Flue Gas Oxygen Content Model Based on Bayesian Optimization Main–Compensation Ensemble Algorithm in Municipal Solid Waste Incineration Process
The municipal solid waste incineration (MSWI) process plays a crucial role in managing the risks associated with waste accumulation and promoting the sustainable development of urban environments. However, unstable operation of the MSWI process can lead to excessive pollutant emissions, deterioratin...
        Saved in:
      
    
          | Published in | Sustainability Vol. 17; no. 7; p. 3048 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.04.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2071-1050 2071-1050  | 
| DOI | 10.3390/su17073048 | 
Cover
| Abstract | The municipal solid waste incineration (MSWI) process plays a crucial role in managing the risks associated with waste accumulation and promoting the sustainable development of urban environments. However, unstable operation of the MSWI process can lead to excessive pollutant emissions, deteriorating air quality, and adverse impacts on public health. Flue gas oxygen content is a key controlled variable in the MSWI process, and its stable control is closely linked to both incineration efficiency and pollutant emissions. Developing a high-precision, interpretable model for flue gas oxygen content is essential for achieving optimal control. However, existing methods face challenges such as poor interpretability, low accuracy, and the complexity of manual hyperparameter tuning. To address these issues, this article proposes a flue gas oxygen content model based on a Bayesian optimization (BO) main–compensation ensemble modeling algorithm. The model first utilizes an ensemble TS fuzzy regression tree (EnTSFRT) to construct the main model. Then, a long short-term memory network (LSTM) is employed to build the compensation model, using the error of the EnTSFRT model as the target value. The final output is obtained through a weighted combination of the main and compensation models. Finally, the hyperparameters of the main–compensation ensemble model are optimized using the BO algorithm to achieve a high generalization performance. Experimental results based on real MSWI process data demonstrate that the proposed method performs well, achieving a 48.2% reduction in RMSE and a 53.1% reduction in MAE, while R2 increases by 140.8%, compared to the BO-EnTSFRT method that uses only the main model. | 
    
|---|---|
| AbstractList | The municipal solid waste incineration (MSWI) process plays a crucial role in managing the risks associated with waste accumulation and promoting the sustainable development of urban environments. However, unstable operation of the MSWI process can lead to excessive pollutant emissions, deteriorating air quality, and adverse impacts on public health. Flue gas oxygen content is a key controlled variable in the MSWI process, and its stable control is closely linked to both incineration efficiency and pollutant emissions. Developing a high-precision, interpretable model for flue gas oxygen content is essential for achieving optimal control. However, existing methods face challenges such as poor interpretability, low accuracy, and the complexity of manual hyperparameter tuning. To address these issues, this article proposes a flue gas oxygen content model based on a Bayesian optimization (BO) main–compensation ensemble modeling algorithm. The model first utilizes an ensemble TS fuzzy regression tree (EnTSFRT) to construct the main model. Then, a long short-term memory network (LSTM) is employed to build the compensation model, using the error of the EnTSFRT model as the target value. The final output is obtained through a weighted combination of the main and compensation models. Finally, the hyperparameters of the main–compensation ensemble model are optimized using the BO algorithm to achieve a high generalization performance. Experimental results based on real MSWI process data demonstrate that the proposed method performs well, achieving a 48.2% reduction in RMSE and a 53.1% reduction in MAE, while R[sup.2] increases by 140.8%, compared to the BO-EnTSFRT method that uses only the main model. The municipal solid waste incineration (MSWI) process plays a crucial role in managing the risks associated with waste accumulation and promoting the sustainable development of urban environments. However, unstable operation of the MSWI process can lead to excessive pollutant emissions, deteriorating air quality, and adverse impacts on public health. Flue gas oxygen content is a key controlled variable in the MSWI process, and its stable control is closely linked to both incineration efficiency and pollutant emissions. Developing a high-precision, interpretable model for flue gas oxygen content is essential for achieving optimal control. However, existing methods face challenges such as poor interpretability, low accuracy, and the complexity of manual hyperparameter tuning. To address these issues, this article proposes a flue gas oxygen content model based on a Bayesian optimization (BO) main–compensation ensemble modeling algorithm. The model first utilizes an ensemble TS fuzzy regression tree (EnTSFRT) to construct the main model. Then, a long short-term memory network (LSTM) is employed to build the compensation model, using the error of the EnTSFRT model as the target value. The final output is obtained through a weighted combination of the main and compensation models. Finally, the hyperparameters of the main–compensation ensemble model are optimized using the BO algorithm to achieve a high generalization performance. Experimental results based on real MSWI process data demonstrate that the proposed method performs well, achieving a 48.2% reduction in RMSE and a 53.1% reduction in MAE, while R2 increases by 140.8%, compared to the BO-EnTSFRT method that uses only the main model.  | 
    
