Phase-Change Memory-Towards a Storage-Class Memory

Phase-change memory (PCM) has undergone significant academic and industrial research in the last 15 years. After much development, it is now poised to enter the market as a storage-class memory (SCM), with performance and cost between that of NAND flash and DRAM. In this paper, we review the history...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 64; no. 11; pp. 4374 - 4385
Main Authors Fong, Scott W., Neumann, Christopher M., Wong, H.-S Philip
Format Journal Article
LanguageEnglish
Published IEEE 01.11.2017
Subjects
Online AccessGet full text
ISSN0018-9383
1557-9646
DOI10.1109/TED.2017.2746342

Cover

Abstract Phase-change memory (PCM) has undergone significant academic and industrial research in the last 15 years. After much development, it is now poised to enter the market as a storage-class memory (SCM), with performance and cost between that of NAND flash and DRAM. In this paper, we review the history of phase-transforming chalcogenides leading up to our current understanding of PCM as either a storage-type SCM, with high-density and better than NAND flash endurance, write speeds, and retention, or a memory-type SCM, with fast read/write times to function as a nonvolatile DRAM. Several of the key findings from the community relating to device dimensional scaling, cell design, thermal engineering, material exploration, and storing multiple levels per cell will be discussed. These areas have dramatically impacted the course of development and understanding of PCM. We will highlight the performance gains attained and the future prospects, which will help drive PCM to be as ubiquitous as NAND flash in the upcoming decade.
AbstractList Phase-change memory (PCM) has undergone significant academic and industrial research in the last 15 years. After much development, it is now poised to enter the market as a storage-class memory (SCM), with performance and cost between that of NAND flash and DRAM. In this paper, we review the history of phase-transforming chalcogenides leading up to our current understanding of PCM as either a storage-type SCM, with high-density and better than NAND flash endurance, write speeds, and retention, or a memory-type SCM, with fast read/write times to function as a nonvolatile DRAM. Several of the key findings from the community relating to device dimensional scaling, cell design, thermal engineering, material exploration, and storing multiple levels per cell will be discussed. These areas have dramatically impacted the course of development and understanding of PCM. We will highlight the performance gains attained and the future prospects, which will help drive PCM to be as ubiquitous as NAND flash in the upcoming decade.
Author Fong, Scott W.
Neumann, Christopher M.
Wong, H.-S Philip
Author_xml – sequence: 1
  givenname: Scott W.
  surname: Fong
  fullname: Fong, Scott W.
  email: swfong@stanford.edu
  organization: Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA
– sequence: 2
  givenname: Christopher M.
  surname: Neumann
  fullname: Neumann, Christopher M.
  organization: Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA
– sequence: 3
  givenname: H.-S Philip
  surname: Wong
  fullname: Wong, H.-S Philip
  organization: Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA
BookMark eNp9j0tLw0AUhQepYFrdC27yBybOK_NYSqwPqCgY1-EmM2kjaUZmAtJ_b0qDCxeuLodzvgvfEi0GPziErinJKCXmtlzfZ4xQlTElJBfsDCU0zxU2UsgFSgihGhuu-QVaxvg5RSkESxB720F0uNjBsHXpi9v7cMCl_4ZgYwrp--gDbKe-hxjn-hKdt9BHdzXfFfp4WJfFE968Pj4XdxvccGZGXAugqqbGCs7BsdrmShgDjbK1lVbXNZ9mruFc2lZJ0oKhrQIQ2nGZC6v5CsnT3yb4GINrq6YbYez8MAbo-oqS6mheTebV0byazSeQ_AG_QreHcPgPuTkhnXPud66J0Hwa_ADg7mUc
CODEN IETDAI
CitedBy_id crossref_primary_10_1016_j_apsusc_2023_157642
