Phase-Change Memory-Towards a Storage-Class Memory
Phase-change memory (PCM) has undergone significant academic and industrial research in the last 15 years. After much development, it is now poised to enter the market as a storage-class memory (SCM), with performance and cost between that of NAND flash and DRAM. In this paper, we review the history...
Saved in:
Published in | IEEE transactions on electron devices Vol. 64; no. 11; pp. 4374 - 4385 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.11.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0018-9383 1557-9646 |
DOI | 10.1109/TED.2017.2746342 |
Cover
Abstract | Phase-change memory (PCM) has undergone significant academic and industrial research in the last 15 years. After much development, it is now poised to enter the market as a storage-class memory (SCM), with performance and cost between that of NAND flash and DRAM. In this paper, we review the history of phase-transforming chalcogenides leading up to our current understanding of PCM as either a storage-type SCM, with high-density and better than NAND flash endurance, write speeds, and retention, or a memory-type SCM, with fast read/write times to function as a nonvolatile DRAM. Several of the key findings from the community relating to device dimensional scaling, cell design, thermal engineering, material exploration, and storing multiple levels per cell will be discussed. These areas have dramatically impacted the course of development and understanding of PCM. We will highlight the performance gains attained and the future prospects, which will help drive PCM to be as ubiquitous as NAND flash in the upcoming decade. |
---|---|
AbstractList | Phase-change memory (PCM) has undergone significant academic and industrial research in the last 15 years. After much development, it is now poised to enter the market as a storage-class memory (SCM), with performance and cost between that of NAND flash and DRAM. In this paper, we review the history of phase-transforming chalcogenides leading up to our current understanding of PCM as either a storage-type SCM, with high-density and better than NAND flash endurance, write speeds, and retention, or a memory-type SCM, with fast read/write times to function as a nonvolatile DRAM. Several of the key findings from the community relating to device dimensional scaling, cell design, thermal engineering, material exploration, and storing multiple levels per cell will be discussed. These areas have dramatically impacted the course of development and understanding of PCM. We will highlight the performance gains attained and the future prospects, which will help drive PCM to be as ubiquitous as NAND flash in the upcoming decade. |
Author | Fong, Scott W. Neumann, Christopher M. Wong, H.-S Philip |
Author_xml | – sequence: 1 givenname: Scott W. surname: Fong fullname: Fong, Scott W. email: swfong@stanford.edu organization: Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA – sequence: 2 givenname: Christopher M. surname: Neumann fullname: Neumann, Christopher M. organization: Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA – sequence: 3 givenname: H.-S Philip surname: Wong fullname: Wong, H.-S Philip organization: Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA |
BookMark | eNp9j0tLw0AUhQepYFrdC27yBybOK_NYSqwPqCgY1-EmM2kjaUZmAtJ_b0qDCxeuLodzvgvfEi0GPziErinJKCXmtlzfZ4xQlTElJBfsDCU0zxU2UsgFSgihGhuu-QVaxvg5RSkESxB720F0uNjBsHXpi9v7cMCl_4ZgYwrp--gDbKe-hxjn-hKdt9BHdzXfFfp4WJfFE968Pj4XdxvccGZGXAugqqbGCs7BsdrmShgDjbK1lVbXNZ9mruFc2lZJ0oKhrQIQ2nGZC6v5CsnT3yb4GINrq6YbYez8MAbo-oqS6mheTebV0byazSeQ_AG_QreHcPgPuTkhnXPud66J0Hwa_ADg7mUc |
CODEN | IETDAI |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2023_157642 crossref_primary_10_1088_1361_6528_ab4079 crossref_primary_10_1109_MCAS_2021_3092532 crossref_primary_10_1063_1_5132962 crossref_primary_10_1016_j_mssp_2021_105961 crossref_primary_10_1021_acsaelm_1c00491 crossref_primary_10_1038_s41598_024_73131_2 crossref_primary_10_1021_acs_chemrev_4c00512 crossref_primary_10_1038_s41565_023_01361_y crossref_primary_10_1039_C9NA00366E crossref_primary_10_1063_1_5109380 crossref_primary_10_1109_TCAD_2022_3204231 crossref_primary_10_1149_2162_8777_abffad crossref_primary_10_1109_TED_2023_3264439 crossref_primary_10_1088_1361_6463_ad5605 crossref_primary_10_1007_s12274_021_3570_1 crossref_primary_10_3390_math11204325 crossref_primary_10_1007_s11669_024_01093_z crossref_primary_10_1002_pssr_202100626 crossref_primary_10_1016_j_jallcom_2022_164057 crossref_primary_10_1016_j_chip_2022_100031 crossref_primary_10_1145_3631146 crossref_primary_10_1007_s10825_020_01504_7 crossref_primary_10_1063_1_5139595 crossref_primary_10_1063_5_0152049 crossref_primary_10_1109_LED_2023_3272884 crossref_primary_10_1116_6_0000321 crossref_primary_10_1016_j_jallcom_2020_156675 crossref_primary_10_1021_acsami_4c03148 crossref_primary_10_1109_TSM_2020_2983100 crossref_primary_10_1109_TED_2019_2945972 crossref_primary_10_1149_2_0981811jes crossref_primary_10_3390_met11101605 crossref_primary_10_1103_PhysRevMaterials_5_095004 crossref_primary_10_1063_5_0174722 crossref_primary_10_1088_1361_6528_ac21ec crossref_primary_10_1088_2752_5724_aca07b crossref_primary_10_1016_j_apsusc_2021_150101 crossref_primary_10_1002_pssr_201900105 crossref_primary_10_1002_inf2_12233 crossref_primary_10_1145_3588436 crossref_primary_10_1021_acsami_3c19048 crossref_primary_10_1016_j_jallcom_2021_161701 crossref_primary_10_1109_TED_2022_3209639 crossref_primary_10_1002_pssr_202300426 crossref_primary_10_1002_pssr_202300429 crossref_primary_10_1016_j_mee_2019_111183 crossref_primary_10_1063_1_5134916 crossref_primary_10_1002_aelm_201900198 crossref_primary_10_1016_j_sse_2019_107684 crossref_primary_10_1038_s41467_024_45327_7 crossref_primary_10_1038_s41578_018_0076_x crossref_primary_10_3390_mi13020266 crossref_primary_10_1016_j_sse_2021_108111 crossref_primary_10_1109_TED_2022_3231807 crossref_primary_10_1063_5_0048883 crossref_primary_10_1002_adma_202204944 crossref_primary_10_1021_acs_langmuir_4c01672 crossref_primary_10_1039_D3TC04131J crossref_primary_10_1063_5_0226265 crossref_primary_10_1016_j_materresbull_2021_111679 crossref_primary_10_1039_D2TC04538A crossref_primary_10_1109_LED_2021_3094765 crossref_primary_10_1109_JEDS_2018_2820319 crossref_primary_10_1002_pssr_202000434 crossref_primary_10_1088_1361_6463_ab642d crossref_primary_10_1016_j_mattod_2023_10_004 crossref_primary_10_1021_acsami_4c14132 crossref_primary_10_1002_pssr_202200463 crossref_primary_10_1021_acsaelm_2c01757 crossref_primary_10_1039_D4CP00078A crossref_primary_10_1039_D4TC02324B crossref_primary_10_1063_5_0135185 crossref_primary_10_1021_acs_chemmater_8b02702 crossref_primary_10_35848_1347_4065_ab6d86 crossref_primary_10_1109_JXCDC_2022_3219731 crossref_primary_10_1016_j_jmst_2024_02_072 crossref_primary_10_1063_5_0190632 crossref_primary_10_1002_aelm_202100974 crossref_primary_10_1063_1_5143815 crossref_primary_10_1002_pssr_202200054 crossref_primary_10_3390_nano13212856 crossref_primary_10_1109_TCAD_2020_3012880 crossref_primary_10_3390_nano13172477 crossref_primary_10_1016_j_apsusc_2024_160749 crossref_primary_10_1109_TED_2022_3169118 crossref_primary_10_1021_acsnano_4c13450 crossref_primary_10_1039_D2TC03387A crossref_primary_10_1109_TCAD_2019_2927502 crossref_primary_10_1002_adfm_201806338 crossref_primary_10_1039_C9TC07001J crossref_primary_10_1016_j_jallcom_2023_172443 crossref_primary_10_1039_C8FD00119G crossref_primary_10_1021_acs_langmuir_4c04836 crossref_primary_10_1016_j_orgel_2019_105584 crossref_primary_10_1002_admt_201900080 crossref_primary_10_1016_j_mssp_2021_105987 crossref_primary_10_1021_acsami_8b22580 crossref_primary_10_1088_1361_6641_ac8b2c crossref_primary_10_1002_aelm_202300911 crossref_primary_10_3390_met11101531 crossref_primary_10_1109_TED_2022_3215550 crossref_primary_10_1063_5_0194334 crossref_primary_10_1109_ACCESS_2020_2973605 crossref_primary_10_1016_j_apsusc_2019_144337 crossref_primary_10_3390_app112210872 crossref_primary_10_1109_TCSII_2021_3049716 crossref_primary_10_1002_aelm_201700627 crossref_primary_10_1021_acsaelm_4c02332 crossref_primary_10_1109_TED_2019_2960444 crossref_primary_10_1021_acsaelm_3c01022 crossref_primary_10_1149_2162_8777_ad3365 crossref_primary_10_1039_D3TC00448A crossref_primary_10_1116_6_0000336 crossref_primary_10_1002_adma_202414031 crossref_primary_10_1515_ntrev_2023_0181 crossref_primary_10_1002_advs_202304785 crossref_primary_10_1007_s40843_022_2028_7 crossref_primary_10_1039_D0TC01500H crossref_primary_10_1016_j_apsusc_2023_157153 crossref_primary_10_1016_j_apsusc_2023_158362 crossref_primary_10_1109_LED_2021_3125193 crossref_primary_10_1021_acsnano_3c11019 crossref_primary_10_1007_s40820_020_00557_4 crossref_primary_10_1021_acsaelm_4c00721 crossref_primary_10_1016_j_jallcom_2023_170920 crossref_primary_10_1364_OME_462846 crossref_primary_10_1088_1674_1056_abeedf crossref_primary_10_1002_pssr_202100291 crossref_primary_10_1002_adfm_202303956 crossref_primary_10_1587_elex_20_20230307 crossref_primary_10_1002_pssb_202400081 crossref_primary_10_1016_j_mssp_2022_107101 crossref_primary_10_1109_TED_2021_3059436 crossref_primary_10_1002_adfm_202407239 crossref_primary_10_1007_s11664_020_08590_0 crossref_primary_10_1063_1_5124027 crossref_primary_10_1002_pssr_202400416 crossref_primary_10_1002_admt_202301390 crossref_primary_10_1063_5_0153403 crossref_primary_10_1109_JFLEX_2023_3321256 crossref_primary_10_1039_D0TC00096E crossref_primary_10_3390_electronics11121822 crossref_primary_10_1088_1361_6528_acb446 crossref_primary_10_1088_1402_4896_ad6ae9 crossref_primary_10_1145_3485824 crossref_primary_10_1021_acsnano_3c10312 crossref_primary_10_1103_PhysRevMaterials_5_045004 crossref_primary_10_1002_advs_202004185 crossref_primary_10_3390_nano13040671 crossref_primary_10_1039_D2TC00784C crossref_primary_10_3390_met11121885 crossref_primary_10_1109_JPROC_2020_3011953 crossref_primary_10_1063_1_5100840 crossref_primary_10_1016_j_microrel_2020_113823 crossref_primary_10_1038_s41928_021_00632_7 crossref_primary_10_1016_j_sse_2020_107955 crossref_primary_10_1109_TNANO_2019_2910846 crossref_primary_10_1016_j_sysarc_2024_103310 crossref_primary_10_1002_pssr_202100470 crossref_primary_10_1002_adma_201806790 crossref_primary_10_1038_s41563_018_0114_5 crossref_primary_10_1587_transinf_2019EDL8022 crossref_primary_10_1002_adfm_202501546 crossref_primary_10_1002_admt_202200214 crossref_primary_10_1002_advs_202103478 crossref_primary_10_1021_acsami_9b16111 crossref_primary_10_1016_j_actamat_2024_120123 crossref_primary_10_1063_5_0081016 crossref_primary_10_1109_LED_2023_3296807 crossref_primary_10_1109_TED_2020_3016625 crossref_primary_10_1002_admt_202400440 crossref_primary_10_1109_TED_2022_3221355 crossref_primary_10_1021_acs_nanolett_4c03900 crossref_primary_10_3390_met11091350 crossref_primary_10_1063_5_0084889 crossref_primary_10_1002_adma_202204771 crossref_primary_10_1016_j_jallcom_2023_172697 crossref_primary_10_1088_2515_7639_ad5251 crossref_primary_10_1088_1361_6528_aae4f4 crossref_primary_10_1109_ACCESS_2020_3042012 crossref_primary_10_1002_smtd_202401381 crossref_primary_10_1109_TBCAS_2022_3204742 crossref_primary_10_3390_biomimetics9090578 crossref_primary_10_3389_fpsyg_2022_907818 crossref_primary_10_1103_PhysRevMaterials_5_085601 crossref_primary_10_1007_s11664_023_10268_2 crossref_primary_10_1039_C8FD00126J crossref_primary_10_1088_1361_6528_ac512c crossref_primary_10_1109_ACCESS_2020_2990536 crossref_primary_10_3390_nano10050994 crossref_primary_10_1109_TCPMT_2020_2984268 crossref_primary_10_1002_sdtp_14860 crossref_primary_10_1002_advs_202202222 crossref_primary_10_1145_3465402 crossref_primary_10_1002_aelm_202101083 crossref_primary_10_1016_j_pmatsci_2023_101130 crossref_primary_10_1088_1361_6463_ab614a crossref_primary_10_1088_2631_7990_ad1575 crossref_primary_10_1016_j_mne_2018_11_002 crossref_primary_10_1088_1361_6641_ab591a crossref_primary_10_1116_6_0003890 crossref_primary_10_1016_j_pmatsci_2024_101311 crossref_primary_10_1016_j_chaos_2024_115169 crossref_primary_10_1021_acsnano_0c10049 crossref_primary_10_3788_gzxb20245307_0731002 crossref_primary_10_1002_pssr_202000392 crossref_primary_10_1126_science_aay0291 crossref_primary_10_1016_j_surfin_2024_105101 crossref_primary_10_1021_acs_chemmater_4c00286 crossref_primary_10_1063_1_5080959 crossref_primary_10_1002_pssr_202000394 crossref_primary_10_1016_j_chaos_2021_110783 crossref_primary_10_1088_1361_6463_ab5478 crossref_primary_10_3390_nano12121996 crossref_primary_10_1002_pssr_201800552 crossref_primary_10_1016_j_vacuum_2024_113342 crossref_primary_10_1109_TED_2020_2965182 crossref_primary_10_1149_2162_8777_ad2332 crossref_primary_10_3390_electronics13224488 crossref_primary_10_3390_nano13061050 crossref_primary_10_1002_aelm_202100217 crossref_primary_10_1002_pssr_201900320 crossref_primary_10_1002_pssr_202000382 crossref_primary_10_1038_s41467_021_25258_3 crossref_primary_10_1002_pssr_202200433 crossref_primary_10_1002_advs_202300901 crossref_primary_10_1088_2515_7647_ac051b crossref_primary_10_1016_j_apsusc_2021_152164 crossref_primary_10_1021_acsaelm_9b00070 crossref_primary_10_1016_j_mser_2024_100825 crossref_primary_10_1088_1361_6641_ab4011 crossref_primary_10_1016_j_sysarc_2023_103008 crossref_primary_10_1021_acsami_1c06618 crossref_primary_10_1021_acs_jpcc_0c01824 crossref_primary_10_3390_met11081207 crossref_primary_10_1063_5_0234139 crossref_primary_10_1109_ACCESS_2024_3365632 crossref_primary_10_1063_5_0206244 crossref_primary_10_1016_j_nanoen_2024_109958 crossref_primary_10_1039_D4NR04728A crossref_primary_10_1063_5_0037411 crossref_primary_10_1038_s41524_020_0303_z crossref_primary_10_1039_D3MH00508A crossref_primary_10_1016_j_jallcom_2023_172284 crossref_primary_10_1002_aelm_202300890 crossref_primary_10_1088_1361_6463_ab7794 crossref_primary_10_1007_s10854_024_12689_z crossref_primary_10_1134_S0036023623603501 crossref_primary_10_1364_OL_531446 crossref_primary_10_1063_5_0142536 crossref_primary_10_1109_ACCESS_2020_2980302 crossref_primary_10_3390_ma13010166 crossref_primary_10_1088_1361_6463_ab5d6e crossref_primary_10_1088_1361_6463_ab5d81 crossref_primary_10_1002_adma_202419444 crossref_primary_10_1126_scirobotics_abl7344 crossref_primary_10_1021_acsanm_4c00809 crossref_primary_10_1109_TCAD_2021_3049677 crossref_primary_10_1016_j_chaos_2024_115536 crossref_primary_10_1063_5_0146349 crossref_primary_10_1016_j_mssp_2023_107914 crossref_primary_10_1002_adfm_202009803 crossref_primary_10_3390_nano15030231 crossref_primary_10_1038_s41524_024_01387_3 crossref_primary_10_1038_s41524_021_00496_7 crossref_primary_10_1039_D0NR08768H crossref_primary_10_1002_pssr_202200417 crossref_primary_10_1002_pssr_202000482 crossref_primary_10_1016_j_cap_2022_11_007 crossref_primary_10_1109_LED_2020_3028271 crossref_primary_10_1016_j_jallcom_2022_164593 crossref_primary_10_1017_S1431927618010000 crossref_primary_10_1002_pssr_202200419 crossref_primary_10_1109_TED_2021_3114264 crossref_primary_10_1088_1361_6641_abc390 crossref_primary_10_1126_sciadv_aay6726 crossref_primary_10_1039_D1TC00186H crossref_primary_10_1038_s41524_023_01098_1 crossref_primary_10_1063_1_5093907 crossref_primary_10_1063_1_5120565 crossref_primary_10_3390_coatings10090908 crossref_primary_10_1039_C8NR06694A crossref_primary_10_1088_2053_1591_ac3953 crossref_primary_10_1002_pssr_202000354 crossref_primary_10_1109_TMAG_2023_3322731 crossref_primary_10_1021_acsami_3c10785 crossref_primary_10_3390_nano13121879 crossref_primary_10_1002_adma_202109139 crossref_primary_10_1109_TED_2023_3288514 crossref_primary_10_1109_TNANO_2023_3292481 crossref_primary_10_1109_ACCESS_2022_3201750 |
Cites_doi | 10.1109/IEDM.2013.6724683 10.1063/1.4955165 10.1109/IEDM.2011.6131479 10.1088/0957-4484/24/38/382001 10.1109/LED.2011.2157075 10.1109/IEDM.2016.7838342 10.1145/2463585.2463588 10.1109/LED.2008.2003012 10.1109/VLSIT.2004.1345368 10.1063/1.348620 10.1109/IEDM.2013.6724724 10.1149/1.3439647 10.1109/IEDM.2011.6131482 10.1109/JPROC.2010.2070050 10.1021/acs.nanolett.5b02661 10.1109/VLSIT.2003.1221142 10.1063/1.3599559 10.1021/nl201040y 10.1109/TVLSI.2010.2052640 10.1109/TED.2017.2756071 10.1109/IEDM.2013.6724727 10.1126/science.1201938 10.1109/ITHERM.2006.1645408 10.1109/IEDM.2015.7409620 10.1109/NVMT.2007.4389940 10.1063/1.2830002 10.1109/IEDM.2003.1269423 10.1016/0022-3093(70)90092-X 10.1109/IEDM.2007.4418935 10.1109/TED.2015.2439635 10.1109/IEDM.2007.4419107 10.1109/DFT.2014.6962060 10.1103/RevModPhys.50.209 10.1063/1.2930680 10.1063/1.3626047 10.1109/IEDM.2003.1269271 10.1109/IEDM.2009.5424415 10.1109/LED.2009.2035139 10.12988/ces.2013.13017 10.1103/PhysRevLett.21.1450 10.1109/ESSDERC.2011.6044225 10.1038/nmat2009 10.1109/IEDM.2015.7409621 10.1109/IEDM.2001.979636 10.1109/IRPS.2015.7112808 10.1016/j.jnoncrysol.2015.11.013 10.1109/IEDM.2006.346910 10.1109/NVMTS.2014.7060836 10.1038/srep12612 10.1145/1555815.1555758 10.1109/IEDM.2016.7838343 10.1109/IMW.2017.7939079 10.1063/1.3653279 10.1109/TED.2004.825805 10.1109/VLSIT.2016.7573405 10.1147/rd.524.0449 10.1109/IEDM.2006.346908 10.1002/9781118958254 10.1109/IEDM.2003.1269376 10.1109/IEDM.2014.7047138 10.1088/0034-4885/33/3/306 10.1109/IRPS.2015.7112747 10.1021/nl3038097 10.1109/VLSIT.2012.6242448 10.1557/mrs.2014.139 10.1109/IEDM.2003.1269422 10.1147/rd.524.0439 10.1016/0022-3093(70)90149-3 10.1063/1.2825650 10.1109/JPROC.2012.2190369 10.1109/VLSIT.2015.7223705 10.1109/JETCAS.2016.2547718 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TED.2017.2746342 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9646 |
EndPage | 4385 |
ExternalDocumentID | 10_1109_TED_2017_2746342 8048346 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation Graduate Research Fellowship grantid: DGE-4747 funderid: 10.13039/100000001 – fundername: MARCO and DARPA through SONIC, one of six centers of STARnet, a Semiconductor Research Corporation Program funderid: 10.13039/100000028 – fundername: Stanford Non-Volatile Memory Technology Research Initiative at Stanford University funderid: 10.13039/100005492 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK VOH AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c329t-b4a17b19d433ae2bd57499ac7dbd6d8bb3329ec336df760fa91f7aa48e3654d83 |
IEDL.DBID | RIE |
ISSN | 0018-9383 |
IngestDate | Tue Jul 01 01:46:20 EDT 2025 Thu Apr 24 23:08:01 EDT 2025 Tue Aug 26 16:43:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c329t-b4a17b19d433ae2bd57499ac7dbd6d8bb3329ec336df760fa91f7aa48e3654d83 |
ORCID | 0000-0002-4705-9478 0000-0003-4894-6164 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_TED_2017_2746342 crossref_primary_10_1109_TED_2017_2746342 ieee_primary_8048346 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-Nov. 2017-11-00 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-Nov. |
PublicationDecade | 2010 |
PublicationTitle | IEEE transactions on electron devices |
PublicationTitleAbbrev | TED |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | tai (ref65) 2014 ref57 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref55 ref11 ref54 ref10 servalli (ref44) 2009 hruska (ref25) 2015 ref16 ref19 ref18 wong (ref26) 2017 wang (ref84) 2012 ref93 ref92 ref95 ref50 ref94 ref90 ref46 ref89 ref45 (ref91) 2017 ref48 ref86 ref42 ref85 ref41 sasago (ref40) 2009 ref88 ref87 im (ref32) 2008 ref49 neale (ref13) 1970; 23 ref7 (ref8) 2013 ref9 ref4 ref3 ref6 ref5 ref82 ref81 petti (ref17) 2016 ref83 ref80 ref79 ref78 ref37 ref36 burr (ref35) 2014; 32 ref75 ref74 ref30 ref77 lee (ref47) 2007 ref76 liang (ref28) 2011 ref2 ref1 ref38 kau (ref52) 2009 pirovano (ref43) 2007 cheng (ref61) 2012 ref71 kim (ref33) 2010 ref70 ref73 ref72 ref68 ref24 ref67 ref23 sasago (ref34) 2011 ref69 simone raoux (ref31) 2007 ref63 ref66 ref22 pellizzer (ref39) 2006 ohyanagi (ref64) 2013; 1 ref21 huai (ref20) 2008; 18 kang (ref51) 2011 ref27 ref29 ref60 ref62 |
References_xml | – volume: 32 start-page: 40802-1 year: 2014 ident: ref35 article-title: Access devices for 3D crosspoint memory publication-title: J Vac Sci Technol B Microelectron Nanometer Struct – ident: ref67 doi: 10.1109/IEDM.2013.6724683 – ident: ref38 doi: 10.1063/1.4955165 – ident: ref55 doi: 10.1109/IEDM.2011.6131479 – ident: ref22 doi: 10.1088/0957-4484/24/38/382001 – ident: ref50 doi: 10.1109/LED.2011.2157075 – ident: ref92 doi: 10.1109/IEDM.2016.7838342 – ident: ref23 doi: 10.1145/2463585.2463588 – ident: ref59 doi: 10.1109/LED.2008.2003012 – ident: ref42 doi: 10.1109/VLSIT.2004.1345368 – start-page: 1 year: 2014 ident: ref65 article-title: 1T-1R pillar-type topological-switching random access memory (TRAM) and data retention of GeTe/Sb2Te3 super-lattice films publication-title: Proc VLSIT – ident: ref14 doi: 10.1063/1.348620 – ident: ref89 doi: 10.1109/IEDM.2013.6724724 – ident: ref68 doi: 10.1149/1.3439647 – start-page: 24 year: 2009 ident: ref40 article-title: Cross-point phase change memory with 4F2 cell size driven by low-contact-resistivity poly-Si diode publication-title: Proc VLSIT – ident: ref86 doi: 10.1109/IEDM.2011.6131482 – ident: ref2 doi: 10.1109/JPROC.2010.2070050 – ident: ref57 doi: 10.1021/acs.nanolett.5b02661 – ident: ref41 doi: 10.1109/VLSIT.2003.1221142 – ident: ref75 doi: 10.1063/1.3599559 – ident: ref21 doi: 10.1021/nl201040y – ident: ref82 doi: 10.1109/TVLSI.2010.2052640 – ident: ref93 doi: 10.1109/TED.2017.2756071 – ident: ref83 doi: 10.1109/IEDM.2013.6724727 – ident: ref29 doi: 10.1126/science.1201938 – ident: ref37 doi: 10.1109/ITHERM.2006.1645408 – ident: ref62 doi: 10.1109/IEDM.2015.7409620 – start-page: 122 year: 2006 ident: ref39 article-title: A 90 nm phase change memory technology for stand-alone non-volatile memory applications publication-title: Proc VLSIT – start-page: 30 year: 2007 ident: ref31 article-title: Scaling Properties of Phase Change Materials publication-title: 2007 Non-Volatile Memory Technology Symposium NVMT doi: 10.1109/NVMT.2007.4389940 – ident: ref56 doi: 10.1063/1.2830002 – year: 2013 ident: ref8 publication-title: International Technology Roadmap for Semiconductors (ITRS)Emerging Research Devices – ident: ref49 doi: 10.1109/IEDM.2003.1269423 – ident: ref9 doi: 10.1016/0022-3093(70)90092-X – ident: ref45 doi: 10.1109/IEDM.2007.4418935 – ident: ref24 doi: 10.1109/TED.2015.2439635 – start-page: 1 year: 2009 ident: ref44 article-title: A 45 nm generation phase change memory technology publication-title: IEDM Tech Dig – start-page: 96 year: 2011 ident: ref34 article-title: Phase-change memory driven by poly-Si MOS transistor with low cost and high-programming gigabyte-per-second throughput publication-title: Proc VLSIT – ident: ref74 doi: 10.1109/IEDM.2007.4419107 – ident: ref81 doi: 10.1109/DFT.2014.6962060 – start-page: 100 year: 2011 ident: ref28 article-title: A $1.4~\mu $ a reset current phase change memory cell with integrated carbon nanotube electrodes for cross-point memory application publication-title: Proc VLSIT – ident: ref12 doi: 10.1103/RevModPhys.50.209 – ident: ref78 doi: 10.1063/1.2930680 – ident: ref66 doi: 10.1063/1.3626047 – ident: ref4 doi: 10.1109/IEDM.2003.1269271 – start-page: 12 year: 2016 ident: ref17 article-title: Storage class memory: Which technology? publication-title: Stanford Resistive Memory Workshop – ident: ref6 doi: 10.1109/IEDM.2009.5424415 – ident: ref60 doi: 10.1109/LED.2009.2035139 – ident: ref90 doi: 10.12988/ces.2013.13017 – ident: ref1 doi: 10.1103/PhysRevLett.21.1450 – ident: ref88 doi: 10.1109/ESSDERC.2011.6044225 – start-page: 1 year: 2008 ident: ref32 article-title: A unified 7.5 nm dash-type confined cell for high performance PRAM device publication-title: IEDM Tech Dig – ident: ref15 doi: 10.1038/nmat2009 – start-page: 31.3.1 year: 2012 ident: ref84 article-title: Engineering grains of Ge2Sb2Te5 for realizing fast-speed, low-power, and low-drift phase-change memories with further multilevel capabilities publication-title: IEDM Tech Dig – ident: ref70 doi: 10.1109/IEDM.2015.7409621 – start-page: 31.1. 1 year: 2012 ident: ref61 article-title: A thermally robust phase change memory by engineering the Ge/N concentration in (Ge, N)xSbyTe z phase change material publication-title: IEDM Tech Dig – volume: 23 start-page: 56 year: 1970 ident: ref13 article-title: Nonvolatile and reprogrammable, the read-mostly memory is here publication-title: Electronics – ident: ref16 doi: 10.1109/IEDM.2001.979636 – ident: ref76 doi: 10.1109/IRPS.2015.7112808 – start-page: 3.1.1 year: 2011 ident: ref51 article-title: PRAM cell technology and characterization in 20 nm node size publication-title: IEDM Tech Dig – ident: ref94 doi: 10.1016/j.jnoncrysol.2015.11.013 – start-page: 1 year: 2009 ident: ref52 article-title: A stackable cross point phase change memory publication-title: IEDM Tech Dig – volume: 1 start-page: 30.5.1 year: 2013 ident: ref64 article-title: Charge-injection phase change memory with high-quality GeTe/Sb2Te3 superlattice featuring 70- $\mu $ a reset, 10-ns set and 100 m endurance cycles operations publication-title: IEDM Tech Dig – ident: ref27 doi: 10.1109/IEDM.2006.346910 – ident: ref71 doi: 10.1109/NVMTS.2014.7060836 – ident: ref95 doi: 10.1038/srep12612 – ident: ref36 doi: 10.1145/1555815.1555758 – start-page: 102 year: 2007 ident: ref47 article-title: Highly scalable phase change memory with CVD GeSbTe for sub 50 nm generation publication-title: Proc VLSIT – ident: ref73 doi: 10.1109/IEDM.2016.7838343 – ident: ref58 doi: 10.1109/IMW.2017.7939079 – ident: ref85 doi: 10.1063/1.3653279 – ident: ref77 doi: 10.1109/TED.2004.825805 – ident: ref63 doi: 10.1109/VLSIT.2016.7573405 – ident: ref18 doi: 10.1147/rd.524.0449 – ident: ref48 doi: 10.1109/IEDM.2006.346908 – ident: ref80 doi: 10.1002/9781118958254 – ident: ref5 doi: 10.1109/IEDM.2003.1269376 – ident: ref72 doi: 10.1109/IEDM.2014.7047138 – year: 2015 ident: ref25 publication-title: Intel Micron Reveal Xpoint a New Memory Architecture That Could Outclass DDR4 and Nand – ident: ref10 doi: 10.1088/0034-4885/33/3/306 – ident: ref87 doi: 10.1109/IRPS.2015.7112747 – ident: ref30 doi: 10.1021/nl3038097 – ident: ref53 doi: 10.1109/VLSIT.2012.6242448 – year: 2017 ident: ref26 publication-title: Stanford Memory Trends – start-page: 222 year: 2007 ident: ref43 article-title: Self-aligned $\mu $ trench phase-change memory cell architecture for 90 nm technology and beyond publication-title: Proc Eur Solid-State Device Res Conf (ESSDERC) – ident: ref69 doi: 10.1557/mrs.2014.139 – ident: ref46 doi: 10.1109/IEDM.2003.1269422 – ident: ref7 doi: 10.1147/rd.524.0439 – ident: ref11 doi: 10.1016/0022-3093(70)90149-3 – volume: 18 start-page: 33 year: 2008 ident: ref20 article-title: Spin-transfer torque MRAM (STT-MRAM): Challenges and prospects publication-title: AAPPS Bull – ident: ref79 doi: 10.1063/1.2825650 – start-page: 203 year: 2010 ident: ref33 article-title: High performance PRAM cell scalable to sub-20 nm technology with below 4F2 cell size, extendable to DRAM applications publication-title: Proc VLSIT – ident: ref19 doi: 10.1109/JPROC.2012.2190369 – ident: ref54 doi: 10.1109/VLSIT.2015.7223705 – ident: ref3 doi: 10.1109/JETCAS.2016.2547718 – year: 2017 ident: ref91 publication-title: Intel Optane Technology |
SSID | ssj0016442 |
Score | 2.6545923 |
Snippet | Phase-change memory (PCM) has undergone significant academic and industrial research in the last 15 years. After much development, it is now poised to enter... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 4374 |
SubjectTerms | Nonvolatile memory Optical switches Phase change materials Phase-change memory (PCM) Random access memory reset energy Resistance Resistance heating thermal conductivity thermal design |
Title | Phase-Change Memory-Towards a Storage-Class Memory |
URI | https://ieeexplore.ieee.org/document/8048346 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7anvTgq4r1RQ5eBDdNspvd7FFEKUJFsIXewj4RlFY0Peivd3eThioi3kIyC8vH7M5MZuYbgHOVaMydn4CsSQ0iUlnENRbIORNM2YRrFgLF8T0dTcndLJ914LLthTHGhOIzE_vHkMvXC7X0v8qGhec_J7QLXadmda9WmzFwdr1mBk_dAXZh1yolmfChuwJ8DReLXQRGMcm-maC1mSrBpNxuw3i1mbqS5DleVjJWnz94Gv-72x3YanzL6KpWhl3omPkebK4xDvYhe3hyZgvVPQXR2JfZfqBJKJ19j0T06CJwd8GgMCqz-bwP09ubyfUINWMTkMIZr5AkImUy5ZpgLEwmdc5cWCMU01JTXUiJnZhRGFNtGU2s4KllQpDCYJoTXeAD6M0Xc3MIkS1oLhUn3FpDFM9kQpPCOC_JMCpzLQYwXCFZqoZT3I-2eClDbJHw0mFfeuzLBvsBXLQrXms-jT9k-x7VVq4B9Oj318ew4RfXfYIn0KvelubUOQyVPAua8gVkUbuM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qPagHX1Wszxy8CG6bZDe72aOIpWpbBFvoLewTQWlF04P-eneTtFQR8RaSTVg-dnfmy8x8A3CuQo258xOQNZFBRCqLuMYCOWeCKRtyzQqi2B_Q7ojcjZNxDS4XtTDGmCL5zLT8ZRHL11M187_K2qnXPyd0BVad3SdJWa21iBk4y15qg0duCzviNQ9KhrztDgGfxcVajoNRTOJvRmipq0phVDpb0J9Pp8wleW7NctlSnz-UGv87323YrLzL4KpcDjtQM5Nd2FjSHGxA_PDkDBcqqwqCvk-0_UDDInn2PRDBo-Pg7ohBRbPM6vEejDo3w-suqhonIIVjniNJRMRkxDXBWJhY6oQ5YiMU01JTnUqJ3TCjMKbaMhpawSPLhCCpwTQhOsX7UJ9MJ-YAApvSRCpOuLWGKB7LkIapcX6SYVQmWjShPUcyU5WquG9u8ZIV7CLkmcM-89hnFfZNuFi88VoqavwxtuFRXYyrAD38_fYZrHWH_V7Wux3cH8G6_1BZNXgM9fxtZk6c-5DL02LVfAFn2L7Z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase-Change+Memory%E2%80%94Towards+a+Storage-Class+Memory&rft.jtitle=IEEE+transactions+on+electron+devices&rft.au=Fong%2C+Scott+W.&rft.au=Neumann%2C+Christopher+M.&rft.au=Wong%2C+H.-S.+Philip&rft.date=2017-11-01&rft.issn=0018-9383&rft.eissn=1557-9646&rft.volume=64&rft.issue=11&rft.spage=4374&rft.epage=4385&rft_id=info:doi/10.1109%2FTED.2017.2746342&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TED_2017_2746342 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9383&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9383&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9383&client=summon |