Flue Gas Oxygen Content Model Based on Bayesian Optimization Main–Compensation Ensemble Algorithm in Municipal Solid Waste Incineration Process

The municipal solid waste incineration (MSWI) process plays a crucial role in managing the risks associated with waste accumulation and promoting the sustainable development of urban environments. However, unstable operation of the MSWI process can lead to excessive pollutant emissions, deterioratin...

Full description

Saved in:
Bibliographic Details
Published inSustainability Vol. 17; no. 7; p. 3048
Main Authors Yang, Weiwei, Tang, Jian, Tian, Hao, Wang, Tianzheng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2025
Subjects
Online AccessGet full text
ISSN2071-1050
2071-1050
DOI10.3390/su17073048

Cover

Abstract The municipal solid waste incineration (MSWI) process plays a crucial role in managing the risks associated with waste accumulation and promoting the sustainable development of urban environments. However, unstable operation of the MSWI process can lead to excessive pollutant emissions, deteriorating air quality, and adverse impacts on public health. Flue gas oxygen content is a key controlled variable in the MSWI process, and its stable control is closely linked to both incineration efficiency and pollutant emissions. Developing a high-precision, interpretable model for flue gas oxygen content is essential for achieving optimal control. However, existing methods face challenges such as poor interpretability, low accuracy, and the complexity of manual hyperparameter tuning. To address these issues, this article proposes a flue gas oxygen content model based on a Bayesian optimization (BO) main–compensation ensemble modeling algorithm. The model first utilizes an ensemble TS fuzzy regression tree (EnTSFRT) to construct the main model. Then, a long short-term memory network (LSTM) is employed to build the compensation model, using the error of the EnTSFRT model as the target value. The final output is obtained through a weighted combination of the main and compensation models. Finally, the hyperparameters of the main–compensation ensemble model are optimized using the BO algorithm to achieve a high generalization performance. Experimental results based on real MSWI process data demonstrate that the proposed method performs well, achieving a 48.2% reduction in RMSE and a 53.1% reduction in MAE, while R2 increases by 140.8%, compared to the BO-EnTSFRT method that uses only the main model.
AbstractList The municipal solid waste incineration (MSWI) process plays a crucial role in managing the risks associated with waste accumulation and promoting the sustainable development of urban environments. However, unstable operation of the MSWI process can lead to excessive pollutant emissions, deteriorating air quality, and adverse impacts on public health. Flue gas oxygen content is a key controlled variable in the MSWI process, and its stable control is closely linked to both incineration efficiency and pollutant emissions. Developing a high-precision, interpretable model for flue gas oxygen content is essential for achieving optimal control. However, existing methods face challenges such as poor interpretability, low accuracy, and the complexity of manual hyperparameter tuning. To address these issues, this article proposes a flue gas oxygen content model based on a Bayesian optimization (BO) main–compensation ensemble modeling algorithm. The model first utilizes an ensemble TS fuzzy regression tree (EnTSFRT) to construct the main model. Then, a long short-term memory network (LSTM) is employed to build the compensation model, using the error of the EnTSFRT model as the target value. The final output is obtained through a weighted combination of the main and compensation models. Finally, the hyperparameters of the main–compensation ensemble model are optimized using the BO algorithm to achieve a high generalization performance. Experimental results based on real MSWI process data demonstrate that the proposed method performs well, achieving a 48.2% reduction in RMSE and a 53.1% reduction in MAE, while R[sup.2] increases by 140.8%, compared to the BO-EnTSFRT method that uses only the main model.
The municipal solid waste incineration (MSWI) process plays a crucial role in managing the risks associated with waste accumulation and promoting the sustainable development of urban environments. However, unstable operation of the MSWI process can lead to excessive pollutant emissions, deteriorating air quality, and adverse impacts on public health. Flue gas oxygen content is a key controlled variable in the MSWI process, and its stable control is closely linked to both incineration efficiency and pollutant emissions. Developing a high-precision, interpretable model for flue gas oxygen content is essential for achieving optimal control. However, existing methods face challenges such as poor interpretability, low accuracy, and the complexity of manual hyperparameter tuning. To address these issues, this article proposes a flue gas oxygen content model based on a Bayesian optimization (BO) main–compensation ensemble modeling algorithm. The model first utilizes an ensemble TS fuzzy regression tree (EnTSFRT) to construct the main model. Then, a long short-term memory network (LSTM) is employed to build the compensation model, using the error of the EnTSFRT model as the target value. The final output is obtained through a weighted combination of the main and compensation models. Finally, the hyperparameters of the main–compensation ensemble model are optimized using the BO algorithm to achieve a high generalization performance. Experimental results based on real MSWI process data demonstrate that the proposed method performs well, achieving a 48.2% reduction in RMSE and a 53.1% reduction in MAE, while R2 increases by 140.8%, compared to the BO-EnTSFRT method that uses only the main model.
Audience Academic
Author Wang, Tianzheng
Tang, Jian
Tian, Hao
Yang, Weiwei
Author_xml – sequence: 1
  givenname: Weiwei
  surname: Yang
  fullname: Yang, Weiwei
– sequence: 2
  givenname: Jian
  orcidid: 0000-0003-2270-268X
  surname: Tang
  fullname: Tang, Jian
– sequence: 3
  givenname: Hao
  orcidid: 0009-0003-8219-2957
  surname: Tian
  fullname: Tian, Hao
– sequence: 4
  givenname: Tianzheng
  orcidid: 0009-0001-3334-880X
  surname: Wang
  fullname: Wang, Tianzheng
BookMark eNp9kc9u1DAQxi1UJErphSewxAmqLf6TxMlxWbVlpVaLKIhj5HUmiyvHDh5HdDnxCog35EnwKkjQC-ODR59-32j8-Sk58sEDIc85O5eyYa9x4oopyYr6ETkWTPEFZyU7-qd_Qk4R71guKXnDq2Py49JNQK800s39fgeeroJP4BO9CR04-kYjdDT43OwBrfZ0MyY72G862azeaOt_ff-5CsMIHmftwiMMWwd06XYh2vR5oDaTk7fGjtrR2-BsRz9pTEDX3lgPcTa-i8EA4jPyuNcO4fTPfUI-Xl58WL1dXG-u1qvl9cJI0aRFJ_IjeMWFgq4RlVK82G55U6rCKDBdX4m66hk3JouF3nYawBSqrMqa10L3Sp6Qs3nu5Ee9_6qda8doBx33LWftIdD2b6CZfjHTYwxfJsDU3oUp-rxgK3mdS5RKZOp8pnbaQWt9H1LUJp8OBmvyb_U268ta1qyqmTgYXj4wmEP692mnJ8R2ffv-IftqZk0MiBH6_-37G8agpFA
Cites_doi 10.1016/j.cja.2021.03.027
10.1016/j.knosys.2024.112116
10.1016/j.jclepro.2021.126144
10.1016/j.bej.2024.109380
10.1109/ACCESS.2022.3185607
10.1016/j.jmaa.2024.128649
10.1109/MCI.2022.3223496
10.1016/j.resconrec.2023.107177
10.1007/s11356-023-28866-2
10.1007/s11356-023-28724-1
10.1016/j.compchemeng.2022.107850
10.1007/s40815-023-01459-4
10.1109/TFUZZ.2022.3221790
10.1109/CAC57257.2022.10055433
10.1214/aos/1013203451
10.1016/j.psep.2022.04.062
10.1038/s41467-021-27624-7
10.1109/JPROC.2021.3060483
10.1109/12.106218
10.1016/j.scitotenv.2023.167952
10.1038/nnano.2012.64
10.1109/CAC57257.2022.10054931
10.1016/j.measurement.2024.115036
10.1109/TFUZZ.2017.2752136
10.1016/j.wasman.2017.04.014
10.1016/j.jhazmat.2021.125132
10.1016/j.asoc.2023.110925
10.1016/j.tsep.2024.102784
10.1016/j.renene.2024.120299
10.1109/TASE.2022.3227918
10.1109/TSMC.2023.3326154
10.1016/j.jclepro.2024.141313
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
4U-
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/su17073048
DatabaseName CrossRef
Gale In Context: Science
University Readers
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (subscription)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
University Readers
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 2071-1050
ExternalDocumentID 10.3390/su17073048
A838068022
10_3390_su17073048
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29Q
2WC
2XV
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
AAYXX
ACHQT
ADBBV
ADMLS
AENEX
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
E3Z
ECGQY
ESTFP
FRS
GX1
IAO
IEP
ISR
ITC
KQ8
ML.
MODMG
M~E
OK1
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
4U-
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
C1A
IPNFZ
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c329t-d200316127ed9267714bb19574c7ecdf6286f01ccb194abdaeec475658182af73
IEDL.DBID BENPR
ISSN 2071-1050
IngestDate Sun Sep 07 11:04:29 EDT 2025
Mon Jun 30 11:47:22 EDT 2025
Mon Oct 20 16:56:02 EDT 2025
Thu Oct 16 15:34:40 EDT 2025
Thu Oct 16 04:44:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c329t-d200316127ed9267714bb19574c7ecdf6286f01ccb194abdaeec475658182af73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0003-8219-2957
0000-0003-2270-268X
0009-0001-3334-880X
OpenAccessLink https://www.proquest.com/docview/3188882572?pq-origsite=%requestingapplication%&accountid=15518
PQID 3188882572
PQPubID 2032327
ParticipantIDs unpaywall_primary_10_3390_su17073048
proquest_journals_3188882572
gale_infotracacademiconefile_A838068022
gale_incontextgauss_ISR_A838068022
crossref_primary_10_3390_su17073048
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sustainability
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Walser (ref_7) 2012; 7
Sildir (ref_20) 2022; 163
Samek (ref_22) 2021; 109
Ma (ref_37) 2024; 300
Zhao (ref_12) 2023; 30
Li (ref_18) 2017; 26
ref_32
Song (ref_3) 2023; 198
Heiskanen (ref_27) 2022; 10
ref_31
Chen (ref_5) 2019; 34
ref_30
Meng (ref_29) 2023; 25
Lin (ref_25) 1991; 40
Zhou (ref_39) 2024; 540
Deng (ref_38) 2024; 39
Zhang (ref_8) 2021; 411
Xia (ref_23) 2023; 31
Cho (ref_19) 2022; 162
Wang (ref_35) 2014; 40
Zhang (ref_36) 2024; 445
Ma (ref_24) 2024; 235
Chen (ref_11) 2024; 225
Zhang (ref_10) 2024; 907
ref_21
Friedman (ref_34) 2001; 29
Ali (ref_2) 2023; 30
Kiesewetter (ref_1) 2022; 13
Sun (ref_17) 2024; 54
Sun (ref_15) 2024; 41
Wu (ref_26) 2023; 18
Tang (ref_4) 2023; 49
Qiao (ref_14) 2022; 21
Huang (ref_16) 2023; 149
Li (ref_33) 2022; 35
Lu (ref_9) 2017; 69
Alrbai (ref_28) 2024; 54
ref_6
Ding (ref_13) 2021; 293
References_xml – ident: ref_30
– volume: 35
  start-page: 346
  year: 2022
  ident: ref_33
  article-title: Positioning error compensation of an industrial robot using neural networks and experimental study
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2021.03.027
– volume: 300
  start-page: 112116
  year: 2024
  ident: ref_37
  article-title: Interpretable multi-task neural network modeling and particle swarm optimization of process parameters in laser welding
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2024.112116
– volume: 293
  start-page: 126144
  year: 2021
  ident: ref_13
  article-title: A review of China’s municipal solid waste (MSW) and comparison with international regions: Management and technologies in treatment and resource utilization
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.126144
– volume: 49
  start-page: 2019
  year: 2023
  ident: ref_4
  article-title: Research status and prospect of intelligent optimization control of municipal solid waste incineration process
  publication-title: Acta Autom. Sin.