crossref_primary_10_1088_1361_6528_ab4079
crossref_primary_10_1109_MCAS_2021_3092532
crossref_primary_10_1063_1_5132962
crossref_primary_10_1016_j_mssp_2021_105961
crossref_primary_10_1021_acsaelm_1c00491
crossref_primary_10_1038_s41598_024_73131_2
crossref_primary_10_1021_acs_chemrev_4c00512
crossref_primary_10_1038_s41565_023_01361_y
crossref_primary_10_1039_C9NA00366E
crossref_primary_10_1063_1_5109380
crossref_primary_10_1109_TCAD_2022_3204231
crossref_primary_10_1149_2162_8777_abffad
crossref_primary_10_1109_TED_2023_3264439
crossref_primary_10_1088_1361_6463_ad5605
crossref_primary_10_1007_s12274_021_3570_1
crossref_primary_10_3390_math11204325
crossref_primary_10_1007_s11669_024_01093_z
crossref_primary_10_1002_pssr_202100626
crossref_primary_10_1016_j_jallcom_2022_164057
crossref_primary_10_1016_j_chip_2022_100031
crossref_primary_10_1145_3631146
crossref_primary_10_1007_s10825_020_01504_7
crossref_primary_10_1063_1_5139595
crossref_primary_10_1063_5_0152049
crossref_primary_10_1109_LED_2023_3272884
crossref_primary_10_1116_6_0000321
crossref_primary_10_1016_j_jallcom_2020_156675
crossref_primary_10_1021_acsami_4c03148
crossref_primary_10_1109_TSM_2020_2983100
crossref_primary_10_1109_TED_2019_2945972
crossref_primary_10_1149_2_0981811jes
crossref_primary_10_3390_met11101605
crossref_primary_10_1103_PhysRevMaterials_5_095004
crossref_primary_10_1063_5_0174722
crossref_primary_10_1088_1361_6528_ac21ec
crossref_primary_10_1088_2752_5724_aca07b
crossref_primary_10_1016_j_apsusc_2021_150101
crossref_primary_10_1002_pssr_201900105
crossref_primary_10_1002_inf2_12233
crossref_primary_10_1145_3588436
crossref_primary_10_1021_acsami_3c19048
crossref_primary_10_1016_j_jallcom_2021_161701
crossref_primary_10_1109_TED_2022_3209639
crossref_primary_10_1002_pssr_202300426
crossref_primary_10_1002_pssr_202300429
crossref_primary_10_1016_j_mee_2019_111183
crossref_primary_10_1063_1_5134916
crossref_primary_10_1002_aelm_201900198
crossref_primary_10_1016_j_sse_2019_107684
crossref_primary_10_1038_s41467_024_45327_7
crossref_primary_10_1038_s41578_018_0076_x
crossref_primary_10_3390_mi13020266
crossref_primary_10_1016_j_sse_2021_108111
crossref_primary_10_1109_TED_2022_3231807
crossref_primary_10_1063_5_0048883
crossref_primary_10_1002_adma_202204944
crossref_primary_10_1021_acs_langmuir_4c01672
crossref_primary_10_1039_D3TC04131J
crossref_primary_10_1063_5_0226265
crossref_primary_10_1016_j_materresbull_2021_111679
crossref_primary_10_1039_D2TC04538A
crossref_primary_10_1109_LED_2021_3094765
crossref_primary_10_1109_JEDS_2018_2820319
crossref_primary_10_1002_pssr_202000434
crossref_primary_10_1088_1361_6463_ab642d
crossref_primary_10_1016_j_mattod_2023_10_004
crossref_primary_10_1021_acsami_4c14132
crossref_primary_10_1002_pssr_202200463
crossref_primary_10_1021_acsaelm_2c01757
crossref_primary_10_1039_D4CP00078A
crossref_primary_10_1039_D4TC02324B
crossref_primary_10_1063_5_0135185
crossref_primary_10_1021_acs_chemmater_8b02702
crossref_primary_10_35848_1347_4065_ab6d86
crossref_primary_10_1109_JXCDC_2022_3219731
crossref_primary_10_1016_j_jmst_2024_02_072
crossref_primary_10_1063_5_0190632
crossref_primary_10_1002_aelm_202100974
crossref_primary_10_1063_1_5143815
crossref_primary_10_1002_pssr_202200054
crossref_primary_10_3390_nano13212856
crossref_primary_10_1109_TCAD_2020_3012880
crossref_primary_10_3390_nano13172477
crossref_primary_10_1016_j_apsusc_2024_160749
crossref_primary_10_1109_TED_2022_3169118
crossref_primary_10_1021_acsnano_4c13450
crossref_primary_10_1039_D2TC03387A
crossref_primary_10_1109_TCAD_2019_2927502
crossref_primary_10_1002_adfm_201806338
crossref_primary_10_1039_C9TC07001J
crossref_primary_10_1016_j_jallcom_2023_172443
crossref_primary_10_1039_C8FD00119G
crossref_primary_10_1021_acs_langmuir_4c04836