| Audience | Academic | 
    
| Author | Wang, Tianzheng Tang, Jian Tian, Hao Yang, Weiwei  | 
    
| Author_xml | – sequence: 1 givenname: Weiwei surname: Yang fullname: Yang, Weiwei – sequence: 2 givenname: Jian orcidid: 0000-0003-2270-268X surname: Tang fullname: Tang, Jian – sequence: 3 givenname: Hao orcidid: 0009-0003-8219-2957 surname: Tian fullname: Tian, Hao – sequence: 4 givenname: Tianzheng orcidid: 0009-0001-3334-880X surname: Wang fullname: Wang, Tianzheng  | 
    
| BookMark | eNp9kc9u1DAQxi1UJErphSewxAmqLf6TxMlxWbVlpVaLKIhj5HUmiyvHDh5HdDnxCog35EnwKkjQC-ODR59-32j8-Sk58sEDIc85O5eyYa9x4oopyYr6ETkWTPEFZyU7-qd_Qk4R71guKXnDq2Py49JNQK800s39fgeeroJP4BO9CR04-kYjdDT43OwBrfZ0MyY72G862azeaOt_ff-5CsMIHmftwiMMWwd06XYh2vR5oDaTk7fGjtrR2-BsRz9pTEDX3lgPcTa-i8EA4jPyuNcO4fTPfUI-Xl58WL1dXG-u1qvl9cJI0aRFJ_IjeMWFgq4RlVK82G55U6rCKDBdX4m66hk3JouF3nYawBSqrMqa10L3Sp6Qs3nu5Ee9_6qda8doBx33LWftIdD2b6CZfjHTYwxfJsDU3oUp-rxgK3mdS5RKZOp8pnbaQWt9H1LUJp8OBmvyb_U268ta1qyqmTgYXj4wmEP692mnJ8R2ffv-IftqZk0MiBH6_-37G8agpFA | 
    
| Cites_doi | 10.1016/j.cja.2021.03.027 10.1016/j.knosys.2024.112116 10.1016/j.jclepro.2021.126144 10.1016/j.bej.2024.109380 10.1109/ACCESS.2022.3185607 10.1016/j.jmaa.2024.128649 10.1109/MCI.2022.3223496 10.1016/j.resconrec.2023.107177 10.1007/s11356-023-28866-2 10.1007/s11356-023-28724-1 10.1016/j.compchemeng.2022.107850 10.1007/s40815-023-01459-4 10.1109/TFUZZ.2022.3221790 10.1109/CAC57257.2022.10055433 10.1214/aos/1013203451 10.1016/j.psep.2022.04.062 10.1038/s41467-021-27624-7 10.1109/JPROC.2021.3060483 10.1109/12.106218 10.1016/j.scitotenv.2023.167952 10.1038/nnano.2012.64 10.1109/CAC57257.2022.10054931 10.1016/j.measurement.2024.115036 10.1109/TFUZZ.2017.2752136 10.1016/j.wasman.2017.04.014 10.1016/j.jhazmat.2021.125132 10.1016/j.asoc.2023.110925 10.1016/j.tsep.2024.102784 10.1016/j.renene.2024.120299 10.1109/TASE.2022.3227918 10.1109/TSMC.2023.3326154 10.1016/j.jclepro.2024.141313  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION ISR 4U- ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| DOI | 10.3390/su17073048 | 
    
| DatabaseName | CrossRef Gale In Context: Science University Readers ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (subscription) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database University Readers ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Economics Environmental Sciences  | 
    
| EISSN | 2071-1050 | 
    
| ExternalDocumentID | 10.3390/su17073048 A838068022 10_3390_su17073048  | 
    
| GeographicLocations | China | 
    
| GeographicLocations_xml | – name: China | 
    
| GroupedDBID | 29Q 2WC 2XV 4P2 5VS 7XC 8FE 8FH A8Z AAHBH AAYXX ACHQT ADBBV ADMLS AENEX AFKRA AFMMW ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION E3Z ECGQY ESTFP FRS GX1 IAO IEP ISR ITC KQ8 ML. MODMG M~E OK1 P2P PHGZM PHGZT PIMPY PROAC TR2 4U- ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC C1A IPNFZ PUEGO RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c329t-d200316127ed9267714bb19574c7ecdf6286f01ccb194abdaeec475658182af73 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2071-1050 | 
    
| IngestDate | Sun Sep 07 11:04:29 EDT 2025 Mon Jun 30 11:47:22 EDT 2025 Mon Oct 20 16:56:02 EDT 2025 Thu Oct 16 15:34:40 EDT 2025 Thu Oct 16 04:44:48 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 7 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c329t-d200316127ed9267714bb19574c7ecdf6286f01ccb194abdaeec475658182af73 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0009-0003-8219-2957 0000-0003-2270-268X 0009-0001-3334-880X  | 
    
| OpenAccessLink | https://www.proquest.com/docview/3188882572?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 3188882572 | 
    
| PQPubID | 2032327 | 
    
| ParticipantIDs | unpaywall_primary_10_3390_su17073048 proquest_journals_3188882572 gale_infotracacademiconefile_A838068022 gale_incontextgauss_ISR_A838068022 crossref_primary_10_3390_su17073048  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-04-01 | 
    
| PublicationDateYYYYMMDD | 2025-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Sustainability | 
    
| PublicationYear | 2025 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Walser (ref_7) 2012; 7 Sildir (ref_20) 2022; 163 Samek (ref_22) 2021; 109 Ma (ref_37) 2024; 300 Zhao (ref_12) 2023; 30 Li (ref_18) 2017; 26 ref_32 Song (ref_3) 2023; 198 Heiskanen (ref_27) 2022; 10 ref_31 Chen (ref_5) 2019; 34 ref_30 Meng (ref_29) 2023; 25 Lin (ref_25) 1991; 40 Zhou (ref_39) 2024; 540 Deng (ref_38) 2024; 39 Zhang (ref_8) 2021; 411 Xia (ref_23) 2023; 31 Cho (ref_19) 2022; 162 Wang (ref_35) 2014; 40 Zhang (ref_36) 2024; 445 Ma (ref_24) 2024; 235 Chen (ref_11) 2024; 225 Zhang (ref_10) 2024; 907 ref_21 Friedman (ref_34) 2001; 29 Ali (ref_2) 2023; 30 Kiesewetter (ref_1) 2022; 13 Sun (ref_17) 2024; 54 Sun (ref_15) 2024; 41 Wu (ref_26) 2023; 18 Tang (ref_4) 2023; 49 Qiao (ref_14) 2022; 21 Huang (ref_16) 2023; 149 Li (ref_33) 2022; 35 Lu (ref_9) 2017; 69 Alrbai (ref_28) 2024; 54 ref_6 Ding (ref_13) 2021; 293  | 
    
| References_xml | – ident: ref_30 – volume: 35 start-page: 346 year: 2022 ident: ref_33 article-title: Positioning error compensation of an industrial robot using neural networks and experimental study publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2021.03.027 – volume: 300 start-page: 112116 year: 2024 ident: ref_37 article-title: Interpretable multi-task neural network modeling and particle swarm optimization of process parameters in laser welding publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2024.112116 – volume: 293 start-page: 126144 year: 2021 ident: ref_13 article-title: A review of China’s municipal solid waste (MSW) and comparison with international regions: Management and technologies in treatment and resource utilization publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.126144 – volume: 49 start-page: 2019 year: 2023 ident: ref_4 article-title: Research status and prospect of intelligent optimization control of municipal solid waste incineration process publication-title: Acta Autom. Sin. – ident: ref_21 doi: 10.1016/j.bej.2024.109380 – volume: 41 start-page: 484 year: 2024 ident: ref_15 article-title: Data-driven predictive control of flue gas oxygen content in municipal solid waste incineration process publication-title: Control. Theory Appl. – volume: 10 start-page: 68099 year: 2022 ident: ref_27 article-title: Explainable steel quality prediction system based on gradient boosting decision trees publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3185607 – volume: 540 start-page: 128649 year: 2024 ident: ref_39 article-title: Online robust parameter design using sequential support vector regression based Bayesian optimization publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2024.128649 – volume: 39 start-page: 100600 year: 2024 ident: ref_38 article-title: Intelligent optimization design of squeeze casting process parameters based on neural network and improved sparrow search algorithm publication-title: J. Ind. Inf. Integr. – volume: 18 start-page: 81 year: 2023 ident: ref_26 article-title: Type-1 and interval type-2 fuzzy systems publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2022.3223496 – volume: 198 start-page: 107177 year: 2023 ident: ref_3 article-title: Residual municipal solid waste to energy under carbon neutrality: Challenges and perspectives for China publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2023.107177 – volume: 30 start-page: 91173 year: 2023 ident: ref_12 article-title: The impact of artificial intelligence on pollution emission intensity—evidence from China publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-023-28866-2 – volume: 30 start-page: 88891 year: 2023 ident: ref_2 article-title: Impact of pollution prevention strategies on environment sustainability: Role of environmental management accounting and environmental proactivity publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-023-28724-1 – volume: 163 start-page: 107850 year: 2022 ident: ref_20 article-title: Optimal artificial neural network architecture design for modeling an industrial ethylene oxide plant publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.107850 – volume: 25 start-page: 1559 year: 2023 ident: ref_29 article-title: Fuzzy reasoning based on truth-value progression: A control-theoretic design approach publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-023-01459-4 – volume: 31 start-page: 2210 year: 2023 ident: ref_23 article-title: Takagi–Sugeno Fuzzy Regression Trees With Application to Complex Industrial Modeling publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2022.3221790 – ident: ref_32 doi: 10.1109/CAC57257.2022.10055433 – volume: 34 start-page: 797 year: 2019 ident: ref_5 article-title: Research on risks and countermeasures of “cities besieged by waste” in China-an empirical analysis based on DIIS publication-title: Bull. Chin. Acad. Sci. – volume: 29 start-page: 1189 year: 2001 ident: ref_34 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – volume: 162 start-page: 813 year: 2022 ident: ref_19 article-title: Multi-objective optimization of an explosive waste incineration process considering nitrogen oxides emission and process cost by using artificial neural network surrogate models publication-title: Process. Saf. Environ. Prot. doi: 10.1016/j.psep.2022.04.062 – volume: 13 start-page: 106 year: 2022 ident: ref_1 article-title: Potential for future reductions of global GHG and air pollutants from circular waste management systems publication-title: Nat. Commun. doi: 10.1038/s41467-021-27624-7 – volume: 109 start-page: 247 year: 2021 ident: ref_22 article-title: Explaining deep neural networks and beyond: A review of methods and applications publication-title: Proc. IEEE doi: 10.1109/JPROC.2021.3060483 – volume: 40 start-page: 1320 year: 1991 ident: ref_25 article-title: Neural-network-based fuzzy logic control and decision system publication-title: IEEE Trans. Comput. doi: 10.1109/12.106218 – ident: ref_6 – volume: 907 start-page: 167952 year: 2024 ident: ref_10 article-title: Comparing and optimizing municipal solid waste (MSW) management focused on air pollution reduction from MSW incineration in China publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2023.167952 – volume: 7 start-page: 520 year: 2012 ident: ref_7 article-title: Persistence of engineered nanoparticles in a municipal solid-waste incineration plant publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.64 – ident: ref_31 doi: 10.1109/CAC57257.2022.10054931 – volume: 235 start-page: 115036 year: 2024 ident: ref_24 article-title: Prediction of flue gas oxygen content of power plant with stacked target-enhanced autoencoder and attention-based LSTM publication-title: Measurement doi: 10.1016/j.measurement.2024.115036 – volume: 26 start-page: 1800 year: 2017 ident: ref_18 article-title: A fault detection approach for nonlinear systems based on data-driven realizations of fuzzy kernel representations publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2017.2752136 – volume: 69 start-page: 170 year: 2017 ident: ref_9 article-title: Status and perspectives of municipal solid waste incineration in China: A comparison with developed regions publication-title: Waste Manag. doi: 10.1016/j.wasman.2017.04.014 – volume: 411 start-page: 125132 year: 2021 ident: ref_8 article-title: Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125132 – volume: 149 start-page: 110925 year: 2023 ident: ref_16 article-title: Adaptive multi-objective competitive swarm optimization algorithm based on kinematic analysis for municipal solid waste incineration publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110925 – volume: 54 start-page: 102784 year: 2024 ident: ref_28 article-title: Utilizing waste heat in wastewater treatment plants for water desalination: Modeling and Multi-Objective optimization of a Multi-Effect desalination system using Decision Tree Regression and Pelican optimization algorithm publication-title: Therm. Sci. Eng. Prog. doi: 10.1016/j.tsep.2024.102784 – volume: 40 start-page: 1875 year: 2014 ident: ref_35 article-title: Research on the application of ellipsoid bound algorithm in hybrid modeling publication-title: Acta Autom. Sin. – volume: 225 start-page: 120229 year: 2024 ident: ref_11 article-title: Dynamic and optimal ash-to-gas responses of oxy-fuel and air combustions of soil remediation biomass publication-title: Renew. Energy doi: 10.1016/j.renene.2024.120299 – volume: 21 start-page: 463 year: 2022 ident: ref_14 article-title: Event-triggered adaptive model predictive control of oxygen content for municipal solid waste incineration process publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2022.3227918 – volume: 54 start-page: 1982 year: 2024 ident: ref_17 article-title: Event-based data-driven adaptive model predictive control for nonlinear dynamic processes publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2023.3326154 – volume: 445 start-page: 141313 year: 2024 ident: ref_36 article-title: Heterogeneous ensemble prediction model of CO emission concentration in municipal solid waste incineration process using virtual data and real data hybrid-driven publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2024.141313  | 
    
| SSID | ssj0000331916 | 
    
| Score | 2.3710473 | 
    
| Snippet | The municipal solid waste incineration (MSWI) process plays a crucial role in managing the risks associated with waste accumulation and promoting the... | 
    
| SourceID | unpaywall proquest gale crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database  | 
    
| StartPage | 3048 | 
    
| SubjectTerms | Algorithms Artificial intelligence Carbon Combustion research Consumption Decision trees Desalination Efficiency Flue gas Flue gases Fuzzy logic Gases Incineration Industrial plant emissions Mathematical optimization Methods Multilevel analysis Municipal solid waste Neural networks Optimization Oxygen Pollutants Sustainable development  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6V7aFw4KdQsVCQVSpxSrWxnfXmuFS7FKS2CFhRTpFjOyUi66w2iWA58QqIN-RJGDcObfdQkVPijJWRPZ4fZb4ZgP2YhcrEJg6GMmMB51zikcJHI7jEeEJSFjns8PHJ8GjG355FZxuw12Fhrvy_ZxiO43aEwkkhH92CzWGE_nYPNmcn78afXdc4tI-oR6JBW3d0bcI1S7Oub-_AVmMXcvVNFsUVgzK9B4cdK20eydeDpk4P1I-1Ko0383of7np_koxbAXgAG8Zuw1YHN662YWdyCWVDQn-Wq4fwa1o0hryWFTn9vkIxIheFqmxNXHu0grxC86ZJafFmZRzSkpyidpl72CY5lrn98_O3UycYCLdjE1uZeVoYMi7Oy2Vef5mTHCkd_iRfuG-XRa7JJ4mCRVAvOdhhO9GjFR7BbDr5eHgU-AYNgWI0rgPtMtvQZaTC6JgOhQh5moZxJLgSRunMwV6zQagUDnKZammM4gJdSPQSqMwE24GeLa15DISOJLoegyhL1YBrGkulw5RlGL_QVDId9-FFt5nJoq3DkWD84tY9uVz3Puy5fU5cYQvrMmfOZVNVyZsP75PxiI1cnxFK-_DSE2VlvZRKeiACMuJqYV2j3O3kJfFHu0pQCeKFmg5f7_-ToRuYevJ_ZE_hNnW9hS-ygnahVy8b8wwdnjp97iX-LyGC_r4 priority: 102 providerName: Unpaywall  | 
    
| Title | Flue Gas Oxygen Content Model Based on Bayesian Optimization Main–Compensation Ensemble Algorithm in Municipal Solid Waste Incineration Process | 
    
| URI | https://www.proquest.com/docview/3188882572 https://doi.org/10.3390/su17073048  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 17 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: A8Z dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwED5t3cPgYYLBtLIxWTCJp4jGdpvmAU0dajeQ1k2DivIUObYzKqVJWVKxvu0vTPxDfgl3jbMOHpanxHISK3c-3zn33QdwGApf29CGXkclwpNSKpxSeGkDqTCeUFy0CTt8NuycjuTncXu8BsMaC0NplbVNXBpqk2vaI3-PuocHKhg_mv30iDWK_q7WFBrKUSuYD8sSY-uwwakyVgM2jvvDi8v7XZeWQJXzO1WdUoHxPsrbD0jNiQDowcr0v31-CpvzbKYWv1SaPliABs9gy3mOrFeJ-jms2WwbNmtgcbENO_0VaA07ullbvIC7QTq37EQV7PxmgQrDliWpspIREVrKjnEhMyzP8GRhCVPJztGOTB1Ak52pSfbn9jcZDgx5q7Z-VthpnFrWS6_wI5U_pmyCPQlpMpnRu_N0Ytg3hSrE0AIRwLC60eESXsJo0P_68dRzVAyeFjwsPUM5bOgc8sCakHeCwJdx7IftQOrAapMQwDVp-Vpjo1SxUdZqGaCziP4AV0kgdqCR5ZndBca7Cp2MVjuJdUsaHipt_FgkGKnwWAkTNuFtLYZoVlXciDBSIWFFK2E14Q1JKKISFhnlyFypeVFEn75cRr2u6BKjCOdNeOc6JXl5rbRykAMcCFW9-qfnfi3pyE3iIlqpXBMO76X_yKBePf6UPXjCiT14mfezD43yem5fo0tTxgdOTw9g_WTs49VoeNH7_hcqRPvP | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6V9hA4IChUpC2wgiJOFvHuJo4PFUohIaFNikqr9mbWu-sSyXFC7ajkxisg3oeH4UmYSdZN4dBbfbKt9Y_0fTs_9n4zADuh8LUNbeg1VCI8KaXCKYWHNpAK8wnFRZ20w_1Bo3siP57Vz1bgd6mFoWWVpU2cG2oz1vSN_A1yDzckGH87-eZR1yj6u1q20FCutYLZnZcYc8KOfTu7xBQu3-29R7xfcd5pH7_req7LgKcFDwvP0PIsjHt4YE3IG0Hgyzj2w3ogdWC1SUi7mdR8rfGkVLFR1moZYByEro6rJBB43zuwJoUMMflb22sPPh1dfeWpCaS431jURRUirCG__ICmFTUcuuYJ__cH96AyzSZqdqnS9JrD6zyA-y5SZa0FtR7Cis3WoVIKmfN12GgvRXI40FmJ_BH87KRTyz6onB1-nyFB2bwEVlYwaryWsj10nIaNM9yZWdJwskO0WyMnCGV9Ncz-_PhFhgpT7MW5dpbbUZxa1krPEZTi64gNcSQpW4YTevY4HRp2qpCyDC0eCRoXFzodxGM4uRVQNmA1G2f2CTDeVBjU1OpJrGvS8FBp48ciwcyIx0qYsAovSxiiyaLCR4SZEYEVLcGqwgtCKKKSGRmtyTlX0zyPep-PolZTNKmDCedVeO0GJePiQmnlJA74IlRl65-R2yXSkTMaebSkeBV2rtC_4aU2b77Lc6h0j_sH0UFvsL8Fdzl1Lp6vOdqG1eJiap9iOFXEzxxnGXy57WnyFw7XNZ8 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVqLlgKBQESiwgiJOVu1dJ44PFUppQkNpWhWq9mbWu-s2kmOH2lHJjVdAvBWPwZMwE6-bwqG3-mRb6x_p-3Z-7P1mADZC4SkTmtBpyUQ4vu9LnFJ4aAJfYj4huWiSdnh_0No99j-eNk8X4HethaFllbVNnBlqnSv6Rr6J3MMNCcY3E7ss4nCn9278zaEOUvSntW6nIW2bBb01KzdmRR57ZnqJ6Vyx1d9B7N9w3ut-eb_r2I4DjhI8LB1NS7UwBuKB0SFvBYHnx7EXNgNfBUbphHSciesphSd9GWtpjPIDjInQ7XGZBALveweW6OcXGoml7e7g8Ojqi48rkO5eq6qRKkToIte8gKYYNR-65hX_9w33YHmSjeX0UqbpNefXewD3bdTKOhXNHsKCyVZhuRY1F6uw1p0L5nCgtRjFI_jZSyeGfZAFO_g-RbKyWTmsrGTUhC1l2-hENcsz3Jka0nOyA7RhIysOZftymP358YuMFqbb1bluVphRnBrWSc8QlPJ8xIY4klQuwzE9O0-Hmp1IpC9D60fixupCq4l4DMe3AsoaLGZ5Zp4A422JAY7bTGLl-pqHUmkvFglmSTyWQocNeF3DEI2rah8RZkkEVjQHqwGvCKGIymdkRMQzOSmKqP_5KOq0RZu6mXDegLd2UJKXF1JJK3fAF6GKW_-MXK-RjqwBKaI53RuwcYX-DS_19Oa7vIS7OF2iT_3B3jNY4dTEeLb8aB0Wy4uJeY6RVRm_sJRl8PW2Z8lfItg5zg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6V7aFw4KdQsVCQVSpxSrWxnfXmuFS7FKS2CFhRTpFjOyUi66w2iWA58QqIN-RJGDcObfdQkVPijJWRPZ4fZb4ZgP2YhcrEJg6GMmMB51zikcJHI7jEeEJSFjns8PHJ8GjG355FZxuw12Fhrvy_ZxiO43aEwkkhH92CzWGE_nYPNmcn78afXdc4tI-oR6JBW3d0bcI1S7Oub-_AVmMXcvVNFsUVgzK9B4cdK20eydeDpk4P1I-1Ko0383of7np_koxbAXgAG8Zuw1YHN662YWdyCWVDQn-Wq4fwa1o0hryWFTn9vkIxIheFqmxNXHu0grxC86ZJafFmZRzSkpyidpl72CY5lrn98_O3UycYCLdjE1uZeVoYMi7Oy2Vef5mTHCkd_iRfuG-XRa7JJ4mCRVAvOdhhO9GjFR7BbDr5eHgU-AYNgWI0rgPtMtvQZaTC6JgOhQh5moZxJLgSRunMwV6zQagUDnKZammM4gJdSPQSqMwE24GeLa15DISOJLoegyhL1YBrGkulw5RlGL_QVDId9-FFt5nJoq3DkWD84tY9uVz3Puy5fU5cYQvrMmfOZVNVyZsP75PxiI1cnxFK-_DSE2VlvZRKeiACMuJqYV2j3O3kJfFHu0pQCeKFmg5f7_-ToRuYevJ_ZE_hNnW9hS-ygnahVy8b8wwdnjp97iX-LyGC_r4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flue+Gas+Oxygen+Content+Model+Based+on+Bayesian+Optimization+Main%E2%80%93Compensation+Ensemble+Algorithm+in+Municipal+Solid+Waste+Incineration+Process&rft.jtitle=Sustainability&rft.au=Yang%2C+Weiwei&rft.au=Tang%2C+Jian&rft.au=Tian%2C+Hao&rft.au=Wang%2C+Tianzheng&rft.date=2025-04-01&rft.pub=MDPI+AG&rft.eissn=2071-1050&rft.volume=17&rft.issue=7&rft.spage=3048&rft_id=info:doi/10.3390%2Fsu17073048&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon |