuckoo search in water quality prediction using artificial neural network
  publication-title: Int J Comput Intellig Stud
– start-page: 421
  year: 2012
  end-page: 436
– volume: 81
  start-page: 1051
  issue: 8
  year: 2002
  end-page: 1063
  article-title: A unified correlation for estimating HHV of solid, liquid and gaseous fuels
  publication-title: Fuel
– volume: 40
  start-page: 2960
  issue: 24
  year: 2018
  end-page: 2966
  article-title: Application of MLP‐ANN as a novel predictive method for prediction of the higher heating value of biomass in terms of ultimate analysis
  publication-title: Energy Sources A
– start-page: 177
  year: 2010
  end-page: 186
– year: 2016
– volume: 54
  year: 2020
  article-title: A review on machine learning forecasting growth trends and their real‐time applications in different energy systems
  publication-title: Sustain Cities Soc
– start-page: 1
  year: 2020
  end-page: 16
– volume: 90
  start-page: 1128
  issue: 3
  year: 2011
  end-page: 1132
  article-title: Prediction of higher heating values of biomass from proximate and ultimate analyses
  publication-title: Fuel
– volume: 80
  start-page: 1567
  issue: 11
  year: 2001
  end-page: 1571
  article-title: Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis
  publication-title: Fuel
– volume: 40
  start-page: 288
  issue: 3
  year: 2017
  end-page: 293
  article-title: Application of ANFIS‐PSO algorithm as a novel method for estimation of higher heating
  publication-title: Energy Sources A
– volume: 18
  start-page: 4873
  issue: 1
  year: 2017
  end-page: 4907
  article-title: Stochastic gradient descent as approximate bayesian inference
  publication-title: J Mach Learn Res
– volume: 70
  start-page: 947
  issue: 8
  year: 1991
  end-page: 950
  article-title: Study of the physical and chemical properties of lignocellulosic residues with a view to the production of fuels
  publication-title: Fuel
– volume: 28
  start-page: 499
  issue: 5
  year: 2005
  end-page: 507
  article-title: Estimating the higher heating value of biomass fuels from basic analysis data
  publication-title: Biomass Bioenergy
– volume: 307
  year: 2020
  article-title: Insight into synergistic effects of biomass‐polypropylene co‐pyrolysis using representative biomass constituents
  publication-title: Bioresour Technol
– volume: 16
  start-page: 3065
  issue: 5
  year: 2012
  end-page: 3083
  article-title: A review of the mathematical models for predicting the heating value of biomass materials
  publication-title: Renew Sustain Energy Rev
– volume: 26
  start-page: 2066
  issue: 4
  year: 2011
  end-page: 2073
  article-title: Latin hypercube sampling techniques for power systems reliability analysis with renewable energy sources
  publication-title: IEEE Trans Power Syst
– volume: 99
  start-page: 5043
  issue: 11
  year: 2008
  end-page: 5050
  article-title: Proximate analyses and predicting HHV of chars obtained from cocracking of petroleum vacuum residue with coal, plastics and biomass
  publication-title: Bioresour Technol
– volume: 544
  start-page: 191
  issue: 1–2
  year: 2005
  end-page: 198
  article-title: Prediction of heating values of biomass fuel from elemental composition
  publication-title: Anal Chim Acta
– start-page: 67
  year: 2015
  end-page: 80
– volume: 13
  start-page: 1057
  issue: 4
  year: 2019
  end-page: 1067
  article-title: Modelling of integrated processes for the recovery of the energetic content of sugarcane bagasse
  publication-title: Biofuels Bioprod Biorefin
– volume: 5
  start-page: 312
  issue: 3
  year: 2018
  end-page: 325
  article-title: Considerations on optimal design of hybrid power generation systems using whale and sine cosine optimization algorithms
  publication-title: J Electr Syst Inform Technol
– volume: 196
  start-page: 104
  issue: 1–2
  year: 2009
  end-page: 115
  article-title: Production of biofuel from soft shell of pistachio ( L.)
  publication-title: Chem Eng Commun
– volume: 116
  start-page: 3214
  issue: 21–22
  year: 2018
  end-page: 3223
  article-title: Energy–entropy competition and the effectiveness of stochastic gradient descent in machine learning
  publication-title: Mol Phys
– volume: 2
  start-page: 111
  issue: 2
  year: 2020
  end-page: 116
  article-title: Biomass to biochar conversion for agricultural and environmental applications in Nigeria: challenges, peculiarities and prospects
  publication-title: Mater Int
– volume: 20
  start-page: 461
  issue: 2
  year: 2020
  article-title: A machine learning based intrusion detection system for Mobile internet of things
  publication-title: Sensors
– volume: 227
  start-page: 617
  issue: 3
  year: 2003
  end-page: 628
  article-title: Correlation and simple linear regression
  publication-title: Radiology
– volume: 54
  start-page: 17
  issue: 1
  year: 2000
  end-page: 24
  article-title: Coefficients of determination for multiple logistic regression analysis
  publication-title: Am Stat
– volume: 222
  start-page: 1
  year: 2018
  end-page: 10
  article-title: Biomass higher heating value (HHV) modeling on the basis of proximate analysis using iterative network‐based fuzzy partial least squares coupled with principle component analysis (PCA‐INFPLS)
  publication-title: Fuel
– volume: 39
  start-page: 2105
  issue: 22
  year: 2017
  end-page: 2111
  article-title: Application of MLP‐ANN strategy to predict higher heating value of biomass in terms of proximate analysis
  publication-title: Energy Sources A
– year: 1978
– volume: 15
  start-page: 948
  issue: 2
  year: 2011
  end-page: 955
  article-title: Greenhouse crop residues: energy potential and models for the prediction of their higher heating value
  publication-title: Renew Sustain Energy Rev
– volume: 3
  start-page: 1
  issue: 1
  year: 2009
  end-page: 130
  article-title: Introduction to semi‐supervised learning
  publication-title: Synth Lect Artif Intellig Mach Learn
– ident: e_1_2_8_2_1
  doi: 10.1016/j.rser.2012.02.054
– ident: e_1_2_8_31_1
– ident: e_1_2_8_22_1
  doi: 10.33263/Materials22.111116
– ident: e_1_2_8_14_1
  doi: 10.1016/S0016-2361(01)00034-5
– ident: e_1_2_8_41_1
  doi: 10.1109/TPWRS.2011.2113380
– ident: e_1_2_8_49_1
  doi: 10.1016/j.fuel.2019.116603
– ident: e_1_2_8_20_1
  doi: 10.1080/15567036.2017.1413453
– ident: e_1_2_8_38_1
  doi: 10.1137/16M1080173
– ident: e_1_2_8_39_1
  doi: 10.1137/0905052
– ident: e_1_2_8_42_1
  doi: 10.1016/j.ijepes.2015.11.035
– ident: e_1_2_8_24_1
  doi: 10.2200/S00196ED1V01Y200906AIM006
– ident: e_1_2_8_9_1
  doi: 10.1016/j.biombioe.2004.11.008
– ident: e_1_2_8_5_1
  doi: 10.1007/978-3-319-58538-3_185-1
– ident: e_1_2_8_28_1
– ident: e_1_2_8_47_1
  doi: 10.1504/IJCISTUDIES.2017.089054
– ident: e_1_2_8_7_1
  doi: 10.1016/S0016-2361(01)00131-4
– ident: e_1_2_8_4_1
  doi: 10.1080/00986440802300984
– volume: 18
  start-page: 4873
  issue: 1
  year: 2017
  ident: e_1_2_8_27_1
  article-title: Stochastic gradient descent as approximate bayesian inference
  publication-title: J Mach Learn Res
– volume: 14
  start-page: 2349
  issue: 1
  year: 2013
  ident: e_1_2_8_44_1
  article-title: Orange: data mining toolbox in python
  publication-title: J Mach Learn Res
– ident: e_1_2_8_46_1
  doi: 10.1080/00031305.2000.10474502
– ident: e_1_2_8_19_1
  doi: 10.1080/15567036.2017.1403519
– ident: e_1_2_8_15_1
  doi: 10.1016/0016-2361(91)90049-G
– ident: e_1_2_8_48_1
  doi: 10.1016/j.jesit.2018.03.004
– ident: e_1_2_8_33_1
  doi: 10.1109/WACV.2017.144
– ident: e_1_2_8_34_1
  doi: 10.1080/00268976.2018.1483535
– ident: e_1_2_8_6_1
  doi: 10.1016/j.biortech.2007.09.021
– ident: e_1_2_8_16_1
  doi: 10.1016/j.energy.2017.07.075
– ident: e_1_2_8_29_1
– ident: e_1_2_8_30_1
  doi: 10.1007/978-3-642-35289-8_25
– ident: e_1_2_8_10_1
  doi: 10.1016/j.aca.2005.01.041
– ident: e_1_2_8_40_1
  doi: 10.3390/s20020461
– ident: e_1_2_8_21_1
  doi: 10.1016/j.rser.2010.11.012
– ident: e_1_2_8_8_1
  doi: 10.1016/j.fuel.2010.11.031
– volume-title: Wood as an Energy Resource
  year: 1978
  ident: e_1_2_8_12_1
– ident: e_1_2_8_13_1
  doi: 10.1016/j.fuel.2004.10.010
– ident: e_1_2_8_11_1
– ident: e_1_2_8_23_1
  doi: 10.1016/j.scs.2019.102010
– ident: e_1_2_8_43_1
– ident: e_1_2_8_45_1
  doi: 10.1016/j.rse.2008.04.018
– ident: e_1_2_8_25_1
  doi: 10.1007/978-3-7908-2604-3_16
– ident: e_1_2_8_35_1
  doi: 10.3390/en11102777
– ident: e_1_2_8_17_1
  doi: 10.1016/j.fuel.2018.02.126
– ident: e_1_2_8_50_1
  doi: 10.1016/j.biortech.2020.123243
– ident: e_1_2_8_26_1
  doi: 10.1021/acs.jced.6b00537
– ident: e_1_2_8_37_1
  doi: 10.1148/radiol.2273011499
– ident: e_1_2_8_3_1
  doi: 10.1002/bbb.1998
– ident: e_1_2_8_32_1
  doi: 10.1007/978-1-4302-5990-9_4
– volume: 1910
  start-page: 01155
  year: 2019
  ident: e_1_2_8_36_1
  article-title: Stochastic gradient descent for hybrid quantum‐classical optimization
  publication-title: arXiv preprint arXiv
– ident: e_1_2_8_18_1
  doi: 10.1080/15567036.2018.1514437
SSID ssj0056545
Score 2.4673047
Snippet The higher heating value (HHV) provides information about the quantity of energy contained in a fuel such as biomass. Correlations and models can be developed...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1286
SubjectTerms Algorithms
Artificial intelligence
Biomass
Calorific value
Data analysis
Heating
HHV
Learning algorithms
linear regression
Machine learning
Regression analysis
Root-mean-square errors
School environment
stochastic gradient descent
Title Application of linear regression algorithm and stochastic gradient descent in a machine‐learning environment for predicting biomass higher heating value
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbbb.2140
https://www.proquest.com/docview/2456326002
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1932-104X
  databaseCode: DR2
  dateStart: 20070101
  customDbUrl:
  isFulltext: true
  eissn: 1932-1031
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056545
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF7Ekx58i9UqI4ie2qbZZJMcrSgi6EEUCh7CvtIWNS1pevHkT_Dsz_OXuLNJ2ioK4ikQdvOanZ1vMjPfEHKk0IrrIGkwGcqGp6XRucSXKBAhhDQm0Er6-oZd3ntXXb9bZlViLUzBDzH94YaaYfdrVHAuxq0Zaai5VNM17oHZftuUWW_qdsocZWCK7U-M8MTsNF634p113FY18aslmsHLeZBqrczFKnmonq9ILnlsTnLRlC_fqBv_9wJrZKUEn3BarJZ1sqDTDbI8R0m4Sd5PZxFtGCaAt-EZZLpXJMymwJ96w2yQ95-BpwoMdpR9jmTP0Mts-lgOqqCIgoEZDM82W1N_vL6VDSp6MFdcBwYzwyjDaBHmXwOyARg4D32bfgJoKfA0UpLrLXJ_cX53dtko-zc0JKWOY3zcsM0pd5gQxi1KAiUxSBlIP5TSUZwGiZKJdFWQyEBE1NeaciyKYL5oM-ELuk0W02GqdwiwyBNKezoQiEeYCrVKmA5CzxVeJKKoRk4qWcayJDfHHhtPcUHL7Mbma8f4tWvkcDpyVBB6_DCmXi2HuFTpcYwRYop0_m6NHFu5_jo_7nQ6eNz968A9suSiH29rHOtkMc8met-AnVwc2GX9CUciAF4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5ROEAPhdKiprymUtWekjh-7NriRBAobUkOCKQcKlnehxNUcJBrLpz4CZz5efwSdtZ2ElCRUE-WrFk_dnZ2vtmd_QbgqyIvrnnaZDKUTV9LY3NpIEkhQghpXKDVdH_Aemf-z2EwXIC9-ixMyQ8xXXAjy7DzNRk4LUi3Z6yh5lkt18QHb2DJZyZMIUR0MuWOMkDFVigmgGLmGn9YM886brtu-dQXzQDmPEy1fuZoFX7XX1iml_xpXReiJW-ekTf-5y-swbsKf-J-OWDew4LO1uHtHCvhB7jfn21q4yRFek-SY65HZc5shsnFaJKfF-NLTDKFBj7KcUJ8zzjKbQZZgapkicJzI4yXNmFTP9zeVTUqRjh3vg4NbMarnDaMKAUbiRDAIHoc2wwUJGdBt4mVXH-Es6PD04Nesyrh0JSe5zgmzA07iZc4TAgTGaVcSdqn5DIIpXRU4vFUyVS6iqeSi8gLtPYSOhfBAtFhIhDeBixmk0x_AmSRL5T2NRcESZgKtUqZ5qHvCj8SUdSA77UyY1nxm1OZjYu4ZGZ2Y9PbMfV2A75MJa9KTo9_yGzV4yGurPpvTJvEHjH6uw34ZhX7Yvu42-3S9fNrBXdhuXfaP46Pfwx-bcKKS2G9PfK4BYtFfq23DfYpxI4d449BFgR_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7xkCo4UCgg0kKZSlU5JTF-Wz2RQgQUUIVAygHJ8r4S1MSJjLn0xE_gzM_jl7CztpMUgYQ4WbJ2_djZ8XzjmfkG4LsgKy4DVfd5yOuu5FrnlMdJIIwxrk2gkfTpmX946R53vM4M_KxqYQp-iPEPN9IM870mBZcjoZoT1lB9rYat_YNZmHe9KKR8vv3zMXeUBiqmQzEBFP2tcTsV86xlN6uZ_9uiCcCchqnGzrQ_wlX1hEV6yd_Gbc4a_N8z8sZ3vsIyLJX4E_eKDbMCMzL9BItTrISr8LA3CWrjUCHdJ8kwk90iZzbFpN8dZtd5b4BJKlDDR95LiO8Zu5nJIMtRFCxReK0H48AkbMrHu_uyR0UXp-rrUMNmHGUUMKIUbCRCAI3osWcyUJCMBZ0mVnK5Bpftg4tfh_WyhUOdO45laTc33E2cxPIZ056RCgSnOGXAvZBzSyROoARX3BaB4gGLHE9KJ6G6CN9juz7zmLMOc-kwlRuAfuQyIV0ZMIIkvgilUL4MQtdmbsSiqAY7lTBjXvKbU5uNflwwM9uxXu2YVrsG38YjRwWnxwtjNqv9EJdafRNTkNghRn-7Bj-MYF-dH7daLTp-fuvAbfjwZ78dnxyd_f4CCzZ59abicRPm8uxWbmnok7OvZos_AeSZBAM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+linear+regression+algorithm+and+stochastic+gradient+descent+in+a+machine%E2%80%90learning+environment+for+predicting+biomass+higher+heating+value&rft.jtitle=Biofuels%2C+bioproducts+and+biorefining&rft.au=Ighalo%2C+Joshua+O.&rft.au=Adeniyi%2C+Adewale+George&rft.au=Marques%2C+Gon%C3%A7alo&rft.date=2020-11-01&rft.issn=1932-104X&rft.eissn=1932-1031&rft.volume=14&rft.issue=6&rft.spage=1286&rft.epage=1295&rft_id=info:doi/10.1002%2Fbbb.2140&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_bbb_2140
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-104X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-104X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-104X&client=summon