crossref_primary_10_1016_j_orgel_2019_105584
crossref_primary_10_1002_admt_201900080
crossref_primary_10_1016_j_mssp_2021_105987
crossref_primary_10_1021_acsami_8b22580
crossref_primary_10_1088_1361_6641_ac8b2c
crossref_primary_10_1002_aelm_202300911
crossref_primary_10_3390_met11101531
crossref_primary_10_1109_TED_2022_3215550
crossref_primary_10_1063_5_0194334
crossref_primary_10_1109_ACCESS_2020_2973605
crossref_primary_10_1016_j_apsusc_2019_144337
crossref_primary_10_3390_app112210872
crossref_primary_10_1109_TCSII_2021_3049716
crossref_primary_10_1002_aelm_201700627
crossref_primary_10_1021_acsaelm_4c02332
crossref_primary_10_1109_TED_2019_2960444
crossref_primary_10_1021_acsaelm_3c01022
crossref_primary_10_1149_2162_8777_ad3365
crossref_primary_10_1039_D3TC00448A
crossref_primary_10_1116_6_0000336
crossref_primary_10_1002_adma_202414031
crossref_primary_10_1515_ntrev_2023_0181
crossref_primary_10_1002_advs_202304785
crossref_primary_10_1007_s40843_022_2028_7
crossref_primary_10_1039_D0TC01500H
crossref_primary_10_1016_j_apsusc_2023_157153
crossref_primary_10_1016_j_apsusc_2023_158362
crossref_primary_10_1109_LED_2021_3125193
crossref_primary_10_1021_acsnano_3c11019
crossref_primary_10_1007_s40820_020_00557_4
crossref_primary_10_1021_acsaelm_4c00721
crossref_primary_10_1016_j_jallcom_2023_170920
crossref_primary_10_1364_OME_462846
crossref_primary_10_1088_1674_1056_abeedf
crossref_primary_10_1002_pssr_202100291
crossref_primary_10_1002_adfm_202303956
crossref_primary_10_1587_elex_20_20230307
crossref_primary_10_1002_pssb_202400081
crossref_primary_10_1016_j_mssp_2022_107101
crossref_primary_10_1109_TED_2021_3059436
crossref_primary_10_1002_adfm_202407239
crossref_primary_10_1007_s11664_020_08590_0
crossref_primary_10_1063_1_5124027
crossref_primary_10_1002_pssr_202400416
crossref_primary_10_1002_admt_202301390
crossref_primary_10_1063_5_0153403
crossref_primary_10_1109_JFLEX_2023_3321256
crossref_primary_10_1039_D0TC00096E
crossref_primary_10_3390_electronics11121822
crossref_primary_10_1088_1361_6528_acb446
crossref_primary_10_1088_1402_4896_ad6ae9
crossref_primary_10_1145_3485824
crossref_primary_10_1021_acsnano_3c10312
crossref_primary_10_1103_PhysRevMaterials_5_045004
crossref_primary_10_1002_advs_202004185
crossref_primary_10_3390_nano13040671
crossref_primary_10_1039_D2TC00784C
crossref_primary_10_3390_met11121885
crossref_primary_10_1109_JPROC_2020_3011953
crossref_primary_10_1063_1_5100840
crossref_primary_10_1016_j_microrel_2020_113823
crossref_primary_10_1038_s41928_021_00632_7
crossref_primary_10_1016_j_sse_2020_107955
crossref_primary_10_1109_TNANO_2019_2910846
crossref_primary_10_1016_j_sysarc_2024_103310
crossref_primary_10_1002_pssr_202100470
crossref_primary_10_1002_adma_201806790
crossref_primary_10_1038_s41563_018_0114_5
crossref_primary_10_1587_transinf_2019EDL8022
crossref_primary_10_1002_adfm_202501546
crossref_primary_10_1002_admt_202200214
crossref_primary_10_1002_advs_202103478
crossref_primary_10_1021_acsami_9b16111
crossref_primary_10_1016_j_actamat_2024_120123
crossref_primary_10_1063_5_0081016
crossref_primary_10_1109_LED_2023_3296807
crossref_primary_10_1109_TED_2020_3016625
crossref_primary_10_1002_admt_202400440
crossref_primary_10_1109_TED_2022_3221355
crossref_primary_10_1021_acs_nanolett_4c03900
crossref_primary_10_3390_met11091350
crossref_primary_10_1063_5_0084889
crossref_primary_10_1002_adma_202204771
crossref_primary_10_1016_j_jallcom_2023_172697
crossref_primary_10_1088_2515_7639_ad5251
crossref_primary_10_1088_1361_6528_aae4f4
crossref_primary_10_1109_ACCESS_2020_3042012
crossref_primary_10_1002_smtd_202401381
crossref_primary_10_1109_TBCAS_2022_3204742
crossref_primary_10_3390_biomimetics9090578
crossref_primary_10_3389_fpsyg_2022_907818
crossref_primary_10_1103_PhysRevMaterials_5_085601
crossref_primary_10_1007_s11664_023_10268_2
crossref_primary_10_1039_C8FD00126J
crossref_primary_10_1088_1361_6528_ac512c
crossref_primary_10_1109_ACCESS_2020_2990536
crossref_primary_10_3390_nano10050994
crossref_primary_10_1109_TCPMT_2020_2984268
crossref_primary_10_1002_sdtp_14860
crossref_primary_10_1002_advs_202202222
crossref_primary_10_1145_3465402
crossref_primary_10_1002_aelm_202101083
crossref_primary_10_1016_j_pmatsci_2023_101130
crossref_primary_10_1088_1361_6463_ab614a
crossref_primary_10_1088_2631_7990_ad1575
crossref_primary_10_1016_j_mne_2018_11_002
crossref_primary_10_1088_1361_6641_ab591a
crossref_primary_10_1116_6_0003890
crossref_primary_10_1016_j_pmatsci_2024_101311
crossref_primary_10_1016_j_chaos_2024_115169
crossref_primary_10_1021_acsnano_0c10049
crossref_primary_10_3788_gzxb20245307_0731002
crossref_primary_10_1002_pssr_202000392
crossref_primary_10_1126_science_aay0291
crossref_primary_10_1016_j_surfin_2024_105101
crossref_primary_10_1021_acs_chemmater_4c00286
crossref_primary_10_1063_1_5080959
crossref_primary_10_1002_pssr_202000394
crossref_primary_10_1016_j_chaos_2021_110783
crossref_primary_10_1088_1361_6463_ab5478
crossref_primary_10_3390_nano12121996
crossref_primary_10_1002_pssr_201800552
crossref_primary_10_1016_j_vacuum_2024_113342
crossref_primary_10_1109_TED_2020_2965182
crossref_primary_10_1149_2162_8777_ad2332
crossref_primary_10_3390_electronics13224488
crossref_primary_10_3390_nano13061050
crossref_primary_10_1002_aelm_202100217
crossref_primary_10_1002_pssr_201900320
crossref_primary_10_1002_pssr_202000382
crossref_primary_10_1038_s41467_021_25258_3
crossref_primary_10_1002_pssr_202200433
crossref_primary_10_1002_advs_202300901
crossref_primary_10_1088_2515_7647_ac051b
crossref_primary_10_1016_j_apsusc_2021_152164
crossref_primary_10_1021_acsaelm_9b00070
crossref_primary_10_1016_j_mser_2024_100825
crossref_primary_10_1088_1361_6641_ab4011
crossref_primary_10_1016_j_sysarc_2023_103008
crossref_primary_10_1021_acsami_1c06618
crossref_primary_10_1021_acs_jpcc_0c01824
crossref_primary_10_3390_met11081207
crossref_primary_10_1063_5_0234139
crossref_primary_10_1109_ACCESS_2024_3365632
crossref_primary_10_1063_5_0206244
crossref_primary_10_1016_j_nanoen_2024_109958
crossref_primary_10_1039_D4NR04728A
crossref_primary_10_1063_5_0037411
crossref_primary_10_1038_s41524_020_0303_z
crossref_primary_10_1039_D3MH00508A
crossref_primary_10_1016_j_jallcom_2023_172284
crossref_primary_10_1002_aelm_202300890
crossref_primary_10_1088_1361_6463_ab7794
crossref_primary_10_1007_s10854_024_12689_z
crossref_primary_10_1134_S0036023623603501
crossref_primary_10_1364_OL_531446
crossref_primary_10_1063_5_0142536
crossref_primary_10_1109_ACCESS_2020_2980302
crossref_primary_10_3390_ma13010166
crossref_primary_10_1088_1361_6463_ab5d6e
crossref_primary_10_1088_1361_6463_ab5d81
crossref_primary_10_1002_adma_202419444
crossref_primary_10_1126_scirobotics_abl7344
crossref_primary_10_1021_acsanm_4c00809
crossref_primary_10_1109_TCAD_2021_3049677
crossref_primary_10_1016_j_chaos_2024_115536
crossref_primary_10_1063_5_0146349
crossref_primary_10_1016_j_mssp_2023_107914
crossref_primary_10_1002_adfm_202009803
crossref_primary_10_3390_nano15030231
crossref_primary_10_1038_s41524_024_01387_3
crossref_primary_10_1038_s41524_021_00496_7
crossref_primary_10_1039_D0NR08768H
crossref_primary_10_1002_pssr_202200417
crossref_primary_10_1002_pssr_202000482
crossref_primary_10_1016_j_cap_2022_11_007
crossref_primary_10_1109_LED_2020_3028271
crossref_primary_10_1016_j_jallcom_2022_164593
crossref_primary_10_1017_S1431927618010000
crossref_primary_10_1002_pssr_202200419
crossref_primary_10_1109_TED_2021_3114264
crossref_primary_10_1088_1361_6641_abc390
crossref_primary_10_1126_sciadv_aay6726
crossref_primary_10_1039_D1TC00186H
crossref_primary_10_1038_s41524_023_01098_1
crossref_primary_10_1063_1_5093907
crossref_primary_10_1063_1_5120565
crossref_primary_10_3390_coatings10090908
crossref_primary_10_1039_C8NR06694A
crossref_primary_10_1088_2053_1591_ac3953
crossref_primary_10_1002_pssr_202000354
crossref_primary_10_1109_TMAG_2023_3322731
crossref_primary_10_1021_acsami_3c10785
crossref_primary_10_3390_nano13121879
crossref_primary_10_1002_adma_202109139
crossref_primary_10_1109_TED_2023_3288514
crossref_primary_10_1109_TNANO_2023_3292481
crossref_primary_10_1109_ACCESS_2022_3201750
Cites_doi 10.1109/IEDM.2013.6724683
10.1063/1.4955165
10.1109/IEDM.2011.6131479
10.1088/0957-4484/24/38/382001
10.1109/LED.2011.2157075
10.1109/IEDM.2016.7838342
10.1145/2463585.2463588
10.1109/LED.2008.2003012
10.1109/VLSIT.2004.1345368
10.1063/1.348620
10.1109/IEDM.2013.6724724
10.1149/1.3439647
10.1109/IEDM.2011.6131482
10.1109/JPROC.2010.2070050
10.1021/acs.nanolett.5b02661
10.1109/VLSIT.2003.1221142
10.1063/1.3599559
10.1021/nl201040y
10.1109/TVLSI.2010.2052640
10.1109/TED.2017.2756071
10.1109/IEDM.2013.6724727
10.1126/science.1201938
10.1109/ITHERM.2006.1645408
10.1109/IEDM.2015.7409620
10.1109/NVMT.2007.4389940
10.1063/1.2830002
10.1109/IEDM.2003.1269423
10.1016/0022-3093(70)90092-X
10.1109/IEDM.2007.4418935
10.1109/TED.2015.2439635
10.1109/IEDM.2007.4419107
10.1109/DFT.2014.6962060
10.1103/RevModPhys.50.209
10.1063/1.2930680
10.1063/1.3626047
10.1109/IEDM.2003.1269271
10.1109/IEDM.2009.5424415
10.1109/LED.2009.2035139
10.12988/ces.2013.13017
10.1103/PhysRevLett.21.1450
10.1109/ESSDERC.2011.6044225
10.1038/nmat2009
10.1109/IEDM.2015.7409621
10.1109/IEDM.2001.979636
10.1109/IRPS.2015.7112808
10.1016/j.jnoncrysol.2015.11.013
10.1109/IEDM.2006.346910
10.1109/NVMTS.2014.7060836
10.1038/srep12612
10.1145/1555815.1555758
10.1109/IEDM.2016.7838343
10.1109/IMW.2017.7939079
10.1063/1.3653279
10.1109/TED.2004.825805
10.1109/VLSIT.2016.7573405
10.1147/rd.524.0449
10.1109/IEDM.2006.346908
10.1002/9781118958254
10.1109/IEDM.2003.1269376
10.1109/IEDM.2014.7047138
10.1088/0034-4885/33/3/306
10.1109/IRPS.2015.7112747
10.1021/nl3038097
10.1109/VLSIT.2012.6242448
10.1557/mrs.2014.139
10.1109/IEDM.2003.1269422
10.1147/rd.524.0439
10.1016/0022-3093(70)90149-3
10.1063/1.2825650
10.1109/JPROC.2012.2190369
10.1109/VLSIT.2015.7223705
10.1109/JETCAS.2016.2547718
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TED.2017.2746342
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9646
EndPage 4385
ExternalDocumentID 10_1109_TED_2017_2746342
8048346
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation Graduate Research Fellowship
  grantid: DGE-4747
  funderid: 10.13039/100000001
– fundername: MARCO and DARPA through SONIC, one of six centers of STARnet, a Semiconductor Research Corporation Program
  funderid: 10.13039/100000028
– fundername: Stanford Non-Volatile Memory Technology Research Initiative at Stanford University
  funderid: 10.13039/100005492
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
VOH
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c329t-b4a17b19d433ae2bd57499ac7dbd6d8bb3329ec336df760fa91f7aa48e3654d83
IEDL.DBID RIE
ISSN 0018-9383
IngestDate Tue Jul 01 01:46:20 EDT 2025
Thu Apr 24 23:08:01 EDT 2025
Tue Aug 26 16:43:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c329t-b4a17b19d433ae2bd57499ac7dbd6d8bb3329ec336df760fa91f7aa48e3654d83
ORCID 0000-0002-4705-9478
0000-0003-4894-6164
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TED_2017_2746342
crossref_primary_10_1109_TED_2017_2746342
ieee_primary_8048346
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-Nov.
2017-11-00
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-Nov.
PublicationDecade 2010
PublicationTitle IEEE transactions on electron devices
PublicationTitleAbbrev TED
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References tai (ref65) 2014
ref57
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref55
ref11
ref54
ref10
servalli (ref44) 2009
hruska (ref25) 2015
ref16
ref19
ref18
wong (ref26) 2017
wang (ref84) 2012
ref93
ref92
ref95
ref50
ref94
ref90
ref46
ref89
ref45
(ref91) 2017
ref48
ref86
ref42
ref85
ref41
sasago (ref40) 2009
ref88
ref87
im (ref32) 2008
ref49
neale (ref13) 1970; 23
ref7
(ref8) 2013
ref9
ref4
ref3
ref6
ref5
ref82
ref81
petti (ref17) 2016
ref83
ref80
ref79
ref78
ref37
ref36
burr (ref35) 2014; 32
ref75
ref74
ref30
ref77
lee (ref47) 2007
ref76
liang (ref28) 2011
ref2
ref1
ref38
kau (ref52) 2009
pirovano (ref43) 2007
cheng (ref61) 2012
ref71
kim (ref33) 2010
ref70
ref73
ref72
ref68
ref24
ref67
ref23
sasago (ref34) 2011
ref69
simone raoux (ref31) 2007
ref63
ref66
ref22
pellizzer (ref39) 2006
ohyanagi (ref64) 2013; 1
ref21
huai (ref20) 2008; 18
kang (ref51) 2011
ref27
ref29
ref60
ref62
References_xml – volume: 32
  start-page: 40802-1
  year: 2014
  ident: ref35
  article-title: Access devices for 3D crosspoint memory
  publication-title: J Vac Sci Technol B Microelectron Nanometer Struct
– ident: ref67
  doi: 10.1109/IEDM.2013.6724683
– ident: ref38
  doi: 10.1063/1.4955165
– ident: ref55
  doi: 10.1109/IEDM.2011.6131479
– ident: ref22
  doi: 10.1088/0957-4484/24/38/382001
– ident: ref50
  doi: 10.1109/LED.2011.2157075
– ident: ref92
  doi: 10.1109/IEDM.2016.7838342
– ident: ref23
  doi: 10.1145/2463585.2463588
– ident: ref59
  doi: 10.1109/LED.2008.2003012
– ident: ref42
  doi: 10.1109/VLSIT.2004.1345368
– start-page: 1
  year: 2014
  ident: ref65
  article-title: 1T-1R pillar-type topological-switching random access memory (TRAM) and data retention of GeTe/Sb2Te3 super-lattice films
  publication-title: Proc VLSIT
– ident: ref14
  doi: 10.1063/1.348620
– ident: ref89
  doi: 10.1109/IEDM.2013.6724724
– ident: ref68
  doi: 10.1149/1.3439647
– start-page: 24
  year: 2009
  ident: ref40
  article-title: Cross-point phase change memory with 4F2 cell size driven by low-contact-resistivity poly-Si diode
  publication-title: Proc VLSIT
– ident: ref86
  doi: 10.1109/IEDM.2011.6131482
– ident: ref2
  doi: 10.1109/JPROC.2010.2070050
– ident: ref57
  doi: 10.1021/acs.nanolett.5b02661
– ident: ref41
  doi: 10.1109/VLSIT.2003.1221142
– ident: ref75
  doi: 10.1063/1.3599559
– ident: ref21
  doi: 10.1021/nl201040y
– ident: ref82
  doi: 10.1109/TVLSI.2010.2052640
– ident: ref93
  doi: 10.1109/TED.2017.2756071
– ident: ref83
  doi: 10.1109/IEDM.2013.6724727
– ident: ref29
  doi: 10.1126/science.1201938
– ident: ref37
  doi: 10.1109/ITHERM.2006.1645408
– ident: ref62
  doi: 10.1109/IEDM.2015.7409620
– start-page: 122
  year: 2006
  ident: ref39
  article-title: A 90 nm phase change memory technology for stand-alone non-volatile memory applications
  publication-title: Proc VLSIT
– start-page: 30
  year: 2007
  ident: ref31
  article-title: Scaling Properties of Phase Change Materials
  publication-title: 2007 Non-Volatile Memory Technology Symposium NVMT
  doi: 10.1109/NVMT.2007.4389940
– ident: ref56
  doi: 10.1063/1.2830002
– year: 2013
  ident: ref8
  publication-title: International Technology Roadmap for Semiconductors (ITRS)Emerging Research Devices
– ident: ref49
  doi: 10.1109/IEDM.2003.1269423
– ident: ref9
  doi: 10.1016/0022-3093(70)90092-X
– ident: ref45
  doi: 10.1109/IEDM.2007.4418935
– ident: ref24
  doi: 10.1109/TED.2015.2439635
– start-page: 1
  year: 2009
  ident: ref44
  article-title: A 45 nm generation phase change memory technology
  publication-title: IEDM Tech Dig
– start-page: 96
  year: 2011
  ident: ref34
  article-title: Phase-change memory driven by poly-Si MOS transistor with low cost and high-programming gigabyte-per-second throughput
  publication-title: Proc VLSIT
– ident: ref74
  doi: 10.1109/IEDM.2007.4419107
– ident: ref81
  doi: 10.1109/DFT.2014.6962060
– start-page: 100
  year: 2011
  ident: ref28
  article-title: A $1.4~\mu $ a reset current phase change memory cell with integrated carbon nanotube electrodes for cross-point memory application
  publication-title: Proc VLSIT
– ident: ref12
  doi: 10.1103/RevModPhys.50.209
– ident: ref78
  doi: 10.1063/1.2930680
– ident: ref66
  doi: 10.1063/1.3626047
– ident: ref4
  doi: 10.1109/IEDM.2003.1269271
– start-page: 12
  year: 2016
  ident: ref17
  article-title: Storage class memory: Which technology?
  publication-title: Stanford Resistive Memory Workshop
– ident: ref6
  doi: 10.1109/IEDM.2009.5424415
– ident: ref60
  doi: 10.1109/LED.2009.2035139
– ident: ref90
  doi: 10.12988/ces.2013.13017
– ident: ref1
  doi: 10.1103/PhysRevLett.21.1450
– ident: ref88
  doi: 10.1109/ESSDERC.2011.6044225
– start-page: 1
  year: 2008
  ident: ref32
  article-title: A unified 7.5 nm dash-type confined cell for high performance PRAM device
  publication-title: IEDM Tech Dig
– ident: ref15
  doi: 10.1038/nmat2009
– start-page: 31.3.1
  year: 2012
  ident: ref84
  article-title: Engineering grains of Ge2Sb2Te5 for realizing fast-speed, low-power, and low-drift phase-change memories with further multilevel capabilities
  publication-title: IEDM Tech Dig
– ident: ref70
  doi: 10.1109/IEDM.2015.7409621
– start-page: 31.1. 1
  year: 2012
  ident: ref61
  article-title: A thermally robust phase change memory by engineering the Ge/N concentration in (Ge, N)xSbyTe z phase change material
  publication-title: IEDM Tech Dig
– volume: 23
  start-page: 56
  year: 1970
  ident: ref13
  article-title: Nonvolatile and reprogrammable, the read-mostly memory is here
  publication-title: Electronics
– ident: ref16
  doi: 10.1109/IEDM.2001.979636
– ident: ref76
  doi: 10.1109/IRPS.2015.7112808
– start-page: 3.1.1
  year: 2011
  ident: ref51
  article-title: PRAM cell technology and characterization in 20 nm node size
  publication-title: IEDM Tech Dig
– ident: ref94
  doi: 10.1016/j.jnoncrysol.2015.11.013
– start-page: 1
  year: 2009
  ident: ref52
  article-title: A stackable cross point phase change memory
  publication-title: IEDM Tech Dig
– volume: 1
  start-page: 30.5.1
  year: 2013
  ident: ref64
  article-title: Charge-injection phase change memory with high-quality GeTe/Sb2Te3 superlattice featuring 70- $\mu $ a reset, 10-ns set and 100 m endurance cycles operations
  publication-title: IEDM Tech Dig
– ident: ref27
  doi: 10.1109/IEDM.2006.346910
– ident: ref71
  doi: 10.1109/NVMTS.2014.7060836
– ident: ref95
  doi: 10.1038/srep12612
– ident: ref36
  doi: 10.1145/1555815.1555758
– start-page: 102
  year: 2007
  ident: ref47
  article-title: Highly scalable phase change memory with CVD GeSbTe for sub 50 nm generation
  publication-title: Proc VLSIT
– ident: ref73
  doi: 10.1109/IEDM.2016.7838343
– ident: ref58
  doi: 10.1109/IMW.2017.7939079
– ident: ref85
  doi: 10.1063/1.3653279
– ident: ref77
  doi: 10.1109/TED.2004.825805
– ident: ref63
  doi: 10.1109/VLSIT.2016.7573405
– ident: ref18
  doi: 10.1147/rd.524.0449
– ident: ref48
  doi: 10.1109/IEDM.2006.346908
– ident: ref80
  doi: 10.1002/9781118958254
– ident: ref5
  doi: 10.1109/IEDM.2003.1269376
– ident: ref72
  doi: 10.1109/IEDM.2014.7047138
– year: 2015
  ident: ref25
  publication-title: Intel Micron Reveal Xpoint a New Memory Architecture That Could Outclass DDR4 and Nand
– ident: ref10
  doi: 10.1088/0034-4885/33/3/306
– ident: ref87
  doi: 10.1109/IRPS.2015.7112747
– ident: ref30
  doi: 10.1021/nl3038097
– ident: ref53
  doi: 10.1109/VLSIT.2012.6242448
– year: 2017
  ident: ref26
  publication-title: Stanford Memory Trends
– start-page: 222
  year: 2007
  ident: ref43
  article-title: Self-aligned $\mu $ trench phase-change memory cell architecture for 90 nm technology and beyond
  publication-title: Proc Eur Solid-State Device Res Conf (ESSDERC)
– ident: ref69
  doi: 10.1557/mrs.2014.139
– ident: ref46
  doi: 10.1109/IEDM.2003.1269422
– ident: ref7
  doi: 10.1147/rd.524.0439
– ident: ref11
  doi: 10.1016/0022-3093(70)90149-3
– volume: 18
  start-page: 33
  year: 2008
  ident: ref20
  article-title: Spin-transfer torque MRAM (STT-MRAM): Challenges and prospects
  publication-title: AAPPS Bull
– ident: ref79
  doi: 10.1063/1.2825650
– start-page: 203
  year: 2010
  ident: ref33
  article-title: High performance PRAM cell scalable to sub-20 nm technology with below 4F2 cell size, extendable to DRAM applications
  publication-title: Proc VLSIT
– ident: ref19
  doi: 10.1109/JPROC.2012.2190369
– ident: ref54
  doi: 10.1109/VLSIT.2015.7223705
– ident: ref3
  doi: 10.1109/JETCAS.2016.2547718
– year: 2017
  ident: ref91
  publication-title: Intel Optane Technology
SSID ssj0016442
Score 2.6545923
Snippet Phase-change memory (PCM) has undergone significant academic and industrial research in the last 15 years. After much development, it is now poised to enter...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 4374
SubjectTerms Nonvolatile memory
Optical switches
Phase change materials
Phase-change memory (PCM)
Random access memory
reset energy
Resistance
Resistance heating
thermal conductivity
thermal design
Title Phase-Change Memory-Towards a Storage-Class Memory
URI https://ieeexplore.ieee.org/document/8048346
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7anvTgq4r1RQ5eBDdNspvd7FFEKUJFsIXewj4RlFY0Peivd3eThioi3kIyC8vH7M5MZuYbgHOVaMydn4CsSQ0iUlnENRbIORNM2YRrFgLF8T0dTcndLJ914LLthTHGhOIzE_vHkMvXC7X0v8qGhec_J7QLXadmda9WmzFwdr1mBk_dAXZh1yolmfChuwJ8DReLXQRGMcm-maC1mSrBpNxuw3i1mbqS5DleVjJWnz94Gv-72x3YanzL6KpWhl3omPkebK4xDvYhe3hyZgvVPQXR2JfZfqBJKJ19j0T06CJwd8GgMCqz-bwP09ubyfUINWMTkMIZr5AkImUy5ZpgLEwmdc5cWCMU01JTXUiJnZhRGFNtGU2s4KllQpDCYJoTXeAD6M0Xc3MIkS1oLhUn3FpDFM9kQpPCOC_JMCpzLQYwXCFZqoZT3I-2eClDbJHw0mFfeuzLBvsBXLQrXms-jT9k-x7VVq4B9Oj318ew4RfXfYIn0KvelubUOQyVPAua8gVkUbuM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qPagHX1Wszxy8CG6bZDe72aOIpWpbBFvoLewTQWlF04P-eneTtFQR8RaSTVg-dnfmy8x8A3CuQo258xOQNZFBRCqLuMYCOWeCKRtyzQqi2B_Q7ojcjZNxDS4XtTDGmCL5zLT8ZRHL11M187_K2qnXPyd0BVad3SdJWa21iBk4y15qg0duCzviNQ9KhrztDgGfxcVajoNRTOJvRmipq0phVDpb0J9Pp8wleW7NctlSnz-UGv87323YrLzL4KpcDjtQM5Nd2FjSHGxA_PDkDBcqqwqCvk-0_UDDInn2PRDBo-Pg7ohBRbPM6vEejDo3w-suqhonIIVjniNJRMRkxDXBWJhY6oQ5YiMU01JTnUqJ3TCjMKbaMhpawSPLhCCpwTQhOsX7UJ9MJ-YAApvSRCpOuLWGKB7LkIapcX6SYVQmWjShPUcyU5WquG9u8ZIV7CLkmcM-89hnFfZNuFi88VoqavwxtuFRXYyrAD38_fYZrHWH_V7Wux3cH8G6_1BZNXgM9fxtZk6c-5DL02LVfAFn2L7Z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase-Change+Memory%E2%80%94Towards+a+Storage-Class+Memory&rft.jtitle=IEEE+transactions+on+electron+devices&rft.au=Fong%2C+Scott+W.&rft.au=Neumann%2C+Christopher+M.&rft.au=Wong%2C+H.-S.+Philip&rft.date=2017-11-01&rft.issn=0018-9383&rft.eissn=1557-9646&rft.volume=64&rft.issue=11&rft.spage=4374&rft.epage=4385&rft_id=info:doi/10.1109%2FTED.2017.2746342&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TED_2017_2746342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9383&client=summon