– ident: ref_21
  doi: 10.1016/j.bej.2024.109380
– volume: 41
  start-page: 484
  year: 2024
  ident: ref_15
  article-title: Data-driven predictive control of flue gas oxygen content in municipal solid waste incineration process
  publication-title: Control. Theory Appl.
– volume: 10
  start-page: 68099
  year: 2022
  ident: ref_27
  article-title: Explainable steel quality prediction system based on gradient boosting decision trees
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3185607
– volume: 540
  start-page: 128649
  year: 2024
  ident: ref_39
  article-title: Online robust parameter design using sequential support vector regression based Bayesian optimization
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2024.128649
– volume: 39
  start-page: 100600
  year: 2024
  ident: ref_38
  article-title: Intelligent optimization design of squeeze casting process parameters based on neural network and improved sparrow search algorithm
  publication-title: J. Ind. Inf. Integr.
– volume: 18
  start-page: 81
  year: 2023
  ident: ref_26
  article-title: Type-1 and interval type-2 fuzzy systems
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2022.3223496
– volume: 198
  start-page: 107177
  year: 2023
  ident: ref_3
  article-title: Residual municipal solid waste to energy under carbon neutrality: Challenges and perspectives for China
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2023.107177
– volume: 30
  start-page: 91173
  year: 2023
  ident: ref_12
  article-title: The impact of artificial intelligence on pollution emission intensity—evidence from China
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-023-28866-2
– volume: 30
  start-page: 88891
  year: 2023
  ident: ref_2
  article-title: Impact of pollution prevention strategies on environment sustainability: Role of environmental management accounting and environmental proactivity
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-023-28724-1
– volume: 163
  start-page: 107850
  year: 2022
  ident: ref_20
  article-title: Optimal artificial neural network architecture design for modeling an industrial ethylene oxide plant
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107850
– volume: 25
  start-page: 1559
  year: 2023
  ident: ref_29
  article-title: Fuzzy reasoning based on truth-value progression: A control-theoretic design approach
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-023-01459-4
– volume: 31
  start-page: 2210
  year: 2023
  ident: ref_23
  article-title: Takagi–Sugeno Fuzzy Regression Trees With Application to Complex Industrial Modeling
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2022.3221790
– ident: ref_32
  doi: 10.1109/CAC57257.2022.10055433
– volume: 34
  start-page: 797
  year: 2019
  ident: ref_5
  article-title: Research on risks and countermeasures of “cities besieged by waste” in China-an empirical analysis based on DIIS
  publication-title: Bull. Chin. Acad. Sci.
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref_34
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 162
  start-page: 813
  year: 2022
  ident: ref_19
  article-title: Multi-objective optimization of an explosive waste incineration process considering nitrogen oxides emission and process cost by using artificial neural network surrogate models
  publication-title: Process. Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.04.062
– volume: 13
  start-page: 106
  year: 2022
  ident: ref_1
  article-title: Potential for future reductions of global GHG and air pollutants from circular waste management systems
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27624-7
– volume: 109
  start-page: 247
  year: 2021
  ident: ref_22
  article-title: Explaining deep neural networks and beyond: A review of methods and applications
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2021.3060483
– volume: 40
  start-page: 1320
  year: 1991
  ident: ref_25
  article-title: Neural-network-based fuzzy logic control and decision system
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/12.106218
– ident: ref_6
– volume: 907
  start-page: 167952
  year: 2024
  ident: ref_10
  article-title: Comparing and optimizing municipal solid waste (MSW) management focused on air pollution reduction from MSW incineration in China
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2023.167952
– volume: 7
  start-page: 520
  year: 2012
  ident: ref_7
  article-title: Persistence of engineered nanoparticles in a municipal solid-waste incineration plant
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.64
– ident: ref_31
  doi: 10.1109/CAC57257.2022.10054931
– volume: 235
  start-page: 115036
  year: 2024
  ident: ref_24
  article-title: Prediction of flue gas oxygen content of power plant with stacked target-enhanced autoencoder and attention-based LSTM
  publication-title: Measurement
  doi: 10.1016/j.measurement.2024.115036
– volume: 26
  start-page: 1800
  year: 2017
  ident: ref_18
  article-title: A fault detection approach for nonlinear systems based on data-driven realizations of fuzzy kernel representations
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2017.2752136
– volume: 69
  start-page: 170
  year: 2017
  ident: ref_9
  article-title: Status and perspectives of municipal solid waste incineration in China: A comparison with developed regions
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2017.04.014
– volume: 411
  start-page: 125132
  year: 2021
  ident: ref_8
  article-title: Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.125132
– volume: 149
  start-page: 110925
  year: 2023
  ident: ref_16
  article-title: Adaptive multi-objective competitive swarm optimization algorithm based on kinematic analysis for municipal solid waste incineration
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110925
– volume: 54
  start-page: 102784
  year: 2024
  ident: ref_28
  article-title: Utilizing waste heat in wastewater treatment plants for water desalination: Modeling and Multi-Objective optimization of a Multi-Effect desalination system using Decision Tree Regression and Pelican optimization algorithm
  publication-title: Therm. Sci. Eng. Prog.
  doi: 10.1016/j.tsep.2024.102784
– volume: 40
  start-page: 1875
  year: 2014
  ident: ref_35
  article-title: Research on the application of ellipsoid bound algorithm in hybrid modeling
  publication-title: Acta Autom. Sin.
– volume: 225
  start-page: 120229
  year: 2024
  ident: ref_11
  article-title: Dynamic and optimal ash-to-gas responses of oxy-fuel and air combustions of soil remediation biomass
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2024.120299
– volume: 21
  start-page: 463
  year: 2022
  ident: ref_14
  article-title: Event-triggered adaptive model predictive control of oxygen content for municipal solid waste incineration process
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2022.3227918
– volume: 54
  start-page: 1982
  year: 2024
  ident: ref_17
  article-title: Event-based data-driven adaptive model predictive control for nonlinear dynamic processes
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2023.3326154
– volume: 445
  start-page: 141313
  year: 2024
  ident: ref_36
  article-title: Heterogeneous ensemble prediction model of CO emission concentration in municipal solid waste incineration process using virtual data and real data hybrid-driven
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2024.141313
SSID ssj0000331916
Score 2.3710473
Snippet The municipal solid waste incineration (MSWI) process plays a crucial role in managing the risks associated with waste accumulation and promoting the...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 3048
SubjectTerms Algorithms
Artificial intelligence
Carbon
Combustion research
Consumption
Decision trees
Desalination
Efficiency
Flue gas
Flue gases
Fuzzy logic
Gases
Incineration
Industrial plant emissions
Mathematical optimization
Methods
Multilevel analysis
Municipal solid waste
Neural networks
Optimization
Oxygen
Pollutants
Sustainable development
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6V7aFw4KdQsVCQVSpxSrWxnfXmuFS7FKS2CFhRTpFjOyUi66w2iWA58QqIN-RJGDcObfdQkVPijJWRPZ4fZb4ZgP2YhcrEJg6GMmMB51zikcJHI7jEeEJSFjns8PHJ8GjG355FZxuw12Fhrvy_ZxiO43aEwkkhH92CzWGE_nYPNmcn78afXdc4tI-oR6JBW3d0bcI1S7Oub-_AVmMXcvVNFsUVgzK9B4cdK20eydeDpk4P1I-1Ko0383of7np_koxbAXgAG8Zuw1YHN662YWdyCWVDQn-Wq4fwa1o0hryWFTn9vkIxIheFqmxNXHu0grxC86ZJafFmZRzSkpyidpl72CY5lrn98_O3UycYCLdjE1uZeVoYMi7Oy2Vef5mTHCkd_iRfuG-XRa7JJ4mCRVAvOdhhO9GjFR7BbDr5eHgU-AYNgWI0rgPtMtvQZaTC6JgOhQh5moZxJLgSRunMwV6zQagUDnKZammM4gJdSPQSqMwE24GeLa15DISOJLoegyhL1YBrGkulw5RlGL_QVDId9-FFt5nJoq3DkWD84tY9uVz3Puy5fU5cYQvrMmfOZVNVyZsP75PxiI1cnxFK-_DSE2VlvZRKeiACMuJqYV2j3O3kJfFHu0pQCeKFmg5f7_-ToRuYevJ_ZE_hNnW9hS-ygnahVy8b8wwdnjp97iX-LyGC_r4
  priority: 102
  providerName: Unpaywall
Title Flue Gas Oxygen Content Model Based on Bayesian Optimization Main–Compensation Ensemble Algorithm in Municipal Solid Waste Incineration Process
URI https://www.proquest.com/docview/3188882572
https://doi.org/10.3390/su17073048
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: A8Z
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwED5t3cPgYYLBtLIxWTCJp4jGdpvmAU0dajeQ1k2DivIUObYzKqVJWVKxvu0vTPxDfgl3jbMOHpanxHISK3c-3zn33QdwGApf29CGXkclwpNSKpxSeGkDqTCeUFy0CTt8NuycjuTncXu8BsMaC0NplbVNXBpqk2vaI3-PuocHKhg_mv30iDWK_q7WFBrKUSuYD8sSY-uwwakyVgM2jvvDi8v7XZeWQJXzO1WdUoHxPsrbD0jNiQDowcr0v31-CpvzbKYWv1SaPliABs9gy3mOrFeJ-jms2WwbNmtgcbENO_0VaA07ullbvIC7QTq37EQV7PxmgQrDliWpspIREVrKjnEhMyzP8GRhCVPJztGOTB1Ak52pSfbn9jcZDgx5q7Z-VthpnFrWS6_wI5U_pmyCPQlpMpnRu_N0Ytg3hSrE0AIRwLC60eESXsJo0P_68dRzVAyeFjwsPUM5bOgc8sCakHeCwJdx7IftQOrAapMQwDVp-Vpjo1SxUdZqGaCziP4AV0kgdqCR5ZndBca7Cp2MVjuJdUsaHipt_FgkGKnwWAkTNuFtLYZoVlXciDBSIWFFK2E14Q1JKKISFhnlyFypeVFEn75cRr2u6BKjCOdNeOc6JXl5rbRykAMcCFW9-qfnfi3pyE3iIlqpXBMO76X_yKBePf6UPXjCiT14mfezD43yem5fo0tTxgdOTw9g_WTs49VoeNH7_hcqRPvP
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6V9hA4IChUpC2wgiJOFvHuJo4PFUohIaFNikqr9mbWu-sSyXFC7ajkxisg3oeH4UmYSdZN4dBbfbKt9Y_0fTs_9n4zADuh8LUNbeg1VCI8KaXCKYWHNpAK8wnFRZ20w_1Bo3siP57Vz1bgd6mFoWWVpU2cG2oz1vSN_A1yDzckGH87-eZR1yj6u1q20FCutYLZnZcYc8KOfTu7xBQu3-29R7xfcd5pH7_req7LgKcFDwvP0PIsjHt4YE3IG0Hgyzj2w3ogdWC1SUi7mdR8rfGkVLFR1moZYByEro6rJBB43zuwJoUMMflb22sPPh1dfeWpCaS431jURRUirCG__ICmFTUcuuYJ__cH96AyzSZqdqnS9JrD6zyA-y5SZa0FtR7Cis3WoVIKmfN12GgvRXI40FmJ_BH87KRTyz6onB1-nyFB2bwEVlYwaryWsj10nIaNM9yZWdJwskO0WyMnCGV9Ncz-_PhFhgpT7MW5dpbbUZxa1krPEZTi64gNcSQpW4YTevY4HRp2qpCyDC0eCRoXFzodxGM4uRVQNmA1G2f2CTDeVBjU1OpJrGvS8FBp48ciwcyIx0qYsAovSxiiyaLCR4SZEYEVLcGqwgtCKKKSGRmtyTlX0zyPep-PolZTNKmDCedVeO0GJePiQmnlJA74IlRl65-R2yXSkTMaebSkeBV2rtC_4aU2b77Lc6h0j_sH0UFvsL8Fdzl1Lp6vOdqG1eJiap9iOFXEzxxnGXy57WnyFw7XNZ8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVqLlgKBQESiwgiJOVu1dJ44PFUppQkNpWhWq9mbWu-s2kmOH2lHJjVdAvBWPwZMwE6-bwqG3-mRb6x_p-3Z-7P1mADZC4SkTmtBpyUQ4vu9LnFJ4aAJfYj4huWiSdnh_0No99j-eNk8X4HethaFllbVNnBlqnSv6Rr6J3MMNCcY3E7ss4nCn9278zaEOUvSntW6nIW2bBb01KzdmRR57ZnqJ6Vyx1d9B7N9w3ut-eb_r2I4DjhI8LB1NS7UwBuKB0SFvBYHnx7EXNgNfBUbphHSciesphSd9GWtpjPIDjInQ7XGZBALveweW6OcXGoml7e7g8Ojqi48rkO5eq6qRKkToIte8gKYYNR-65hX_9w33YHmSjeX0UqbpNefXewD3bdTKOhXNHsKCyVZhuRY1F6uw1p0L5nCgtRjFI_jZSyeGfZAFO_g-RbKyWTmsrGTUhC1l2-hENcsz3Jka0nOyA7RhIysOZftymP358YuMFqbb1bluVphRnBrWSc8QlPJ8xIY4klQuwzE9O0-Hmp1IpC9D60fixupCq4l4DMe3AsoaLGZ5Zp4A422JAY7bTGLl-pqHUmkvFglmSTyWQocNeF3DEI2rah8RZkkEVjQHqwGvCKGIymdkRMQzOSmKqP_5KOq0RZu6mXDegLd2UJKXF1JJK3fAF6GKW_-MXK-RjqwBKaI53RuwcYX-DS_19Oa7vIS7OF2iT_3B3jNY4dTEeLb8aB0Wy4uJeY6RVRm_sJRl8PW2Z8lfItg5zg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6V7aFw4KdQsVCQVSpxSrWxnfXmuFS7FKS2CFhRTpFjOyUi66w2iWA58QqIN-RJGDcObfdQkVPijJWRPZ4fZb4ZgP2YhcrEJg6GMmMB51zikcJHI7jEeEJSFjns8PHJ8GjG355FZxuw12Fhrvy_ZxiO43aEwkkhH92CzWGE_nYPNmcn78afXdc4tI-oR6JBW3d0bcI1S7Oub-_AVmMXcvVNFsUVgzK9B4cdK20eydeDpk4P1I-1Ko0383of7np_koxbAXgAG8Zuw1YHN662YWdyCWVDQn-Wq4fwa1o0hryWFTn9vkIxIheFqmxNXHu0grxC86ZJafFmZRzSkpyidpl72CY5lrn98_O3UycYCLdjE1uZeVoYMi7Oy2Vef5mTHCkd_iRfuG-XRa7JJ4mCRVAvOdhhO9GjFR7BbDr5eHgU-AYNgWI0rgPtMtvQZaTC6JgOhQh5moZxJLgSRunMwV6zQagUDnKZammM4gJdSPQSqMwE24GeLa15DISOJLoegyhL1YBrGkulw5RlGL_QVDId9-FFt5nJoq3DkWD84tY9uVz3Puy5fU5cYQvrMmfOZVNVyZsP75PxiI1cnxFK-_DSE2VlvZRKeiACMuJqYV2j3O3kJfFHu0pQCeKFmg5f7_-ToRuYevJ_ZE_hNnW9hS-ygnahVy8b8wwdnjp97iX-LyGC_r4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flue+Gas+Oxygen+Content+Model+Based+on+Bayesian+Optimization+Main%E2%80%93Compensation+Ensemble+Algorithm+in+Municipal+Solid+Waste+Incineration+Process&rft.jtitle=Sustainability&rft.au=Yang%2C+Weiwei&rft.au=Tang%2C+Jian&rft.au=Tian%2C+Hao&rft.au=Wang%2C+Tianzheng&rft.date=2025-04-01&rft.pub=MDPI+AG&rft.eissn=2071-1050&rft.volume=17&rft.issue=7&rft.spage=3048&rft_id=info:doi/10.3390%2Fsu17073048&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon